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Abstract
Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for
achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods
bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient
care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to
the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings
still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered
during the development of effective models and their deployment in practice. We aim to provide readers with an
overview of the latest developments, assist them with insights into identifying some specific challenges that may
require resolution, and suggest recommendations and potential future research directions.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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The promise of AI in computational pathology

In recent years, there has been a notable surge of interest
in the application of artificial intelligence (AI) for com-
putational pathology (CPath) across various sectors
including academia, industry, and healthcare. Research
publications recorded on PubMed show more than a
100-fold increase in AI-based research activity in
CPath during the period 2012–2022 (see Figure 1). The
increase in literature and healthcare applications focused
on AI-powered computational pathology can be attrib-
uted to a variety of factors, such as the advancements in
machine/deep learning (ML/DL) techniques, the digiti-
zation of tissue slides, the curation of large datasets, and
the availability of high-performance computing hard-
ware. Typically, ML/DL methods for CPath are devel-
oped using tissue images with associated clinical
metadata and/or annotations. These models hold the
potential to assist medical professionals in making pre-
cise and efficient diagnoses as well as developing effec-
tive treatment plans for patients with cancer.

Similar to other AI application areas, the conventional
workflow for developing CPath methods consists of five
stages (Figure 2). In the first stage, a research problem is
formulated. This step typically involves active collabo-
ration among domain experts (e.g. pathologists, oncolo-
gists, biomedical researchers) and data scientists. The
second stage is curation of training, validation, and test-
ing datasets to be used for model development and
evaluation. In the third stage, a machine learning model
is trained using the data, and the final model selection is
conducted using the validation set. The model is kept
blind to the test set in this stage to avoid performance
overestimation. Once the model has been selected, its
performance is evaluated on appropriate evaluation met-
rics using independent test set(s) in the fourth stage. The
fifth and final stage is the deployment of the model in
real-world settings to assist the clinicians, consequently
enhancing the existing diagnostic, prognostic, and treat-
ment workflows.
In the past decade, AI has been used to model a wide

spectrum of problems in histopathology, sometimes
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claiming super-human performance [1,2]. Several recent
review articles have covered CPath research trends from
various perspectives [3–18]. Based on the level of
analysis, application, and prediction variable(s), CPath
algorithms can be broadly categorized into three groups:
cell-level, tissue-level, and patient-level (Figure 3).
These algorithms are built using whole slide images
(WSIs) along with corresponding clinical data.
Processing a WSI as a whole is usually infeasible due
to computational limitations, and therefore a commonly
adopted approach for most methods in all three catego-
ries is to divide a WSI into smaller image patches or tiles
before processing them. The cell-level algorithms are
designed to analyze individual cells and their features
from WSIs or patches that have been extracted from
WSIs. Examples include cell segmentation, detection,
classification, and mitosis detection [19–27]. Such

methods can assist pathologists in identifying any irreg-
ularities in the cellular landscape that might be indicative
of the severity of disease and patient prognosis.
Furthermore, the outputs of these algorithms can also
be used in many downstream tasks such as tumor detec-
tion, cancer grading, and predicting patient outcomes.
Tissue-level CPath algorithms typically analyze entire
regions of tissue in WSIs. The goal is to identify
patterns and anomalies in different tissue regions that
can be predictive of a disease or any relevant clinical
variable. Examples of tissue-level algorithms include
detection and segmentation of different tissue types,
cancer subtyping, and tumor margin prediction
[28–31]. Like cell-level algorithms, the outputs of
tissue-level algorithms have been used in a number of
downstream tasks such as tumor microenvironment
analysis, cancer grade prediction, and patient survival

Figure 1. Number of research publications in AI-based computational pathology recorded in PubMed over the last decade.

Figure 2. The conventional workflow followed in the development of a CPath system and challenges associated with each phase. The figure
has been created using lucidchart.com. Publicly available icons from flaticon.com have been used in the figure.
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analysis [32–34]. The patient-level algorithms operate at
the highest level of abstraction and usually utilize WSIs
(one or more) and associated clinical and/or genomic
annotations from a patient to generate predictions
for diagnosis, prognosis, and suggesting appropriate
treatment plans. Examples of such predictions include
patient survival, treatment response, genetic expression/
mutation, and the origin of primary tumor [35–37].
Regardless of the level of application, results of the
analysis may need to be aggregated to generate higher-
level predictions [38].

The high accuracy figures reported in the literature
across various application areas can be considered evi-
dence of the immense potential of AI for successfully
modeling CPath problems. The research community
generally agrees on the potential of AI to revolutionize
the field by enabling efficient and more accurate diag-
noses and prognoses [39,40]. Other major benefits of
using CPath algorithms are their objectivity and repro-
ducibility, in contrast to the subjective nature of a pathol-
ogist’s visual examination, which can result in variations
in interpretation among observers [41]. In addition, the
significant investments made in the field through public
and private funding contribute to the promise of AI
technologies achieving breakthroughs in CPath, poten-
tially leading to a considerable impact on the practices of
pathology and oncology. The US Food and Drug
Administration (FDA) has recently approved an AI-based
prostate cancer detection method with the potential to
generate significant impact in the field [42].

While DL, both generally and for CPath, has gained
enormous popularity, it is worth noting that the associated

hype can lead to somewhat unrealistic expectations and
potentially serious consequences if substandard tech-
nologies are adopted without proper scrutiny. To fully
harness the true potential of AI in CPath, it is necessary
to overcome several limitations in the current systems
that are hindering their widespread clinical adop-
tion [43]. For instance, a key challenge in the clinical
uptake of CPath technologies is that they may not
generalize well to new/unseen datasets, and therefore
may not be ready for launch into the real-world clinical
settings [44]. Moreover, there are several other chal-
lenges in various phases of development, including, but
not limited to, the scarcity of publicly available datasets
and models, the absence of stringent and problem-
specific performance evaluation protocols, the lack of
uniform standards and regulatory policies, and the
reproducibility of methods, which could hinder the
development of effective models for CPath. We discuss
these and other associated challenges and possible solu-
tions in detail in the following sections and conclude
this review article with a list of open problems for future
research in the field.

Limitations, challenges, and recommendations

Similar to other application areas in AI/DL/ML, the
typical lifecycle of a CPath project, after the problem
has been formulated, can be divided into four major
phases: data collection and curation, model develop-
ment, performance evaluation, and deployment. In this
section, we highlight the major limitations and challenges

Figure 3. Categorization of CPath methods based on the level of analysis. The figure has been created using lucidchart.com. Publicly available
icons from flaticon.com have been used in the figure.
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associated with each of these phases (see Figure 2).
Overcoming these limitations and challenges is critical
to integrating CPath systems effectively into both
research and clinical workflows. To assist pathology
readers, we present a glossary of AI-related terminolo-
gies used in this review article in Table 1.

Data
Collection and curation of datasets is the first and most
important step in an ML study. In the absence of good
quality datasets that accurately reflect the respective
populations, it is very hard to develop effective models
and conduct realistic performance assessment. We out-
line some of the challenges specific to CPath in terms of

data collection, curation, and processing in the following
subsections.

Large-scale datasets – the need and challenges

CPath datasets typically consist of WSIs of tissue sec-
tions along with associated clinical and genomic data.
WSIs are typically multi-gigapixel in size, resulting in
large storage and processing requirements [45].
However, despite the very large size of an individual
WSI, WSI datasets often contain only a relatively small
number of independent examples – i.e. these datasets are
typically tall and thin [46]. Scarcity in terms of the
number of independent examples combined with
the problem of high dimensionality in CPath makes DL
models highly prone to overfitting [47].

Given the data-hungry nature of DL [48], large
datasets are required for accurate modeling of problems,
which is particularly challenging in CPath due to the
need for specialized scanning equipment, quality
checks, and trained technical staff and pathologists for
labeling and annotation. This problem can be mitigated
to some extent by learning low-dimensional representa-
tions, but the need for sufficiently large datasets stands
nonetheless [49–52]. Initiatives such as The Cancer
Genome Atlas (TCGA) have played a significant role
in the development of CPath algorithms by providing
publicly available WSIs along with associated genetic
and clinical information [53]. Additional large-scale
publicly available datasets are required for developing
effective DL solutions.

Data annotation and discordance

Precise cell-level or region-level annotations are crucial
for training and evaluation in many supervised learning
tasks in CPath [54]. However, acquiring such annota-
tions can be expensive, tedious, and time-consuming.
Unlike natural images (i.e. non-medical), where
crowdsourcing-like techniques can be used to acquire
labels, trained personnel are required to annotate histo-
pathology images accurately. Amgad et al [55] demon-
strated that crowdsourcing from medical students for
annotating cell nuclei in breast cancers was considerably
accurate, hence providing a relatively more efficient
framework for data annotation. However, the effective-
ness of crowdsourcing for other types of annotations and
more complex problems still remains elusive.

Interactive segmentation [22,56] is an alternate
approach to address this issue, as it can provide annota-
tions for a wide range of objects of various scales and
speed up the collection of annotations with minimal
interaction from the expert annotator. Yet another
approach is the synthetic generation of realistic high-
resolution tissue images [57], with associated annota-
tions, with a realism score comparable to the pathologists.

Another related issue is the discordance among
pathologist labels, due to the inherent subjectivity of
visual assessment [58–60]. Discordant annotations, in
addition to being a source of labeling noise, lead to a
disagreement over what to be used as ground truth for

Table 1. Glossary of AI-related terminologies used in this review
article.

Artificial intelligence (AI): The field concerned with developing computer
systems that can perform tasks that require human intelligence

Machine learning (ML): A subfield of AI that focuses on the development
of techniques that enable machines to learn from data. It uses different
algorithms to train models that can make predictions or take actions
based on the patterns and insights found in the data

Deep learning: A subset of ML that focuses on the development and
implementation of neural networks with multiple layers, called deep
neural networks. Deep learning algorithms are designed to
automatically learn hierarchical representations of data, extracting
progressively more abstract features from raw input

Supervised learning: A paradigm of ML that uses labeled data for training
models, meaning that the input data are paired with corresponding
target labels. The algorithm learns to make predictions on unseen data
based on the labeled examples

Weakly supervised learning: An ML paradigm that allows development of
models from imprecise or inexact labels of training examples typically
used when fine-grained labeled data are limited, unavailable, or
expensive to obtain. An example of this can be training a model to
diagnose colorectal abnormalities with case-level labels as opposed to
using more precise regional or cell-level annotations

Generalization and overfitting: The ability of a model to generate correct
predictions on unseen data is called generalization. A model is said to
have good generalization if it can correctly predict targets for real-
world test samples. A model is said to overfit on a dataset if it can
generate correct predictions only for that dataset but fails otherwise

Training: The process of optimizing internal parameters of a machine
learning model on training data so that it learns to produce desired
outputs over these data points. Examples of internal parameters can be
weights and biases of a neural network or decision cutoffs in a decision
tree

Validation: The process of estimating the generalization performance of a
machine learning model typically used for selecting optimal hyper-
parameters of a model for a given problem such as the number of
neurons or the number of training cycles of a neural network. This is
done by using performance metrics such as accuracy or area under the
receiver operating characteristic curve over a validation set of
examples that are not used in training directly

Testing: The process of estimating the real-world predictive performance
of a trained machine learning model on unseen data, i.e. data not used
in training or validation

Out-of-distribution (OOD): OOD refers to data or examples that differ
significantly from the distribution of the training data that the model
was exposed to during training. OOD data can be seen as samples that
fall outside the scope of what the model has learned and may have
limited or no representation in the training data. For example, if a
model is trained using only colorectal biopsies, then samples from other
tissues can be considered as out-of-distribution for this model
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supervised training and performance evaluation.
Consensus results from multiple pathologists may offer
a more reliable ground truth, but at an additional labeling
cost [61].

Data biases

Biased data often lead to biased ML/DL models, which
can have serious implications. For example, like other
healthcare informatics data, CPath data are highly prone
to ethnic bias [62–65], referred to as the health data
poverty problem [66]. Despite significant technological
advancements, developing and underdeveloped parts of
the world still lack sufficient infrastructure for generat-
ing digital histopathological and genomic data, leading
to lack of representation from these regions. Population
underrepresentation combined with the fact that histol-
ogy and prevalence of cancers can vary highly across
different races [67–69] not only raises concerns about
universal generalization of models but also increases the
gap in access and applicability of advanced tools and
solutions to poorly represented ethnic groups. To over-
come this issue, initiatives for data collection from
underrepresented ethnicities are needed. Furthermore,
CPath models need to be tested and corrected for poten-
tial racial biases [70].

CPath datasets, like other datasets, are prone to sev-
eral statistical biases; for example, cancer survival
datasets are vulnerable to biases such as immortal time
bias, selection bias, and lead-time bias [71,72], all of
which can lead to significant over-/under-estimation
of treatment efficacy and the effects of other covariates
of interest [73]. Most CPath survival studies lack analy-
sis and correction for such biases, raising questions over
the true effectiveness of the identified covariates. For
such studies, adequately sized datasets corrected for
such biases are needed to analyze the effects of
covariates accurately. Several recommendations for
addressing biases have been presented in [74].

Privacy and ethical challenges

Public concerns over the privacy of healthcare data may
be regarded as the biggest cause of scarcity of publicly
available datasets. Similarly, constraints around com-
mercial use of the data may hinder deployment of
advanced AI algorithms developed with such data. A
related challenge is the implication of a participant’s
right to unenroll from a study at any time. Access revok-
ing may require a patient’s data to be removed not only
from all related databases but also from all models that
are trained using their data, i.e. making the models
unlearn an example. There has been some work in
developing unlearning techniques for models, but this
is still an open problem in ML [75–77] with a need for
effective and time-saving solutions. AI in healthcare
brings with it a number of ethical concerns, for instance,
the potential to aggravate discrimination and inequality
due to biased ML algorithms [78]. Another concern is
that the black box nature of DL algorithms makes it
difficult for the clinicians to trust and rely upon model

predictions [79]. Comprehensive coverage of ethical
challenges in incorporating ML models for healthcare
and ethical issues in pathology is presented in [80,81]
and [82], respectively.

Multimodal data collection and curation

Recently, there has been a surge of interest in developing
prognostic and predictive DL models for patients using
WSIs. While these models have shown promise in
predicting patient outcomes using WSIs, it is important
to note that histopathology data alone may not provide a
complete representation of a patient’s expected survival,
as histopathology data show only a partial view of a
complex landscape. For effective modeling of such
problems, additional information is needed, such as
genomic and clinical data, thus highlighting the need
for systems built on multimodal data. However,
collecting, curating, and collating multimodal datasets
is far from straightforward. In addition to challenges
associated with collaboration, correspondence, and data
sharing among different centers for creating such
datasets, another issue is that not all types of data may
be available for all patients. This can lead to a significant
number of missing entries in a dataset, necessitating the
development of specialized modeling techniques with
support for heterogeneous and missing data for down-
stream analysis. Published research exploring the inte-
gration of multimodal data, such as [83,84], has shown
promising results.

Modeling
The goal of AI/ML/DL models in CPath is to learn a
suitable representation of tissue morphology and archi-
tecture associated with disease group/phenotype, molec-
ular genotype, treatment effects, other omics signatures,
and important objects (e.g. cell nuclei, micro-vessels,
tubules) in a tissue slide. In this section, we discuss
challenges specific to modeling in CPath.

Modeling stain characteristics

Many existing approaches fail to model the domain-
specific characteristics of images in CPath and treat them
as natural RGB images. Such approaches do not explic-
itly model the fact that WSIs are obtained through a
multi-step process that has a significant impact on their
characteristics. Variations in tissue processing steps such
as chemical fixation or freezing, dehydration, embed-
ding, and staining can change the visual characteristics
of the tissue slide in a non-uniform and non-linear man-
ner across tissue types and laboratories well before the
tissue slide is scanned to produce WSIs. Stain variation
is typically handled post hoc by stain estimation, nor-
malization, or augmentation approaches to generate
RGB images. Although stain augmentation can be effec-
tive when there are sufficient data, there is a need for
methods that explicitly capture the characteristics of
stain absorption and the associated non-linearities across
tissues. Such methods are necessary to develop models
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that are invariant to these factors and demonstrate
improved generalization capabilities [85,86].

Context and multi-resolution nature of WSIs

Pathologists typically analyze histological patterns at vari-
ous magnification levels for visual assessment, taking into
account the contextual information to aid in their decision-
making. Due to their sheer size, aWSI is often divided into
image tiles (or patches) at a specific magnification, making
the problem ofmodeling context inWSIsmore challenging
compared with images from other domains. Training and
inference are both typically performed with limited context
captured by individual patches, with the underlying
assumption being that each patch is an independent data
point. In addition, CPath algorithms also face the well-
known signal-frequency uncertainty dilemma: the broader
the context, the less precise the localization of a region or
object. A multi-resolution approach can integrate predic-
tive information at multiple levels, at the cost of an increase
in model complexity – potentially requiring more training
data for effective learning. Another compromise is a dis-
tributed attentionmechanism that can integrate information
across multiple spatial locations and magnification levels.
Existing methods in computational pathology have
attempted to address these challenges to some degree
[87,88]. However, to the best of our knowledge, no existing
method has demonstrated its ability to model context effec-
tively across a variety of computational pathology tasks.

The case for weak or no supervision

The size of WSIs poses a major problem in the form of
computational bottlenecks in performing gradient compu-
tations while training DL models. Several existing CPath
methods employ patch-level analysis, which assumes that
the patch labels are available and can provide a direct
supervisory signal for effective training. However,
obtaining patch-level labels can be very time-consuming
and typically only WSI-level labels are available for
training, making a compelling case for the use of weak
supervision techniques. Weakly supervised CPath
algorithms [50,89–95] aggregate patch-level prediction
scores by different mechanisms, such as majority voting,
average pooling, or multiple instance learning. The success
of these approaches depends on the nature of the ML task
and the validity of assumptions underlying these
approaches. Recently, self-supervised learning methods
[96–99] that exploit supervisory signals in the data itself
with the help of domain-specific as well as domain-agnostic
tasks have proven to be successful for effective tumor
detection with limited available annotations. However,
development of truly generalizable weakly supervised or
self-supervised approaches remains an open problem [28].

Learning invariant representations

AI methods in CPath require an effective representation
of input images that is robust to variations resulting from
factors such as rotation, translation, slide preparation,
staining, and scanner characteristics, in order to allow

the model to generalize well to unseen test data [86]. The
invariances can be learned through various augmenta-
tion strategies, self-supervised learning [96,97], and
contrastive learning [100]. In addition to the symmetries
associated with classical images such as translation and
rotation, CPath models also need to cater for domain-
specific invariances, including invariances associated
with technical changes such as stain and scanner char-
acteristics as well as histological properties underlying a
prediction task [101]. For example, variations in breast
tissue density or fat content across population types can
impact tumor subtype classification models. Such varia-
tions, if not factored in the development of CPath
models, can lead to generalization failure. Although
several approaches have modeled technical invariances,
explicitly modeling histological variations in CPath
models and learning domain-specific invariant represen-
tations need to be explored further.

Modeling uncertainty and out-of-distribution (OOD)
detection

Modeling label uncertainties in model training and gen-
erating uncertainty (or confidence) scores with inference
are key requirements for the practical utility of CPath
models. This can be achieved by calibrating model pre-
dictions or by developing methods that can generate
confidence scores associated with each prediction.
Confidence scores can enable predictive models to
‘knowwhat they don’t know’, detect OOD test examples,
and abstain from generating a decision in such
cases [102,103]. A few existing approaches have
addressed this issue [104–107]. However, this dimen-
sion of CPath model development requires further atten-
tion for their use in practice.

Multimodal data integration

Development of models that utilize multimodal data
from heterogeneous sources such as radiology, pathol-
ogy images, genetic sequencing and transcriptomics,
multi-spectral and multiplexed imaging, spatial
transcriptomics, clinical data, clinical letters, and labo-
ratory reports is an open area of research in computa-
tional diagnostics. Mining such data can reveal
interesting associations and lead to the discovery of
novel biomarkers and early diagnosis of multiple dis-
eases. Some approaches have been proposed for the
fusion of patho-radiomic and patho-genomic features
[83,108,109]. However, in order to model such solutions
as ML problems, a key challenge is the availability of
linked multimodal datasets. As a consequence,
approaches such as learning using privileged informa-
tion that assume that data from some modalities may
only be available during training, but not during infer-
ence, can be very helpful. Development of such models
requires close interaction between national and interna-
tional health providers andML researchers. One solution
may be to provide an anonymized public data exchange
that can accelerate the development of such solutions.
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Performance evaluation
AI models in CPath with their promise of enhanced
efficiency and accuracy herald the dawn of an era for
data-driven AI for the practice of cellular pathology in
clinical and pharmaceutical workflows. Their deploy-
ment in practice, however, requires stringent perfor-
mance evaluation as the decisions produced by these
models are expected to have implications on patients’
health and drug discovery roadmaps. In conventional
settings, researchers attempt to estimate a model’s accu-
racy on unseen data by using cross-validation protocols
and testing on independent sets [110]. However, models
may still not generalize well to unseen data [111], often
due to lack of robust performance evaluation [112].
Below, we cover some of the limitations and challenges
concerning realistic performance evaluation and rigor-
ous validation of CPath models.

Lack of available benchmark datasets

One of the biggest hurdles in accurate performance
assessment of CPath models is the shortage of openly
available, high-quality, and broadly representative
benchmark datasets [113], leaving researchers with no
choice but to evaluate their models over data that might
be pragmatically available but may not be a full repre-
sentation of the real world. For fair evaluation and com-
parison of methods, benchmark datasets should capture
characteristics of real test data ‘from the wild’ with a
sufficient number of examples following the expected test
data distribution and ideally representing all segments of
the population. A benchmark dataset should also follow
the FAIR principle of data management [114], i.e. it
should be findable, accessible, interoperable, and
reusable. Excellent pathology-specific recommendations
for curating high-quality test sets have been discussed
in [115].

Experimental design

While conducting performance evaluation of a model,
the most important part is to ensure that experimental
design is appropriate for realistic and reliable perfor-
mance evaluation. For example, in the context of cur-
rently popular complex and multi-stage DL pipelines, a
significant number of studies lack fair baseline compar-
isons and ablation studies justifying the need for added
complexity. Furthermore, while performing a compari-
son among different methods for solving a problem, it
should be ensured that the experimental conditions are
consistent for all methods [115]. This includes using the
same data examples for training and inference, the same
level of hyperparameter optimization, and not fixing
splits that favor one method over the other.

A common technique used in ML/DL is to keep on
tuning the model until an acceptable or ‘superior’ per-
formance is achieved on the test set. Such practice can
lead to false discovery due to multiple testing instead of
good generalization. To prevent this, it is recommended
to follow an approach similar to the one used in grand

challenges, where the test set is used only once, so that
the test set is not used indirectly for model selection as
this can potentially result in overfitting on the test data.
Overfitting on the test data leads to an overestimation of
the model’s true predictive performance. Therefore,
reuse of test sets should be discouraged. If the method
does not perform well and re-tuning of parameters is
performed, additional unseen data should be used in
testing. This, however, can be challenging due to data
scarcity as discussed above.
There is no fixed rule for dataset division into training

and validation sets. The optimal splits can vary based on
factors such as dataset size, diversity, problem complexity,
etc. The conventional practice is to find a split that provides
an adequate number of data points for training while
ensuring a suitable number and quality of data points for
proper validation.
Another factor that can cause overestimation of per-

formance results in CPath models is the patient-level
overlap in training and test samples. Extending the argu-
ment further, broad validation consisting of unseen test
data from external centers should be preferred to narrow
validation, where unseen data from the same center can
be used for testing purposes [116].

OOD and sanity tests

Digitized WSIs of tissue slides often require cleaning up
and removing of irrelevant and noisy regions such as pen
markings, background, and other artifacts. In practice,
CPath models can encounter WSIs with artifacts as well
as out-of-distribution (OOD) WSIs [117]. The model
should be able to distinguish OOD samples from noisy
images and images of interest. There exists limited
research on developing models that can abstain from
prediction for data samples that are either too noisy or
do not belong to the distribution of interest.

Robustness analysis

DL models have been shown to be vulnerable to adver-
sarial attacks and small perturbations in the input
[118–120]. Even highly accurate models may lack
robustness towards small variations and therefore fail
miserably. Though adversarial attacks are less likely
for healthcare models, small perturbations are quite
probable due to variations in factors such as staining,
scanning environments, and equipment [121–123].
Therefore, cross-validation and independent set testing,
though necessary, may not be entirely sufficient for
performance assessment. Fragility analysis to evaluate
how a model would respond to changes is also required
in CPath and other healthcare applications. A model
should be deemed deployable only if it demonstrates
adequate robustness to adversarial attacks and small
perturbations in inputs.

Reproducibility and repeatability

Several scientific domains [124–127], including ML in
general and its application to healthcare in particular, are
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facing a major reproducibility crisis. There are a large
number of methods with SOTA (state of the art) accura-
cies being reported frequently in the literature, with a
significant fraction that cannot be reproduced or repeated
because of several factors. Two major causes of the lack
of reproducibility in CPath are unavailability of data and
models, often citing privacy concerns or due to commer-
cial conflicts, and missing or incomplete preprocessing
details. In particular, for CPath, this includes informa-
tion regarding data preparation, quality check measures
for WSIs, discarded examples/cases, stain normalization
techniques, patch extraction and selection, etc. To ensure
successful reproducibility, details such as model initial-
ization techniques, data augmentation, batch sizes,
hyperparameters and data splits are needed. Not men-
tioning these details can lead to issues in successful
replication of results. To handle issues with reproduc-
ibility and repeatability in CPath, recommendations
in [128] inspired from the FAIR principles [114] can
be followed.

Deployment
The ultimate aim of a CPath algorithm is to automate and
assist with the pathologist’s assessment of tissue slides.
Additionally, CPath methods can also be employed for
deep mining and discovery of novel histological patterns
for prognostic and predictive biomarkers. Either way, in
order to ensure that CPath algorithms are deployed
in real-world clinical and pharmaceutical workflows,
the following aspects of deployment must be considered.

Workflow integration

CPath solutions should ideally be integrated into the
existing clinical and pharmaceutical workflows in order
to automate or assist the pathological decision-making
processes. Careful integration with existing laboratory
information management (LIM), electronic health
record (EHR), image management (IM) systems, and/or
trial databases may appear to be a low-tech problem but
is crucial for seamless workflow in routine pathology
and oncology practice. Often, the launch platform must
be clinically validated and have regulatory approvals
too. Launching a separate CPath application, a common
paradigm followed by several current CPath solution
providers, that runs side-by-side all the above systems
can only be the second-best option.

Reimbursement model

The reimbursement for CPath solutions is not currently
available in most countries [15,18]. This is a major
barrier to CPath adoption and deployment in those coun-
tries, as it means that laboratories and hospitals cannot
recoup the costs of implementing CPath solutions. The
adoption of CPath solutions requires that such solutions
are financially incentivized to sustain their uptake. There
is a need for evidence to demonstrate the value of
CPath [129], in order for payers to develop reimburse-
ment policies and procedures that reflect these benefits.

The Digital PathologyAssociation’s reimbursement task
force is working with payers and various stakeholders to
develop a fair reimbursement model.

Validation and regulatory approvals

A CPath solution that can be deployed in routine clinical
practice needs to have been validated rigorously to gen-
erate clinical evidence required for confidence of and
buy-in from clinicians in the solution. Most healthcare
systems require the solution to comply to ISO standards
and pass regulatory approvals, such as the Food and
Drug Administration (FDA) in the United States and In
Vitro Diagnostics (IVD) in the European Union. Going
forward, as CPath algorithms become more autono-
mous, we may need stringent regulatory approvals con-
sidering the question of responsibility in cases where the
autonomous algorithms fail [11]. This need is further
exacerbated by the aforementioned challenges associ-
ated with reliability and robustness.

Evidence for usefulness

Before a practical CPath solution can be deployed in
practice, there should be sufficient and robust evidence
for its usefulness in terms of efficiency gains, higher
accuracy, and cost savings. Typically, well-designed
health economic studies are required to generate evi-
dence for efficiency gains and cost savings. Lack of such
evidence may hamper the wider buy-in from the user
community and may also make it difficult for the labo-
ratory or hospital management to justify investment in
deployment of the solution, given the relatively high
initial setup cost of the digital and computational pathol-
ogy infrastructure.

Generalizability and interoperability

There is some evidence to suggest that DL algorithms do
not perform equally well on images from different scan-
ners or even different versions of the same scanners.
CPath solutions must develop and demonstrate interop-
erability for various types of WSI formats generated by
different slide scanners in order to help ensure that they
are able to deal with this particular source of variation
that is known to result in domain shift and are not biased
towards or against pixel data from one or more image
formats. Standardization of output formats for decisions
made and annotations done by CPath algorithms (e.g. in
GeoJSON format) will further enable interoperability of
algorithms and aid with workflow integration. It is hoped
that international industry–academic–clinical coopera-
tive efforts for finalization of interoperability standards
(such as the WSI DICOM standard) will help to address
these challenges.

Computational infrastructure and resource requirements

CPath models are generally computationally expensive
due to the relatively large size ofWSIs. In this context, at
least the following three models have recently emerged:
(1) the cloud-based data-to-compute model, whereby
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WSIs are typically shipped to and processed in the cloud;
this model offers the attractive feature of pay-per-use
options without requiring significant compute-heavy
investment but may give rise to potential data sharing
and privacy concerns; (2) the central compute-to-data
model, whereby data are shipped into a central repository
and various compute solutions are brought over to be
executed within the repository environment; this model is
attractive for central repositories and for userswithout access
to compute and storage resources but is likely to incur high
initial setup cost; and (3) the federated learning model,
whereby the DL model is trained locally without having to
share the data, a global model is put together bymerging the
localmodels, and then the globalmodel is sharedwith all the
contributing sites; a slight caveat of this model is that it
requires sufficiently powerful computing resources at all
contributing sites to be able to train local models.

There is no doubt that AI offers the potential to
address the increasingly serious issue of pathologist
shortage in most countries, especially low-to-middle-
income countries (LMICs). Recent work has also shown
that scanners can be miniaturized and images from
mobile phones can be used for point-of-care diagnostics
in low-resource settings [89,130]. We hope that further
technological advances in AI model optimization, stor-
age, and networking may lead to reduced hardware
requirements and address data sharing concerns.

Understanding the environmental impact of AI infra-
structure usage has an increasingly important role as
there is a pressing need to develop solutions that rely
on sustainable practices. We need infrastructure usage
and model development practices that enable efficient
use of large datasets, model reuse, and data-efficient and
parameter-efficient AI methods that have low energy
consumption.

Deployment timeline and the spectrum of mundanity

A question that is frequently asked is: which AI appli-
cations are likely to become practical and widely avail-
able in the near future? To answer this question, we
would like to refer the reader to Figure 4, which we term
as the spectrum of mundanity. At one end of the spec-
trum, we have challenges such as identifying tumors in a
biopsy or lymph node, and counting the number of
mitotic cells in pathology samples. These are objective
problems that pathologists can typically solve with a

high degree of accuracy and reproducibility. At the
opposite end of the spectrum, there are relatively obscure
tasks that pathologists are unable to solve with anything
more than a subjective ‘gut feeling’, for example,
predicting the molecular status based solely on visual
examination of a histology slide, potentially reducing the
need for slow and expensive molecular testing especially
useful in low-resourced settings. In the middle of the
spectrum, there are relatively difficult tasks that often
reflect complex interplay between tumor and host, which
may be difficult for humans to observe in a reproducible
manner. These tasks require large amounts of data for
algorithm development and must undergo prospective
large-scale multi-centric validation with long follow-up
periods. Examples of such tasks include risk scoring for
malignant transformation, local recurrence, or distant
metastasis of cancer, as well as predicting a patient’s
response to a particular therapy. We postulate that CPath
solutions for tasks on the two ends of the spectrum that
match (left) or surpass (right) the pathologist perfor-
mance are the ones that will be deployed in routine
practice sooner than those in the middle.

Conclusions and future directions

The emerging field of CPath holds significant promise in
enabling the discovery of known histological patterns, as
well as uncovering previously unknown cellular and tis-
sue architectural motifs. This breakthrough technology
has the potential to revolutionize cellular pathology-based
diagnostics, prognostics, treatment selection, and patient
stratification, with significant implications for patient
care. There have been various positive developments in
DL-based CPath in recent years, showing great promise
for facilitating enhancement in pathological assessment of
tissue slides. However, some challenges remain to be
addressed to make the vast majority of CPath methods
truly generalizable and applicable in practice.
To conclude this article, we list some research direc-

tions and open questions as follows:

1. Causality and mechanistic insights: Although
existing CPath models can predict mutation status
from an image, they do not inform whether morpho-
logical features associated with the prediction are
indeed a result of the mutation or not. We conjecture

Figure 4. Complexity of CPath tasks in terms of their mundanity. Publicly available icons from flaticon.com and icons8.com have been used in
the figure.
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that causal modeling with an ability to estimate
individual treatment effects will lead to a mechanistic
understanding of predictive image-based CPath
biomarkers.

2. Interpretability and explainability: While the lack
of interpretability and explainability is a common
challenge for the DL domain, it has a more pro-
nounced impact in pathology since the decision mak-
ing can influence diagnosis, prognosis, treatment
planning, and drug discovery roadmaps. More
research is needed towards incorporation of interpret-
ability and explainability in CPath models.

3. Standards and guidelines: We believe that closer
collaboration and engagement between clinical, aca-
demic, industrial, and patient/public stakeholders is a
pressing need of the hour. In particular, such a col-
laboration will lead to the development of standards
and guidelines for (1) storing, archiving, reading,
collection, curation, and sharing of WSIs with linked
image-level and patient-level (e.g. clinical and geno-
mic) annotations; (2) robust validation and general-
izability of CPath models; and (3) deployment,
readouts, and interpretability of AI algorithms.

4. Linking disparate data modalities and data shar-
ing via secure platforms: We believe that building
appropriate connectors between different data
hosting platforms (PACS, EHR, etc.) for different
data modalities is the key to linking multimodal
datasets. Once datasets have been linked and curated,
they could be accessed for AI algorithm development
and validation via a trusted research environment
(TRE) or secure data environment (SDE) if sharing
of the data is not an option.

5. AI use guidelines and legal responsibility: The
rapid progress of AI in cellular pathology during
the last decade is in sharp contrast to the lack of clear
guidelines and use cases (e.g. the Royal College of
Pathologists datasets) on how to make use of the AI
solutions in cellular pathology. There are also con-
cerns among some quarters that a new breed of
pathologists using AI algorithms may gradually
become so reliant on algorithms that they may lose
their ability to recognize some nuanced histological
patterns that they may have picked otherwise.
Although it is a bit too early to remark on the likeli-
hood of this eventuality, this is a predictable conse-
quence of technology and one that will need to be
addressed through CPD training and quality assur-
ance. To benefit from the promise of CPath, there is a
need to produce AI use guidelines that incentivize
pathologists to benefit from technology while
avoiding overreliance on AI [131]. There is also a
clear need to develop legal responsibility policies and
guidelines, to address the current regulatory
gap [132], owing to the rapidly emerging CPath
solutions. There is an essential requirement to under-
stand the moral and legal responsibilities of AI-based
decisions [133] as CPath solutions could potentially
disrupt traditional practice where decisions may
depend on AI.

6. Outcome-based subtyping: Histological subtypes for
various types of cancers are often based on a combina-
tion of morphological and architectural patterns, signi-
fying the different types and the degree of malignancy.
The disciplines of pathology and oncology, and conse-
quently the cancer patients, stand to benefit from steering
the focus of CPath-based histological subtyping towards
outcome-based subtyping. Shifting the focus away from
matching the existing histological subtyping also offers
an opportunity to explore the extraction of subvisual
insights from the data via a latent representation which
may not be apparently perceivable.

7. New imaging modalities and time to thaw:
Recently developed imaging modalities, such as spa-
tial transcriptomics and MUSE as well as volumetric
3D tissue imaging, offer promise for future research
avenues in CPath. However, as mentioned earlier,
sufficiently sized multi-centric repositories need to
be set up for effective modeling especially when
using DL. Development of effective ML models
using frozen tissue sections is challenging due to
generally poorer image quality, which complicates
the detection of tissue and cellular morphological
patterns. Despite the clinical significance of these
approaches, development of ML models for frozen
tissue images remains relatively unexplored.

8. The real test and the Turing test: Finally, the CPath
community should perhaps consider organizing high-
quality challengecontestson largerproblemswitha focus
on multimodal data analysis, federated data analysis,
generalizability, OOD detection, learning with absti-
nence, robustness analysis, and artificial general intelli-
gence (AGI) solutions. Systematic concordance and
discordance studies (similar to the IBM Watson for
Oncology [134]) are lacking that compare clinical deci-
sionmaking against the algorithm’s decisionmaking and
not just for individual sub-tasks (e.g. segmentation). We
proposeworkonaTuring test forpathology, similar to the
one proposed for cancer [83], whose objective will be to
observe how AI solutions can assist in decision making
for diagnosis, prognosis, and treatment planning. We
realize that the designof such a testwill be a longprocess,
but initially the test can be designed for an individual task
(e.g. cancer detection, cancer grading, and TILs grading)
and later on can be evolved for the ability to handle a
groupof tasks along the lines ofAGI, as discussed above.

The future of CPath is promising, but its success
depends on the community’s ability to bridge the gap
between the estimated performance of CPath models and
their actual performance in real-world applications. This
will be a critical step towards successful deployment of
CPath into real-world clinical and pharmaceutical
workflows, as well as ensuring its long-term sustainability.
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