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Abstract: Water shortage is a concern in arid and semi-arid regions across the globe due to their lack
of precipitation and unpredictable rainfall patterns. In the past few decades, many frameworks, each
with their own criteria, have been used to identify and rank sites for rainwater harvesting (RWH), a
process which is critical for the improvement and maintenance of water resources, particularly in
arid and semi-arid regions. This study reviews the present state of the art in rainwater harvesting
site selection for such regions and identifies areas for additional research. The results of a systematic
review performed based on two major databases of engineering research, Scopus and Engineering
Village, are presented. Sixty-eight relevant studies were found and critically analysed to identify
patterns and unique features in the frameworks used. The results of this study show that 41% of the
frameworks consider both biophysical and socioeconomic criteria, whereas the remaining 59% of the
frameworks depend on biophysical criteria alone. The importance of each criterion is encapsulated
through a suitability score, with 21% of the frameworks using a binary (0 or 1) indicator of whether the
site matches a criterion or not and the other frameworks using graded scales of differing granularities,
with 52% using a low-resolution scale of 1 to 3, 4, or 5, 7% using a medium-resolution scale of 1 to 10,
and a further 7% using a high-resolution scale of 1 to 100. The remaining 13% of the frameworks did
not specify the scale used. Importantly, this paper concludes that all existing frameworks for selecting
RWH sites are solely based on biophysical and/or socioeconomic criteria; ecological impacts, the
consideration of which is vital for building RWH systems sustainably, are currently ignored.

Keywords: rainwater management; rainwater harvesting; arid and semi-arid regions; site selection;
frameworks; stakeholder; biophysical criteria; socioeconomic criteria; ecological criteria

1. Introduction

Adequate water supply is the most important requirement for human life. The demand
for water has increased due to the increase in the Earth’s population, from 2.5 billion to
7.35 billion between 1950 and 2015. However, more than 40% of the earth’s surface is
covered by arid and semi-arid regions, defined as those that receive an average annual
rainfall of only about 150–350 mm and 350–700 mm, respectively [1]. Historically, arid
and semi-arid regions have contained many settlements, such as those in the Middle East,
Northern Africa, and Western Asia, and it is essential that rainfall and other water sources
in these areas are used efficiently.

For as long as people have engaged in agriculture, they have used water harvesting to
collect rainwater, floodwaters, and groundwater. People rely on water harvesting to meet
their water needs where sufficient supplies for drinking water and irrigation are not easily
reached [2]. Water harvesting can be classified into one of four types: fog and dew harvesting,
rainwater harvesting, groundwater harvesting, and floodwater harvesting [3]. Rainwater
harvesting (RWH), the subject of this paper, is the collection or diversion of rainfall runoff for
productive purposes, and its use is widespread in arid and semi-arid areas [4].
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The very first RWH structures were constructed in southern Jordan over 9000 years
ago to provide drinking water for humans and animals [5]. Over 6500 years ago, Iraqis
started to use RWH structures in a simple form in order to provide water for domestic
and agricultural use [6]. Water harvesting systems were also used in China and India
some 4000 years ago [7]. In the southern part of Tunisia, meskat (runoff basin that has a
rectangular shape), check dams, jessour and tabias (small water bodies used to recharge
aquifers) have been used, with collinaires (agricultural reservoirs) used in Algeria, and
ancient hafir (artificial water catchment basin) to help meet domestic and livestock water
needs in Sudan. In Niger and Burkina Faso, people have long used rock and earth bunds
and stone terraces (elevated platforms on sloping ground) to harvest water. Zay (small pits)
combined with bunds (ponds with a semicircular form that are used to collect rainwater)
were often used in the west of Africa. These methods were critical to the successful creation
of settlements in the desert [6]. In addition, the ancient Greeks demonstrated remarkable
ingenuity in the advancement of hydraulic infrastructure and small-scale constructions.
Notably, certain examples, such as cisterns, have maintained their full functionality even up
until the 20th century [8] and are being used to address the water crises currently occurring
in regions of central and eastern Greece. Losses such as evaporation from these cisterns are
negligible due to their underground construction [8,9].

RWH includes all water harvesting from roofs or ground surfaces by different tech-
niques, and is utilised for different purposes, whether agricultural, domestic, or drinking.
RWH includes two main forms: rooftop harvesting and catchment harvesting [10]. Figure 1
shows the typical types of rainwater harvesting. This study was conducted for catchment
rainwater harvesting systems.
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Figure 1. (A) A typical catchment rainwater harvesting system [11] (B) A typical rooftop rainwater
harvesting system [12].

Arguably, the most important step in planning for rainwater harvesting structures is
selecting the site. Identifying sites for RWH structures is a complex issue, requiring the
combination of disparate criteria to produce an assessment of site suitability via a well-
defined indicator-based framework, discussed in detail in Section 2. As will be discussed,
a range of frameworks and criteria have been suggested for RWH site selection. The
criteria can be either quantitative, i.e., measurable characteristics such as rainfall (mm)
and runoff (m3s−1), or qualitative, i.e., those which depend on the opinion of stakeholders
and experts [13].

The aim of this paper is to review the current state of the art in rainwater harvesting
site selection, focusing on applications in arid and semi-arid regions, and to identify areas
in which further research is necessary. A comprehensive, systematic literature review has
been employed for this purpose; the first step of such a review is defining the research
questions that the review is designed to answer, in this case:
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1. What RWH site selection criteria have been used in existing frameworks?
2. What are the differences and similarities in the way these frameworks combine the

criteria they use, i.e., their scaling and weighting methods?
3. What gaps exist in the criteria currently applied, and what future work is necessary to

improve frameworks, particularly bearing in mind the need for sustainability?

The paper is divided into seven parts. Following this introduction, Section 2 describes
the main principles of indicator frameworks used for RWH site selection. Section 3 provides
details of the systematic literature review method applied in this study. In Section 4, an
overview of the publications returned by the review search is given, with details of the
important findings presented in Section 5, specifically the criteria and weighting methods
currently used. Section 6 discusses the key results and puts them in context. Finally, key
conclusions are drawn and summarised in Section 7.

2. Indicator-Based Frameworks and Their Criteria

Water resource development projects require the integration of a system that includes
multidisciplinary knowledge in social sciences, economics, and agronomy [14]. Many
projects related to water management around the world, costing billions of dollars, have
failed due to decision makers only considering the biophysical aspects without looking at
the other aspects, such as social and ecological impacts [15]. The ecological condition of a
water body can be evaluated through testing of water samples for important metrics such
as total dissolved solids (TDS), dissolved oxygen (DO), nitrogen (N), chlorophyll, bacterial
growth, turbidity, total suspended solids, ammonia, PH, total phosphorus (TP), and salinity.
It is recognised that other factors, such as the air temperature and amount of sunlight the
water body receives, affect these metrics [16], and, in our opinion, should be included in
assessments of site suitability. Water bodies represent a complex system in terms of the
environment because they are transitional between rivers and lakse [17].

Indicator-based decision-making frameworks are an important part of ensuring that
these diverse factors are adequately taken into account during the different stages of projects.
The formation of an indicator-based framework has the benefit of allowing for the evaluation
and clarification of multi-dimensional aspects or ideas, which cannot be evaluated directly [18].
Through collaboration between experts and stakeholders, an acceptable framework may be
constructed that converts the complex issue, which contains many groups of criteria with
different measures, to a single number that is easier to understand and interpret for non-
experts [18] and simplifies the comparison of potential sites for experts, facilitating an objective
evaluation. Any indicator framework has three main parts: headline categories (components),
supporting indicators, and second-order and third-order sub-indicators [19]. Components
may be seen as separate categories of indicators that reflect certain concerns or themes in
response to the demands of users [20] (Figure 2).
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2.1. Indicators

Indicators are the framework’s primary element, and they are often chosen based
on literature review and expert opinions; their selection should be conditional on the
following points [21,22]:

1. Available: the data should be easy to access or measure.
2. Measurable: the criterion may be easily measured and analysed quantitatively.
3. Repeatability: if the indicator is evaluated following the same method for the same

region under the same conditions, it will provide the same result each time.
4. Validity: There must be a distinct connection between a criterion and the issue it is

intended to demonstrate.

The indicators may be quantitative or qualitative. Quantitative indicators are directly
measurable with a numeric value but potentially different units, such as distance to the
nearest road (units of meters, m), runoff

(
m3s−1 ), and slope (dimensionless). Qualitative

indicators, for example subjective opinions, do not have a direct numerical value, but may
be quantified using standardization.

2.2. Standardization of Indicators

According to Juwana et al. [19], in order to reconcile the different measures for indica-
tors, the quantitative values should be converted to a normalized, dimensionless number,
which can simplify comparison and aggregation and also aid understanding by nonexperts.
This process is done using one of two standardization methods [23], one for quantitative
indicators and the other for qualitative indicators:

Empirical standardization normalizes quantitative indicators by the range of values,
relative to the minimum value, as illustrated in Equations (1) and (2) [23]:

Xi =
Ri − Rmin

Rmax − Rmin
(1)

where Xi is the standardised score (0 ≤ Xi ≤ 1), Ri is the raw score for the indicator,
and Rmin, Rmax are the minimum and maximum scores for the indicator, respectively.
Equivalently, this standardisation may be scaled to the range 0 ≤ Xi ≤ 100:

Xi =
Ri − Rmin

Rmax − Rmin
× 100 (2)

The second method, used for producing equivalent scores from qualitative indicators,
is categorical scaling. Based on pre-established criteria, the values of indicators are catego-
rized and allocated. These classifications might be numerical, such as ranging from 1 to
5, or they can be descriptors and points of view, such as “equal importance”, “moderate
importance”, or “strong importance”, so each description in questionnaires has a number
that represents the importance of this criterion. For example, if the scale for suitability is
from 1 to 3, then 1 will represent “equal importance”, 2 will represent “moderate impor-
tance”, and 3 will represent strong importance [18]. Also, classification can take the form
of Likert scale statements, whereby participants are prompted to express their degree of
concurrence or discordance with a set of predetermined statements, typically spanning
from “Strongly Agree” to “Strongly Disagree”. The inclusion of a neutral midpoint option,
such as “Neither Agree nor Disagree”, may be considered in the construction of the scale.
The responses are quantified using numerical values, typically within the range of 1 to 5 or
1 to 7, in order to measure the extent of concurrence or discordance [24].

2.3. Weighting Scheme

Weights are employed to aggregate the indicators within a framework into a resultant
output index. This gives users of the framework the ability to vary the weights on the vari-
ous indicators for a particular application. In order to arrive at the final index number, the
weighting scheme involves multiplying each component of the indicator-based framework
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by a value that represents the component’s significance, or weight, during each stage of
the calculation.

In general, statistical methods and participatory methods are employed to assign
weights to various criteria. In the statistical method, weights are assigned based on the
analysis of criteria data from the literature, whereas in the participatory method, weights
are assigned using questionnaires and workshops meant to gather expert and stakeholder
perspectives on weighting [19].

3. Methodology

A systematic literature review is employed to answer specific questions by identifying,
appraising, and synthesising relevant literature that fits pre-specified criteria [25]. Briefly,
such a review includes a comprehensive search that concentrates on providing a summary
of the existing literature on a subject and specific goals that have been established. In terms
of the strategy for selecting papers, it should be transparent, with explicit inclusion and
exclusion criteria for papers established prior to initiating the review. Moreover, the process
of assessment of articles should be comprehensive, the selection of the information that is
related to the study should be clear and specific, and the summaries of articles should be
clear and based on high-quality research. The parameters of the review conducted for this
paper are detailed below.

The specific questions to be answered by this review are stated in Section 1. Two
databases of scientific publications were interrogated, Scopus and Engineering Village.
These databases have a good search engine for complex queries and cover all the main
engineering journals. To ensure reliable, high-quality sources, the scope was restricted
to peer-reviewed books, articles, and conference papers. Only English-language papers
were included, though with English being the language of most (if not all) of the major
engineering journals, this is likely to include all important works. Details of the precise
query, keywords, and filters used for each database are given in the following subsection.

Once papers were identified using the systematic literature review keywords and fil-
ters, the search was expanded to include papers that cited those papers, and that were cited
by those papers. Again, these papers were filtered by relevance to the review questions.

3.1. Search Queries and Keyword Selection

The search queries were designed to search the “title-abstract-keyword” fields in Sco-
pus and (equivalently) the “subject/title/abstract-keyword” fields in Engineering Village.
Three groups of keywords were used for the search queries: “scope” keywords, “target”
keywords, and “methods” keywords, with keywords in each group. The groups each
represent a range of possible acceptable options; therefore, the OR operator was utilized to
search for one or more of the group’s keywords. The search was narrowed by using AND
operators between groups to ensure that at least one keyword from each group appeared
in the paper.

The keywords used for the scope group were those that were primarily related to water
harvesting; these keywords were used to define the broad frame from which the search
should begin. Specifically, these keywords and their variations were “water harvesting”,
“rainwater harvesting”, “rainwater collection”, “RWH”, “water storage systems” and
“store precipitation”.

The terms for the target group were “arid”, “semi-arid”, “water scarcity”, “water
shortage”, “dry areas”, “Iran”, “Jordan”, “Iraq”, “Morocco”, “Saudi Arabia”, “Yemen”,
“Lebanon”, “China”, “India”, “Tanzania”, “Tunisia”, “Pakistan”, “Ethiopia”, “Malawi”,
“Mongolia”, “Egypt”, “Kenya”. These keywords were selected to ensure all relevant
regions were captured by the search query, using aridity-related phrases and relevant
country names, i.e., all countries in the Middle East, all countries in northeast Africa, and
China, because most of these countries are affected by seasonal rainfall and a lack of water
for people, agriculture, and animals.
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The final set of keywords was related to the specific purpose of the study, and were
“suitable location”, “site selection”, “suitable sites”, “site suitability”, “possible sites”,
“RWH sites”, “potential sites”, “criteria”, “suitable area”.

Figure 3 shows the keyword groups and their relationships. The full query strings
used for each database are given in the Appendix B.
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3.2. Database Search

The Scopus and Engineering Village databases were searched on 29 October 2022,
using the queries detailed in Section 3.1. These searches resulted in 244 and 312 articles,
respectively. The results were collated using an EndNote library, and duplicates were
automatically removed. Two hundred and sixty-two unique articles were returned by this
process. To ensure relevance, the results were manually filtered based on the title and
abstract, the scope of the study, and the aim of the review. This stage was conducted based
on the inclusion criteria for the articles that related to site selection for rainwater harvesting;
186 articles were excluded based on these criteria.

Seventy-six articles were retained after this process, following which the remaining
articles’ full text was examined in detail. This final round was added to ensure that each
of the 76 papers contained essential elements related to this study, such as arid and semi-
arid, and that they were included in the full-text analysis. Eight articles were excluded.
This process is summarised in Figure 4. Following the completion of all of the preceding
processes, 68 articles were selected for in-depth review. From this review, the design and
implementation of the existing frameworks were identified and analysed, along with the
criteria which they use.
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4. Overview of Retained Publications

All but three publications ([26–28]) provided author-specified keywords. “Harvesting”,
“rainwater”, “water”, “GIS” and “system” were the most frequently used keyword strings
in the chosen articles, as seen in Figure 5. The word cloud depicted in Figure 5 was
created using NVivo version 14, created by QSR International Software Company Pty
Ltd., (The company is headquartered in Burlington, Massachusetts (US), and has branch
offices in Australia, Germany, New Zealand, and the United Kingdom.), which is widely
used for literature reviews and qualitative data analysis. It helps gather relevant literature
from various sources like dissertations, recent journal articles, books, reliable web pages,
organisational reports, and conference proceedings [29].

The country with the most publications related to RWH site selection was Iraq (12),
followed by Iran (8), Egypt (7), Jordon (6), and Saudi Arabia (5); see Figure 6.

Figure 7 shows the distribution of articles by year of publication. Although the search
included publications going back to 2000, all but 9 of the papers are from within the last
8 years and 36 were published in the last 3–4 years, ensuring that the results of this review
are up-to-date. The growth in interest in this area of research over the last 3 years or so is
also evident.
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5. Current Frameworks and Their Criteria

As shown in Figure 4 and explained in Section 3.2, the final number of papers matching
the systematic review criteria from the two databases was reduced to 68 frameworks in
the final phases that were considered for a comprehensive assessment. Each of these
frameworks was designed for a distinct application at a different scale and within a unique
set of local circumstances and situations. Naturally, each of these frameworks serves a
unique purpose, employs a unique method of evaluation, and uses a different assessment
procedure. The analysis of these frameworks was based on their country, year, keywords,
classification of the criteria (biophysical and socioeconomic criteria), tools, annual rainfall,
catchment area, range of the index, and methods of weighting, as shown in Table A1. The
systematic literature review found that the RWH site selection frameworks use a variety of
different criteria, weighting methods, and other tools.

The next section provides a detailed look at the frameworks discussed in these publi-
cations, with a focus on the criteria used and how these criteria can be combined to make a
quantitative measure of site suitability.

5.1. Criteria Currently Used for RWH Site Selection

Two categories of criteria have been identified for use in RWH site selection, namely,
biophysical and socioeconomic. The biophysical criteria were proposed by the Integrated
Mission for Sustainable Development in 1995 and include drainage system, soil texture,
slope, and land use/land cover. In addition, Oweis et al. [30] introduced a second category
of criteria, the socioeconomic criteria, represent by factors like land tenure. Subsequently,
the Food and Agriculture Organization (FAO) [31] revised these categories to include
climate (rainfall), agronomy (crop characteristics), hydrology (rainfall–runoff relationship
and intermittent watercourses), topography (land slope), soil (structure, depth, and tex-
ture), and socioeconomic conditions (people’s experiences, workforce, people’s priorities,
population density, water laws, land tenure, accessibility, and related costs).

Of the 68 publications analysed for this review, 59% use biophysical criteria alone,
while the remainder used both biophysical and socioeconomic criteria. Details of each
publication and their frameworks are given in the Appendix A, in Table A1.
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Upon analysing the criteria used, it became apparent that various synonymous terms
were used to denote equivalent criteria. In such instances, these criteria have been consoli-
dated to achieve the merged criteria, as shown in Table 1. These criteria are categorised
into two groups, namely biophysical and socioeconomic criteria.

Table 1. Groups of existing criteria.

Biophysical Criteria Socioeconomic Criteria

Criteria Synonyms Criteria Synonyms

1- Rainfall (mm)
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
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areas do not have enough meteorological stations to give detailed local data, and so inter-
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Catchment suitability clearly depends on the average annual rainfall and is scored 
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
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of the inverse distance weight (IDW) interpolation method, employing data stored in a 
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
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5.1.1. Biophysical Criteria 
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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5.1.1. Biophysical Criteria 
1- Rainfall (mm) 

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood 
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological 
stations, which generally measure a variety of factors, such as precipitation, wind velocity, 
temperature, and humidity. In arid and semi-arid regions of developing countries, many 
areas do not have enough meteorological stations to give detailed local data, and so inter-
polation from the nearest meteorological stations is used. This method does not require 
high costs, human resources, or time, and can therefore be applied relatively easily in de-
veloping countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources 
and high costs have been shown to make spatial interpolation an appropriate choice to 
tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use 
of the inverse distance weight (IDW) interpolation method, employing data stored in a 
geographic information system (GIS) [1,34,35]. 

Catchment suitability clearly depends on the average annual rainfall and is scored 
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catchments’ 
suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100, R (100–
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5.1.1. Biophysical Criteria

1- Rainfall (mm)

The volume and distribution of rainfall can vary significantly depending on geo-
graphic location, climate, and season, with higher rainfall clearly increasing the likelihood
of harvesting useful amounts [32]. Rainfall measurements are based on meteorological
stations, which generally measure a variety of factors, such as precipitation, wind veloc-
ity, temperature, and humidity. In arid and semi-arid regions of developing countries,
many areas do not have enough meteorological stations to give detailed local data, and
so interpolation from the nearest meteorological stations is used. This method does not
require high costs, human resources, or time, and can therefore be applied relatively easily
in developing countries such as Iraq, Yemen, Palestine, and Kenya, where limited resources
and high costs have been shown to make spatial interpolation an appropriate choice to
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tackle this issue [33]. Out of the 68 frameworks examined, three explicitly mention the use
of the inverse distance weight (IDW) interpolation method, employing data stored in a
geographic information system (GIS) [1,34,35].

Catchment suitability clearly depends on the average annual rainfall and is scored
based on local requirements. For instance, in Tunisia (wadi Oum Zessar), the catch-
ments’ suitability is based on five ranges of average annual rainfall (R) (mm/year), (R100,
R (100–175), R (175–250), R (250–325), and R > 325), with suitability rated as very low,
low, medium, high, and very high, respectively [1,36]. This classification is based on the
literature and discussion with experts and stakeholders.

2- Runoff

The effectiveness of rainwater harvesting is extremely reliant on the volume of water
that can be collected under a given climate. Runoff is characterised as water flow over
the ground surface towards the nearest channel, such as a stream, river, etc., which occurs
when the soil is saturated or when the catchment has a steep slope. Soil saturation happens
through losses of infiltration, which is determined by soil texture.

The runoff volume is commonly calculated using the Soil Conservation Service Curve
Number (SCS-CN) method [23]. The curve number (CN) was established by the Depart-
ment of Agriculture of the United States of America and is based on soil texture, land
use/land cover (LULC), and the hydrological surface conditions of the catchment. The
range of the curve number is from 0 to 100, where the higher the curve number, the higher
the percentage runoff and lower the infiltration, and vice versa. Runoff is calculated in
accordance with Equations (3) and (4) [23,37].Runoff is calculated in accordance with
Equations (3) and (4) [23,37].

Q =
(P − 0.2S)2

(P + 0.8S)
(3)

S =
25400
CN

− 254 (4)

where Q is the runoff depth in millimetres, S is the maximum possible retention after runoff
starts in millimetres, P is the amount of rain in millimetres, and CN is the number of the
runoff curve [23].

3- Hydrological Losses

Hydrological losses, which represent the percentage of rainfall that does not contribute
to runoff due to evaporation and infiltration, directly impact the quantity of water that will
be harvested in RWH structures. Evaporation depends on temperature, humidity, and wind,
where low humidity and high temperatures lead to a high rate of evaporation. Thus, it
varies with season, with annual evaporation calculated based on the average of the monthly
evaporation rates [38]. Evaporation is measured based on meteorological stations [23].

The infiltration ratio depends on the soil texture, primarily based on the percentage of
clay content, with high clay content reducing infiltration; see Table 2.

Table 2. Average values of the final infiltration rate for different types of soil [6].

Soil Type Infiltration Rate (mm/h)

Coarse sand >22
Fine sand >15
Fine sandy loam 12
Silt loam 10
Silty clay loam 9
Clay loam 7.5
Silty clay 5
Clayey soil 4
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4- Slope (%)

The suitability of a site for RWH is influenced by its slope, which affects runoff and
hydrological losses. Generally, slope is defined as the ratio of the vertical change (y-axis) to
the horizontal change (x-axis) between two points on the catchment. Out of the frameworks
examined, 5 [39–43] out of 68 frameworks employ average catchment slope calculations
based on digital elevation models (DEMs). However, the remaining frameworks do not
provide a detailed explanation of the methods used for slope calculation. This omission
hinders follow-up research by reviewers and compromises the transparency of a study.
Rainwater harvesting is not recommended for slopes over 5% due to irregular flow and the
need for expensive earthwork [36].

5- Site Soil

Soil is essential to the conservation of water within rainwater harvesting (RWH)
structures, which benefits humans, animals, and agricultural activities. For example, sand-
textured soils cannot be used to build RWH structures for water harvesting because of high
infiltration losses, whereas a higher percentage of clay in the soil gives it a higher rank of
suitability for RWH sites [32]. The existing different frameworks use different expressions
for soil criteria, which are soil texture, type of soil, soil quality, soil depth, curve number,
and permeability. Soil texture determines the curve number (CN), as shown in Section 2.

The suitability of the catchment area for RWH sites in terms of soil depends on the
type of soil, which is classified based on the literature and experts’ opinions. For example,
according to research performed by Adham, A., et al. [44], conducted in the Western Desert
of Iraq, it has six types of soil: clay, silty clay, sandy clay, sandy clayey loam, sandy loam,
and others. The suitability of each type was rated, and adjusted based on discussions with
experts, as very high, high, medium, low, and very low, respectively. The depth of the soil
should permit excavation to the required level for the RWH structure. In addition, the
depth of soil is a significant factor as well, which is measured based on a field test based
on hammering a steel bar into the earth until it can go no further, and measuring the soil
levels between successive terraces [1].

Land Use/Land Cover (LULC)

Land use/land cover (LULC) refers to the function or utilisation of the land, and affects
the amount of runoff that occurs. For example, there is a link between more vegetation and
more interception and infiltration, which reduces the amount of runoff [1]. In rainwater
harvesting site selection, LULC classification is carried out to assess the LULC’s impact
on runoff; according to Adham’s [1] classification, land use and land cover categories are
farmland and grass, moderately cultivated land, bare soil, mountainous and water bodies,
and urban areas. The suitability levels for each class were scored and adjusted based
on discussions with experts, and were, respectively, very high, high, medium, low, and
restricted. Bare soil refers to areas where people have overused the land, destroying the
plant cover, which then allows the upper soil to be removed through natural processes [23].
Vegetation coverage rates are used to monitor changes in biomass or to identify land
degradation processes. In semi-arid and arid regions, annual and seasonal changes in the
quantity of vegetation cover are dramatic [32]. The selection criteria for RWH must not
include farmland or urban areas, since these zones have distinct economic identities that
preclude the construction of RWH buildings [32].

6- Drainage Density

Drainage density is often defined as the total length of channels (network used to
transfer water to the outlet) divided by the total unit area [45]. The drainage density is
inversely proportional to permeability; hence, a high drainage density indicates that a site
will rank higher in suitability for RWH sites than one with a lower drainage density [46,47].
In addition, stream order is dependent on the connection between tributaries. Stream order
is used to indicate the hierarchical relationship between stream segments and permits the
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categorization of drainage basins by size. If the number of stream orders increases, perme-
ability and infiltration decrease, and vice versa [23]. The drainage density is calculated in
arid and semi-arid regions based on a digital elevation model (DEM) [23]. The catchment
area for the drainage density is inversely proportional to its permeability; hence, a high
drainage density indicates that a site will rank higher in suitability for RWH sites than one
with a lower drainage density [46,47].

7- Catchment Area

The catchment area for rainwater harvesting (RWH) is the surface area from which
rainwater is collected and directed into a storage tank or reservoir for later use. The runoff
processes are notably influenced by the basin area. Consequently, it is a crucial factor in
calculating the potential for rainwater harvesting. The augmentation of the basin area
results in a proportional increase in the quantity of precipitation accumulated and the
maximum discharge of water [48].The catchment area for rainwater harvesting (RWH)
is the surface area from which rainwater is collected and directed into a storage tank or
reservoir for later use. The runoff processes are notably influenced by the basin area.
Consequently, it is a crucial factor in calculating the potential for rainwater harvesting.
The augmentation of the basin area results in a proportional increase in the quantity of
precipitation accumulated and the maximum discharge of water [48].

8- Distance to Wadis

Wadis are the primary carriers of surface water in the region and provide the majority
of surface water runoff throughout the winter months [32]. RWH structures cannot be built
as part of a wadi, according to Al-Adamat [32], for financial, technical, and environmental
reasons. The distance to a wadi should be more than 50 m and less than 2000 m [32,36].
This distance ensures that the RWH system can collect water from the wadi when it rains
without being damaged by flash floods. It is also close enough to make it easy to collect
water and move it to where it is needed [32].

9- Distance to Faults

The distance to faults and lineaments is seen as a problem when choosing a site for
RWH, since faults and lineaments are like cracks and joints that increase infiltration [23,41].
The distance to the water source is a critical factor to consider when implementing RWH
systems in arid and semi-arid regions. It will impact the feasibility, effectiveness, and cost
of the RWH system, as well as the size and location of the collection surface. The distance to
faults is measured based on a digital elevation model (DEM). The distance to faults should
be more than 1000 m for RWH structures [23].

10- Distance to Water Source (m)

It is recommended that RWH zones be situated at a safe distance from natural water
sources, such as rivers or lakes, to prevent obstruction of water flow and ecological disrup-
tion in the surrounding water source area [46]. The distance to the water source should be
more than 1500 m [46].It is recommended that RWH zones be situated at a safe distance
from natural water sources, such as rivers or lakes, to prevent obstruction of water flow and
ecological disruption in the surrounding water source area [46]. The distance to the water
source should be more than 1500 m [46]. Wells are very important to the local economy and
society. Rainwater harvesting should be selected without including wells. The distance
to the well source should be more than 500 m [32]. The distance from the water source is
calculated based on remote sensing.

5.1.2. Socioeconomic Criteria

1- Distance from Roads (m)

A study region’s proximity to roads can present a significant socioeconomic advantage
for the local community. Through these routes, they may transfer their trucks and tankers
from one location to another when hunting for pasture and water for their animals [46].
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Distance from roads is calculated based on remote sensing, where satellites take high-
resolution photos of the Earth. These photos help locate roads, and GIS tools provide
accurate measurements of distances, allowing us to quantify the separation between roads
and RWH systems. The distance to roads should be more than 250 m [49]. This will avoid
any potential future confrontation between the growth of the roadways and the built-up
ponds [36]. A study region’s proximity to roads can present a significant socioeconomic
advantage for the local community. Through these routes, they may transfer their trucks
and tankers from one location to another when hunting for pasture and water for their
animals [46]. Distance from roads is calculated based on remote sensing, where satellites
take high-resolution photos of the Earth. These photos help locate roads, and GIS tools
provide accurate measurements of distances, allowing us to quantify the separation between
roads and RWH systems. The distance to roads should be more than 250 m [49]. This
will avoid any potential future confrontation between the growth of the roadways and the
built-up ponds [36].

2- Distance from Agriculture (m)

The proximity of the RWH system sites to agricultural areas reduces the distance of
pumping and diversion systems, making it the most cost-effective choice for stakehold-
ers [50]. This criterion is measured based on remote sensing. The distance to an agricultural
area should be more than 250 m. This distance is used to reduce the risk of runoff contami-
nation by agricultural activities, such as pesticide and fertiliser use. This distance ensures
that the collected rainfall is not compromised and is safe for human consumption and
other household uses. The proximity of the RWH system sites to agricultural areas reduces
the distance of pumping and diversion systems, making it the most cost-effective choice
for stakeholders [50]. This criterion is measured based on remote sensing. The distance
to an agricultural area should be more than 250 m. This distance is used to reduce the
risk of runoff contamination by agricultural activities, such as pesticide and fertiliser use.
This distance ensures that the collected rainfall is not compromised and is safe for human
consumption and other household uses.

3- People’s Priorities

People’s priorities are especially significant in arid and semi-arid areas, which may
help explain why so many projects failed when they did not take their priorities into
consideration. A project’s success can be enhanced by incorporating the community’s
expertise and knowledge, which align with their priorities and specific needs [51]. For
example, most people in arid or semi-arid parts of Africa have lived with basic subsistence
systems, which have helped them set goals for life over the years. No lower-priority tasks
can be done well until all the higher responsibilities have been taken care of [51]. Also,
stakeholder participation is crucial for the success and sustainability of rainwater harvesting
(RWH) projects. Stakeholders are individuals or groups who have a direct or indirect
interest in RWH activities, such as local communities, farmers, government agencies, and
private sector organizations [52]. This criterion is calculated based on a questionnaire
survey of people and stakeholders, analysing their responses to these questionnaires, and
assigning a rank to each criterion based on this analysis. People’s priorities are especially
significant in arid and semi-arid areas, which may help explain why so many projects
failed when they did not take their priorities into consideration. A project’s success can
be enhanced by incorporating the community’s expertise and knowledge, which align
with their priorities and specific needs [51]. For example, most people in arid or semi-arid
parts of Africa have lived with basic subsistence systems, which have helped them set
goals for life over the years. No lower-priority tasks can be done well until all the higher
responsibilities have been taken care of [51]. Also, stakeholder participation is crucial for
the success and sustainability of rainwater harvesting (RWH) projects. Stakeholders are
individuals or groups who have a direct or indirect interest in RWH activities, such as
local communities, farmers, government agencies, and private sector organizations [52].
This criterion is calculated based on a questionnaire survey of people and stakeholders,
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analysing their responses to these questionnaires, and assigning a rank to each criterion
based on this analysis.

4- Population Density

Proximity to densely populated regions is a favourable attribute for the suggested
locations. Water that has been stored is a significant resource for agricultural purposes
and human settlements. Therefore, stakeholders tend to prioritise locating rainwater
harvesting (RWH) systems in close proximity to densely populated regions. This approach
helps minimise pumping distances, resulting in cost-effective operations [50].Proximity to
densely populated regions is a favourable attribute for the suggested locations. Water that
has been stored is a significant resource for agricultural purposes and human settlements.
Therefore, stakeholders tend to prioritise locating rainwater harvesting (RWH) systems
in close proximity to densely populated regions. This approach helps minimise pumping
distances, resulting in cost-effective operations [50].

5- Distance to Urban Area (m)

One of the targets of the design of RWH structures is the local community; thus,
the location of water-collection RWH structures near urban centres is vital [32,50]. The
expression distance to the urban area is used in some of the frameworks as a synonym,
such as distance to the village, distance to settlements, and distance to built-up areas.

Six frameworks [32,36,46,53,54] mention the limitations of criteria when applied to
RWH systems in arid and semi-arid regions as follows:

• Annual rainfall should be more than 100 mm and less than 750 mm.
• The slope should be no more than 10% (not recommended for areas where the slope is

greater than that).
• Soil should have a clay content of no less than 10%.
• The distance to a wadi should be more than 50 m and less than 2000 m.
• The distance to faults should be more than 1000 m.
• The distance to the water source should be more than 1500 m.
• The distance to a road should be more than 250 m.
• The distance to an agricultural area should be more than 250 m.
• The distance to an urban area should be more than 250 m and less than 2000 m.

5.2. Analysis of Current Frameworks’ Criteria

After merging the equivalent criteria, a survey of current frameworks led to the
formation of the criteria categories shown in Figure 8, which shows the frequency of
the criteria.

The term “slope” is the most frequently used, followed by “soil”, “LULC”, “drainage
density”, “rainfall”, “runoff” and, “distance to roads”. Word clouds were used to depict
the incidence of the criteria terms as well as the frequency with which they occurred, as
shown in Figure 9, where the size of the text denotes the frequency of the term [55].The
term “slope” is the most frequently used, followed by “soil”, “LULC”, “drainage density”,
“rainfall”, “runoff” and, “distance to roads”. Word clouds were used to depict the incidence
of the criteria terms as well as the frequency with which they occurred, as shown in Figure 9,
where the size of the text denotes the frequency of the term [55].

Figure 10 shows the criteria that have been used in existing frameworks to identify
RWH sites. Whereas 40 frameworks (59% of total frameworks) were based solely on bio-
physical criteria, 28 frameworks (41% of total frameworks) were based on both biophysical
and socioeconomic criteria.
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Figure 11 shows the percentages of weights for biophysical and socioeconomic criteria
that have been used in existing frameworks. Whereas the percentage of biophysical criteria
weights represents 80% of the total frameworks, the socioeconomic criteria represent 20%.
These percentages were calculated based on the summation of weights for biophysical and
socioeconomic criteria, listed severally in existing frameworks.
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5.3. Weighting Process and Intervals for Suitability

Based on this review, the weighted distribution scheme applied in RWH site selection
frameworks can be divided into two distinct schemes:

• Equal weights: imply that each criterion in the framework is accorded the same degree
of importance.

• Nonequal weights: indicate that different criteria are assigned varying levels of im-
portance or significance within the framework. Weight for each criterion is based on
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the importance of the criterion for the purpose of the framework; for example, if the
slope is more important than the soil for the framework, that means the slope is given
a higher weight than the soil.

Just one framework adopted equal weights, with Al-Adamat [32] arguing that a truly
valid assessment system should equally balance the main elements of sustainability without
introducing bias towards one aspect, especially for complex indicators. Fifty frameworks
(74%) adopted unequal weights, such as [46,56–59] (Figure 12). They argue that doing so
gives each criterion its importance based on its effect on the system, and also note that equal
weighting does not guarantee equal importance or contribution of the indicators to the
composite indicator. However, based on their research, [34,42,60], some authors concluded
that the unequal weights require additional human resources and time to implement.
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Five frameworks (7%), such as [41,61–64], used two scenarios of weights (equal and
nonequal weights) in order to adjust the weight of the criteria.

This approach is utilized to compare the two scenarios and ensure that the RWH sys-
tem is both safe and effective, which is essential for the sustainable utilization of rainwater
resources. According to [62,63], nonequal weights offer more consistency and reliability
compared to equal weights. The use of equal weights often leads to high fluctuations in the
distribution criteria for the sites.

From this perspective, allocating nonequal weights to each individual criterion ensures
a fair distribution of importance, thereby enhancing the accuracy and precision of the
obtained outcomes.

The range of normalised weights for the criteria is shown in Table 3. These weights
were calculated by dividing the weight assigned to each specific criterion by the sum of
weights for criteria used in the same framework. The table was constructed based on
extracting the different weights of different criteria from 56 frameworks; these frameworks
were constructed for different purposes, i.e., drinking water, agriculture, or both, which
gives every criterion a different weight. Using these weights, the calculation is based on
the range of the criteria’s maximum, minimum, average, and standard deviation values.
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Table 3. Maximum and minimum weights of the existing criteria.

Criteria Max. Weight
(%)

Min. Weight
(%)

Average
(%)

Standard
Deviation (%)

Relative
Standard
Deviation

(RSD)

Frequency of
Criteria in
Existing

Frameworks

1- Rainfall 45.7 6 23.2 10.5 45.26 44
2- Runoff 53 5.5 32 12.8 40.00 42
3- Slope 35.4 6 19.8 8.3 41.92 60
4- Soil 42.6 3.2 18.9 10 52.91 55
5- Land use/land cover

(LULC) 35.5 4 11.7 8.6 73.50 48

6- Drainage density 41.6 4.1 14 9.9 70.71 47
7- Hydrological losses 13.3 4.8 8 3.4 42.50 6
8- Catchment area 22.2 9.81 14.8 6.5 43.92 3
9- Distance to wadis 19 17 17.5 1.4 8.00 2
10- Distance to faults 13.6 4.6 4.6 2.8 60.87 13
11- Distance to water source 19.8 5 11.4 5.9 51.75 9
12- Distance to roads 25 1.63 7.6 7.4 97.37 22
13- Distance to agricultural area 21.3 4.07 10.4 8.1 77.88 2
14- People’s priorities 64.4 9.6 30 30 100.00 2
15- Population density 4.3 2.77 3.5 1.1 31.43 2
16- Distance to urban area 13 2.3 7.2 4 55.56 12

These values give an indication of the degree to which the weights may differ from
one another, allowing for the identification of indicators with substantial variations in
weight and those with consistent performance. This variation depends on how important
this indicator is for the purpose of the framework and regional priorities. For example, the
framework given in [42] assigned a lower weight for runoff, with a value of 5.5%, because
the same soil classes exist in the regions studied. For example, the framework given in [42]
assigned a lower weight for runoff, with a value of 5.5%, because the same soil classes exist
in the regions studied. Lower values for this indicator indicate a higher capacity of the
soil to retain precipitation, and, consequently, a reduced amount of runoff. However, the
framework given in [65] allocated a higher weight to runoff because it prioritises effective
management of runoff and its potential benefits for water availability. In addition, the
framework given in [66] assigned a minimum weight for soil, of 3.2%, due to soil properties’
generally low level of variation across the pilot region. The highest weight for soil was
42.6%, which was allocated by the framework given in [67]; the highest weight for soil in
this framework was due to the fact that the purpose of this study was flood management to
protect against soil erosion, and the variation in soil type in this region.The highest weight
for soil was 42.6%, which was allocated by the framework given in [67]; the highest weight
for soil in this framework was due to the fact that the purpose of this study was flood
management to protect against soil erosion, and the variation in soil type in this region.

While the standard deviation can be used to examine the dispersion of values and
identify outliers, it provides little insight into the actual values themselves [68]. For example,
when analysing the weights of criteria, a high standard deviation should indicate that the
weights of people’s priorities (0.3) are widely spread out and that some frameworks may
give this criterion significantly higher or lower weights than the mean or average value.
This is in contrast to population density, which was found to have a standard deviation
of 0.011, indicating that data points are generally close to the mean or average value. The
relative standard deviation (RSD) is a frequently employed statistic that facilitates statistical
analysis. It is calculated by multiplying the standard deviation by 100 and dividing the
result by the mean value. The primary objective of the relative standard deviation (RSD)
is to assess and contrast the degree of variability exhibited by data in relation to its mean
value. This method offers a convenient means of evaluating the accuracy and reliability
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of scientific measurements [69]. This method offers a convenient means of evaluating the
accuracy and reliability of scientific measurements [69].

Figure 13 shows the percentage of normalized weights for the merged criteria that are
used in current frameworks. Runoff and people’s priorities obtained the greatest weights,
14% and 13%, respectively. These percentages were calculated based on the average weight
for each criterion in existing frameworks divided by the sum of average weights for all
criteria in existing frameworks. One hundred percent is the total weight of the criteria,
which represents the total importance of each criterion on the framework.

Water 2023, 15, 2782 22 of 55 
 

 

 
Figure 13. The percentages of normalised weights for the main criteria. 

Figure 14 shows the intervals of the final index, which quantifies the significance of 
each criterion that was used in existing frameworks. A notable finding is that a significant 
proportion, specifically 21%, of the frameworks employ a binary (0 or 1) indicator, 
whereby a site is classified as either meeting or not meeting requirements. In contrast, the 
other frameworks utilise graded scales with varying degrees of granularity; the most com-
mon intervals used in existing frameworks are low-resolution scales of 1 to 3, 4, or 5, with 
52% using them. A medium-resolution scale of 1 to 10 is used by 7%. And 7% use a high-
resolution scale of 1 to 100. The rest of the frameworks, 13%, did not specify the scale used. 
According to the analysed frameworks, the intervals (1–5) and (0–1) seem to be the most 
popular options among both experts and stakeholders. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. The percentages of normalised weights for the main criteria.

Figure 14 shows the intervals of the final index, which quantifies the significance of
each criterion that was used in existing frameworks. A notable finding is that a significant
proportion, specifically 21%, of the frameworks employ a binary (0 or 1) indicator, whereby
a site is classified as either meeting or not meeting requirements. In contrast, the other
frameworks utilise graded scales with varying degrees of granularity; the most common
intervals used in existing frameworks are low-resolution scales of 1 to 3, 4, or 5, with
52% using them. A medium-resolution scale of 1 to 10 is used by 7%. And 7% use a
high-resolution scale of 1 to 100. The rest of the frameworks, 13%, did not specify the scale
used. According to the analysed frameworks, the intervals (1–5) and (0–1) seem to be the
most popular options among both experts and stakeholders.
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The advantage of using such numbers is that it makes the outcome of the entire
framework simple to comprehend, not least for a wide variety of various stakeholders,
and this can be accomplished without the need for a more in-depth evaluation [70].The
advantage of using such numbers is that it makes the outcome of the entire framework
simple to comprehend, not least for a wide variety of various stakeholders, and this can be
accomplished without the need for a more in-depth evaluation [70].

From this standpoint, the higher range of interval indicates flexibility in choices. If
the final index is a percentage, for instance, it may be more intuitive to report numbers
between 0 and 100 than to use a different range, such as (1–3), (1–4), or (1–5), that are more
commonly used for qualitative criteria.

6. Discussion

This research sought to identify RWH framework elements for arid and semi-arid
regions based on a systematic literature review. The assessment was helpful in identifying
essential qualities that a framework has to have for it to be regarded as suitable for imple-
mentation in arid and semi-arid regions. The framework’s development should include
participation by stakeholders, experts, etc. to identify the criteria and assign weights, and
determine the appropriate number of criteria.

The findings of this review reveal that of the 68 different frameworks, 40 of them are
based on biophysical criteria, and the other 28 are based on biophysical and socioeconomic
criteria in site selection for RWH, as shown in Figure 11. The most common criteria that
were used in existing frameworks were slope, soil, and land use/land cover. In addition,
the number of criteria varied from framework to framework. The number of criteria was
determined based on the size of the issue, the availability of data, and the opinions of
experts and stakeholders (see Tables A1 and A2). Furthermore, the most commonly used
intervals for evaluating suitability in the existing frameworks were (1–5) and (0–1); see
Figure 14. The interval (1–5) provides decision makers with more options than the interval
(0–1), which is more limited.

This review work contributes, although in a limited manner, to closing the knowledge
gap. This research was restricted to two databases (Scopas and Engineering Village). Based
on this study, it appears that the scholars, in their research in this field, have not yet
investigated how ecological factors affect site selection for RWH.

7. Conclusions

This paper presents a systematic literature review to identify RWH sites in arid and
semi-arid regions. Following the screening procedure, 68 papers met the criteria for
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inclusion and were deemed relevant. The purpose of this study was to discern the guiding
principles of different frameworks used for identifying suitable RWH sites and to identify
existing gaps in knowledge. According to this review, many frameworks have been
developed for this purpose. This review helps in identifying the core components of the
framework and investigating methods of data collection. In addition, the comparison
between different frameworks and the identification of the similarities and differences
between them help identify the gap in knowledge. This study shows that the criteria used
in existing frameworks are biophysical and socioeconomic criteria, which are insufficient to
achieve the pillars of the sustainability system. Forty frameworks (59 percent of the total)
were founded on biophysical criteria, whereas twenty-eight frameworks (41 percent of the
total) were founded on both biophysical and socioeconomic factors. In addition, “slope”
was the most common criterion, followed by “soil”, “LULC”, “drainage density”, “rainfall”,
“runoff”, and “distance to roads”, with biophysical criteria representing 80% of the weight,
and socioeconomic criteria 20%; see Figure 11.

These frameworks are constructed without considering how the RWH structure’s
location and the duration of time it will be maintained might affect ecological aspects such
as water quality and living organisms. Although rainwater is initially free of microbial
contamination, it can become contaminated by human and animal activities, potentially
fostering human diseases in stored rainwater due to storage conditions and posing a
significant risk of infectious disease outbreaks. The quality of water in RWH structures
significantly depends on the location and catchment area [71,72].The quality of water in
RWH structures significantly depends on the location and catchment area [71,72].

In light of this, it is imperative to develop more comprehensive RWH system frame-
works that promote sustainability, preservation of natural resources, and reduction of
water pollution. A rainwater harvesting (RWH) structure is expected to align with the
pillars of sustainability, including ecological considerations. Therefore, it is crucial to take
into account the ecological aspects when designing such a RWH framework. As a result,
ongoing efforts are being made to develop a recommended conceptual framework that
effectively addresses this matter.

Future Work

Subsequent research will need to concentrate on developing a framework for RWH
site selection in arid and semi-arid regions relying on all the factors discussed in Section 2 to
ensure its practical applicability and relevance. A conceptual framework will be formulated
for site selection of RWH in such regions, which will entail the following steps:

1. Identification of the most important structural criteria (biophysical and socioeconomic).
2. Formulation of a methodology to identify the most significant ecological criteria and

combine them with structural criteria.
3. Engagement of stakeholders and experts to weight the criteria and validate the framework.
4. The resultant hybrid framework will be applied to a case study to demonstrate its use

as a decision-support tool for potential users. The selection of the case study will be
based on criteria such as its location in an arid or semi-arid region, and the availability
of relevant information about the region.
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Appendix A

Table A1. Summary and comparison of the key components of current frameworks.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

1- [56] Jordan,
2015

Edge, Edge Contrast
Proximity Index, class area
proportion, class area,
patch size, radius of
gyration, number of
patches, shape and
neighbour distance
(10)

(AHP) Rainwater
harvesting, analytic
hierarchy process,
landscape metrics

21,565 250
150

0–1 12–23 ◦C Nonequal Biophysical
criteria

2- [57] Saudi Arabia,
2015

slope, rainfall, runoff, soil
texture, and land use/land
cover
(5)

GIS-based
(DSS)

Geographic
information
system, in situ
water harvesting,
remote sensing,
decision support
system

200–600 (1–5) 12–23 ◦C Nonequal Biophysical
criteria

3- [63] Egypt, Sinai,
2016

Length of overland flow,
drainage density stream
frequency, infiltration
number, bifurcation ratio,
drainage texture
(6)

RS and GIS
techniques

Runoff water
harvesting, remote
sensing, GIS
weighted spatial
probability
modeling,
watershed
morphometry

23,380.93 95 mm
[73]

(1–4) 23.2 ◦C [73]
23.2 ◦C [73]

Equal and
nonequal
weights

Biophysical
criteria

4- [58] Iran, 2020 Proximity to qanat, slope,
geomorphology, climate,
land use, rainfall, geology,
distance to rock source,
fault, stream, well, water
spring, proximity to road,
proximity to village
(14)

DSS, Boolean
and fuzzy
logic

Water harvesting,
cross section,
valley’s profile,
check dam,
satisfaction,
rural

345 0–1 11 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria
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Table A1. Cont.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

5- [46] Northern
China,
2020

Streams, roads, lake area,
roads and railway, lake
area or reservoir, built-up
areas, rainfall runoff,
drainage density, slope
(10)

Remote
sensing–
based MCA,
(WLC),
combination
with the
Boolean
approach in
a GIS

Water
management,
geographic
information system
[74], rainwater
harvesting,
multi-criteria
analysis, analytical
hierarchy
process (AHP)

744.57 325.8 (0–1) 5.2 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

6- [75] Kenya, 2019 Drainage density,
lineament density, runoff
depth, slope, land
use/land cover, soil texture
(6)

GIS and
remote
sensing, use
of SCS-CN
for runoff

Weighted overlay
analysis, runoff
depth, rainwater
harvesting
structures,
SCS-CN method

699 mm
to
1058 mm

1–5 26 ◦C [76]
26 ◦C

Nonequal Biophysical
and socioeco-
nomic
criteria

7- [77] Pakistan, 2020 Slope, drainage density,
geological setup, soil
texture and drainage
stream characteristics,
runoff, land use/land
cover
(7)

GIS,
conservation
service (SCS)

Rainwater
harvesting Remote
sensing, GIS,
site suitability

2987 580 1–3 5–41 ◦C Nonequal Biophysical
criteria

8- [62] Iraq, 2017 Slope, land use, rainfall,
geological, soil type,
condition, road, vegetation,
village, sediment,
evaporation
(10)

RS, MCA
fuzzy, AHP

GIS.
Multi-criteria
decision
techniques,
rainwater
harvesting
structure,
remote sensing

13,370 115 (0–1) 2.6–42.8 ◦C Equal, and
nonequal
weights

Biophysical
and socioeco-
nomic criteria
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Table A1. Cont.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

9- [59] Egypt,
2016

land use, land cover, slope,
runoff coefficient
precipitation, soil type
(5)

GIS and
(DSS) and
remote
sensing

Normalized
difference, drought
management,
decision support
system (DSS),
geographic
information
system, vegetation
index (NDVI),
multi-criteria
evaluation,
rainwater
harvesting,
analytical hierarchy
process (AHP)

10,130 110 1–5 32 ◦C Nonequal Biophysical
criteria

10- [40] India, 2019 Stream networks, digital
elevation, soil quality
(3)

GIS and
digital
elevation
model (DEM),
ArcGIS

Rainwater
harvesting, DEM,
India, drought

None 26.98 ◦C
[78]

Nonequal Biophysical

11- [50] Iraq Land use/land cover,
slope, stream orders,
rainfall, soil, elevation,
runoff, roads and
settlements, agriculture
density, livestock water
demand, population and
rural density
(13)

GIS,
multi-criteria
model,
(AHP)

Water harvesting,
Iraq, GIS,
multi-criteria, AHP

6135.77 350 1–5 7.8—33.9 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

12- [79] Ethiopia,
2020

Soil texture, runoff, slope,
stakeholders’ priorities,
land use/land cover
(5)

(SWAT), RS,
MCA

Rainfall runoff,
geographic
information
system, the Dawe
River watershed,
rainwater
harvesting, the
Wabe Shebelle
River basin, soil
and water
assessment tool
(SWAT)

368 723.36–534 1–3 27.14 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria
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Table A1. Cont.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

13- [80] Iran,
2021

Evaporation, rainfall, soil
depth, permeability of soil,
organic matter of soil, soil
texture, electrical EC of soil,
vegetation condition,
vegetation types, percentage
of vegetation, fault density,
slope aspect, EC of water,
groundwater, groundwater
drop transport capability,
drainage density, stream
order, runoff, discharge
management, land use,
participation, alluvium
thickness, distance from
water resources, distance
from a road,
population density

Geographic
Information
System.

Rainwater
harvesting,
Shannon, TOPSIS,
geographic
information
system, entropy

83,000 115 1–4 19.17 ◦C
[81]

Nonequal Biophysical
and socioeco-
nomic
criteria

14- [61] Egypt, 2021 Flood, maximum flow
distance, drainage density,
infiltration, slope,
watershed length,
watershed area, flow
distance
(8)

WMS and
remote
sensing
techniques,
(MPDSM)

Runoff water
harvesting (RWH),
remote sensing,
analytical hierarchy
process (AHP),
multi-parametric
spatial model
(MPDSM),
dry regions,
decision

3515 54.87 0–100 23.2 ◦C [73]
23.2 ◦C

Equal and
nonequal
weights

Biophysical
criteria

15- [61] Iran, 2021 Temperature, precipitation,
discharge, soil texture,
land use, discharge density,
slope, evapotranspiration
(8)

GIS, (AHP),
(WLC),
multi-criteria
decision
analysis

AHP, WetSpa
model, GIS, WLC,
RWH

1132 528.3 0–1 4.85–25.16 ◦C Nonequal
weights

Biophysical
criteria

16- [82] Saudi Arabia,
2021

Rainfall, soil, slope, land
use/land cover, drainage
network
(5)

GIS, MCDA,
SCS-CN

GIS, MCDA,
rainwater
harvesting,
suitability
SCS-CN, AHP

681 197 1–3 29 ◦C Nonequal Biophysical
criteria
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Table A1. Cont.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

17- [83] Morocco, 2021 Soil texture, drainage
density, slope, land
use/land cover, runoff
(5)

GIS-based
fuzzy
(FAHP),
remote
sensing,
(DEM)

RWH Suitability,
SCS-CN, FAHP, RS,
GIS, Kenitra
province

3052 450 0–1 13.1–20.1 ◦C Nonequal Biophysical
criteria

18- [53] Iran, 2020 Rainfall, Spatial
Geographic Information,
Slope, Land use/cover, Soil
texture, Drainage network,
Basin/sub basin, River,
Road and railway,
Fault, City.
(10)

Best-Worst
Method and
fuzzy logic in
a GIS-based
decision
support
system

RWH, BWM,
agriculture,
decision support
system

12,981 125–700 1–5 15.6 ◦C
[84]

None Biophysical
and socioeco-
nomic
criteria

19- [28] China, 2018 Slope and hydrological soil
groups, land use,
hydrological soil groups
(4)

ArcGIS,
SCS-CN
model

--------- 90,021 370 mm
[84]

1–4 0–7 ◦C None Biophysical
criteria

20- [41] Iraq, 2019 Lineament frequency,
drainage frequency density,
slope, maximum flow
distance, stream order,
flood, basin area,
geological condition,
distance from villages,
distance from main roads,
geometric and
morphometric, basin
length, vegetation index,
land use
(14)

GIS
techniques,
(DEM),
remote
sensing,
(SRTM)

Barrages,
reservoirs, dams,
hydrology, water
resource,
environment

13,370 115 0–1 2.6–42.8 ◦C Equal weight
and nonequal

Biophysical
and socioeco-
nomic
criteria

21- [85] India, 2017 Soil texture, rainfall, soil
depth, land use/land
cover, slope

GIS, Google
Earth, remote
sensing

water-harvesting
runoff, remote
sensing, GIS,
structures’
potential

16,600 735 mm NA 11–45 ◦C None Biophysical
criteria
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Table A1. Cont.

No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

22- [86] Lebanon, 2000 Slope, permeability, runoff
coefficient, stream order,
watershed area, soil type,
rainfall
(7)

Hydrologic
modelling,
(AHP)

Hydrologic
modelling,
geographic
information
systems, water
harvesting,
Lebanon, analytic
hierarchy process

300 mm 0–1 16.23 ◦C
[86]

Nonequal Biophysical
criteria

23- [39] Rajasthan/India,
2018

Soil map, rainfall, drainage
network, land use/land
cover, depth of depression,
slope, runoff
(7)

MCAintegrated
with RS and
GIS

GIS rainwater
harvesting, DEM,
suitable location,
surface runoff

162 234.88 1–3 31.9–18.8 ◦C
[87]

None Biophysical
criteria

24- [88] Tanzania, 2007 Drainage, slope, land
use/land cover, soil
texture, soil depth, rainfall
(6)

(DSS), remote
sensing

Remote sensing,
rainwater
harvesting,
geographic
information
systems, decision
support system,
technologies

400–700 0–100 26.55 ◦C
[89]

Nonequal Biophysical
criteria

25- [90] Iraq, 2020 Soil texture, drainage, land
use/land cover,
rainfall, slope
(5)

RS, MCD 452.6 116 1–5 8–33 ◦C Nonequal Biophysical

26- [90] Tunisia, 2022 Economic, social,
environmental indicators,
land use, slope, stream
network, road network
(6)

Geographic
information
systems

Spatial
multi-criteria,
rainwater
harvesting,
indicator, analysis,
Tunisia, composite
sustainability

361 157 mm. 0–10 −3–48 ◦C Nonequal Biophysical
and socioeco-
nomic
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No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

27- [91] Iran, 2021 Soil type, soil depth,
rainfall, land use, slope
(5)

GIS, SWAT,
(WLC),
multi-criteria
decision
analysis

SWAT model,
geospatial
techniques, arid
and semi-arid
regions, rainwater
harvesting,
multi-criteria
decision analysis

9762 303 1–4 11.6–26.7 ◦C Nonequal Biophysical
criteria

28- [92] Morocco, 2021 Land use/land cover, soil
type, lithology, rainfall,
hydrographic typology,
slope, lineament density
(7)

RS and GIS
data

Remote sensing,
geographic
information system
water harvesting
structures,
multi-criteria
analysis, dam

20,500 300 0–10 20 ◦C None Biophysical
criteria

29- [93] Saudi Arabia,
2021

Slope, alluvial, drainage
density, rainfall
distribution, runoff depth,
soil, closeness to streams,
curve number
(8)

AHP, GIS, RS. AHP, rainwater
harvesting,
pairwise
comparison, arid
regions, suitability
map

572.17 95 1–5 30.8 ◦C [94]
30.8 ◦C

Nonequal Biophysical
criteria

30- [95] India, 2008 Geomorphology, land
use/land cover, road,
drainage and lineaments
(5)

Remote
Sensing and
GIS

Rainwater
harvesting site
suitability

560 747.52 0–100
Rank 1–4

32.1 ◦C Nonequal Biophysical
and socioeco-
nomic

31- [67] Saudi Arabia,
2015

Slope, runoff, rainfall, soil
texture, land
use/land cover
(5)

GIS, DSS Rainwater
harvesting, GIS,
multi-factor
evaluation (MFE),
analytical hierarchy
process, decision
support
system (DSS)

12,000 600 1–5
suitability

12–23 ◦C Nonequal Biophysical
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No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

32- [65] Punjab,
Pakistan, 2022

Slope, runoff depth, land
use/land cover,
drainage density
(4)

MCA, GIS,
AHP

HEC-GeoHMS,
rainwater
harvesting,
SCS-CN
modification,
satellite,
multi-criteria
analysis,
water resource
management,
remote sensing

300 781.4 0–100 21.5 ◦C [96]
21.5 ◦C

Nonequal Biophysical
criteria

33- [36] Northern
Jordan, 2010

Distance to international
borders, distance to roads,
Distance to wells, distance
to wadis, distance to roads,
distance to urban centres,
distance to faults, soil,
rainfall, slope
(12)

GIS, Boolean WLC, GIS, Jordan,
ponds, Boolean,
harvesting

2611 600 (1–4) 20.36 ◦C
[97]

Nonequal Biophysical
and socioeco-
nomic
criteria

34- [98] Northern
Ethiopia, 2022

Land use/land cover, soil
texture, project, workforce
and people’s priorities and
water laws, rainfall, slope,
runoff, implementation
costs, accessibility
(8)

GIS-, MCA,
hydrological
model

Catchment
multi-criteria
analysis, SCS curve
number, water
harvesting
techniques, Werie,
analytical hierarchy
process,
surface runoff

1797 610 1–5 17 ◦C [99]
17 ◦C

Nonequal Biophysical
and socioeco-
nomic
criteria

35- [100] Al-Qadisiyah,
Iraq, 2020

Runoff, soil, rainfall
(3)

Geographical
information
system
techniques,
multi-criteria
evaluation
techniques

GIS multi-criteria,
clean water quality,
rainwater
harvesting, runoff,
remote sensing,
water availability.

8957.682 180 (1–4) 25 ◦C Nonequal Biophysical
criteria
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No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

36- [54] Iran, 2020 Roads, faults, rainfall, land
use, slope,
soil depth, drainage
density, drainage networks,
RWH zones, soil type,
farms and wells,
urban areas
(11)

MCA,
hydrological
models

Rainwater
harvesting,
decision support
system, geospatial
techniques, water
conservation

9762 262 0–1 11.6–26.7 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

37- [101] Iraq, 2017 Land cover, surface
distance to river, slope,
soil, runoff
(5)

GIS, fuzzy,
AHP,

Analytic hierarchy
process, system,
Iraq, water
harvesting, fuzzy
logic, geographical
information

2098 190 (1–5) 23.74 and
26.43 ◦C

Nonequal Biophysical
criteria

38- [102] Malawi, 2021 Land use, soil type, slope,
runoff, environmental
factors, rainfall,
socioeconomic factors
(6)

RS, number
(SCS-CN)

Harvesting
technologies,
rainwater,
geographic
information
systems, service
contour-tied
ridging soil
mulching, soil
conservation

343.1 700–900 1–5 12–30 ◦C Nonequal Biophysical,
socioeco-
nomic

39- [103] Northern
Ethiopia, 2016

Soil data, drainage
network, slope map, land
use map, rainfall,
stream order
(6)

GIS-based
multi-criteria
analysis

Decision support
suitability
approach,
multi-criteria
analysis, indicators
selection,
suitability maps,
participatory

2380 520–680 1–10 16–20 ◦C Nonequal Biophysical
criteria
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No Reference Country and
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Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

40- [32] Jordan, 2008 Distance to international
borders, distance to
Agricultural areas, distance
to roads, distance to urban
areas, distance to wells,
soil, slope, rainfall,
distance to wadi, distance
to water pipeline
(10)

GIS layers,
Boolean logic
to find
combinations
of layers

Jordan, basalt,
harvesting, ponds,
GIS

56,930 100–300 0–1
(suitability)

35–40 ◦C
(max annual
2–9 ◦C (min

Equal
weights

Biophysical
and socioeco-
nomic
criteria

41- [104] Mongolia, 2018 Runoff, forest land, mining
area, agricultural land,
road, soil type, surface
slope, precipitation,
catchment slope, drainage
density, settlement area,
water catchment area, lake
(14)

GIS, AHP,
spatial
multi-criteria
analysis

Analytic hierarchy
process, water
harvesting pond,
spatial
multi-criteria
analysis, error
matrix, proper sink

1850.09 250 mm 0–1 0–25 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

42- [35] Northwest
Ethiopia, 2022

Soil depth, slope, rainfall,
distance from settlement,
lineament density, soil,
land use, distance
from road
(8)

AHP and
combined in
a GIS
environment

Drought-prone
area, rainwater
harvesting, site
suitability

7073.79 620 mm (1–4) 27 ◦C Nonequal Biophysical
criteria

43- [105] West Bank,
Palestine, 2020

{Agricultural water
poverty index (AWPI)}:
(agricultural access,
citizens above poverty line,
illiteracy, agricultural
extension, agricultural
resources, drainage
network, irrigated areas to
governorate area), rainfall,
curve number, surface
slope, soil texture,
evapotranspiration (ET),
electrical conductivity,
land use
(14)

GIS
environment,
analytical
hierarchy
process
(AHP)

Agricultural
rainwater
harvesting, GIS
agricultural,
rainwater
suitability,
sustainable
agriculture, water
poverty, harvesting

5860 153–698 1–10 23.44 ◦C [106] Nonequal Biophysical
criteria
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No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

44- [34] Wadi Oum
Zessar, Tunisia,
2016

Climate and drainage
(rainfall–drainage length),
structure design (storage
capacity–structure
dimensions ratio –CCR
ratio), site characteristic
(soil depth–soil texture–
slope), socioeconomic
(distance to settlements),
structure reliability
(reliability ratio), demand
and supply
(10)

Analytical
hierarchy
process
(AHP)
supported by
a geographic
information
system

RWH suitability,
AHP, approach,
GIS

367 150–230 (1–5) 19–22 ◦C Nonequal Biophysical
criteria

45- [107] Mharib, Jordan,
2012

Soil depth, soil texture,
land tenure, slope,
stoniness
(5)

GIS Socioeconomic and
biophysical
benchmark
suitability,
watershed, land
tenure,
participatory
approach
multidisciplinary,
GIS, suitability

60 100–150 none Nonequal Biophysical
and socioeco-
nomic
criteria

46- [48] Sinai Peninsula,
Egypt, 2022

Slope, land use/land cover,
runoff depth topographic
wetness index, drainage
density, distance to roads,
basin area, lineament
frequency density,
infiltration number, flow
distance, distance to
built-up areas, Bedouin
community, distance
to roads
(12)

GIS, RS,
MCA,
hydrological
modeling

Boolean analysis,
multi-criteria
analysis, remote
sensing,
sustainable
development goals

3580 55.86 0–1 Nonequal Biophysical
and socioeco-
nomic
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No Reference Country and
Year

Criteria Tools Keywords Catchment
Area km2

Annual
Rainfall
(mm)

Range of
Index
Value

Temp ◦C Methods for
Weighting

Criteria
Selection
and Score

47- [108] Maharloo-
bakhtegan
basin, Fars
province,
southern Iran,
2021

Distance from road, slope,
temperature, land use, soil
type, population density,
distance from lakes,
elevation, precipitation,
curve number (CN),
geology, distance
from river
(13)

GIS and
remote
sensing
techniques

Planning AIAs,
optimum range
artificial
intelligence
algorithms (AIAs),
water scarcity,
RWH, probability
curve (PC)

31,511 350–390 mm (0–1) 12.80–15.16 ◦C None Biophysical
and socioeco-
nomic
criteria

48- [109] ElDabaa area,
Northwestern
Coast of Egypt,
2015

Landform, watershed area,
rainfall amounts, geologic
setting drainage lines,
surface runoff, flow
accumulation, flow
direction, slope,
morphometric parameters
(10)

GIS and
remote
sensing

Geomorphology,
rainwater
harvesting, remote
sensing, runoff, GIS

770 164 mm (1–5) 22–31.6 ◦C
7.2–23.7 ◦C

None Biophysical
criteria

49- [42] Qaradaqh
basin,
Sulaimaniyah
city, Iraq, 2022

Stream, geology, rain
lineament, DEM, CN, land
use/land cover, soil,
villages, slope
(10)

GIS, MCDM,
AHP, sum
average
weighted
method
SAWM,
fuzzy-based
index (FBI)
techniques

Drought crisis,
water shortage,
AHP, sustainable
water development

605 650 mm (1–10) 18 ◦C to 40 ◦C Nonequal Biophysical
and socioeco-
nomic

50- [110] Egypt, 2015 Slope, soil texture runoff,
land use/land cover,
rainfall
(5)

(AHP),
(DSS)
2 level
(2,5)

Decision support
system (DSS),
geographic
information
system, rainwater
harvesting,
analytical hierarchy
process (AHP),
multi-criteria
evaluation, (RWH)

556,961 100–200 (1–5) Nonequal Biophysical
criteria
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No Reference Country and
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Criteria Tools Keywords Catchment
Area km2

Annual
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(mm)
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Index
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Temp ◦C Methods for
Weighting

Criteria
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and Score

51- [111] Makanya
catchment,
Kilimanjaro
region,
Tanzania, 2005

Production (ndiva), near
water sources, e.g., stream,
sloping terrain, shallow
water table, Charco Dam
(lambo), soils with good
flat area, far from
settlement, presence of
conveyance system,
non-saline soils, diversion
canal (sasi), hard stable
soils, water holding
capacity, gentle slope, no
rocks, ridges and border
soils, water storage
structure for crop slopes,
soil type runoff (location of
the farm)
(15)

Geographic
information
system
decision-
making
process, tow
level (4,15)

Rainwater
harvesting,
indigenous
knowledge,
agriculture

300 250 and
400 mm

(1–3) None Biophysical
criteria

52- [26] Iraq, Anbar
Province, Al-
Muhammadi
Valley, 2020

Soil texture, drainage
density, slope, vegetation
cover, distance to the roads.
(5)

Remote
sensing, GIS

5332 115 mm 1–4 0–52 ◦C Nonequal
weight

Biophysical
and socioeco-
nomic
criteria

53- [13] Toudgha
watershed,
Morocco, 2022

Slope, drainage density,
permeability, runoff depth,
fracture density, rainfall,
groundwater depth,
closeness to stream
(8)

MCDM
coupled with
GIS
techniques, 2
level (2,8)

GIS, remote
sensing, water
management,
rainwater
harvesting, MCDM

2296 40 to 345
mm

1–5 18 ◦C Nonequal Biophysical
criteria

54- [112] Maysan
Province, Iraq,
2020

Stream order, roads, soil
type, evaporation, slope,
NDVI, precipitation
(7)

GIS, Multi −
Criteria
Evaluation
RHHS =
Wci × Rsc
2 level (3, 7)

GIS, MCE, water
harvesting
catchment, spatial
analysis, fuzzy
model

16,072 rainfall
range
(14_39)
mm/month

(0–1) 23.74–26.43 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

55- [113] Kavir Area of
Iran, 2019

Soil texture, slope and
drainage network, rainfall,
infiltration
(5)

Multi-criteria
techniques

Suitability, GIS,
arid land, fuzzy,
AHP, runoff
harvesting, MCDM

680,000
hectares

240 mm (1–5) Annual
temperature
of 19 ◦C in

Nonequal Biophysical
criteria
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56- [64] Wadi Hodein
Basin, Red Sea,
Egypt, 2022

Drainage density,
infiltration number, basin
area, max. flow distance,
flood volume, basin length,
basin slope, flow distance
(8)

Integration
between
watershed
modelling
and remote
sensing

Remote sensing,
(RWH), arid and
semi-arid,
rainwater
harvesting regions,
spatial probability
model (WSPM),
weighted

11,600 0–1 37.5–14 ◦C Two
scenarios
Equal and
nonequal
weights

Biophysical
criteria

57- [114] Saudi Arabia,
Riyadh, 2022

Land use/land cover,
slope, precipitation,
potential runoff coefficient
[17], soil texture
(5)

Multi-criteria
DSS, AHP

GIS, RST, arid
climate, spatial
distribution PRWH,
MCDSS, AHP

8500 150 mm (1–5) (28–46 ◦C)
(15–35 ◦C)

Nonequal Biophysical

58- [115] Xinjiang, China,
2020

Runoff, slope, crop
characteristics, soil, rainfall,
land use/land cover
(5)

GIS, MCA Runoff potential,
ecological
restoration, gully
erosion, rainwater
harvesting

400 mm (1–5) 10 ◦C Nonequal Biophysical
criteria

59- [43] Mediterranean
region in
northern
Jordan, 2011

Type of soil, vegetation,
land use types, geometric,
slope, sub-catchments,
water drainage
(6)

GIS, DEM
and remote
sensing
technique

Management of
watershed, landsat
organic carbon
colour, soil

1000 150–650 mm NA 5.2–22.0 ◦C
2.5–28 ◦C

None Biophysical
criteria

60- [116] Northeastern
desert, Jordan,
2012

Drainage networks, slope,
drainage network, flow
direction, runoff
(5)

GIS Flow discharge,
harvesting, unit
hydrograph,
watershed models

200 mm NA None Biophysical
criteria

61- [117] Oasis zone,
Mauritania,
2007

Land cover, drainage,
geomorphology, slope,
geology, lineament
(6)

Landsat
image and
GIS based
on AHP

Water harvesting,
GIS, remote
sensing

455,745 hac Arid land NA Nonequal Biophysical
criteria

62- [118] Wadi Horan,
Iraq, 2020

Sediment index,
cost–benefit index,
hydrology index,
evaporation index
(4)

GIS-based
multi-criteria
analysis, the
analytic
hierarchy
process
(AHP), fuzzy

Harvesting, GIS,
AHP, rainwater,
fuzzy

115 mm 1–10 Nonequal Biophysical
criteria
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63- [119] West Bank,
Palestine, 2022

Runoff, rainfall, slope, soil
texture, land use
(5)

Analytical
hierarchy
process
(AHP)
methods and
GIS
techniques

Technique (RWH),
analytical hierarchy
process, the West
Bank, Palestine,
rainwater
harvesting method
(AHP), GIS

5860 450 0–100 Nonequal Biophysical
criteria

64- [120] Western Desert
of Iraq, 2021

Irrigated lands, slope, land
use/land cover, residential
areas, distance from roads,
runoff, soil texture
(7)

Boolean,
(WLC)

Rainwater
harvesting, earthen
dam, GIS, WLC,
Boolean

1953.1 115 (1–4) 40–2.6 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

65- [121] Ghazi Tehsil,
Khyber
Pakhtunkhwa,
Pakistan, 2022

Elevation, land cover,
rainfall, drainage and
various land uses (such as
roads, settlements), surface
slope, geology, soil
(7)

Geospatial
Approach,
GIS, arc GIS

SCS-CN, HMS,
geospatial
technology, method,
harvesting,
HEC-geo-weighted
overlay analysis,
rainwater

348 Semi-arid (1–3) 4.8–44 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria

66- [122] Morocco, 2021 Drainage density, slope,
runoff, land use/land
cover, soil texture
(5)

GIS, FAHP Fuzzy AHP, GIS,
rainwater
harvesting,
SCS-CN,
WaTEM/SE, DEM

4435 119 to 377
mm

1–4 20 ◦C Nonequal Biophysical

67- [123] Kirkuk, Iraq,
2015

Runoff depth, slope,
drainage, land
use/land cover
(4)

RS, GIS, Rainwater
harvesting, remote
sensing and
geographic
information system,
multi-criteria
decision analysis

4875 360 mm 1–3 Nonequal Biophysical
criteria

68- [124] Sana’a Basin,
Yemen, 2022

Slope, soil type, land
use/land cover,
precipitation, proximity to
urban areas, water wells,
dams, roads, open sewage
passage, wadis, drainage
networks
(11)

Multi-criteria
analysis,
analytical
hierarchy
process

RWH, spate,
indigenous,
multi-criteria,
socioeconomic
criteria, dry areas,
systems analysis
irrigation systems,
limited data

3200 km2 240 mm 1–5 20 ◦C Nonequal Biophysical
and socioeco-
nomic
criteria
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Appendix B

Table A2. Summary of advantages and disadvantages of existing criteria.

Reference Selection Process for
Criteria

Advantage Disadvantage

[56] Experts and stakeholders 1- The analytical hierarchy process (AHP) was used for questionnaire
output weighting.

2- Engagement of stakeholders—included them for indicator choice
and participation in weightings.

1- Socioeconomic and ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.

[57] Literature 1- The range of suitability (1–5) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for questionnaire

output weighting.

1- Socioeconomic and ecological criteria were not included.
2- There is no mention of the number of experts.

[63] Literature 1- Applied three scenarios of weighting, which caused the
differences between the results.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[58] Literature 1- The satisfaction of stakeholders, rural residents, and people.
2- The analytical hierarchy process (AHP) was used for questionnaire

output weighting.

3- Socioeconomic and ecological criteria were not included.
4- The range of suitability (0–1) indicates no flexibility in choices.

[46] Literature 1- The analytical hierarchy process (AHP) was used for questionnaire
output weighting.

2- This is a cost-effective and low-data-intensive strategy.
3- RWH structure types were taken into consideration.

1- Ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- There was no field investigation to ensure there is no other land

use conflict.

[75] Availability
of data

1- The range of suitability (0–5) indicates flexibility in choices. 2- Ecological criteria were not included.
3- Stakeholders and experts were not engaged.

[77] Literature 1- RWH structure types were taken into consideration. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[62] Literature 1- The analytical hierarchy process (AHP), fuzzy AHP, and ROM
were used for questionnaire output weighting.

2- Four scenarios of weighting were applied to determine the
differences between the results.

1- Ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- Stakeholders and experts were not engaged.
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Table A2. Cont.

Reference Selection Process for
Criteria

Advantage Disadvantage

[59] Strategy of selecting
criteria unclear

1- The range of suitability (0–5) indicates flexibility in choices.
2- The analytical hierarchy process (AHP) was used for questionnaire

output weighting.
3- Two scenarios of weighting were applied to determine the

differences between the results.

4- Socioeconomic and ecological criteria were not included.
5- The method of weighting was unclear.

[40] None 1- Socioeconomic and ecological criteria were not included.
2- The method of weighting was unclear.

[50] Literature reviews 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- Experts, local authorities, and the literature were used to identify
the weight of the criteria.

3- The range of suitability (1–5) indicates flexibility in choices.

1- Ecological criteria were not included.
2- The number of experts and stakeholders is unknown.

[79] Literature reviews 1- Experts and the literature were used to identify the weight of
the criteria.

2- The analytical hierarchy process (AHP) was used for
questionnaire output.

1- Ecological criteria were not included.
2- The number of experts and stakeholders is unknown.

[80] Experts’ opinions 1- Experts were engaged to determine the weights of the criteria.
2- The range of suitability (1–4) indicates flexibility in choices.

1- The number of criteria is too large to be implemented in a
practical way.

2- The number of experts is unknown.
3- Ecological criteria were not included.

[61] Literature 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- The range of suitability (0–5) indicates flexibility in choices.
3- Experts were hired to determine criteria weights.

1- Socioeconomic and ecological criteria were not included.
2- The number of experts is unknown.

[60] None 1- The analytical hierarchy process (AHP) was used to weight output.
2- Experts were engaged to determine the weights of the criteria.

1- Strategy of selecting criteria unclear.
2- The number of experts and stakeholders is unknown.
3- The range of suitability (0–1) indicates no flexibility in choices.
4- Socioeconomic and ecological criteria were not included.
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[82] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[83] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

1- Socioeconomic and ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.

[53] Literature 1- The range of suitability (1–5) indicates flexibility in choices.
2- The analytical hierarchy process (AHP) was used for decision

making, or experts’ questionnaire output.

1- Ecological criteria were not included.
2- The number of experts is unknown.

[28] None 1- The range of suitability (1–4) indicates flexibility in choices. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[41] None 1- The ranking process was performed based on the analytical
hierarchy process (AHP), fuzzy AHP, rank order method (ROM),
and variance inverse (VI).

2- Decision makers were engaged to identify the weighting of
criteria.

3- Area–volume curve was used for geometric properties.

1- Ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- The number of decision makers is unknown.

[85] None 1- RWH structure types were taken into consideration. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.
3- There is no mention of weights for the criteria.

[86] Experts and literature 1- Experts were engaged to identify the weighting of criteria.
2- The analytical hierarchy process (AHP) was used for

questionnaire output.

1- Socioeconomic and ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- The number of experts is unknown.

[39] None 1- This strategy saves time, reduces earthwork, and may be used for
water resource management planning.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.
3- There is no mention of weight for the criteria.
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[88] Not mentioned 1- The range of suitability (0–100) gives flexibility in choices.
2- Employing decision support systems (DSS) to adjust suitability

levels and weights based on the research area.

1- Socioeconomic and ecological criteria were not included.
2- There is no specific number for decision makers.

[90] Literature 1- The range of suitability (0–100) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for

questionnaire output.
3- Area elevation curve to estimate the best site for a dam.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[90] Literature and experts 1- Stakeholders and experts were engaged in identifying criteria
and weights.

2- The number of stakeholders and experts was determined.
3- The range of suitability (0–10), gives flexibility in choices.

1- Ecological criteria were not included.

[91] Literature 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- RWH structure types were taken into consideration.
3- Stakeholders and experts were engaged to identify the weighting

of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number of experts is unknown.

[92] Literature 1- The range of suitability (0–10) gives flexibility in choices.
2- Experts were engaged to identify the weighting of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number of experts is unknown.

[93] Literature 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- The range of suitability (1–5) gives flexibility in choices.
3- Experts were engaged to identify the weighting of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number of experts was unknown.

[95] Data availability 1- The range of suitability (0–10) gives flexibility in choices.
2- RWH structure types were taken into consideration as criterion.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.
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[67] None 1- The range of suitability (1–5) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for

questionnaire output.
3- Decision makers were involved in the weighting of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number of decision makers is unknown.

[65] Literature 1- Weights were assigned based on the literature.
2- The analytical hierarchy process (AHP) was used for

weight output.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[36] Literature 1- Weights were assigned based on the literature. 1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[98] Literature 1- The range of suitability (1–5) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for

weights output.
3- RWH structure types were taken into consideration.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[100] None 1- The range of suitability (1–4) gives flexibility in choices. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[54] Literature 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- Experts were involved in the weighting of criteria.

1- The range of suitability (0–1) indicates no flexibility in choices.
2- Ecological criteria were not included.
3- The number decision makers was unknown.

[101] Literature review and
available data

1- The analytical hierarchy process (AHP) was used for
questionnaires’ output.

2- Experts were involved in the weighting of criteria.
3- The range of suitability (1–5) gives flexibility in choices.

1- Socioeconomic and ecological criteria were not included.
2- The number of decision makers is unknown.

[102] Literature review 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The range of suitability (1–5) gives flexibility in choices.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.
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[103] Stakeholder workshop 1- The analytical hierarchy process (AHP) was used for
weights output.

2- Experts were involved in the weighting of criteria.
3- The range of suitability (1–10) gives flexibility in choices.

1- Socioeconomic and ecological criteria were not included.
2- The number of stakeholders is unknown.

[32] Literature 1- Weights of criteria were equally distributed in order to promote
respect in all areas

1- The range of suitability (0–1) indicates no flexibility in choices.
2- Ecological criteria were not included.
3- Stakeholders and experts were not engaged.

[104] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

1- The range of suitability (0–1) indicates no flexibility in choices.
2- Ecological criteria were not included.
3- Stakeholders and experts were not engaged.

[35] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The range of suitability (1–4) gives flexibility in choices.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[105] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The range of suitability (1–10) gives flexibility in choices.
3- The weights of the criteria were based on the literature.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[34] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The range of suitability (1–5) gives flexibility in choices.
3- Stakeholders and experts were involved in the weighting

of criteria.
4- The number of stakeholders and experts was determined.

1- Ecological criteria were not included.

[107] Literature 1- Discussions with owners and people to see the requirements and
land tenure information.

2- Ecological criteria were not included.
3- The criteria were limited.
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[48] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The weights were determined by the literature.
3- RWH structure types were taken into consideration.

1- The range of suitability (0–1) indicates no flexibility in choices.
2- Ecological criteria were not included.
3- Stakeholders and experts were not engaged.

[108] Literature 1- Used remote sensing for locating RWH sites. 1- Ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- Stakeholders and experts were not engaged.

[109] Literature 1- The range of suitability (1–5) gives flexibility in choices. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[42] Literature and experts 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- Stakeholders and experts were involved in the weighting
of criteria.

3- The range of suitability (1–10) gives flexibility in choices.

1- Ecological criteria were not included.
2- The number stakeholders and experts is unknown.

[110] Literature and experts’
opinions

1- The range of suitability (1–5) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for

questionnaire output.
3- Stakeholders and experts were involved in the weighting

of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number stakeholders and experts is unknown.

[111] Literature and experts’
opinions

1- Stakeholders and experts were involved in the weighting
of criteria.

2- The number of stakeholders and experts was determined.

1- Socioeconomic and ecological criteria were not included.

[26] Literature 1- The range of suitability (1–5) gives flexibility in choices.
2- Weights depend on the literature.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.
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[13] Literature and experts 1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- The range of suitability (1–5) gives flexibility in choices.
3- Stakeholders and experts were engaged to determine criteria

and weights.

1- Ecological criteria were not included.
2- The number stakeholders and experts is unknown.

[112] Literature 1- Money and time needed to select the best RWH sites was saved,
based on DEM and remote sensing.

1- Socioeconomic and ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- Stakeholders and experts were not engaged.

[113] Literature and experts’
opinions

1- The analytical hierarchy process (AHP) was used for
questionnaire output.

2- The range of suitability (1–5) gives flexibility in choices.
3- Stakeholders and experts were involved in identifying the criteria

and weighting.
4- The number of stakeholders and experts was determined.

(5 experts)

1- Socioeconomic and ecological criteria were not included.

[64] Literature 1- Analysis Of Variance (ANOVA) for justifications of
parameters weights

1- Socioeconomic and ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choices.
3- Stakeholders and experts were not engaged.

[114] Literature 1- The range of suitability (1–5) gives flexibility in choice.
2- The analytical hierarchy process (AHP) was used for

weights output.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[115] Literature 1- The range of suitability (1–5) gives flexibility in choice.
2- The analytical hierarchy process (AHP) was used for

weights output.
3- Stakeholders and experts were involved in weighting of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number of stakeholders and experts is unknown.

[43] Non 1- It addresses landscape surface qualities and how built-up regions,
and human building items affect surface drainage and water flow.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.
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[116] Non 1- Using DEM to assess rainwater harvesting’s potential. 1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[117] Not mentioned 1- The analytical hierarchy process (AHP) was used for
weights output.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[118] Not mentioned 1- AHP, fuzzy-AHP, ROM, and VI methods were used for
weights output.

2- area–volume curve to find height of the structure.
3- The range of suitability (1–10) gives flexibility in choices.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[119] Literature and experts 1- The range of suitability (1–100) gives flexibility in choices.
2- The analytical hierarchy process (AHP) was used for

questionnaire output.
3- Stakeholders and experts were involved in weighting of criteria.

1- Socioeconomic and ecological criteria were not included.
2- The number stakeholders and experts were unknown.

[120] Literature 1- The range of suitability (1–4) gives flexibility in choices.
2- Area–volume curve used to find height of the structure.

1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[121] Literature 1- RWH structure types of criteria were taken into consideration. 1- Ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[122] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- The range of suitability (1–4) gives flexibility in choices.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[123] Available data 1- The analytical hierarchy process (AHP) was used for
weights output.

1- Socioeconomic and ecological criteria were not included.
2- Stakeholders and experts were not engaged.

[124] Literature 1- The analytical hierarchy process (AHP) was used for
weights output.

2- Stakeholders and experts were involved in identifying the criteria
and weighting.

1- Ecological criteria were not included.
2- The range of suitability (0–1) indicates no flexibility in choice.
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