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Synthetic dimensions provide a powerful approach for simulating condensed matter physics in cold atoms
and photonics, whereby a set of discrete degrees of freedom are coupled together and reinterpreted as lattice
sites along an artificial spatial dimension. However, atomic experimental realizations have been limited so far
by the number of artificial lattice sites that can be feasibly coupled along the synthetic dimension. Here, we
experimentally realize for the first time a very long and controllable synthetic dimension of atomic harmonic
trap states. To create this, we couple trap states by dynamically modulating the trapping potential of the atomic
cloud with patterned light. By controlling the detuning between the frequency of the driving potential and
the trapping frequency, we implement a controllable force in the synthetic dimension. This induces Bloch
oscillations in which atoms move periodically up and down tens of atomic trap states. We experimentally observe
the key characteristics of this behavior in the real-space dynamics of the cloud, and verify our observations with
numerical simulations and semiclassical theory. The Bloch oscillations thus act as a smoking-gun signature
of the synthetic dimension, and allow us to characterize the effective band structure. Our methods provide an
efficient approach for the manipulation and control of highly excited trap states, and set the stage for the future
exploration of topological physics in higher dimensions through the use of a tunable artificial gauge field and
finite-range interactions.

DOI: 10.1103/PhysRevResearch.5.033001

I. INTRODUCTION

Synthetic dimensions provide a powerful approach for
simulating condensed matter physics in cold atoms [1–14]
and photonics [15–18], and they are opening up many new
avenues for simulating and exploring exotic physics, includ-
ing quantum Hall ladders [3,4,10], non-Hermitian topological
bands [19], topological Anderson insulators [20], and even
lattice physics in four dimensions or higher [1,11,21]. A key
reason that this framework is so powerful is that it is very
general, and can be applied to a wide range of very different
physical systems. For example, synthetic dimensions have so
far been realized experimentally in cold atoms with hyperfine
[1,3,4], magnetic [7], Rydberg [8,9], and clock states [5,6], as
well as with momentum [10,11], orbital [14], and superradiant
states [12]. However, in these experiments, the size of the
synthetic dimension has been so far limited by the number
of states that can feasibly be coupled. Indeed, the largest
momentum state lattice [22] employed so far consists of a
one-dimensional (1D) lattice of 21 sites.

Notably, it has been recently realized that such limitations
can be lifted if external degrees of freedom associated with
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trapping potentials are used to generate the synthetic dimen-
sions [15,23,24]. Indeed, trapping potentials typically allow
for tens or hundreds of trapped states in each direction, and
by suitably coupling them one could implement very long
synthetic dimensions, unleashing the full potential of this
technique for quantum simulation. Additionally, this kind of
synthetic dimension is extremely appealing because it pro-
vides a framework for the manipulation and control of trap
states. A range of applications including quantum simulations
in optical lattices [25–27], trapped and guided atom inter-
ferometry [28–30], and quantum thermodynamics [31–33]
require the use of highly excited trapped states, which are
generally difficult to realize with a good degree of precision
and control.

In this work, we experimentally engineer a very long
synthetic dimension of many tens of atomic trap states by
dynamically modulating the harmonic trap of an ultracold
atomic sample [23,24]. By controlling the driving frequency
we generate a force along the synthetic dimension that induces
Bloch oscillations, which act as a smoking-gun signature that
the synthetic dimension behaves as expected. Bloch oscilla-
tions were first famously predicted for electrons moving in
a crystal under an electric field, and have since been ob-
served in various setups, including optical lattices for cold
atoms [34], as well as synthetic dimensions of photonic
frequency modes [35] and of room-temperate molecular an-
gular momentum states [36]. However, Bloch oscillations in
our experiment are physically very different from previous
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realizations, as they correspond to atoms periodically oscillat-
ing between low- and high-energy states of the harmonic trap.
As such, another benefit of the synthetic-dimension Bloch
oscillations implemented here is that they allow us to explore
highly excited harmonic states, and thus can lead towards an
approach for quantum engineering of external atomic states.
More generally, this work paves the way for the exploration
of higher-dimensional quantum Hall physics with artificial
magnetic fields, and opens new opportunities in quantum sim-
ulations more widely. For example, a tunable artificial gauge
field can be implemented by spatial modulation of the phase
of the driving potential, allowing access to two-dimensional
(2D) quantum Hall physics. Furthermore, mean-field inter-
actions between the atoms in real space should give rise to
exotic interactions that are long range and decay with distance
along the synthetic dimension [23], in contrast to the usual
interactions in atomic gases and to the SU (N ) interactions in
some other atomic synthetic dimension schemes. We therefore
expect interesting ground-state physics under the inclusion of
interactions which will be of interest for future study.

II. OVERVIEW OF THE SCHEME

To introduce our scheme, let us consider an atomic cloud
in a cigar-shaped harmonic trap with trap frequencies ωx =
ωz � ωy. In order to realize the synthetic dimension, we
couple together the atomic trap states of the strong trapping
potential along x with the spatially and temporally varying
driving potential given by

VD(x, t ) = −V0�(x sin(ωDt + ϕ)), (1)

where V0 is the driving amplitude, �(x) is the Heaviside
step function, ωD is the driving frequency, and ϕ is the
initial driving phase. Physically, this corresponds to illumi-
nating the upper half of the atomic cloud with constant power
for the first half of the period, TD = 2π/ωD, before illumi-
nating the lower half with the same constant power over the
second half of the period [see Fig. 1(a)]. This driving proto-
col is chosen because it is simple to implement, robust, and
it leads to a simple Floquet Hamiltonian with near-constant
nearest-neighbor hoppings, corresponding to a textbook 1D
tight-binding model, as discussed below. Combining Eq. (1)
with the 1D harmonic oscillator Hamiltonian along x gives
the time-dependent Hamiltonian

Ĥ (t ) = h̄ωx

∑
λ

λ |λ〉 〈λ| + VD(x, t ), (2)

written in the eigenstate basis of the “strong” trap along x, as
indexed by λ = 0, 1, 2, . . .. The stroboscopic dynamics of this
system is captured by an effective time-independent Floquet
Hamiltonian, which we can approximate over a large number
of trap states by (see Appendix F)

Ĥ ≈ h̄�
∑

λ

λ |λ〉 〈λ| + J
∑

λ

[ieiϕ |λ + 1〉 〈λ| + H.c.], (3)

where � ≡ ωx − ωD is the (small) drive detuning and J is a
uniform hopping amplitude, which itself depends on V0 and
ωx and is calculated using Floquet theory (Appendix F). Note
that this description is valid for near-resonant driving in a deep
harmonic trap, i.e., such that ωx � ωD � �, J/h̄. As depicted

in Fig. 1(a), Eq. (3) describes a particle hopping between
nearest-neighbor sites along a 1D tight-binding lattice with
unit spacing in a synthetic dimension. The detuning plays the
role of a constant force, F ≡ −h̄�, which therefore can in-
duce Bloch oscillations. Note that the shaking phase ϕ appears
in the effective Hamiltonian as a hopping phase, which we will
exploit below to average over unwanted micromotion effects.

In the absence of a force along the synthetic dimension,
i.e., when � = 0, the effective model in Eq. (3) is translation-
ally invariant along the synthetic dimension and has a single
energy band in the Brillouin zone. Applying a nonzero force
(i.e., � �= 0) accelerates a semiclassical wave packet formed
in the synthetic dimension bulk, such that it undergoes Bloch
oscillations across the Brillouin zone, with a center-of-mass
(COM) position along the synthetic dimension, λCOM, that
varies as [23]

λCOM(t ) = λ0
COM + 2J

h̄�
(1 − cos(2π fBt )), (4)

from the initial position λCOM(t =0)=λ0
COM and where fB is

the Bloch oscillation frequency. As we can set the spacing
between the fictitious synthetic lattice sites equal to one, the
periodic Brillouin zone covers [−π, π ]. The Bloch oscillation
frequency is then set by the magnitude of the applied force
divided by the length of this Brillouin zone, i.e., fB = |�|/2π ,
and so is entirely controlled by the detuning. Conversely,
the amplitude of the Bloch oscillations is proportional to the
bandwidth divided by the force, i.e., 4J/h̄�, and so depends
on the detuning but also, through J , on the trap frequency and
shaking power (Appendix F). The Bloch oscillations there-
fore provide a way to transport atoms between different trap
states, with independent control over both the timescale and
number of trap states explored. Experimentally, we use a
thermal cloud of 87Rb atoms in a harmonic trap with trapping
frequencies ωx = ωz � 2π × 160 Hz and ωy � 2π × 10 Hz.
The cloud was measured, both in situ and with standard
time-of-flight techniques, to have an initial temperature of
T � 20 nK. We used a rapid evaporation ramp to prevent the
sample from condensing at this temperature, thus reducing the
effect of mean-field interactions [23], which may complicate
the dynamics and will be of interest in future investigations.
To realize the driving potential of Eq. (1), we utilize a digital
micromirror device (DMD) that allows us to dynamically and
spatially control the intensity profile of a laser beam with
wavelength 800 nm (see Appendix A). We verify that the
trapping and driving potentials are aligned to within �1 µm.
Our driving potential was chosen because it was found to
be the most effective and robust, in the sense of not being
sensitive to misalignments and other imperfections. This is
in addition to the favorable theoretical properties discussed
above. We then perform absorption imaging of the atomic
cloud in position space after a very short time-of-flight (TOF)
expansion of tTOF = 5 ms, chosen to increase the visibility of
the dynamics. This is demonstrated in Fig. 1(b) for a detuning
of 9.84 Hz, where we plot the real-space cloud density as a
function of time for an example Bloch oscillation, showing
the cloud COM being displaced away from the origin. Note
that the density is averaged over several values of ϕ in order to
reduce the effect of micromotion. As such, the cloud appears
to widen along x in time, although the cloud width is actually

033001-2



BLOCH OSCILLATIONS ALONG A SYNTHETIC … PHYSICAL REVIEW RESEARCH 5, 033001 (2023)

FIG. 1. Schematic of the experiment and signatures of the synthetic-dimension Bloch oscillations in real space. (a) Schematic of the
digital micromirror device (DMD) pattern (red), which shakes the harmonic trap (blue to purple) and couples together nearest-neighbor trap
states with an approximately uniform hopping amplitude, J , in order to create the synthetic dimension. Bloch oscillations (green) can be
driven along the synthetic dimension by applying a force along λ, corresponding to detuning the shaking frequency from the trap frequency.
(b) Experimentally, the cloud is imaged after a short time-of-flight expansion, as demonstrated here for a detuning of � = 9.84 × 2π Hz. The
color scale is the column density in arbitrary units. The full dynamics includes micromotion within each driving period, so the experimental
data are averaged over several values of ϕ. This averaging procedure makes the cloud appear to widen, although the true cloud width is
approximately constant. (c) The real-space center-of-mass position, xCOM, of the atomic cloud is extracted, as shown here for the same data
as in (b). The experimental data (orange) are fitted (black) with a function motivated by Bloch oscillations in the synthetic dimension (see
Appendixes B and D), which captures the real-space dynamics well. Also shown are numerical results (blue) with a suitable TOF correction,
discussed in the main text. The micromotion within each driving period can be seen in the inset for an initial driving phase of ϕ = 0. To reduce
these unwanted micromotion effects, we average both the experiment and numerics over several values of ϕ (e.g., ϕ = 0 and π/2) to obtain
the results shown in the main panel. As can be seen numerically, the residual micromotion oscillations have a small amplitude, which can be
further reduced by averaging over more initial driving phases. Panels (b) and (c) use experimental parameters of V0 = 4.16 nK, T = 20 nK,
ωy = 10 × 2π Hz, and ωx = 166.5 × 2π Hz, where the latter is determined experimentally by shifting the oscillation frequency data to pass
through (|�|, f ) = (0, 0). Experimental error bars are 1σ statistical errors.

approximately constant. The initial temperature of T � 20 nK
corresponds to λ0

COM ≈ 2 for an initial Maxwell-Boltzmann
distribution of atomic energies. This means that, initially, the
atoms start near one “edge” of the synthetic dimension (at
λ = 0), and so atoms must move up the synthetic dimension,
irrespective of the sign of the detuning, i.e., the direction of the
force. The cloud also does not have a Gaussian distribution
with respect to the synthetic dimension as the above semi-
classical theory implicitly assumes; nevertheless, as we will
show, the prediction in Eq. (4) works well once appropriate
corrections are included (see Appendix G).

III. EXPERIMENTAL AND THEORETICAL RESULTS

Bloch oscillations in λ space naturally translate into atomic
motion along x in real space, as different harmonic oscillator
eigenstates have different real-space profiles. The resulting
motion can be seen in Fig. 1, where we report the measured

dynamics of the real-space COM position under the action of
the shaking potential, as a function of time. It is important
to notice that the full dynamics also includes micromotion
within each driving period [23]; for the real-space COM, as
shown numerically in the inset of Fig. 1(c), the micromotion
corresponds to large and fast oscillations as the atoms slosh
backwards and forwards in the trap, while the stroboscopic
Bloch oscillations translate into variations in the envelope of
the dynamics. We are not able to reliably achieve the high
time resolution to observe the micromotion in experiment,
so we apply an averaging procedure to remove it. This is
because of drifts in experimental parameters on a timescale of
hours, which would make the large number of measurements
required to reconstruct fast dynamics impractical. To over-
come this, we perform a root-mean-square (RMS) average
over different experimental runs with suitably chosen different
initial driving phases, ϕ. The raw cloud images in Fig. 1(b)
have themselves been averaged in this way. This has the effect
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FIG. 2. Bloch oscillation frequency and real-space amplitude as a function of detuning. (a) Frequency of the Bloch oscillations for the
experiment (orange for � > 0 and black for � < 0) and for numerics (blue). The observed trend is in agreement with the analytical prediction
(green) of fB = |�|/2π for Bloch oscillations. (b) Amplitude in real space of Bloch oscillations for the same data as plotted in (a). The
analytical prediction (green) shows the expected real-space amplitude as calculated under appropriate approximations from the synthetic-
dimension Bloch oscillations (see Appendix G), with the green error band calculated from the errors on J and other numerical parameters. The
numerical results are obtained by fitting the same function as in experiment to the TOF-corrected, RMS-averaged results like in Fig. 1(c). Note
that the numerical fit parameters also include error bars, but these are smaller than the data point size. We use the same parameters as Fig. 1.
Experimental error bars are 1σ statistical errors.

of making the cloud appear to widen significantly over the
oscillation, although in each single shot the width is approxi-
mately constant. Note that this averaging procedure slightly
lowers the apparent amplitude of the motion. However, by
reducing the micromotion effects, we can then clearly observe
the real-space signatures of the synthetic-dimension Bloch
oscillations, as reported in Fig. 1(c) for the same parameters
as Fig. 1(b) (orange), where the experimental data are fitted
by a function (black) motivated by synthetic-dimension Bloch
oscillations (see Appendixes B and D):

x(t ) = A
√

1 − e−gt cos(2π f t + φ), (5)

where we fit to find the amplitude A and frequency f . We
introduce the additional fit parameters g and φ to capture some
details of the experimental data (see Appendixes B and D).
As can be seen, this fit captures the behavior of the data very
well, with agreement between the experiment and numerical
simulations (blue curve) of a noninteracting 2D thermal cloud
(see Appendix C). Our numerical simulations use the time-
dependent Hamiltonian to evolve an ensemble of states, each
of which is a superposition over the eigenstates of the 2D trap
with random phase factors to destroy the phase coherence.
Physical observables such as the cloud density are found by
averaging over these phases. To account for the fact that we
do not measure the true position of the cloud due to the TOF
expansion, we include an approximate TOF correction to the
cloud center-of-mass position in our numerical simulations.
In particular, we use the simulated COM momentum pCOM

to find the semiclassical cloud velocity, and then shift the
simulated cloud COM at each time step (Appendix D).

To further characterize our experimental results, we plot
in Fig. 2(a) the values of the oscillation frequency obtained
by fitting our data for different detunings. As can be seen,
for both experiment and numerics, the frequency increases

linearly with detuning, as expected from the analytical Bloch-
oscillation frequency (green line) given by fB = |�|/2π in
both real and synthetic space [cf. Eq. (4)]. The trapping fre-
quency is determined by shifting a linear fit to the measured
oscillation frequencies to pass through (|�|, f ) = (0, 0). This
provides a straightforward way to measure the trapping fre-
quency, but does mean that any systematic uncertainty would
not be detected.

In Fig. 2(b) we show how the amplitude of the real-space
motion depends on the detuning by plotting the amplitude
fitting parameters. As can be seen, the experiment (orange
and black) and numerics (blue) both clearly show the ex-
pected growth in the real-space amplitude as the detuning
decreases and higher-excited atomic trap states are explored.
To make a quantitative comparison with semiclassical Bloch
oscillations [Eq. (4)], we have derived an analytical expression
(see Appendix D) that converts the expected Bloch-oscillation
amplitude from synthetic space to real space under appropri-
ate assumptions, including a correction for the finite fraction
of atoms participating in the dynamics, as discussed further
below. The expression is based on the formula

xCOM =
√

λCOM − σ 2
x + 1

2 , (6)

which connects the real-space cloud COM xCOM and width
σx to the synthetic-space COM λCOM under certain assump-
tions. This result is derived in Appendix E. This analytical
prediction is plotted in Fig. 2(b) (green), with errors calcu-
lated from our numerical parameters. As can be seen, there is
agreement between the experiment, numerics, and the analyt-
ics, demonstrating that we have achieved good control of the
synthetic-dimension Bloch oscillations.

We can also independently increase the number of atomic
trap states explored (i.e., the Bloch-oscillation amplitude)
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FIG. 3. Varying the shaking power to control the dynamics. (a) The real-space amplitude [cf. Fig. 2(b)] for different shaking powers at
a fixed detuning of � = 8.3 × 2π Hz, with ωx = 162.6 × 2π Hz. As can be seen, the experiment (orange), numerics (blue), and analytics
(green) increase with the shaking power; this is because, as shown in the inset, the nearest-neighbor hopping amplitude, J , from Floquet
theory (see Appendix F) increases with V0 and hence the Bloch-oscillation amplitude along the synthetic dimension increases. Analytics are
only shown up to V0 = 4 nK, as at higher shaking potentials the simple nearest-neighbor tight-binding model in Eq. (3) is no longer a good
description (see Appendix F), although the numerics and experiment still appear to exhibit Bloch-oscillation dynamics. This is shown further
in (b), where we plot the amplitude fit parameter (inset) and the frequency fit parameter, for V0 = 11.96 nK, with ωx = 142.1 × 2π Hz, � < 0,
and other parameters as in Figs. 1 and 2. Despite the large shaking power, we still observe similar trends to that at low power (cf. Fig 2), and
still with agreement in (b) to the fB = |�|/2π analytical result from the simple tight-binding model. Experimental error bars are 1σ statistical
errors. Note that all numerical data points include error bars, but these are smaller than the data points. The green error band on the analytics
is calculated from the errors on J and other numerical parameters.

while keeping the oscillation frequency constant, by increas-
ing the shaking power, V0, and hence the hopping parameter
J [cf. Eq. (3)]. The dependence of the real-space COM am-
plitude on V0 is shown in Fig. 3(a) for a fixed detuning
� = 8.3 × 2π Hz, while the inset shows the variation of the
hopping J , as calculated with Floquet theory (Appendix F).
As can be seen, the amplitudes in experiment (orange), nu-
merics (blue), and analytics (green) all increase as the hopping
increases [cf. Eq. (4)]. Note that the analytical result is only
plotted for V0 � 4 nK, as at higher shaking powers our simple
analytical model [Eq. (3)] breaks down (see Appendix F).
Despite this, we still observe clear Bloch-oscillation dynam-
ics at high power. This is further demonstrated in Fig. 3(b),
where we use a very strong potential of V0 = 11.96 nK, and
still observe the same qualitative trends (i.e., the amplitude
decreasing with the detuning, and the frequency being equal
to the detuning) as in the low-power regime. Finally, we can
visualize the Bloch oscillations along the synthetic dimen-
sion more directly, by translating our real-space experimental
measurements [from Fig. 1(c)] into λ space, under suitable
approximations (see Appendix G). These experimental re-
sults are plotted in Fig. 4(a) (orange), along with numerical
simulations (blue curve). Note that the latter is not averaged
over different initial driving phases; however, in synthetic
space, the micromotion is only a fraction of a “lattice spac-
ing” and becomes negligible as the trapping frequency ωx

increases [23].
We also compare our experimental results directly with

the semiclassical analytical predictions [Eq. (4)] with (green
curve) and without (red curve) multiplying by a constant nu-
merical rescaling factor to account for the fraction of atoms
contributing to the dynamics (Appendixes G and H). This

correction was also used in Figs. 2 and 3 and is neces-
sary because the COM is skewed downwards by the thermal
cloud splitting into two distinct parts, with approximately
half of the atoms remaining in low λ states during the
oscillation, as can be seen in the numerical density distribu-
tion heat map in Fig. 4(b). This effect is likely caused by
small oscillations in the Floquet Hamiltonian matrix elements,
and we discuss methods to reduce this splitting effect in
Appendix I.

Importantly, we can also convert our experimental ampli-
tude fit parameters [Fig. 2(b)] to synthetic space and divide
by the constant numerical cloud splitting factor in order to
extrapolate how far up λ the oscillating part of the cloud
is actually exploring (see Appendix H). This is plotted in
Fig. 5 (orange and black), where we can see that the fraction
of the cloud involved in the Bloch oscillations is moving
up several tens of Bloch states, demonstrating that we are
creating a very long synthetic dimension. This is supported
by our numerical (blue) and analytical results (green) (see
Appendixes C and D). Note that the number of sites along
the synthetic dimension will eventually be limited experi-
mentally by anharmonicities in the trapping potential [23];
however, in this experiment, this does not play an impor-
tant role. We included the appropriate quartic anharmonic
terms in our numerical simulations and found that they had
no effect in the range of trap states that are relevant here.
We discuss the properties of the excited states we create,
and methods to improve their fidelity, in Appendix I. Fi-
nally, we note that our methods can be extended towards
single-site resolution to on the order of or below h̄ωx/kB.
That would start the dynamics with only the λ = 0 state
populated. The subsequent dynamics would maintain the
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FIG. 4. Example Bloch oscillation in synthetic space. (a) Evolu-
tion of the COM, λCOM, and the numerical density distribution heat
map along the synthetic dimension (b) for the same data as Fig. 1(b),
for ϕ = 0. Both Bloch oscillations and high-frequency micromotion
are visible in the 2D numerics (blue line) for a noninteracting thermal
cloud (Appendix C). We also convert the corresponding real-space
experimental data to synthetic space under suitable assumptions (see
Appendix E). The observed Bloch oscillation frequency is in good
agreement with the 1D analytical semiclassics [Eq. (4), red line),
albeit with a lower amplitude as only around half the atoms from
the thermal cloud oscillate along the synthetic dimension [cf. den-
sity distribution heat map in (b)]. To correct for this, the analytical
result is rescaled (green line) as discussed in the text. The heat map
shows the numerical atomic density (integrated along the y direction)
with respect to λ over the oscillation, showing the cloud splitting.
Both panels use experimental parameters of ωx = 166.5 × 2π Hz,
� = 2π × 9.84 Hz, V0 = 4.16 nK, T = 20 nK, and ωy = 10 ×
2π Hz. Experimental error bars are 1σ statistical errors.

single λ-state character. This point is discussed further in
Appendix I.

IV. CONCLUSIONS

Our experimental results show that we have engineered
a synthetic dimension of atomic trap states by projecting
a time-dependent shaking potential onto an atomic cloud
via a digital micromirror device. Through control of the
shaking potential’s detuning, we induced Bloch oscillations
along the synthetic dimension, observing the key characteris-
tics of these dynamics in the real-space motion of the cloud.
Our experiment demonstrates that a long and controllable
synthetic dimension can be created. This opens up the way to-
wards the exploration of topological physics using a synthetic
dimension of harmonic trap states [23,24] by introducing a
controllable artificial gauge field using a spatially varying
shaking phase. The spatiotemporal control of the shaking po-
tential can also allow for future investigations of phenomena
such as magnetic barriers, as well as the controlled population
of excited atomic trap states, including direct imaging of the
states [37] and single-site resolution of our current methods
(Appendix I). Moreover, the addition of mean-field interac-
tions in the cloud should lead to exotic interactions along the

FIG. 5. Bloch-oscillation amplitude in synthetic space. The ex-
trapolated maximum value of λ reached by the oscillating part of
the cloud as a function of �, demonstrating that we have a long,
controllable synthetic dimension. As discussed in Appendix H, we
convert the experimental fit parameters in Fig. 2(b) to synthetic space
(orange and black), correcting for cloud splitting. We also plot our
numerical maximum λ values (blue) for ϕ = 0, again corrected for
cloud splitting. Furthermore, we derive appropriate analytics (green)
for comparison (see Appendix G). Error bars on experimental points
were calculated by converting the real-space errors to synthetic
space, while the error bars on the analytics were found by propagat-
ing errors on J and other numerical parameters. We use experimental
parameters of ωx = 166.5 × 2π Hz, V0 = 4.16 nK, T = 20 nK, and
ωy = 10 × 2π Hz.

synthetic dimension [23] and, in turn, interesting ground-state
physics.

Note added. We note that Bloch oscillations of driven-
dissipative solitons were recently detected in a photonics
synthetic dimension [38].

ACKNOWLEDGMENTS

We would like to acknowledge helpful discussions with
Bruno Peaudecerf, David Guéry-Odelin, Tilman Esslinger,
Laura Corman, and Jean-Philippe Brantut. We acknowl-
edge financial support by the Royal Society via Grants No.
UF160112, No. RGFEA180121, and No. RGFR1180071, and
the EPSRC via Grant No. EP/R021236/1. N.G. is supported
by the ERC Starting Grant TopoCold and the Fonds De La
Recherche Scientifique (FRS-FNRS, Belgium). G.S. was sup-
ported by the ERC Starting Grant TopoCold, the Academy of
Finland under Project No. 327293, and the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Grant Agreement No. 101025211
(TEBLA).

A.S. and T.E. carried out the experiment under the guid-
ance and supervision of V.G. and G.B. The theoretical analysis
was performed by C.O., under the guidance and supervision
of G.S., N.G., and H.M.P. The project was conceived and de-
signed by N.G., H.M.P., and G.B. The manuscript was drafted
by C.O. and then revised by all authors.

APPENDIX A: EXPERIMENT

In our experimental sequence we load 87Rb atoms from
a three-dimensional (3D) magneto-optical trap into a crossed
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optical dipole trap and then perform forced evaporative cool-
ing [39]. The final trapping frequencies are fx = fz � 160 Hz,
and fy � 10 Hz, where z is the vertical axis, resulting in a
cloud elongated along y, with N � 2 × 104 atoms at �20 nK.
We conclude a posteriori that the degeneracy of the x and z
trapping directions does not affect the dynamics because of
the good agreement between theory and experimental data.
We also verified using horizontal imaging that there are no
significant dynamics along the z direction. The optical setup
to realize the dynamical potential and high-resolution imaging
is described in detail in Ref. [40]. In brief, the light produced
by an 800-nm laser is reflected by a DMD and then sent onto
the atoms along the vertical direction, using an optical setup
that produces a demagnification of a factor of 100. The DMD
is a 2D array of 1920 × 1080 micromirrors, each with size
10.8 µm. Each micromirror can be individually tilted every
100 µs, allowing us to produce dynamical optical potentials.
The atoms are imaged on a charge-coupled device mounted in
the vertical direction using a 20× magnifying system with a
resolution of �2 µm. The numerical aperture of our imaging
system is 0.28. We verify the alignment between the driving
and trapping potentials to a precision of �1 µm by imaging
both the cloud and the DMD pattern at once. This was done
every 20 runs to avoid slow drifts. We also note that we
do not observe significant heating of the cloud due to the
driving potential. We determine this by observing the width
of the cloud in the weak trapping direction after a short TOF
expansion and finding that it does not change, as shown by
experimental data in Fig. 16. This is caused by any “heated”
atom spilling out of the weak trap, leading to some atom loss
but a fixed temperature.

APPENDIX B: REAL-SPACE EXPERIMENTAL
DATA ANALYSIS

To reduce micromotion effects, the experimental data for
the real-space COM position is RMS averaged over ini-
tial driving phases drawn randomly from 2πn/30, with n =
0, 1, . . . , 30. (The effects of RMS averaging are discussed
further in Appendix D) The resulting data are then fitted to
the function

x(t ) = A
√

1 − e−gt cos(2π f t + φ), (B1)

where A is the amplitude, f is the frequency, g is a damping
factor, and φ is a phase offset which accounts for random
variation in the state preparation. The functional form of
this fitting function is motivated by translating the semiclas-
sical prediction for synthetic-dimension Bloch oscillations
[Eq. (4)] into real space. As shown in Appendix E, under
certain approximations, this conversion can be achieved by
taking

xCOM =
√

λCOM − σ 2
x + 1

2 , (B2)

where xCOM and σx are, respectively, the COM and width of
the cloud (in harmonic oscillator lengths) with respect to the
real position coordinate, x. Note that in choosing the form
of the fitting function, we assume that the cloud width σx is
approximately constant as a function of time, as has also been
verified numerically (Appendix D). The fitting parameters f

and A are then plotted, for example, in Figs. 2(a) and 2(b),
respectively.

APPENDIX C: DETAILS OF NUMERICAL SIMULATIONS

As shown in the main text, we numerically simulate the
motion of a thermal cloud in two dimensions under the time-
dependent Hamiltonian Ĥ (t ) [Eq. (2) in the main text, with the
y terms restored]. In so doing, we choose to work in the λ-y
basis; this avoids discretizing the x direction and hence re-
duces the size of the matrix representing the Hamiltonian in
the numerics. From our numerical simulation of the wave
function, we then calculate the cloud density ρ(λ, y, t ), and
convert this into real space to yield ρ(x, y, t ). The time
evolution of the wave function is done by numerically time-
evolving an appropriate initial state as

|ψ (t + dt )〉 = exp

(
− iĤ (t )dt

h̄

)
|ψ (t )〉 , (C1)

where dt is a sufficiently small time step. In order to simulate
the dynamics of a noninteracting thermal cloud (i.e., a non-
interacting gas which is distributed over the levels of the trap
according to a classical Boltzmann distribution), we choose
an initial state of the form [41,42]

|ψθ 〉 = A
N−1∑
i=0

√
pi exp (iθi) |φi〉 , (C2)

where A is a normalization factor, pi = exp (−βEi )/Z is the
Boltzmann weight for the ith eigenstate of the 2D harmonic
trap |φi〉 with energy Ei, β is the inverse temperature, Z is the
partition function for the 2D harmonic trap, and θi is a random
phase drawn from a uniform distribution between 0 and 2π .
Note that a finite number, N , of harmonic trap states is used in
this construction; in order to safely neglect higher-energy trap
states, we check numerically that the Boltzmann weight has
decayed to a sufficiently small value.

In the numerics, we then sequentially generate N ′ such ran-
dom phase states, each with a different set of random phases.
Each state is then time evolved and the resultant densities are
averaged together. By averaging over random phase factors,
we destroy the phase coherence of the state; omitting this step
would correspond to selecting a particular (and likely unphys-
ical) coherent superposition of trap states. To further illustrate
the importance of the random-phase averaging, we show how
this can reproduce the expected density for a thermal cloud
at t = 0. The latter can be found from the system’s density
matrix ρ̂ = ∑

i pi |φi〉 〈φi| , as

ρ(r) = 〈r| ρ̂ |r〉 =
∑

i

pi|φi(r)|2, (C3)

where φi(r) = 〈r|φi〉 [43]. We can also calculate the density
of the random phase state as

ρθ (r) = 〈ψθ |r〉 〈r|ψθ 〉
=

∑
i j

√
pi p j exp (i(θi − θ j )) 〈φ j |r〉 〈r|φi〉, (C4)

which, as can be seen, involves a double sum over the har-
monic trap states. However, averaging over the random phases
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FIG. 6. The 1D atomic density obtained from random-phase-
state averaging (blue) compared to the known density of a thermal
cloud (red) [Eq. (C7)] with temperature T = 20 nK in a harmonic
trap of frequency ωx = 2π × 166.5 Hz, and N = 16. We average
over (a) 5 random phase states and (b) 100 states. As can be seen,
(a) shows significant fluctuations which decrease with averaging over
more states, as shown in (b).

gives

ρ(r) = 1

(2π )N ′

∫ 2π

0

N ′∏
i=1

dθiρθ (r) =
∑

i

pi|φ(r)|2, (C5)

as desired, where we used the identity∫ 2π

0
exp (i(θi − θ j ))dθi = 2πδi j . (C6)

The random phase state therefore reproduces the density for a
thermal cloud at t = 0 under suitable averaging.

We can also demonstrate the effects of phase averaging nu-
merically as shown in Figs. 6(a) and 6(b), where this technique
is applied to a 1D harmonic trap for only 5 random phase
states and for 100 random phase states, respectively. In both
cases, the blue curve is the density calculated via the above
method and the orange curve is the expected thermal cloud
density calculated explicitly as

ρ(x) = Ae− x2

2σ2 , (C7)

where A is a normalization constant and σ = kBT/mω2
x is

the cloud width, controlled by the trap frequency and tem-
perature [43]. For large enough numbers of random phases
states included in the average [Fig. 6(b)], we see good agree-
ment with the expected thermal cloud density. Note that in
so doing we have assumed that our cloud is noninteracting,
because if interactions are present, we can no longer use a
Boltzmann-weighted superposition over single-particle trap
states. Throughout this work, we use 50 random phase states
in our numerics.

APPENDIX D: DETAILS OF NUMERICAL DATA ANALYSIS

Here we describe the data analysis steps carried out on the
simulated cloud density (Appendix C) in order to extract the
Bloch-oscillation frequency and amplitude, which we have
then compared to experiment and analytical results in the main
text.

First, the cloud center of mass (COM) and width are calcu-
lated from the real-space cloud density ρ(x, y, t ), found using
the method in Appendix C. An example is shown in Fig. 7,
where we see oscillations in both the synthetic- and real-space
COM [Figs. 7(a) and 7(b), respectively], including high-
frequency micromotion, as discussed in the main text. Note
that the λ-space COM is calculated as λCOM = ∑

λ λρ(λ, t ),
where ρ(λ, t ) is the probability density with respect to the syn-
thetic dimension, calculated numerically as in Appendix C,
with the y dependence integrated out. We also see that, al-
though the cloud does visit higher harmonic oscillator states,
the cloud width [Fig. 7(c)] is approximately constant in time.
We use this observation in Appendix G to simplify our analy-
sis. Throughout this section, we use the typical experimental
parameters: V0 = 4.16 nK, ωx = 166.5 × 2π Hz, � = 9.84 ×
2π Hz, ωy = 10 × 2π Hz, T = 20 nK, and the initial driving
phase ϕ = 0 for any data including micromotion and ϕ = 0
and π/2 for any data where micromotion has been averaged
out, as discussed further below. These are the same parameters
as in Figs. 1–4 in the main text. As an aside, we mention the
effect of different signs of detuning (i.e., different signs of the
effective force) on the dynamics in synthetic space. In Fig. 8,

FIG. 7. Example unprocessed data from the numerical simulations corresponding to Figs. 1(b), 3(a), and 3(b) in the main text. (a) Synthetic
dimension COM as a function of time for ϕ = 0, showing the Bloch oscillation and micromotion. (b) Real-space COM, also showing
micromotion under the Bloch-oscillation envelope (blue), together with the root-mean-square average over a pair of initial driving phases
0 and π/2 (red). (c) Real-space cloud width (blue) and its micromotion average (red), which is approximately constant in time to one decimal
place. The phase averages are used in Appendix G to verify the result derived there. We use the parameters V0 = 4.16 nK, ωx = 166.5 × 2π

Hz, � = 9.84 × 2π Hz, ωy = 10 × 2π Hz, T = 20 nK, as in Figs. 1–4 in the main text.
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FIG. 8. The effect on the synthetic-space dynamics of different
signs of the detuning for the two initial driving phases used for all the
numerics. For ϕ = 0 (blue and yellow), we see a small difference in
oscillation amplitude of around one synthetic lattice site for different
signs of �, whereas for ϕ = π/2 (red and purple), the amplitudes
are unchanged. We use the same parameters as Fig. 7, but with |�| =
5 × 2π Hz.

we plot the synthetic-space dynamics for both ϕ = 0 (blue and
yellow) and π/2 (red and purple) for opposite detuning signs.
We see that, for ϕ = 0, there is a small amplitude difference
of around one synthetic lattice site, whereas for ϕ = π/2 the
two amplitudes are the same. This means that we expect our
oscillation amplitudes to be similar regardless of the sign of
�, as we find in our results in the main text. Note that the
presence of a hard wall boundary at λ = 0 makes this different
from the expected result for a wave packet prepared in the
synthetic dimension bulk. In that case, we expect the wave
packet to move in opposite directions for opposite signs of �.

Second, we need to take into account the TOF expansion
carried out in the experiment, as this is not included in the
numerical method described in Appendix C. If this is not
accounted for, then the experimental COM oscillations will be
significantly larger than in the simulation. To correct for this in
the numerics, we use the simulated momentum distribution to
calculate the COM momentum in real space, pCOM, and hence
find the semiclassical cloud COM velocity vCOM = pCOM/m
at each time step, such that we can correct the COM position
from the numerics as

x̃COM = xCOM + vCOMtTOF, (D1)

where tTOF is the TOF expansion time, corresponding to 5
ms in this experiment. This method applied to our example
oscillation (Fig. 7) is shown in Fig. 9(a). We see the same
qualitative form as Fig. 7(b), but with an amplitude around
five times larger.

Third, as discussed above and in the main text, we need to
remove the micromotion before we can extract the amplitude
and frequency of the Bloch oscillation. Experimentally, this
is done by repeating the experiment for multiple different
starting phases ϕ of the driving potential, as discussed in
Appendix B. The micromotion is approximately removed by

FIG. 9. Steps in the analysis of simulated real-space COM data.
(a) Example real-space COM with an applied TOF correction and
ϕ = 0, showing a larger-magnitude oscillation (blue), together with
its RMS average over driving phases (red), with ϕ = 0, π/2. The
RMS-averaged curve shows a smaller amplitude than the full oscil-
lation. (b) Fit of Eq. (D3) (red) to the TOF-corrected, RMS-averaged
example oscillation (blue), showing that our fitting function captures
the dynamics well. The error bars on the reported fitted amplitude
and frequency are those provided by the least-squares fit. These
results use identical parameters to Fig. 7, and to Figs. 1(c) and 3
in the main text.

taking the RMS average over the M chosen driving phases:

〈x̃COM〉 =
√√√√ 1

M

M∑
i=1

(
x̃(i)

COM

)2
, (D2)

where x̃(i)
COM is the COM for the ith initial driving phase.

Physically, the choice of ϕ controls the phase of the micro-
motion oscillations. This approach is applied directly to the
experimental data, as well as to the simulated data after the
TOF correction.

033001-9



CHRISTOPHER OLIVER et al. PHYSICAL REVIEW RESEARCH 5, 033001 (2023)

If the driving phases are chosen randomly or if the mi-
cromotion is very complicated, then we expect to take the
large-M limit in Eq. (D2) and average over many experi-
mental or numerical runs. However, if the micromotion were
described by a perfectly sinusoidal function, such as, e.g.,
f (t ) = sin ωDt , then we would in fact only need to average
over any two values of ϕ that are separated by (2k + 1)π/2,
with k = 0, 1, 2, . . ., using the property that ( f (t ))2 + ( f (t +
(2k + 1)π/2))2 = 1.

In practice, our numerical simulations [Figs. 9(a) and 7]
suggest that the micromotion is close to being sinusoidal and
so we try averaging over only one pair of phases related
by (2k + 1)π/2. Indeed, Fig. 9(a) shows an example of this
RMS-averaged oscillation (red curve) over two phases (ϕ =
0, π/2), together with the ϕ = 0 unaveraged data (blue curve).
As can be seen, averaging over only two runs is already suffi-
cient to remove the majority of the micromotion, with a small
residual that could be removed by using more pairs of phases.
However, the amplitude of the averaged curve is smaller than
the unaveraged result, and we will return to this point later
when discussing corrections to the analytical results in Ap-
pendix G. Finally, to extract the oscillation amplitude and
frequency, we fit the function

x(t ) = A
√

1 − e−gt cos(2π f t + φ) (D3)

to the real-space COM in both simulation and experiment, as
introduced in the main text. This functional form is motivated
by the analytical results; if we convert the expected oscillation
in synthetic space [Eq. (4) in the main text] to real space
[using Eq. (6) in the main text which is derived in Appendix E
below], we obtain

xCOM =
√

λ0
COM − σ 2

x + 1

2
+ 2J

h̄�
(1 − cos(�t )). (D4)

Since, in our numerics, xCOM(t = 0) = 0, we have λ0
COM −

σ 2
x + 1/2 = 0, where we assume that σx is constant in time

as justified previously. This then suggests the functional form
of the above fitting function [Eq. (D3)]. By hand, we then
add in the exponential damping factor, to capture wave-packet
splitting effects (see below) and other sources of damping in
experiment (e.g., heating), as well as the phase φ to account
for random variation in the position of the cloud after state
preparation in the experiment. [Note that for the numerics
we have defined x(t = 0) = 0, and so we set φ = 0 to reduce
the number of fitting parameters.] Figure 9(b) shows an ex-
ample fit (red curve) using Eq. (D3) applied to our numerical
data (blue curve) from Fig. 9(a). The error bars on the fit
parameters are from the least-squares fit. The fitted amplitude
A and frequency f are plotted in the main text for varying
detuning and shaking power.

APPENDIX E: MAPPING FROM THE SYNTHETIC
DIMENSION TO REAL SPACE

Analytical results for our synthetic dimension scheme are
expressed in terms of the synthetic dimension λ, but the
experiment naturally probes real space x. We therefore now
derive a formula linking these, which is given as Eq. (6) in
the main text, and which is used to justify the fitting function
as discussed above, and to process the analytical results in

Appendix G. Our aim is to link the COM of a state |ψ〉 with
respect to the synthetic dimension, λCOM, to the COM and
width of the state in real space, xCOM and σx, respectively. To
start, we will expand our state in the harmonic-trap basis as

|ψ〉 =
∑

λ

cλ |λ〉 , (E1)

where cλ are complex coefficients with
∑

λ |cλ|2 = 1. In terms
of the COM variables, it is straightforward to show that

λCOM = |α|2, α ≡ xCOM + ipCOM√
2

, (E2)

where

xCOM = 〈ψ | x̂ |ψ〉 , (E3)

pCOM = 〈ψ | p̂ |ψ〉 , (E4)

are the COM in real and momentum space, respectively. Here,
xCOM is measured in units of

√
h̄/mωx, and pCOM in units of√

h̄mωx. We can also write

σ 2
x = 〈ψ | x̂2 |ψ〉 − x2

COM, (E5)

which follows from the usual expression for the variance of
a random variable. Now writing x̂ = 1√

2
(â + â†), where â†

and â are the usual harmonic oscillator raising and lowering
operators, and substituting into Eq. (E5) yields

σ 2
x = 〈ψ | (â†â + 1

2

) |ψ〉 + 1
2 (〈ψ | â2 |ψ〉

+ 〈ψ | â†2 |ψ〉) − x2
COM, (E6)

where we have used the commutator [â, â†] = 1. Now insert-
ing our expansion of |ψ〉 [Eq. (E1)] produces

σ 2
x = λCOM + 1

2 + 1
2 (S + S∗) − x2

COM, (E7)

where we identified λCOM = ∑
λ |cλ|2λ and where

S =
∞∑

λ=0

c∗
λcλ+2

√
(λ + 1)(λ + 2). (E8)

Finally, rearranging for λCOM gives

λCOM = x2
COM + σ 2

x − 1
2 − 1

2 (S + S∗). (E9)

To gain some intuition for the S terms, consider the limit of
preparing the system in a particular eigenstate of the harmonic
trap |λ0〉, so cλ = δλ,λ0 . This makes S = 0, and we have

λCOM = x2
COM + σ 2

x − 1
2 . (E10)

If, instead, the state is a semiclassical Gaussian wave packet
with cλ ∼ exp(−(λ − λ0)2/2σ 2

λ ), we expect Eq. (E10) to hold
approximately when σλ is sufficiently small. Figure 10 shows
an example of this result (red curve) compared against the
COM calculated directly from a numerical simulation (blue
curve), with agreement up to a small offset. The numerical
curve displays small micromotion oscillations as expected,
as does the curve calculated from our formula. The formula
shows these oscillations because using only a single pair of
phases during micromotion averaging does not perfectly re-
move the micromotion, as discussed in Appendix D. Note also
that the example data and parameters used in this section are
the same as the previous ones, although the level of agreement
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FIG. 10. Example of the conversion formula [Eq. (E10), red]
applied to the same numerical simulation as Fig. 7 (blue), showing
agreement up to a small offset. The formula is applied using the RMS
time-averaged data in Figs. 7(b) and 7(c).

is similar in all cases studied. This result demonstrates that the
derived conversion formula still holds in the case of the ther-
mal cloud. We can repeat the above calculation but working
in terms of momentum rather than position to find

λCOM = p2
COM + σ 2

p − 1
2 , (E11)

where σp is the width of the state in momentum space, and
the momenta are measured in units of

√
h̄mωx. An example of

this formula applied to the oscillation in Fig. 10 is shown in
Fig. 11, showing similar agreement with the real-space result.

FIG. 11. The momentum-space conversion formula [Eq. (E11)]
applied to the same oscillation as Fig. 10. The result of applying
Eq. (E11) to the RMS phase-averaged momentum COM and width
(blue) is compared to the synthetic-space COM calculated numeri-
cally (red) and we see agreement up to a small offset.

APPENDIX F: EFFECTIVE TIME-INDEPENDENT
HAMILTONIAN DESCRIPTION

In this section, we show how we arrive at the effective time-
independent Hamiltonian shown in the main text,

Ĥ = h̄�
∑

λ

λ |λ〉 〈λ| + J
∑

λ

[ieiϕ |λ + 1〉 〈λ| + H.c.],

(F1)

starting from the full time-dependent Hamiltonian [Eq. (2) in
the main text]. Note that this effective Hamiltonian is different
from that of Ref. [23] in the sense that we can assume that our
nearest-neighbor hoppings are constant in λ, whereas those
of Ref. [23] scale as

√
λ; this is due to the choice of driving

potential. As the Hamiltonian is periodic in time, we can
use Floquet theory to define the Floquet Hamiltonian, ĤF ,
according to

ĤF = ih̄

TD
log(Û (TD; 0)), (F2)

where Û (TD; 0) is the time-evolution operator over a full
period of the driving, TD = 2π/ωD, where ωD is the driving
frequency [44]. This Hamiltonian can be calculated numeri-
cally by splitting the time-evolution operator [Eq. (F2)] into
sufficiently many small time steps dt . For simplicity, we have
neglected terms in the Hamiltonian that depend on the y direc-
tion to work with a 1D Hamiltonian in the λ basis.

We first investigate the matrix elements of Eq. (F2) for the
low-V0 case (V0 = 4.16 nK), as considered in Figs. 1– 4 in
the main text. The Floquet Hamiltonian matrix elements are
plotted in Fig. 12 for several detunings and for parameters
listed in the caption. More precisely, we plot the real (top row)
and imaginary (middle row) parts of the first five diagonals of
ĤF , as well as |ĤF | as a heat map to show the longer-range
structure of the Hamiltonian (bottom row). For all figures in
this section, the on-site terms are in blue, the nearest-neighbor
(NN) hoppings are in red, and longer-range hoppings are in
other colors. For this low-power figure, we have applied a
constant offset to the time-dependent Hamiltonian to ensure
that the on-site matrix elements are zero for λ = 0. This shifts
the location of the instability regions (see below) and allows
the behavior for � < 0 to be seen more clearly.

As can be seen, for many values of λ, the Hamiltonian can
be approximated by the form used in the main text. First,
the detuning induces a tilt on the on-site matrix elements
(blue curve) ∼�λ, which allows us to interpret this detuning
as a constant force along the synthetic dimension [see, e.g.,
Figs. 12(b) and 12(c) between λ ≈ 0 and λ ≈ 20]. Note that
we verified that the slope of the on-site terms is equal to the
detuning by fitting a straight line to these plots. Second, across
the same regions, we also find nearly flat NN hoppings (red
curve), such that the NN hopping energy J can be calculated
by taking the average of the NN matrix elements up to the
onset of the instability region (see below). This hopping en-
ergy does not vary significantly as a function of detuning, and
we find the value J/h̄ = 106 ± 8 Hz for V0 = 4.16 nK. To
calculate this error bar on J , we add the standard deviations of
the NN hoppings for each of the N� detunings in quadrature
to obtain σ , and then use the error bar σ/

√
N�. Third, we
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FIG. 12. Numerically calculated matrix elements of the Floquet Hamiltonian [Eq. (F2)] for ωx = 2π × 166.5 Hz, V0 = 4.16 nK, and
ϕ = 0, for � = 2π × 0, −2, 2, and 7 Hz in columns (a), (b), (c), and (d), respectively. These parameters correspond to the low-power data
shown in Figs. 1– 4 in the main text. The top row shows the real part of the first five diagonals, the middle row shows the imaginary part, and
the bottom row shows a heat map of |ĤF |. The on-site terms are in blue, the nearest-neighbor (NN) hoppings in red, and longer-range hoppings
in other colors. We see that we can approximate ĤF by a nearest-neighbor tight-binding model where � plays the role of a force along the
synthetic dimension. The onset of instability regions (IRs), marked by the black dotted lines, show long-range hoppings for some λ and are a
numerical artifact and are not physical.

also see that we have a small long-range hopping (purple
curve) which we neglect. Note that all the matrix elements
show small oscillations with respect to λ, which may act as a
potential minimum around λ = 0 and be the cause of the cloud
splitting effects discussed in the main text and below. This
is discussed further in Appendix I. Finally, we see the “odd”
diagonals of the Hamiltonian (NN, NNNN, etc.) are purely
imaginary and the others are purely real, which is caused by
the initial driving phase ϕ playing the role of a Peierls phase
in the effective model.

For nonzero detuning in Fig. 12, there also appear to be
regions of λ where we no longer have linear on-site terms
and flat NN hoppings, but instead have significant long-range
hoppings [e.g., between λ ≈ 20 and λ ≈ 60 in Fig. 12(b)].
However, these are an artifact of our numerics and should not
be physical. These regions arise because the Floquet Hamilto-
nian is not unique, but depends on the branch of the matrix
logarithm [Eq. (F2)]. In the numerics, the principal branch
is always taken, meaning that the Floquet Hamiltonian is
constructed to have eigenvalues that only lie between −π/TD

and π/TD. This leads to the apparent “wrapping around” of
on-site terms and an associated variation in off-diagonal terms
when the on-site shift due to the detuning becomes large. This
can be seen by noting that for larger detuning [Fig. 12(d)],
the apparent breakdown happens earlier and more frequently,
and between these regions, the matrix elements look regular

and well behaved. We have also checked our interpretation
numerically by adding a constant offset to the time-dependent
Hamiltonian Ĥ (t ) that changes the size and location of the
apparent breakdown regions while leaving the on-site slope
and NN hoppings otherwise unchanged. Finally, we also do
not observe any qualitative change in behavior of our nu-
merical simulations (Appendix C) when the cloud moves in
the instability regions, further confirming that these are not a
physical effect.

It is important to distinguish between the above numerical
artifact and a genuine breakdown of the effective Hamilto-
nian employed in the low-V0 case, caused by the failure of
the rotating-wave approximation. This is apparent, e.g., in
Fig. 12(a) above λ ≈ 55, where we observe that the matrix
elements begin to deviate from their previous values.

For larger values of V0 (such as considered in Fig. 2 in
the main text), we also observe numerically that the matrix
elements become less uniform and more long ranged. This
is shown in Fig. 13, where we plot the Floquet Hamilto-
nian matrix elements for V0 = 11.96 nK for two detunings,
with parameters as listed in the figure caption. As can
be seen, in this case, we find significant long-range hop-
pings for all λ, and a nonzero detuning does not simply
add a slope to the on-site terms. This therefore precludes
building a simple analytical model for this behavior, al-
though we still find that our numerical simulations agree
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FIG. 13. Floquet Hamiltonian matrix elements for a higher
shaking power than Fig. 12. We have ωx = 2π × 142.1 Hz, V0 =
11.96 nK, and ϕ = 0, and � = 2π × 0 and −2 Hz in columns
(a) and (b), respectively. These parameters correspond to the high-
power data shown in Fig. 3(a) in the main text. Unlike the low-power
case, we find significant long-range hoppings for all λ, and that a
detuning does not simply induce a slope on the on-site terms. This is
not a numerical artifact, but a result of the failure of the rotating-wave
approximation, and precludes building a simple effective Hamilto-
nian. We use the same layout and color schemes as Fig. 12.

well with experimental results, as in Fig. 3 in the main
text.

APPENDIX G: DETAILS OF ANALYTICAL RESULTS

Here we describe in detail how the analytical results for
Bloch oscillations in both real and synthetic space are ob-
tained, including corrections to make them comparable to
numerical and experimental data, as plotted and discussed in
the main text.

As stated in the main text, we expect the cloud COM to
oscillate with respect to the synthetic dimension as

λCOM(t ) = λ0
COM + 2J

h̄�
(1 − cos(�t )). (G1)

We therefore expect an oscillation frequency of �/2π and a
maximum λ of λmax = λ0

COM + 4J/h̄�. We can then use our
result connecting the real and synthetic dimension, Eq. (E10),
to calculate the maximum displacement of the cloud from

x = 0. This gives

xmax =
√

λmax − σ 2
x + 1

2 , (G2)

as discussed in the main text, and where we measure xmax

and σx in units of
√

h̄/mωx. We can analytically calculate
the width for a thermal cloud σx = √

kBT/mω2
x [43], and

approximate the cloud width as constant in time, as justified
in Appendix D.

We now take into account cloud splitting, as described in
the main text. Note that we discuss methods to reduce this
effect in Appendix I. The COM with respect to the synthetic
dimension is calculated as

λCOM(t ) =
∑

λ

λρ(λ, t ), (G3)

where ρ(λ, t ) is the synthetic space density, calculated nu-
merically as in Appendix I, where we have integrated out the
y dependence. The presence of a split wave-packet compo-
nent skews this average downward, and the analytical result
[Eq. (G1)] therefore overestimates numerical and experimen-
tal amplitudes.

To correct for this, we define a cutoff in λ, λc, that cleanly
separates the two wave-packet components near the peak of
the oscillation. In particular, we choose λc = 2J/h̄�, because
this is about half of the maximum λ coordinate at the oscilla-
tion peak [Eq. (G1)]. Near the oscillation peak, we can then
write

λCOM = (1 − r)λ<
COM + rλ>

COM, (G4)

r =
∑
λ>λc

ρ(λ), (G5)

where λ<
COM (λ>

COM) is the center of mass of the lower (upper)
wave packet respectively, and r is the amount of wave packet
above the cutoff. We can calculate r numerically and find
that it is approximately constant with respect to the detuning,
with an average value of r = 0.52 ± 0.03, where the error bar
is the standard deviation of the r values over the detunings.
This value is for the low-power data, with V0 = 4.16 nK, ωx =
166.5 × 2π Hz, ωy = 10 × 2π Hz, and T = 20 nK. To make
our analytical result for λmax comparable to the numerics and
experiment, we hence correct it as

λmax = λ0
COM + r

4J

h̄�
. (G6)

This result is plotted in Fig. 14 (red) and compared against the
maximum λCOM in the numerics (blue). We see good agree-
ment, up to a roughly constant offset of around two synthetic
lattice sites. We can also use this corrected expression for λmax

in our real-space result [Eq. (G2)] to get

xmax =
√

λ0
COM + r

4J

h̄�
− σ 2

x + 1

2
. (G7)

We now need to apply three further corrections to this real-
space result in order to compare to the experimental and
numerical results including TOF.

First, we need to estimate the effect of TOF expansion. To
do this, we numerically calculate the ratio of the maximum
of the real-space oscillation including TOF (Appendix D) to
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FIG. 14. Cloud splitting corrected analytical synthetic-space am-
plitude (red) compared to the maximum λCOM obtained numerically
(blue). We see good agreement, up to a constant offset of around two
synthetic lattice sites. Error bars on analytical results are calculated
by propagating errors on numerical parameters. Lines are a guide to
the eye. Here, we use parameters for the low-power data, as in, for
example, Fig. 9.

the maximum of the oscillation without. We find that this is
approximately independent of detuning, and has a value of
αTOF = 5.25 ± 0.08, where the error bar is the standard devi-
ation of the αTOF values over the detunings. As for r above,
this is calculated for the low-power data. We then correct our
real-space result as

xmax → αTOFxmax. (G8)

Alternatively, we can consider correcting our result analyti-
cally by calculating the COM velocity vCOM at the oscillation
peak. To do this, we can use the momentum space version of
the λ formula [Eq. (E11)] to calculate pCOM at the oscillation
peak, including the wave-packet splitting correction, and then
calculating vCOM = pCOM/m, to yield

vCOM =
√

h̄

mωx

1

m

√
λ0

COM + r
4J

h̄�
+ 1

2
− σ 2

p , (G9)

where σp is calculated from the numerics and assumed con-
stant in time, and we measure σp in units of

√
h̄mωx. We can

then apply this time-of-flight correction to xmax:

xmax → xmax + vCOMtTOF. (G10)

The effect of doing this, together with the two corrections
described below, is shown in Fig. 15 (green curve), where the
blue curve is the amplitude fit parameter for the numerical
simulations, and the orange points are the fit parameter for the
experimental data, as discussed in Appendix D and the main
text, and where we use the same low-power parameters as
Figs. 1–4 in the main text. We see that the level of agreement
between these analytics and the numerics and experiment is
comparable to the method using a numerical TOF correction,
although this method clearly overestimates the effect of TOF.

Next, we correct for the effect of RMS averaging. As
described in Appendix D, the RMS average over initial driv-
ing phases to remove micromotion slightly underestimates
the true size of the oscillation [Fig. 9(a)]. If we model the

FIG. 15. Bloch-oscillation amplitude for variable detuning as in
Fig. 2(b) in the main text. The experimental amplitude fit param-
eter (orange) is compared to the fit parameter for the numerics
(blue) and the analytical result (green), where the TOF correction
in the analytics is analytically estimated [Eq. (G9)]. We see that
this TOF correction also produces good agreement between the an-
alytics, experiment, and numerics, although it overestimates the size
of TOF effects. Three experimental data points (black) have their
driving frequency above the trap frequency, whereas all others are be-
low. Here we have ωx = 2π × 166.5 Hz, V0 = 4.16 nK, T = 20 nK,
ωy = 2π × 10 Hz, and ϕ = 0, π/2.

dynamics of the COM as a beat:

xCOM(t ) = A sin(ωDt ) sin

(
ωBt

2

)
, (G11)

where ωB is the slow Bloch oscillation frequency, we can then
RMS-average out the micromotion using two initial driving
phases of 0 and π/2:

〈xCOM〉2 = 1
2 ((A sin(ωDt ) sin (ωBt/2))2

+ (A sin(ωDt + π/2) sin (ωBt/2))2). (G12)

FIG. 16. (a) Column density distribution integrated along the y
direction of our atomic samples after 5 ms of time of flight. The
shaded areas correspond to the average of 30 experimental runs
where we vary the shaking phase. The solid lines are examples of
density distributions that are obtained with fixed phase. The number
of atoms is �15 × 104. [(b) and (c)] The column densities averaged
over 30 runs with different phases in the shaking potential that we
observe after 5 ms of time of flight and with 20 and 40 ms of shaking
time, respectively.
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FIG. 17. (a) Time evolution of the integrated synthetic-space density for a thermal cloud under our usual driving potential using typical
parameters, for a detuning of � = 5 × 2π Hz. We see significant cloud splitting and a relatively wide oscillating component. We use identical
parameters to our low-power data elsewhere in this work, with ϕ = 0. (b) The result in (a) but with increased trapping frequency and decreased
temperature, showing that the oscillating part of the cloud becomes much narrower in synthetic space. Note the different color scale from (a).
We use the same parameters as (a) but with T = 5 nK and ωx = 2π × 500 Hz. (c) Time evolution of the integrated synthetic-space density of
a thermal cloud for a modified driving potential, showing that the entire cloud moves, with no split component. Note that the linear driving
potential together with parameters as in (a) produces a wide oscillating cloud, so we also increase the trapping frequency and decrease the
temperature here to compensate for this. We use κxqho = 1 nK, with xqho = √

h̄/mωx , ωx = 500 × 2π Hz, � = 5 × 2π Hz, T = 10 nK, and
ωy = 10 × 2π Hz. The insets of each panel show the corresponding λ COM as a function of time. Note that the results for (a) and (b) are not
rescaled to take into account cloud splitting.

Here, we have shifted the micromotion part of the beat
by π/2. Simplifying gives 〈xCOM〉2 = A2 sin(ωBt/2)2/2. We
can then calculate a scale factor between the averaged and
unaveraged results, αRMS ≡ 〈xCOM〉max/A = 1/

√
2. We then

apply the correction:

xCOM → αRMSxCOM. (G13)

Note that we can calculate a scale factor based on an infinite
number of driving phases by doing the RMS time average,
and we find the same result. As discussed in Appendix D, our
numerical results can be well described by such a sinusoidal
beat, so this approach works well for our data.

Our final correction is due to the fitting function used
[Eq. (D3)]. Neglecting damping, our fitting function will have
a maximum value of xmax = √

2A, and we analytically cal-
culate xmax. We therefore correct our analytical result so far
as

xmax → 1√
2

xmax, (G14)

so that we can compare directly to the fit parameters obtained
from the numerics and experiment. Our final analytical result
for xmax, as shown in the main text, is then

xmax = 1√
2
αRMSαTOF

⎛
⎝

√
h̄

mωx

(
λ0

COM + r
4J

h̄�
+ 1

2

)
− σ 2

x

⎞
⎠,

(G15)

where we have restored SI units. Finally, note that these
same analytical results are used for the variable-power data
in Fig. 3(b) in the main text, where the numerical parameters
αTOF, J , and r were recalculated for this data set.

APPENDIX H: SYNTHETIC-DIMENSION EXPERIMENTAL
DATA ANALYSIS AND THEORETICAL RESULTS

To convert our real-space experimental oscillation into
synthetic space [Fig. 4(a)], we use our conversion formula
[Eq. (6)], assuming that the real-space width σx (measured in
harmonic oscillator lengths) remains constant in time and set
by the trap frequency and initial temperature. We then obtain

λCOM(t ) =
(

xCOM(t )

αRMSαTOF

)2

+ σ 2
x − 1

2
, (H1)

where xCOM(t ) is the experimental real-space COM measured
in harmonic oscillator lengths. The conversion for the data
in Fig. 5 is similar, but here we convert the experimental
amplitude fitting parameters, so we use the conversion

λCOM =
((

xCOM

αRMSαTOF/
√

2

)2

+ σ 2
x − 1

2

)
/r. (H2)

This is then compared against the corresponding numerics,
where we extract the maximum value of λCOM and rescale by
1/r to account for the cloud splitting. We also compare against
an analytical expression, λCOM = λ0 + 4J/h̄�, as shown in
Fig. 5.

APPENDIX I: CREATION OF HIGHLY EXCITED STATES

Bloch oscillations along the synthetic dimension offer a
way to controllably populate highly excited atomic trap states.
Indeed, by stopping the shaking at a certain given time it
is possible to “freeze” the dynamics. If this is done when
the Bloch oscillation is exploring high λ states, the resulting
state will have a considerable admixture of highly excited
harmonic trap states. In Fig. 16 we show an example of states
obtained after a 5-ms TOF expansion with such a technique
with �/2π � 17 Hz, V0 � 1.2 nK, and stopping the Bloch
evolution when the oscillation has reached the peak (40 ms)
and halfway (20 ms). By averaging over several different
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phases of the shaking potential, we can reconstruct the whole
set of states that can be obtained for a given Bloch evolution
time; this is shown as shaded areas in Fig. 16(a) and the
column density profiles in Figs. 16(b) and 16(c). We observe
that the resulting density profiles acquire the characteristic
double-lobe structure typical of highly excited harmonic trap
states. Additionally, as the Bloch dynamics evolve, we ob-
serve that the distance between the two lobes increases, as
expected when populating increasingly higher states. Notably,
by controlling the phase of the shaking potential, it is possible
to accurately control the shape and position of the final state.
This is shown in Fig. 16(a), where the two solid lines corre-
spond to averages over several runs with the same phase both
for the 20- and 40-ms cases.

We have additionally measured the lifetime of the states
created by measuring the number of atoms as a function of
time after the Bloch evolution is stopped. We then performed
an exponential decay fit, whose decay time sets the lifetime of
the state. Concerning the states shown in Fig. 16 in particular,
we have measured that the lifetime for the states produced
after 20 ms of shaking potential is �1 s, while for those
produced after 40 ms it is �600 ms. Therefore, the lifetime
of these highly excited states is sufficiently long to allow
one to practically use them. As an example, they would pro-
vide a good overlap with a double-well potential enabling new
possibilities for trapped atom interferometry [30].

The fidelity of the excited states could be further improved
by decreasing the proportion of the cloud that remains in the
low-lying λ states, and by decreasing the width with respect
to λ of the portion that does oscillate. One approach to achiev-
ing this is by a combination of using a stronger trap (i.e.,
increasing ωx) and/or a lower temperature, both of which re-
duce the width of the initial Maxwell-Boltzmann distribution.
Figures 17(a) and 17(b) show the synthetic-space density
profile, with y dependence integrated out, for a numerical
simulation of a thermal cloud with the typical parameters used
elsewhere in our work [Fig. 17(a)], and a larger trapping fre-
quency and lower temperature [Fig 17(b)], over a single Bloch
oscillation period. As can be seen, in Fig. 17(b) the part of the
cloud that oscillates is narrower with respect to λ than with our
more typical parameters in Fig. 17(a). Note that, for a small
enough temperature, a significant initial condensate fraction
may also affect the dynamics. However, we have verified
numerically that an initial state with the whole cloud in the
λ = 0 state (i.e., a noninteracting Bose-Einstein condensate)
still undergoes Bloch oscillations under the driving potential.

We also note that the width of the oscillating part of the
cloud also depends upon the detuning. In Fig. 18, for the
low-power parameters used in the main text and a detuning
of �/2π = 2 Hz [Fig. 18(a)] and �/2π = 5 Hz [Fig. 18(b)],

FIG. 18. Cloud density with respect to λ for the low-power pa-
rameters used in the main text and a detuning of (a) �/2π = 2 Hz
and (b) �/2π = 5 Hz. The density is extracted from close to the peak
of the oscillation. We clearly see the oscillating part of the cloud,
which has a full width at half maximum of around eight states in
(a) and around five states in (b).

the density with respect to λ is shown close to the peak of the
oscillation. The oscillating part of the cloud can be seen to
have a full width at half maximum (FWHM) of around eight
states in Fig. 18(a). This width depends upon the detuning,
with larger detunings yielding smaller widths. For example,
in Fig. 18(b), the FWHM is around five states. Note that these
methods to reduce the width of the cloud with respect to λ

could be extended towards single-site resolution.
Another strategy for improving the fidelity is to optimize

the driving potential. As an example, Fig. 17(c) shows the
effect of a different driving potential, V (x, t ) = κx cos(ωDt ),
upon a lower-temperature thermal cloud (T = 10 nK), as
calculated numerically using the technique described in Ap-
pendix C. Note that this driving potential is the same as that of
Ref. [23] (see Eq. (2) therein). As can be seen, the entire cloud
undergoes the Bloch oscillation, with no split component.
This difference is likely because for the experimental driving
potential [Eq. (1) in the main text], there are oscillations in the
Floquet Hamiltonian matrix elements (e.g., Fig. 12) at low λ,
which include, for example, an effective potential minimum
at λ = 0 which may trap some atoms, leading to the cloud
splitting. For the linear driving potential, on the other hand,
the Floquet Hamiltonian does not exhibit such oscillations,
although there is then a strong λ dependence in the hopping el-
ements [23]. Going further, quantum control approaches could
be used to further numerically optimize the driving potential,
in order to improve the fidelity of desired state preparation.
Finally, another possible strategy for improving the fidelity of
excited states would be to employ a two-step protocol. First,
the cloud could be placed into an excited trap state without
using the driving potential [26]. Second, the driving potential
could be activated, causing Bloch oscillations in the synthetic
dimension bulk.
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