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In brief

Actions that help others—prosocial

behaviors—are vitally important for

reducing the challenges to humanity.

However, helping others requires effort,

and people are effort averse. Using fMRI,

Lockwood et al. show a distinct

representation of prosocial effort in the

anterior cingulate gyrus when deciding,

and when exerting force, to help.
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SUMMARY
Prosocial behaviors—actions that benefit others—are central to individual and societal well-being. Although
themechanisms underlying the financial andmoral costs of prosocial behaviors are increasingly understood,
this work has often ignored a key influence on behavior: effort. Many prosocial acts are effortful, and people
are averse to the costs of exerting them. However, how the brain encodes effort costs when actions benefit
others is unknown. During fMRI, participants completed a decision-making task where they chose in each
trial whether to ‘‘work’’ and exert force (30%–70% of maximum grip strength) or ‘‘rest’’ (no effort) for rewards
(2–10 credits). Crucially, on separate trials, they made these decisions either to benefit another person or
themselves. We used a combination of multivariate representational similarity analysis and model-based
univariate analysis to reveal how the costs of prosocial and self-benefiting efforts are processed. Strikingly,
we identified a unique neural signature of effort in the anterior cingulate gyrus (ACCg) for prosocial acts, both
when choosing to help others and when exerting force to benefit them. This pattern was absent for self-
benefiting behaviors. Moreover, stronger, specific representations of prosocial effort in the ACCgwere linked
to higher levels of empathy and higher subsequent exerted force to benefit others. In contrast, the ventral
tegmental area and ventral insula represented value preferentially when choosing for oneself and not for
prosocial acts. These findings advance our understanding of the neural mechanisms of prosocial behavior,
highlighting the critical role that effort has in the brain circuits that guide helping others.
INTRODUCTION

From holding open a door for a stranger to volunteering for a

local charity, humans often make decisions to incur costs to

benefit others.1,2 Such ‘‘prosocial’’ behaviors are vital for main-

taining individual physical3 and mental health4 and are positively

correlated with economic success.5 However, although a

plethora of research has probed the psychological and neural

mechanisms underlying how people make decisions about

whether to donate to charity or share money, much of this

work overlooks a key component: effort.6–9 In order to behave

prosocially, we have to decide whether we are willing to exert
4172 Current Biology 32, 4172–4185, October 10, 2022 ª 2022 The A
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effort, and once committed, to energize our actions.9,10 Howev-

er, how the brain represents the effort of a prosocial act, and

whether this is distinct from self-benefiting acts, is unknown.

Understanding these distinctions is critical for connecting

computational and neural explanations of social behavior.11–13

Effort is typically considered costly and aversive.14–17 If two

courses of action are associated with the same rewarding

outcome, most individuals will choose the less effortful course.

Thisphenomenon, referred toaseffort discounting, relies oncom-

putations in which rewards are devalued by exerting effort.9,18–20

As such, people only exert effort when it is ‘‘worth it’’ for reward.

Research across species has begun to identify the anatomy
uthor(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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engaged during such computations. Activity in the dorsal anterior

cingulate cortex (dACC)/dorsomedial prefrontal cortex (dmPFC)

and anterior insula (AI) has consistently been shown to covary

with the magnitude of rewards and level of task difficulty, both

prior to and during the performance of a task.18,21–25 In addition,

activity in these regions tracks subjective value during effort-

based decisions.18,24–31 Lesions to these areas have been linked

to reductions in motivated behavior and a reduced willingness to

exert effort.32 These findings implicate the dACC/dmPFC and AI

as crucial when deciding whether to exert effort for reward, and

when energizing effortful processes. Although meta-analyses

also highlight other areas such as ventral striatum and ventro-

medial prefrontal cortex (vmPFC) during effort-based decision-

making,28 these regions might predominantly encode reward

and subjective value rather than effort per se.18,20,33

However, existing work has typically only examined self-

benefiting behaviors, where the effort is exerted to obtain re-

wards for one’s own benefit. However, the cost of effort may

be different when it comes to prosocial acts. Lockwood and col-

leagues9 required participants to make decisions about whether

they would rather take a rest for small reward (1 credit) or exert

physical effort (30%–70% of their max grip strength) to obtain

higher rewards (2–10 credits). On half, the trials participants

chose whether to exert the effort to obtain credits for them-

selves, but on the other half, the credits were delivered to an

anonymous other person. Although people were willing to exert

effort to obtain rewards for others, the effort cost was evaluated

to be greater than when effort was self-benefiting, and partici-

pants were less willing to exert higher levels of effort for prosocial

acts.8,9,34,35 This differential weighting of effort costs into valua-

tions raises the possibility that partially distinct neural mecha-

nisms guide decisions of whether to exert effort for prosocial

and self-benefiting behaviors.

Although there is limited research examining the neural mech-

anisms underlying prosocial effort, studies examining how we

vicariously process others’ rewards or efforts implicate a poten-

tially ‘‘socially’’ specialized system.36,37 Studies in which self and

other trials are separated in the design allow questions about so-

cial specificity to be addressed.12 In such experiments, a sub-re-

gion of the anterior cingulate cortex lying in the gyrus (ACCg) is

implicated in processing social information. Neurophysiological

recordings in monkeys indicate that the ACCg contains a higher

proportion of neurons that signal exclusively when another, not

oneself, receives rewards compared with other frontal regions.38

ACCg response varies as a function of the vicarious net-value of

other people exerting effort, the probability, and outcome of

another person receiving a reward and tracks learning about

others’ ownership but does not process similar information

about one’s own effort, ownership, or reward.39–42 Activity in

ACCg has also been shown to correlate with self-reported indi-

vidual differences in empathy, an affective process closely linked

to motivating prosocial behaviors.37,43,44 In addition, activity in a

connected portion of the temporo-parietal junction (TPJ) has

long been implicated in social cognition and prosocial behavior

and encodes effort costs differently when behaviors switch

from cooperation to competition.45–51 Thus, a partially special-

ized neural circuit, comprising the ACCg and TPJ, may be

engaged when deciding whether to exert effort to benefit others

and applying the energy required.
Here, to address the question of whether prosocial efforts are

processed distinctly from self-benefiting ones, participants

completed a physical effort task9where self-benefiting and proso-

cial decisions were dissociated. People chose between a work

option and rest option on each trial while undergoing functional

magnetic resonance imaging (fMRI). Half of the trials were self-

benefiting, where they chose whether to exert effort to obtain

rewards for themselves (self), whereas the other half were proso-

cial—where the participant chose whether to exert effort to obtain

rewards for an anonymous other person (other; STAR Methods;

Figure 1). If they chose to work, they needed to execute the

required force to obtain that reward. Using this design, we could

examine activity time locked to the points in the trial where people

made a decision towork or rest and responses during the exertion

of force (Figure 1). Participants also completed a self-report

assessment of empathy. We used a combination of parametric

(and model-based) univariate analyses, as well as model-based,

multivariate representational similarity analysis (RSA). RSA al-

lowedus to test for socialandself-specific representationsofeffort

whendecidingwhether to benefit self and other, aswell as subjec-

tivevalueand reward (FigureS1). This is crucial asRSA isbasedon

the knowledge that population codes of neurons or voxels repre-

sent information a ‘‘neural population code.’’52 These population

codes cannot be captured in a univariate analysis that is based

on the height of the BOLDsignal, rather than the geometry (or sim-

ilarity) between different experimental conditions.12,53

We show a distinct multivariate pattern of effort in the ACCg

when deciding whether to act prosocially and that activity in

this region scales parametrically with the force required during

exertion in prosocial, but not self-benefiting acts. The strength

of this pattern correlated with self-reported affective empathy

and with the amount of force exerted into prosocial acts.

A domain-general set of regions in the AI and dACC/dmPFC

signaled multivariate and univariate representations of subjec-

tive value for self and other. In contrast, a ventral portion of the

mid-insula and the ventral tegmental area (VTA) carried

self-benefiting univariate and multivariate representations of

subjective value, respectively. Together, these results reveal,

behaviorally relevant, partially specialized neural mechanisms

for prosocial and self-benefiting efforts.

RESULTS

People discount rewards by effort more strongly for
others than for self
We analyzed how people’s decisions to select the work offer

over ‘‘rest’’ were affected by the effort required, reward on offer,

and whether participants treated prosocial decisions as distinct

from self-benefiting ones (recipient). We observed significant re-

cipient*effort and recipient*reward interactions showing that

people were less willing to help others at higher effort levels

(OR = 1.20, 95% CI = [1.03, 1.40], p = 0.01) and lower reward

levels (OR = 1.31 [1.11, 1.55], p = 0.003). We also observed

main effects of recipient, effort, and reward (Figures 2A, 2B,

and S2; Table S1). Therefore, participants were less willing to

exert effort to reward other people than themselves. Participants

also took longer to choose between work and rest when rewards

were for another person (other mean = 1.16 s versus self mean =

1.07 s , Z = �4.62, r = 0.19 [0.02, 0.41], p < 0.001; Table 1).
Current Biology 32, 4172–4185, October 10, 2022 4173



Figure 1. Prosocial and self-benefiting effort decision-making task

(A) Before undergoing fMRI, participants were instructed to squeeze as hard as they could to measure their maximum voluntary contraction (MVC) on a handheld

dynamometer to threshold each effort level to their own strength. After thresholding and practice, participants were presented on each trial with a choice between

a rest option, which required no effort (0% MVC, corresponding to one segment of the pie chart) for a low reward of 1 credit, and a work option, which required

more effort (30%–70%MVC, corresponding to 2–6 segments in the pie chart) yet also generated more reward (2–10 credits). The offered reward and effort levels

were orthogonal in the design. After making their selection, participants then had to exert the required force to the correct degree to receive the reward. Visual

feedback of the amount of force used was displayed on the screen. Participants were informed that they would have to reach the required force level (marked by

the yellow line) for at least 1 s of a 3 s window. Participants then saw the outcome that corresponded to the offer they had chosen, unless they were unsuccessful,

in which case ‘‘0 credits’’ was displayed. Crucially, on self-trials, participants made the choice, exerted the effort, and received the reward themselves, whereas

on other trials (‘‘AMY’’ in this example), participantsmade the choice and exerted the effort, but the other participant received the reward. Self and other trials were

interleaved (STAR Methods). Six 253 25 (5 effort and 5 reward levels) model representational dissimilarity matrices (RDMs) were constructed at the offer stage

(STARMethods; Figure S1). To examine activity during the force period, univariate parametric modulators (pmod) of the effort required on each trial were fitted to

the onset of the force period. GLMs were inspected to ensure conditions and time points could be estimated independently with minimal correlations (STAR

Methods; Figure S6). Yellow colors show conditions are more dissimilar, whereas dark blue colors show conditions are more similar in terms of the Euclidean

distance between conditions.

(B) Participants were designated as ‘‘Player 1’’ (self) and told that they would bemaking decisions that impacted another player ‘‘Player 2’’ (other) who theymet at

the beginning of the testing session with their identity obscured (to control for influences of identity or reciprocity; STAR Methods). The procedure involved 4

people, two experimenters, EXP1 and EXP2, and two participants, self and other.

See also Figures S1 and S2.
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Next, we fit and compared a range of different models of

effort discounting to participants’ choice behavior using

maximum likelihood estimation (STAR Methods).9,18–20,35 These

models tested different theoretical predictions regarding the ef-

fect of effort on rewards in the task (whether discounting was

linear, hyperbolic, or parabolic). We also considered additional

classes of models with either free parameters on reward (in

addition to effort), reward only, or reward and effort difference,

but these models showed poor identifiability and worse fit (Fig-

ure S3); hence, they were not evaluated further. The winning

model in the majority of participants (66%) was a parabolic

model with separate discount parameters (Kself and Kother)
4174 Current Biology 32, 4172–4185, October 10, 2022
and a single noise parameter (b), (STAR Methods; Figures

2C–2F). The 2K1b model also won in the majority of partici-

pants compared with other closely performing models in terms

of Bayesian information criterion (BIC) scores (Figures 2C and

S3C). We further validated our winning model in four ways.

First, we calculated the median R2 and found that the model

was able to explain 92% (SD = 10%) of the variance of choices.

Second, we performed model identifiability analyses54 using

simulated data and showed that our model comparison pro-

cedure accurately selected the correct winning model with

high identifiability (STAR Methods; Figures S3A and S3B).

Third, we calculated the balanced accuracy for our winning



Figure 2. Choice and computational modeling of prosocial and self-benefiting decisions

(A) Participants were less willing to accept the work offer over the rest offer as the effort level increased, particularly when working to benefit someone else

(p = 0.01).

(B) The proportion of work offers accepted over the baseline option increased as reward increased, but this was less so when rewards were for other, compared

with self (p = 0.003). Data are represented as mean ± SE.

(C) We compared a range of established computational models of effort discounting that varied in terms of whether models had a single or separate discount (K)

parameter(s) for self and other trials (models 1–6 versusmodels 7–12) andwhether the shape of the discount function was parabolic (models 1, 4, 7, and 10), linear

(models 2, 5, 8, and 11), or hyperbolic (models 3, 6, 9, and 12). Model 7, which contained a single choice stochasticity parameter (b), explained behavior in the

majority of participants and was selected as the winning model (STAR Methods). Bars show model BIC, proportions show the number of participants with the

lowest BIC for model 7 compared with model 10. We also considered additional classes of models with either free parameter on reward (in addition to effort),

reward only, or reward and effort difference, but these models showed poor identifiability and worse fit (Figure S3).

(D) Equation for the winning parabolic model with separate discount (K) parameters and a single choice stochasticity (b) parameter that explained behavior in the

majority of participants.

(E) Parameter recovery using simulated data from the winning model and choice schedule showed excellent recovery.

(F) Statistical comparison of the K parameters frommodel 7 showed that participants had a lower K parameter for self-benefiting compared with prosocial choices.

Data are represented as median ± SE, ***p < 0.001, Wilcoxon two-sided signed rank test.

See also Figure S2 and S3 and Table S1.
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model, which was high (83%). Finally, parameter recovery54,55

showed recoverable parameters based on our schedule (Kself =

98%, Kother = 98%, b = 80%; Figure 2E).
Comparing discount parameters for self and other from the

winning model showed significantly higher K values for

other (median = 0.15) than for self (median = 0.07, Z = �5.34,
Current Biology 32, 4172–4185, October 10, 2022 4175



Table 1. Behavioral variables compared between self and other trials

Self mean Self SE Other mean Other SE Z r CI low CI up p

Accept 0.79 0.03 0.54 0.04 �4.73 0.47 0.25 0.62 <0.001

RT 1.07 0.03 1.16 0.04 �4.62 0.19 0.01 0.4 <0.001

TiW 1.86 0.03 1.86 0.03 �0.62 0.01 0 0.27 0.54

Success 0.97 0.01 0.97 0.01 �0.88 0.05 0 0.29 0.38

Force 0.64 0.01 0.58 0.01 �4.77 0.35 0.14 0.54 <0.001

RT, reaction time; TiW, time in window over the required force level; r, standardized effect size; CI, 95%confidence interval for odds ratio; low, lower CI;

up, upper CI; values are from Wilcoxon two-sided rank tests comparing self and other.
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r = 0.50 [0.30, 0.65], p < 0.001; Figure 2F). Thus, as the required

effort increased, the subjective value of decisions decreased at a

higher rate when making prosocial versus self-benefiting

choices.

People exert less force when deciding to help others
A second critical aspect of helping others is that after we have

decided to help, we have to energize our actions, and we have

to exert the effort required. In addition to being less motivated

in choosing to put in effort for others, people may be less invig-

orated and exert less force particularly at higher effort levels.9,35

We used a linear mixed-effects model (LMM) to predict the force

that participants exerted on each trial as a function of effort,

reward, and their interactions (STAR Methods). The amount of

required force a participant exerted on each trial was precisely

signaled on the screen, and real-time feedback showed whether

they were achieving the required force level. Thus, for these an-

alyses, the raw (rather than squared) effort levels were used as a

predictor. We observed a significant three-way interaction be-

tween effort, reward, and recipient (c2
(16) = 42.03, p = 0.002).

We also found significant interactions between recipient and

reward (c2
(4) = 13.21, p = 0.01), effort and reward (c2

(16) =

49.88, p = 0.001), and main effects of recipient, effort, and

reward (all c2 > 7.09, all p < 0.001; Figures 3A and 3B;

Table S2). Importantly, there was no significant difference in suc-

cess (exerting effort for at least 1 second of a 3-s period, fixed for

each trial) between self (mean = 0.97) and other trials (mean =

0.97, Z = �0.88, r = 0.05 [0.00, 0.29], p = 0.38; Table 1) and

Bayesian evidence for no difference (BF01 = 4.19, substantial ev-

idence in support of the null). Self and other trials also did not

differ in the length of time participants maintained the required

level of effort (self mean = 1.86 s, other mean = 1.86 s, Z =

�0.62, r = 0.01 [0.00, 0.25], p = 0.54; Table 1; BF01 = 5.61, sub-

stantial evidence in support of the null). Finally, we correlated the

difference in reaction times (RTs) for choosing to work versus

rest for self and other and the difference in the amount of time

that effort was maintained over the line. The association was

positive but not significant (r(36) = 0.28, p = 0.09). Therefore, par-

ticipants applied less force for other-benefiting than self-

benefiting decisions, particularly at high effort levels, but were

not less successful.9,35

Prosocial and self-benefiting neural computations
Having established robust behavioral differences consistent with

priorwork,9,34,35wenext examinedwhether thereweredistinct or

common neural processes involved using a multivariate, RSA

approach.53,56 RSA can complement and add to inferences that
4176 Current Biology 32, 4172–4185, October 10, 2022
aremadebaseduponunivariate fMRI analyses ormultivariate ap-

proaches that distinguish dichotomous variables. RSA analyses

have similarities to population analyses applied to neurophysio-

logical recordings. As such, they can be used to link together

the algorithmic and implementational levels of explantation.12,57

RSA is well suited to designs where stimuli can be processed

along continuums in different dimensions.58 Therefore, it was

ideal for this experiment where the work offers can be parame-

trized in terms of effort level, reward level, or subjective value.

RSA can be more sensitive than univariate analysis since it cap-

tures effects that are washed away by averaging across voxels59

but that are crucial for understanding social specialization.53,60

We calculated brain representational dissimilarity matrices

(RDMs) coding for dissimilarity (correlation distance59) in multi-

variate patterns of voxels for all pairs of conditions. This resulted

in a 25 3 25 matrix computed separately for self and other trials

(Figure 1; STAR Methods). We created six model RDMs, which

reflected the dissimilarity in self-effort, other effort, self-subjec-

tive value and other subjective value (from the winning computa-

tional model), and self reward and other reward. Inferences were

drawn by correlating each model RDM with each brain RDM us-

ing Kendall’s tA.
56 Brain RDMs were calculated using both a hy-

pothesis driven, anatomically specific region-of-interest (ROI)

approach (see below) and a whole-brain data-driven searchlight

approach (STAR Methods).

In addition to the multivariate approach, we conducted two

univariate analyses. The first used the trial-by-trial subjective

values from the best-fitting computational model at the time of

choice. The second examined activity time locked to the force

period, which scaledwith the amount of effort required (Figure 1).

The aim of this study was to test specific hypotheses about re-

gions that have previously been linked to guiding effort-based de-

cisions and those linked to processing social information that

could guide prosocial behaviors. Given extensive previous work

on the neural systems involved in social decision-making12,36,61

and self-relevant effort-based decision-making,18,24–31 we

focused our fMRI analysis on four ROIs where we had strong a

priori hypotheses using independent anatomical masks defined

using pre-existing parcellations (see below). These allowed us

to probe distinct contributions of different portions of the

cingulate cortex, distinguishing dorsal dACC/dmPFC (area 8

m)18,24,28 from more ventral portions of the ACCg12,36,37,61 (Fig-

ure S4; STAR Methods). We also used these masks for labeling

of activations in whole-brain and univariate analyses. In addition,

we conducted exploratory ROI analyses in vmPFC (areas 11 and

14 m62) and ventral striatum (Harvard-Oxford Atlas) (STAR

Methods; Figure S5; Tables S3 and S4).



Figure 3. Force exerted as a function of effort level and reward level for self and other

(A) Force exerted (normalized areas under the curve during the effort period) for each level of effort. Participants exerted less force for others overall, and therewas

a significant three-way interaction between recipient, effort, and reward.

(B) Force exerted for each reward level shows that participants exerted more force for higher rewards, but this effect was reduced when the other person would

benefit. Error bars show standard error.

See also Table S2.
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Patterns of prosocial effort in ACCg
For a region to be considered coding prosocial, and not self-

benefiting, effort, its RDM should correlate with the other-effort

model RDM, and not with the self-effort model RDM, and there

should be a significant difference between the strength of those

correlations. This would demonstrate that the neural patterns

discriminate strongly between task conditions that vary in the

levels of effort that are required to be put in for another person;

but the same patterns do not vary with the differences in effort

level when the decisions are about oneself. In line with our hy-

pothesis, the ACCg ROI carried a multivariate representation of

effort on prosocial trials—other-effort mean rank correlation

tA ± SE: ACCg = 0.026 ± 0.009, p = 0.005, surviving FDR correc-

tion for 24 comparisons (6 models, 4 brain areas, 2 recipients)—

and was the only ROI to display a significant difference between

the other-effort and self-effort RDMs (Z = �2.73, effect size r =

0.44 [0.13, 0.69], p = 0.006; Figure 4A).

Multivariate patterns in our three other ROIs also showed sig-

nificant correlations with the other-effort RDMwhenmaking pro-

social choices (other-effort mean rank correlation tA ± SE: TPJ =

0.033 ± 0.010, p = 0.001; AI = 0.021 ± 0.008, p = 0.006; dACC/

dmPFC = 0.029 ± 0.008, p = 0.001). In contrast for self-effort pat-

terns, only the TPJ brain RDM significantly correlated with the

self-effort model RDM (self-effort mean rank correlation tA ±

SE: ACCg = 0.002 ± 0.009, p = 0.61; TPJ = 0.024 ± 0.010, p =

0.026; AI = 0.008 ± 0.009, p = 0.40; dACC/dmPFC = 0.016 ±

0.010, p = 0.16). Critically, although TPJ, AI, and dACC/dmPFC

also represented prosocial effort, they did not do so more

strongly than for the self-effort RDMs (Wilcoxon two-sided

signed-rank test, all p > 0.07). Thus, although all ROIs showed

significant correlations between the brain and model RDMs for

the other-effort condition, it was only in the ACCg that showed

a stronger pattern, relative to the self-benefiting condition.

Notably, the specificity for prosocial effort in the ACCgwas not

due to total differences for other and self-representations, as the

ACCg represented other and self-offers as equally dissimilar

(STARMethods; Bayesian paired sample t test BF01 = 4.61, sub-

stantial evidence in support of the null). A representational
connectivity analysis64 suggested that ACCg representations

on other trials correlated with dACC/dmPFC and AI and more

strongly than on self trials (see STAR Methods for full details).

Further evidence for the specificity of ACCg for prosocial effort

also came from examining representations of other reward.

Although patterns in several regions significantly correlated

with the other-reward RDM (other-reward mean rank correlation

tA ± SE: ACCg = 0.009 ± 0.007, p = 0.16; TPJ = 0.016 ± 0.007, p =

0.027; AI = 0.020 ± 0.008, p = 0.006; dACC/dmPFC = 0.025 ±

0.007, p = 0.001), no region significantly represented others’ re-

wardsmore strongly than self rewards (Table S5). Thus,multivar-

iate patterns in the ACCg represented effort costs specifically

when making prosocial but not self-benefiting choices (see

Table S6 for exploratory whole-brain searchlight results).

Parametric modulation of effort level when exerting
force for others in ACCg
We next used univariate analysis to determine regions in which

activity scaled with the required effort level during the force

period. We found that the BOLD response in an ACCg cluster

fully overlapping with our anatomical ROI positively covaried

with force for others (x = 4, y = 2, z = 36, Z > 8.00, k = 455, p =

0.001, family-wise error [FWE]-corrected), andwithin this cluster,

a partially overlapping sub-cluster also showed a significant ef-

fect coding force for other greater than self (x = �6, y = 24, z =

20, Z = 3.28, k = 41, p = 0.029, FWE-small volume corrected

[SVC]; Figure 4B). Analysis of the force period showed that at

the whole-brain level, the left TPJ positively tracked force

exerted for others more than self (x = �50, y = �62, z = 40, Z =

4.85, k = 790, p < 0.001, FWE-whole brain), with activation for

other greater than self on the right side at small-volume

corrected levels (x = 52, y = �56, z = 40, Z = 3.65, k = 29,

p = 0.046, FWE-SVC). A region in the bilateral middle insula

(x = �38, y = 0, z = 12, Z = 3.96, k = 105, p = 0.009, FWE-SVC;

x = 44, y = 4, z = 10, Z = 3.65, k = 83, p = 0.027, FWE-SVC)

tracked both self and other force but responded more strongly

to other. Outside of our ROIs, we also observed significant

tracking of force for other more than self in a region of the
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Figure 4. ACCg codes patterns of effort for others only, varieswith level of affective empathy, and tracks effort required to benefit others only

(A) Across an independent structural ROI of the anterior cingulate gyrus (Neubert et al.62), multivoxel patterns of effort were encoded specifically for others.

Kendall’s tA indicates the extent to which the effort model RDM explains pattern dissimilarity between voxels in ACCg. ACCg shows a significant correlation

between the effort RDM and brain RDM for other, and a greater correlation between the brain RDM and effort RDM for other compared with self. Variability in

ACCg effort patterns for other was explained by individual difference in affective empathy, asmeasured by the Questionnaire for Cognitive and Affective Empathy

(QCAE63). In contrast, there was no significant correlation with cognitive empathy, and the two correlations were significantly different from one another.

(B) A univariate analysis time locked to the onset of the force period showed a cluster within the ACCgROI that tracked amount of effort required specifically when

making prosocial decisions (x = �6, y = 24, z = 20, Z = 3.28, k = 41, p = 0.029, FWE-SVC). Activation overlaid on an anatomical scan of the medial surface.

*p < 0.05, **p < 0.01, and ***p < 0.001. Error bars show standard error.

See also Figures S2 and S4 and Table S5.
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superior frontal gyrus extending into the paracingulate cortex

and middle temporal gyrus (Table S7). No brain areas signifi-

cantly responded more to the contrast self force greater than

other force at the whole-brain level or in any of our ROIs.

Therefore, although several regions processed information

about prosocial efforts, only the ACCg was more specialized.

Multivariate patterns in the ACCg specifically encoded represen-

tations of prosocial effort when making a choice, and univariate

signals scaled with how much effort was required, with no such

signals for self-benefiting efforts.

Multivariate representations of prosocial effort in ACCg
correlate with individual differences in affective
empathy and force exerted for others
Multiple lines of evidence suggest that empathy is associ-

ated with prosocial behavior and social cognition more

broadly,37,41,43,65,66 specifically because these constructs are

hypothesized to be closely related.37,66,67 Previous work shows

that empathy and associated constructs (lack of empathy in psy-

chopathy) are correlated with the willingness to exert effort to

benefit others in large samples9,34 and variability in ACCg

response to social information correlates with empathy.37,41,68

An important distinction is often made in the literature between

‘‘affective empathy,’’ resonating with the affect of others, and

‘‘cognitive empathy,’’ understanding the thoughts and affective

states of others.63 Thus, we next sought to evaluate whether

multivariate and univariate signals of prosocial effort varied

with individual differences in empathy. Since we found evidence

for specific effort patterns during prosocial acts in ACCg only, we

focused our analysis on responses in this region. We found that

affective empathy was positively correlated with the strength of
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prosocial effort patterns in ACCg (Pearson’s r(36) = 0.39, p =

0.02), whereas cognitive empathy was not (Pearson’s r(36) =

0.05, p = 0.78, correlations significantly different t = 2.04,

p = 0.02). Participants who were higher in affective empathy

also exerted more force to gain rewards for others (Pearson’s

r(36) = 0.34, p = 0.04), which was not the case for cognitive

empathy (Pearson’s r(36) = 0.17, p = 0.31), although correlations

were not significantly different t = 0.95, p = 0.17).

The level of force exerted on other trials in turn was positively

associated with the strength of prosocial effort patterns in ACCg

(Pearson’s r(36) = 0.38, p = 0.02). There were no significant asso-

ciations between affective empathy and proportion to work for

other (Pearson’s r(36) = 0.09, p = 0.59) or accepting work versus

rest for other comparedwith self (Pearson’s r(36) = 0.15, p = 0.38).

For the univariate tracking of prosocial effort during force, neither

affective or cognitive empathy were significantly correlated (all

r >�0.18, all p > 0.29). Therefore, individuals who reported being

more affectively empathic represented the effort of behaviors

more distinctly in the ACCg when deciding whether to act

prosocially.

Next, we conducted exploratory analyses examining whether

the proportion of decisions to help others, and amount of force

subsequently exerted, related to univariate neural responses to

force for others and multivariate patterns of prosocial effort,

respectively. When linking these behaviors to neural responses,

we focused on time points in the trial that were as independent

as possible from the behavior, given the statistical issues with

correlating individual behavior and neural signals.69

We found that ACCg representations of others effort positively

correlated with amount of force exerted for other (Pearson’s

r(36) = 0.38, p = 0.018; Figure S2D). ACCg univariate responses



Figure 5. Self-benefiting and domain-general representations and tracking of subjective value

(A) A cluster putatively in the ventral tegmental area (VTA) encoded representational patterns of subjective value exclusively on self-benefiting trials (x = 4, y =�22,

z = 16, k = 291, Z = 4.45, p = 0.03, FWE-whole brain corrected after thresholding at p < 0.001).

(B) A sub-region of the ventral anterior insula (vAI; x = �44, y = 10, z = �10, Z = 3.72, k = 59, p = 0.04, FWE-small volume) tracked subjective value of the chosen

offer trial-by-trial more strongly for self-benefiting than other-benefiting choices.

Error bars show standard error.

See also Figure S4 and Tables S6 and S7.

ll
OPEN ACCESSArticle
to force exerted for other negatively correlated with proportion of

choices to benefit other (Pearson’s r(36) = �0.38, p = 0.018; Fig-

ure S2E). Together, these results suggest that individuals with

stronger patterns of others effort in ACCg were higher in

empathy and exertedmore subsequent force into prosocial acts.

Specific coding for self-benefiting acts in the midbrain
and AI
Do any regions specifically code self-benefiting acts when mak-

ing effort-based decisions? None of our ROIs showed a stronger

correlation of the self-effort than other-effort RDM, and similarly

for the SV RDM, no region showed a significantly stronger corre-

lation for self than other (all Z < 1.37 || > 1.56, all p > 0.12; see

Table S5 for reward RDM results). However, a whole-brain

exploratory searchlight analysis revealed a significantly stronger

correlation with the self-SV than other-SV model RDM in the

midbrain, putatively in the VTA (x = 4, y = �22, z = 16, k = 291,

Z = 4.45, p = 0.033, FWE-whole brain; Figure 5A; Table S6)

and the posterior cingulate (x = 20, y = �20, z = 50, Z = 4.78,

k = 578, p = 0.002, FWE-whole brain corrected; Table S6). The

univariate analysis revealed a cluster in a ventral portion of the

left AI (vAI; x = �44, y = 10, z = �10, Z = 3.72, k = 59, p = 0.04,

FWE-SVC) in which activity scaled more strongly with SV when

making self-benefiting than other-benefiting choices (Figure 5B).

This cluster did not overlap with one that signaled SV on both self

and other trials (Figure S4C). Such findings suggest that the VTA

is engaged exclusively in making choices about exerting effort to

benefit oneself, and vAI tracks subjective valuemore closely dur-

ing self-benefiting than other-benefiting decisions.

Domain-general multivariate and univariate signals of
subjective value for self and other
Previous research using univariate approaches has repeatedly

implicated the dACC/dmPFC and AI in signaling SV during

self-benefiting, effort-based choices in a domain-general

manner.18,24,28 Based on this work, we tested whether these
regions contain information about SV when making both self-

benefiting and prosocial choices (STARMethods). We found sig-

nificant correlations between the self-SV and other-SV RDMs in

dACC/dmPFC and AI (self-SV mean rank correlation tA ± SE:

dACC/dmPFC = 0.063 ± 0.012, p < 0.001; AI = 0.047 ± 0.012,

p < 0.001; other-SV mean rank correlation tA ± SE: dACC/

dmPFC = 0.073 ± 0.012, p < 0.001; AI = 0.051 ± 0.013,

p < 0.001; all survive FDR correction; Figure 6A). Moreover, uni-

variate conjunction analysis also revealed activity covarying with

SV on self and other trials in dACC/dmPFC (x = 8, y = 26, z = 34,

Z = 4.75, k = 1,033, p = 0.016, FWE-whole brain; Figure 6B) and

bilateral AI (left: x =�28, y = 22, z = 6, Z = 4.47, k = 306, p < 0.001,

FWE-SVC; right: x = 34, y = 24, z = 2, Z = 4.38, k = 222, p = 0.002,

FWE-SVC; Figure 6B) that overlapped with the same portions of

dACC/dmPFC and AI that coded the multivariate pattern. This is

striking, given that the correlation distance is invariant to the

mean activation level across voxels,53,70 rendering the multivar-

iate and univariate predictions of neural response separate

(STAR Methods).

Outside of dACC/dmPFC and AI, we found multivariate pat-

terns of subjective value that overlapped between self and other

in TPJ and ACCg (self-SV mean rank correlation tA ± SE: TPJ =

0.026 ± 0.011, p = 0.018; ACCg = 0.055 ± 0.012, p < 0.001; other-

SVmean rank correlation tA ± SE: TPJ = 0.044 ± 0.011, p < 0.001;

ACCg = 0.038 ± 0.014, p = 0.009; all survive FDR correction). At

the whole-brain level, searchlight analysis also showed re-

sponses in the superior frontal gyrus, inferior parietal lobe, and

precentral gyrus in conjunction analyses (Table S6). No other

areas significantly tracked self and other SV in any of our ROIs

or at the whole-brain level. For effort, domain-general patterns

were observed in the bilateral precuneus (Table S6), and for

reward, in bilateral precentral gyrus, cuneus, and paracentral

lobule (Table S6). Univariate conjunction analysis of effort

required during the force period demonstrated wide-ranging

activation at the whole-brain level, centering on the precentral

gyrus and cerebellum (Table S7).
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Figure 6. Multivariate and univariate patterns and signals of subjective value overlap in dACC/dmPFC and AI

(A) The dACC/dmPFC and AI showed significant correlations between the brain RDM and subjective value RDM pattern for both other and self-offers, consistent

with a domain-general response in these regions.

(B) Univariate analysis also showed trial-by-trial tracking of subjective value in dACC/dmPFC (x = 8, y = 26, z = 34, Z = 4.75, k = 1,033, p = 0.016, FWE-whole brain)

and AI (left: x =�28, y = 22, z = 6, Z = 4.47, k = 306, p < 0.001, FWE-SVC; right: x = 34, y = 24, z = 2, Z = 4.38, k = 222, p = 0.002, FWE-small volume) for both self and

other. *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars show standard error.

See also Figure S4 and Tables S6 and S7.
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DISCUSSION

Many prosocial acts are effortful. However, the neural mecha-

nisms that underlie how people decide whether to exert effort

into prosocial acts and whether such mechanisms are distinct

from self-benefiting acts are poorly understood.6 Here, we

show that the ACCg processes information that is crucial for

making effort-based decisions when they are prosocial, but

not when they are self-benefiting. The ACCg carried a multivar-

iate representation of effort when deciding whether to help

others and showed a univariate response to the degree of effort

required while energizing prosocial acts. The representation of

effort in this areawas also stronger in individuals higher in self-re-

ported empathy and in those who subsequently exerted more

force into prosocial acts. In addition, we found a region in the

midbrain which processed information only when making self-

benefiting effort-based choices, a portion of the ventral AI that

tracked self-subjective value more closely than other subjective

value, as well as domain-general representations of SV in the

dACC/dmPFCand distinct portions of bilateral AI. These findings

highlight the importance of effort for understanding the neural

mechanisms of prosocial and self-benefiting behaviors and

that multivariate patterns and univariate model-based signals

differentiate between prosocial and self-benefiting effortful acts.

There is a growing body of evidence to suggest that the ACCg

is a vital cingulate sub-region for social cognition and vicariously

processing information about others.36,37 In macaques, lesions

to ACCg, but not neighboring sub-regions, reduce sensitivity to

social stimuli.71 Neurophysiological recordings indicate that

ACCg contains a higher proportion of neurons that respond

exclusively when seeing others obtain a reward, but not when

getting rewarded oneself.38 In rodents, a putatively homologous

region contains neurons that respond when seeing another

receiving electrical shocks and when exerting competitive

efforts.72,73,74 In humans, single-unit recordings have identified

that ACCg contains neurons that signal outcomes being deliv-

ered when learning from others’, but not one’s own reward,
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prediction errors.75 In addition, neuroimaging studies have

shown that this region responds to cues that are predictive of

rewarding outcomes for others and not self, signals the value

of others’ rewarding outcomes but not one’s own when they

will have to exert effort for them, and encodes social prediction

errors at the time of the outcomes of others actions.36,37,42 Com-

bined, this work suggests that the ACCg processes information

about others that it does not process about ourselves.

Crucially, we found other-specific effort effects in the ACCg

that went beyond vicarious processing of others’ outcomes

and extended them to prosocial behaviors. Such findings sug-

gest that vicarious signals in the ACCg may not be epiphenom-

enal or simply reflecting one’s emotional responses to others

outcomes, but instead drive behavior.11,12 In particular, the

ACCg may be crucial for motivating people to help others and

overcome barriers to others receiving positive outcomes.

Consistent with this, we found representations of effort in the

ACCg both when making prosocial decisions and when ener-

gizing prosocial but not self-benefiting actions.

Our finding fits with the notion that ACCg patterns do not

simply reflect the reduced willingness to put in effort for others,

since similar self-benefiting effort representations were absent

in ACCg and those higher in empathy represented the distinc-

tion between effort costs more strongly. However, an alterna-

tive explanation is that ACCg signals reflect stronger effort dis-

counting for other. We find this possibility less likely as ACCg

processes effort both when making a choice and when exerting

the force, and people who had stronger effort representation at

choice subsequently exerted more force. Interpreting ACCg

signals as being important for motivating actions that benefit

others, rather than inhibiting them, may explain why lesions

to the ACCg impair the effortful process of learning of new pro-

social action-outcome associations, but not the execution of

low effort previously learned prosocial acts.76,77 Moreover,

our results suggest that the finding of functional connectivity

in local field potentials between the amygdala and ACCg

when monkeys allocate rewards to others78 may be linked to
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ensuring the monkeys overcome any costs associated with be-

ing prosocial. Nevertheless, future work could seek to test

these competing hypotheses. Relatedly, future work can

examine the domain generality versus domain specificity of

ACCg in social behavior. In our paradigm, we independently

manipulated the reward and effort costs, but in everyday life,

we often have to weigh other costs such as sacrificing time

to help. Due to the complexity of our protocol and richness of

experimental conditions, it was not possible to compare effort

costs with these other costs. Designs that manipulate time

and effort costs in the same paradigm could be fruitful for un-

covering the precise role of ACCg in social behavior.

The notion that prosocial acts can be considered goal-

directed acts, governed by similar principles and computational

mechanisms as non-goal-directed actions but implemented in

distinct neural regions, highlights the need to examine effort pro-

cessing to understand what makes people help others.6

Recently, it has been shown that higher levels of affective

empathy are linked to a greater willingness to exert effort to

help.34,79 Here, we show that such individual variability may be

linked to ACCg prosocial effort processing, with levels of affec-

tive empathy correlated with the strength of multivariate repre-

sentations of prosocial effort costs when deciding whether to

help. Although the link between empathy and prosocial behavior

is often discussed, many of the mechanisms providing this link

are unclear.37,79,80 Our findings demonstrate that representing

how costly and effortful a prosocial behavior is may be linked

to how strongly one represents the emotional states of others,

which leads to variability in how willing people are to help others.

Although we found that some regions processed information

differently when making decisions about whether to exert effort

to benefit self or other, several regions—particularly, the AI and

dACC/dmPFC—encoded information, regardless of the benefi-

ciary. Although there has been some debate surrounding

whether these regions encode SV in univariate fMRI studies of

effort-based decision-making,18,26,30,31,33,81,82 a large body of

evidence suggests that lesions to these regions reduces levels

of motivation.24,32 Neurons in the dACC/dmPFC signal reward

value, effort costs, and social identity information.83,84 In addi-

tion, recent meta-analyses of fMRI studies highlights consistent

evidence that these regions signal the SV during effort-based de-

cision-making.24,28 Responses in these areas may be domain

general, with SV encoded, regardless of the nature of the effort,

whether it is physical or cognitive.18,28We showmultivariate rep-

resentations of SV are present in these same regions, regardless

of whom the effort is being exerted for. Such a finding supports

the idea that neural processes in dACC/dmPFC and AI are an

important component of motivated behavior across multiple

domains.

Notably, we also found a midbrain region, closely approxi-

mating the VTA, that contained a multivariate representation of

SV exclusively when making choices to benefit oneself. Previous

work across species has linked the VTA to exerting effort for

one’s own rewards.81,85–88 Neurophysiological recordings high-

light that local field potentials are sensitive to effort requirements

and that neurons firing increases prior to deciding whether to

exert effort.10,85 Neuroimaging studies suggest the VTA may

be important for learning how to avoid effort costs and when

deciding how much effort to allocate to a trial of a task.81,87,88
However, our results suggest that this regionmay not process in-

formation for all efforts, only for those that benefit oneself. Such

findings concord with the idea that prosocial and self-benefiting

actions are distinct, may be linked to partially distinct motiva-

tional processes, and suggest that perhaps ‘‘warm glow’’ is

not always the driver of prosocial acts.8,34,35,79,80

Recently, we highlighted how using the framework of Marr’s

three levels can be fruitful for examining if a process is socially,

or self, specific, either in how it is implemented in the brain, or in

its algorithmic processes.12 In line with this approach, our find-

ings highlight the critical importance of breaking prosocial

behavior down into its constituent parts, for using multivariate

approaches and for designing paradigms that separate self-

benefiting from other-benefiting decision-making. Previous

work examining prosocial behavior, particularly using eco-

nomic games, has been crucial for implicating the neural

systems.1,89–91 However, the precise computations have

been hard to identify due to the challenge of untangling self-

from other-benefiting components. We reveal that several re-

gions, including in the AI and dACC/dmPFC which have been

implicated in prosocial behaviors,49 in fact carry information

when making both self-benefiting and other-benefiting

choices. This finding raises the possibility that these areas

may be less directly linked to prosocial behavior and more

linked to domain-general decision processes. In the real world

outside of the lab, prosocial behaviors also often occur where

people get direct feedback from others. However, many proso-

cial decisions also occur when dynamic interactions do not

feature. Examples include the acts of donating blood, sharing

code so that others will benefit, or recycling waste to prevent

global warming. It is an important question for future studies

to examine how neural signals are modulated by different social

contexts, and whether the same or additional brain areas are

recruited. In addition, there could be different neural signals

that occur between valuing options when offered and when

choosing to select them. Future work could attempt to disso-

ciate how value signals unfold, using imaging methods well

suited for capturing timing, such as RSA applied to magnetoen-

cephalography data.92

In conclusion, many prosocial acts require effort. We find evi-

dence of distinct neural patterns of effort for prosocial and self-

benefiting acts. The ACCg carries a multivariate representation

of effort when making prosocial choices and is engaged when

energizing prosocial acts but does not carry similar self-

benefiting information. The AI and dACC/dmPFC track both

self-benefiting and prosocial behaviors. In contrast, the VTA pro-

cesses the structure of subjective value only of self-benefiting

acts and the ventral AI more closely tracks self-benefiting,

compared with other-benefiting, values. These findings provide

new insights into how the brain makes decisions about whether

to put in effort to help others out, with important implications for

everyday prosocial acts and enhancing them in health and

disease.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Matlab v2019b Mathworks https://www.mathworks.com

SPM12 UCL, UK https://www.fil.ion.ucl.ac.uk/spm/software/

Psychtoolbox3 Psychtoolbox http://psychtoolbox.org/

RSA toolbox Nili et al.56 https://git.fmrib.ox.ac.uk/hnili/rsa

Acqknowledge BIOPAC Systems UK https://www.biopac.com/product/acqknowledge-software/

R The R Foundation N/A

Other

Hand clench Dynamometer for MRI

(TSD121B-MRI)

BIOPAC https://www.biopac.com/product/hand-clench-

dynamom-for-mri/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Patricia L.

Lockwood (p.l.lockwood@bham.ac.uk).

Materials availability
This study neither used any reagent nor generated new materials.

Data and code availability

d All anonymized behavioral data and code used to generate the figures can be downloaded at OSF (https://osf.io/tm45q).

d All code used to run the computational modelling can be downloaded at OSF (https://osf.io/tm45q). Unthresholded statistical

maps can be downloaded at NeuroVault (https://identifiers.org/neurovault.collection:12789).
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
41 healthy, right-handed participants took part. Our pre-scanning exclusion criteria were previous psychology experience, partici-

pation in social studies, left handedness, and neuro/psychiatric disorders. These questions were asked via an online screening pro-

cedure and only participants who met these criteria were invited to take part. Our post-scanning exclusion criteria were disbelief in

the deception or lack of selecting the work option on any trial for self and other. Three participants were excluded based on this post-

scanning exclusion criteria. Two who did not believe the deception in the study set-up (see ‘‘Role assignment’’ details below), and

one who never chose to exert effort for the other person. The final group of 38 participants (26 females, mean age 23, range 18-34).

Based on the effect size from Lockwood et al.,9 a sample of 38 people gave 83% power to detect a significant behavioral effect.

Participants were recruited through student mailing lists, online advertisements on a study recruitment board, through social media,

and byword of mouth. The study was described as a social decision-making study involving pairs of participants. Participants believed

that, on the day of testing, one of the pair would be randomly allocated to complete the task in the fMRI scanner whilst the other would

complete the task in a testing room. In reality, all participants completed the task in the scanner, and a confederate served as the other

participant. The study was approved by the Medical Sciences Division Research Ethics Committee of the University of Oxford. All par-

ticipants provided written informed consent. Participants were paid for their participation at a rate of £15/hour, plus a bonus of up to £5

based on the credits they earned in the task. Theywere also told the number of credits that they earned in the prosocial condition would

translate into an additional payment of up to £5 for the other participant (see details of the task below).

METHOD DETAILS

Procedure
Approximately 1 week before attending the testing session, participants completed a questionnaire assessment of empathy online

using the Questionnaire of Cognitive and Affective Empathy (see below for further details). Participants then attended the lab to
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complete a physical effort-based decision-making task modified for scanning from previous behavioral studies.9,35 Physical effort

was operationalized as the amount of force participants exerted on a handheld dynamometer. On arrival and after consent, partic-

ipants were instructed to squeeze the handheld dynamometer as hard as they could. Participants were providedwith visual feedback

whilst doing so and encouraged to reach a line that was 110% of their maximum voluntary contraction (MVC) which they repeated for

3 trials. After this thresholding procedure, and before any task instructions, participants were introduced to another participant anon-

ymously (see ‘‘role assignment’ procedure below). Participants practiced each of the 5 effort levels twice to ensure that they could be

achieved. In the main task inside the fMRI scanner, participants were prompted to choose between one of two offers on each trial.

One option allowed participants to earn a low reward for low effort (rest); the other presented a variable higher-reward, higher-effort

offer (work) of the same duration. The low-reward, low-effort offer earned 1 point and required no effort. Higher-reward, higher-effort

offers varied from 2-10 points (in 2-point increments). Effort ranged from 30-70% (in 10% increments) of the participants’ MVC.

Participants were instructed that they could win a bonus of up to £5 and that more points earned corresponded to a greater bonus,

but were not made aware of the exchange rate while completing the task to ensure that they did not try to compute a running total.

Critically, each trial also varied in whether the outcomewould be delivered the participant themselves (Self) or the receiver participant

(Other, prosocial). The level of effort required for each offer was represented using colored portions of a pie chart (Figure 1A).

Rewards (points) on offer for each option were written in color below. Participants were allotted 3.5 seconds to make a choice be-

tween the rest and work offers. If they failed to choose an option, they were awarded 0 points after a full trial duration. After choosing,

participants were shown a screen with a yellow horizontal bar on an empty vertical box. The horizontal bar represented the level of

effort required; the box filled according to the force participants exerted on the dynamometer, providing feedback in real-time. For a

trial to be considered successful, and rewards obtained, participants had to accumulate at least 1 second at or above the required

force level across the 3 second force period.

The taskwas broken into four blocks, with aminute break in between each block to rest and prevent the build-up of fatigue.We also

empirically assessed whether failure rates or willingness to accept the high-effort option for higher rewards shifted over the course of

the experiment, which could reflect fatigue. Trial number did not have a significant effect in predicting success in meeting the effort

requirement (OR=1.00 [0.83, 1.20], p = 0.98) or predicting choices towork / rest (OR=0.85 [0.68, 1.06], p = 0.15). Therewas also not an

interaction between trial number and recipient for either success rate (OR=0.89 [0.75, 1.07], p = 0.22) or choices (OR=0.97 [0.85,

1.11], p = 0.68). Participants selected the choice they wanted using a game controller in their left hand and used their right hand

to squeeze the dynamometer. Each participant completed 100 interleaved trials per recipient (self or other).

Role assignment
Participants were introduced to another participant whowas in fact a confederate of the experimenter, as in previous studies of social

decision-making35,93 (Figure 1B). Participants were instructed not to speak and wore a glove to hide any physical characteristics and

to ensure they were anonymous to one another. A second experimenter brought the confederate to the other side of the door who

was also instructed not to speak and wore a glove. Participants only ever saw the gloved hand of the confederate, but they waved to

each other tomake it clear therewas another person there (Figure 1B). The experimenter tossed a coin to determinewho picked a ball

from the box first and then told the participants which roles they had been assigned to, based on the ball that they picked. Unbe-

knownst to participants, our procedure ensured that participants always ended up in the role of the person performing the effort

task inside the MRI scanner and they were led to believe the other participant would be performing tasks outside of the scanner.

We emphasized that the participant outside of the scanner would only perform experimental tasks that would result in outcomes

for themselves and would be unaware of the task performed by the participant inside the scanner, so any reward given would be

anonymous. This procedure minimized as much as possible any prosocial behavior being due to social preferences of reciprocity.94

We revealed the first name of the other participant, that was always gender matched to the participant performing the experiment, to

further emphasize the recipient of rewards on ‘other’ trials.

After finishing the task in the scanner, participants completed a short debriefing questionnaire where they were probed as to

whether they believed they were earning rewards for another participant. Two participants reported a disbelief in the deception

and were removed from analysis. We excluded these participants (in line with our previous work using this role-assignment

procedure9,95) as their behavior on the task and associated neural processes would not reflect decisions to help, or fail to help,

another person, since these participants did not truly believe that their decisions would have any influence on the outcomes for some-

one else.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of behavioral data
Analyses of behavioral data were performed using a combination of MATLAB (2019, The MathWorks) and R (version 3.6.2) using

RStudio.96,97 For choices between the work and rest offers we coded choice as a binary outcome variable and ran a generalized

linear mixed-effects model (GLMM). The maximal possible model included fixed and random effects of recipient, effort (squared

to mirror the winning parabolic computational model), reward, and all interactions, plus a subject-level random intercept. Squared

effort and reward were Z scored before being entered into the model. Neither this maximal GLMM of choices or the maximal

LMMof normalized force (see below) converged, even with increased iterations (2x105) and bobyqa optimizer. We therefore reduced

themodels in the recommendedway,98 removing correlations and the random terms that did not explain any variance, then report the
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maximal converging models. To enable removing correlations for random slopes of factorial predictors, we fit models with the mixed

function from the afex package99 which relies on the glmer function from the lme4 package.100 The final model of choices contained

subject-level random effects were uncorrelated slopes for recipient, effort, and reward, all two-way interactions between these vari-

ables, and the intercept. Both the GLMMof choices and LMM of force were fit by maximum likelihood and we tested the fixed effects

for statistical significance using parametric bootstrapping (1000 simulations) with the mixed function. We used type II tests meaning

the significance of a variable was tested by comparing the full model with the next most complex model that does not include that

variable. For completeness, we also report Z statistics for the GLMM of choices and c2 statistics for both models from these com-

parisons (Tables S1 and S2). All factors in thesemodels were coded with sum-to-zero contrasts. We exponentiated the standardized

coefficients and standard errors for the GLMM of choices to generate odds ratios and their 95% confidence intervals.

Due to the non-normal distribution of the K parameters, we compared discounting for self and other using a non-parametric Wil-

coxon two-sided signed rank test and generated a standardized effect size (r) for this difference using thewilcox_effsize function from

the rstatix package.101 For analysis of force exerted following a choice to work, we normalized participants’ force as a proportion of

their maximum to account for between-subject variability in force exerted and calculated the area under the curve for the 3-second

window in which they exerted force. We then analyzed normalized force using a linear mixed-effects model (LMM), starting with a

maximal model that contained fixed and random effects of recipient, effort level, reward level, and all interactions, plus a subject-level

random intercept. All aspects of the model fitting, reduction and reporting were as with choices above. The final model of normalized

force had fixed effects of recipient, effort level, reward level, and all interactions, plus a subject-level random intercept and uncorre-

lated random slopes for recipient and effort.

Questionnaire of cognitive and affective empathy
Before the testing session, participants completed an online pre-testing questionnaire. The questionnaire aimed to measure individ-

ual levels of empathy that might influence prosocial behavior. Empathy is the ability to vicariously experience and understand the

affect of other people.37,67 This ability modulates people’s social behavior and is therefore critical to social cognition and social de-

cision-making. The Questionnaire of Cognitive and Affective Empathy (QCAE) measures two dimensions of empathy cognitive and

affective.63 Items in the QCAE corresponded to measures of cognitive empathy (such as I can easily work out what another person

might want to talk about) or affective empathy (I am happy when I am with a cheerful group and sad when the others are glum). Par-

ticipants rated howmuch each item applied to them using a 4-point Likert scale from strongly agree to strongly disagree.63 We used

Pearson correlations to test the link between QCAE scores and multivariate representations of prosocial effort in ACCg and

compared correlations using the paired.r function from the psych package.102

Computational modelling of behavioral data
For modelling of choice behavior using trial-by-trial updates, we evaluated a number of plausible models based on past research on

effort discounting.18–20,35 Models were fitted using maximum likelihood estimation using the MATLAB function fmincon.9,35 For

formal model comparison, we report the Bayesian information criterion (BIC) based on the log-likelihood. The model space tested

varied the shape of the discount function (K) of subjective value, of choosing the more effortful option over the rest option (see below:

either (a) parabolic (models 1,4,7,10), (b) linear (models 2,5,8,11), or (c) hyperbolic (models 3,6,9,12)). We also tested models with

single and separate noise (b) parameters and whether the same or a different discount parameter was needed for self and other

(models 1-6 vs. 7-12). This resulted in 12 putative models (3 different discount functions, separate or the same discount parameters

for self and other, and separate or the same noise parameters for self and other), as in previous work.4,5 Here, we also considered

classes of identical models that included free weights on reward (in addition to effort, models 13-24), free weights on reward only

(Models 25–36), and models with a K parameter scaling the difference between effort and reward (models 37-40). However, these

additional models were either not identifiable (Figure S3) or provided worse fits than our original winning model (model 7, separate

K parameters, single noise parameter) and were not considered further. The full model space was thus defined as follows:

Model 1: Parabolic, 1K1b

Model 2: Linear, 1K1b

Model 3: Hyperbolic, 1K1b

Model 4: Parabolic, 1K2b

Model 5: Linear, 1K2b

Model 6: Hyperbolic, 1K2b

Model 7: Parabolic, 2K1b

Model 8: Linear, 2K1b

Model 9: Hyperbolic, 2K1b

Model 10: Parabolic, 2K2b

Model 11: Linear, 2K2b

Model 12: Hyperbolic, 2K2b

Model 13: Parabolic, 1r1K1b

Model 14: Linear, 1r1K1b

Model 15: Hyperbolic, 1r1K1b
e3 Current Biology 32, 4172–4185.e1–e7, October 10, 2022
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Model 16: Parabolic, 1r1K2b

Model 17: Linear, 1r1K2b

Model 18: Hyperbolic, 1r1K2b

Model 19: Parabolic, 2r2K1b

Model 20: Linear, 2r2K1b

Model 21: Hyperbolic, 2r2K1b

Model 22: Parabolic, 2r2K2b

Model 23: Linear, 2r2K2b

Model 24: Hyperbolic, 2r2K2b

Model 25: Parabolic, 1r1b

Model 26: Linear, 1r1b

Model 27: Hyperbolic, 1r1b

Model 28: Parabolic, 1r2b

Model 29: Linear, 1r2b

Model 30: Hyperbolic, 1r2b

Model 31: Parabolic, 2r1b

Model 32: Linear, 2r1b

Model 33: Hyperbolic, 2r1b

Model 34: Parabolic, 2r2b

Model 35: Linear, 2r2b

Model 36: Hyperbolic, 2r2b

Model 37: Linear, 1K1b

Model 38: Linear, 1K2b

Model 39: Linear, 2K1b

Model 40: Linear, 2K2b

The linear, hyperbolic and parabolic models were specified as follows:

(a) Parabolic: (t) = (t)-E(t)2)

(b) Linear: (t) = (t).(1� E(t))

(c) Hyperbolic: SVðtÞ = RðtÞ: 1
1+EðtÞ

The models assumed that the subjective value (SV) of the offer on trial (t) is determined by the effort level (E) (scaled to the propor-

tion of the MVC) and reward level (R) (the number of credits) and the subject-specific parameter. In models 1-24, the discounting

parameter (K), describes the steepness of each individual’s devaluation of rewards by effort. Thus, the higher theK value, the steeper

the discount function. Other models applied a parameter to reward (r models 13-36) or the difference between reward and effort

(models 37-40). Note that each individual’s discounting function is referenced to the SV of the baseline offer (which was always 1).

The softmax function was defined as:

PrðiÞ =
eb:SVi

eb + eb:SVi

where Pr(i) represents the probability of choosing option i that has a subjective value of (i), and b is the softmax parameter that defines

the stochasticity of each participant’s choices.

The winning model (model 7), that explained behavior in the majority of participants, was a parabolic model with separate discount

(K) parameters and a single noise (b) parameter. This model was very close in BIC value to another model (model 10) also with sepa-

rate K parameters, but separate noise parameters (Model 7 2K1b BIC=4,7948 vs. Model 10 BIC=4,7732 2K2b). However, the 2K2b

model only won in 33% of participants. We therefore selected model 7 as the winning model. We also conducted both parameter

recovery (Figure 2E) and model identifiability to confirm the robustness of our model (see Figure S3).

All discount parameters (K) were bounded between 0 and 1.5. The bounding was empirically determined to capture the range of

possible discount values, based on the subjective value for choosing the work offer over the rest offer, given the available reward and

effort levels that comprised each offer and the discount function of the winning 2K1bmodel. A discount rate of 0 means that a partic-

ipant would always choose the work offer over the rest offer, whereas a discount rate of 1.5 would mean the participant never chose

the work offer over the rest offer. While values of K between 1.5 and 3 are theoretically possible if the discount function were linear

instead of parabolic, fitting themodels withK bounded between 0 and 3 did not change themodel comparison results (Figure S3D) or

K values (correlation of 1.00 between values when 0<K<1.5 and 0<K <3).

Parameter recovery
Parameter recoverywas performed on data simulated by thewinning 2K1bmodel from25,856 synthetic participants.We used awide

range of parameter values from a grid of values in the ranges: Kself=[0:0.1:1.5]; Kother=[0:0.1:1.5]; b=[0:0.1:10], creating 25,856 com-

binations. We added noise to each of the three parameters for each simulated agent (from a standard normal distribution multiplied
Current Biology 32, 4172–4185.e1–e7, October 10, 2022 e4
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by 0.05) to improve our coverage of possible parameter values. After generating the simulated behavior, we refitted the simulated

behavior using fmincon in MATLAB (2019, The MathWorks). We used the best fit from 10 random starting configurations to avoid

local minima. The correlations between the true simulated and fitted parameter values were: Kself=0.98; Kother=0.98; b=0.80. Thus,

parameter recovery was reliable for all parameters.

Model identifiability
Data were simulated from 100 synthetic participants with each of our 24 models with parameter values drawn randomly from the

ranges used for parameter recovery. For example, simulated data from the 2K1b used two randomly generated K parameters and

one b parameter. We then fit the models to these data in the same way as the participant data and repeated the simulation and fitting

process ten times for all 40 models. On each of the ten rounds, we designated the winning model as the one with the lowest total BIC

across participants and also calculated the percentage of participants for which each model had the lowest BIC. Strong model iden-

tifiability is show bymodels where simulated data winsmost often (summed across the ten rounds) and is best for a large percentage

of participants (averaged across the ten rounds). Our winning model (model 7) was strongly identifiable, but models that contained a

parameter on reward only or both effort and reward were in general not identifiable, and not considered further (Figures S3A and

S3B).

Imaging methods
Scanning was conducted in a Siemens Prisma 3-Tesla MRI scanner to acquire T2*-weighted echo planar imaging (EPI) volumes with

a BOLD contrast BOLD. EPI volumes were acquired at a 30 degree ascending oblique angle to the AC-PC line. The angle chosen

decreased the impact of susceptibility artefacts in the orbitofrontal cortex, a method validated in previous studies.103 Acquisition pa-

rameters were as follows: voxel size 2x2x2, 1mmgap; TE = 30ms; repetition time = 1254ms; flip angle = 90�; field of view = 2.16mm. A

magnetization prepared rapid gradient echo (MPRAGE) sequence with 192 slices was used to obtain the structural scan (slice thick-

ness = 1mm; TR = 1900ms; TE = 3.97ms; field of view = 192x192mm; voxel size = 131x1mm resolution).

Imaging pre-processing and analyses
Data were pre-processed and analyzed using SPM12 (Wellcome Department of Imaging Neuroscience, Institute of Neurology) and a

standard pre-processing pipeline. Images were realigned and unwarped using a fieldmap and co-registered to the participant’s own

anatomical image. The anatomical image was processed using a unified segmentation procedure combining segmentation, bias

correction, and spatial normalization to theMNI template using the New Segment procedure.104 The same normalization parameters

were then used to normalize the EPI images, which were then spatially smoothed using an isotropic Gaussian kernel at 8mm full-

width at half-maximum.

Imaging design: multivariate analysis
Representational similarity analysis (RSA) of fMRI data was performed using SPM12, the RSA toolbox and custom scripts.56 We esti-

mated voxel activity patterns time-locked to the offer cue for each effort, reward and recipient combination by creating 50 columns in

our GLM that corresponded to these combinations. In addition, the same GLMmodelled the onset of force exertion and the onset of

the outcome on self and other trials as separate regressors, the break periods, as well as 6 motion regressors. GLMs were inspected

to ensure all events could be estimated independently from one another with minimal correlations (Figure S6). Due to the variability

between participants in the number of repetitions of effort levels – which depended on participant choice behavior – a multivariate

analysis was not suitable for the force period (since the difference in number of repetitions could impose structure on the RDMs).

Both ROI analyses and whole-brain searchlight analyses were based on smoothed data.105 We applied multivariate noise normal-

ization to the voxel activity patterns to improve reliability56,70 and calculated the correlation distance using the pdist function in

Matlab. The correlation distance metric was chosen as a measure that is magnitude insensitive to the BOLD signal, and thus makes

separate predictions from the univariate trial-by-trial model-based analysis or by using alternative distancemetrics such as Euclidean

distance.60,70 For the ROI analysis, anatomical masks were realigned to be in the same voxel space as participant scans and then

custom scripts were used to calculate the resulting representational dissimilarity matrices in a particular ROI with regression

coefficients that were spatially pre-whitened.

As in previous RSA studies,56,106–108 the diameter of the searchlight sphere was 15mm (approximately 100 voxels) andwe used the

group level mask to define the volume for the searchlight analysis. We note that the ROI analysis andwhole brain searchlight analyses

are not directly comparable, but instead complement one another.56,106 The shape of the searchlight sphere is insensitive to the pre-

cise anatomical boundaries of a particular ROI. In addition, hypothesis driven and anatomically defined ROIs can capture pattern

information that may not be visible in a searchlight. For example, the ACCg ROI is more sensitive to subtle pattern information as

it contains 5 times more voxels than the searchlight sphere. The brain searchlight maps were correlated with each model RDM using

Kendall’s tA to parallel the ROI analysis. The searchlight was also performed using adapted scripts from the RSA toolbox (Varazzani

et al.,10 original surface-based searchlight scripts from by Joern Diedrichsen and Naveed Ejaz, code available at https://github.com/

rsagroup/rsatoolbox). The searchlight definition was executed using Freesurfer’s reconall command and depended on cortical

reconstruction and alignment.11–13 This procedure incorporated subject-specific anatomy by defining cortical searchlights on the

2D surface. As in the ROI analysis, regression coefficients were spatially pre-whitened within the searchlight using the RSA toolbox.
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Formal conjunction analyses were run to determine the areas that responded across self/other recipient conditions. Comparison

analyses between self and other conditions ([-1 1] for other > self or [1 -1] for self > other) were also run at each second-level design to

reveal the areas that responded specifically to one condition, yielding areas of domain-specific activation. For ROI analysis we tested

whether correlations were significantly different from zero using non-parametric one-sided Wilcoxon signed-rank tests across par-

ticipants. One-sided tests are used when comparing model RDMs and brain RDMs to one another. This is because only positive cor-

relations are theoretically plausible. If two RDMs have a negative correlation, they would not be concordant as theoretically themodel

would be predicting that the largest distances in the data are smallest. Thus, a negative correlation can only happen under H0.56 We

also tested whether correlations for self were significantly different from correlations for other with either self or other representations

could have provided a better explanation of the brain RDMs. All reported comparisons survived FDR correction at p < 0.05.56 For one-

sided tests this was across 24 comparisons (4 brain RDMs, 3 model RDMs, 2 recipients) and for two-sided tests between recipients,

12 comparisons (4 brain RDMs, 3 model RDMs). ROIs were constructed using anatomical masks from regions of strong a priori in-

terest and that could distinguish dACC frommore ventral portions of ACC in the gyrus. These ROIswere thus the dmPFC/dACC (4088

voxels),18 anterior insula (2429 voxels),18 ACCg (525 voxels)36,37,39,41,62 and TPJ (1996 voxels)46,49 (see https://osf.io/tm45q for mas-

k.img and.nii files). As outlined in the introduction, the ACCg has been repeatedly highlighted as a core neural region for processing

social information with theoretical and empirical accounts predicting that this region is critical for motivating prosocial

effort.6,36,37,72,71 In contrast, the dACC/dmPFC and anterior insula (AI) have previously been linked to coding the subjective value

of choosing to work vs. rest in contexts of both physical and cognitive effort,18 suggesting a domain general response. Finally,

the TPJ has often been implicated in social cognition and prosocial behavior, and encodes effort costs differently when behaviors

switch from being cooperative to competitive.45–49 At the request of reviewers, two further exploratory ROIs were included in ventral

striatum and vmPFC (for full results see supplemental results, Figure S5 and Table S3 and S4). In addition to these four ROIs, we

conducted exploratory whole-brain analyses for completeness and considered areas significant that survived correction for multiple

comparisons at the cluster level (p < 0.05, corrected for family-wise error (FWE) after thresholding at p < 0.001109), both in the data-

driven searchlight and in the univariate analyses.

Note we took this analytical approach of evaluation brain RDMs in separate 25 x 25 matrices for self and other trials rather than

calculating a full 50x50 matrix representing all conditions in the same model (e.g. Hall-McMaster et al.,110). Self and other brain

RDMs allowed us to directly test whether a brain area represents information on self or other trials significantly (or not), and whether

it does so significantly differently between self and other trials, which is crucial for answering questions about the ‘specialization’ of

signals.12

Imaging design: Univariate analysis
Three event types were used to construct regressors which would be convolved with Statistical Parametric Mapping’s canonical he-

modynamic response function.111 As in the multivariate analysis, onsets were modelled using regressors for the choice phase, force

phase, and outcome phase. Each regressor was associated with a parametric modulator. The choice phase regressor was associ-

ated with the parametric modulator of the subjective value difference of the chosen option, to parallel previous work,18 force with an

effort required parametric modulator (0 if no effort or if chosen the level of effort on offer), and outcome with an outcome parametric

modulator (the reward outcome received on each trial). Each parametric modulator was separated by recipient (self or other). The

resulting GLM had 12 columns: the first four represented self and other choices as well as their subjective values (SVs), the next

four represented the self and other force exerted as well as their force (effort) parametric modulators, and the final four held self

and other outcomes and their parametric modulators. Additional regressors modelled the break phase and missed trials in partici-

pants who had missed trials. First-level design matrices were inspected to ensure the different parametric modulators could be esti-

mated with independence. Crucially, the choice phase and effort phases were decorrelated by introducing jittering and ensuring that

the resulting parametric modulators were uncorrelated in the design (maximum correlation = 0.01, Figure S6A).

First-level contrast images built from the above-described design matrix focused on self and other modulators of choice SV and

force. These images were then inputted into two second-level flexible-factorial designs that tested for neural regions that tracked the

predicted SV during the choice period and the level of effort during the force period. Conjunction analyses were run to determine the

areas that responded across self/other recipient conditions. Comparison analyses between self and other conditions (-1 1 for

other > self or 1 -1 for self > other) were also run at each second-level design to reveal the areas that responded specifically to

one condition, yielding areas of domain-specific activation. Analyses were reported at p < 0.05, family-wise error (FWE) corrected

at the cluster level after thresholding at p < 0.001 across the whole brain or at p < 0.05 small-volume corrected at the peak voxel level,

using anatomical masks from regions of strong a priori interest, the dmPFC/dACC,18 anterior insula,18 ACCg36,37,39,41,62 and TPJ.46,49

In addition to correcting for family-wise error (FWE) small volume-correction in independent anatomically defined regions of interest,

we performed non-parametric permutation tests to determine the cluster level for FWE correction at p < 0.05 after thresholding at

p < 0.001 (10,000 Monte-Carlo simulations).112,113,114 All reported clusters within the small volumes exceeded this threshold, sup-

porting the validity of the FWE multiple-comparison correction procedure.

Exploratory ROIs in vmPFC and VS
We ran an additional exploratory RSA analysis including vmPFC (areas 11m and 14m) and also ventral striatum (Harvard-Oxford

Atlas) at the request of reviewers. These regions did not form our a priori ROIs, which were based on existing literature and meta-

analyses,16 so we interpret these results with some caution. We also note that in fMRI dropout in vmPFC/OFC is very common
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and thus other approaches such as non-human work or lesion approaches might be better suited to addressing the role of vmPFC.

Intriguingly we found that vmPFC carried multivariate representations of reward and subjective value for self, but only subjective

value for other (Figure S5; Table S4 and S5). This suggests that vmPFCmay represent domain general subjective value signals for self

and other but preferentially represents rewards for self. This fits with prior work suggesting reward is encoded preferentially for self in

vmPFC17,18 and extends this to show multiple signals represented by vmPFC in different contexts. We also observed stronger rep-

resentations of reward than effort in vmPFC for self (Table S5).

Connectivity analysis
We ran two further analyses to address the connectivity profile of ACCg. First we performed a ‘representational connectivity analysis’

whereby we correlated the ACCg other brain RDM with the dACC/dmPFC and AI brain RDMs on other trials and compared them to

the same brain RDMs on self trials. This analysis revealed that ACCg representations on other trials correlated with dACC/dmPFC

representations on other trials (mean rank correlation tA ± SE = 0.31 ± 0.01, p < 0.001), as well as AI representations on other trials

(mean rank correlation tA ± SE = 0.32 ± 0.01, p < 0.001). We next examined whether this connectivity was stronger than connectivity

with representations in dACC/dmPFC on self trials, which was indeed the case (self mean rank correlation tA ± SE = 0.02 ± 0.01;

Wilcoxon two-sided signed rank test Z=-6.85, effect size r=0.87 [0.87, 0.87], p < 0.001). The same pattern of stronger connectivity

on other than self trials was also evidence between ACCg and AI (self mean rank correlation tA ± SE = 0.03 ± 0.01; Wilcoxon two-

sided signed rank test Z=-6.85, effect size r=0.87 [0.87, 0.87], p < 0.001). Thus ACCg representations for other correlated with

representations in regions that we identified as signalling domain general subjective value.

We also conducted a PPI analysis on the univariate ACCg signals during the force period that scaled with effort for other more

strongly than for self. We identified a seed region in ACCg (2mm sphere) and examined both positive and negative connectivity be-

tween this area and the whole brain. The univariate analysis did not reveal any functional connectivity with other regions that survived

whole brain correction or small volume correction in any of our ROIs.
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Figure S1. Model RDMs for effort, subjective value and reward. Related to Figure 1. Six 
25 x 25 (5 effort and 5 reward levels) model representational dissimilarity matrices (RDMs) 
were constructed at the offer stage to analyse activity during effort-based decisions 
separately for the self and other conditions. These coded for different task features in 
multivariate space. (A) For the effort model RDMs, this was the Euclidean distance between 
effort levels on offer. (B) For the subjective value RDMs, this was the Euclidean distance 
between subjective values of offers based on the winning computational model with 
separate discount parameters (Κ) for self and other trials. Each participant’s individual Κ 



parameter was used. (C) For the reward RDMs this was the Euclidean distance between 
reward levels on offer. Yellow colours show conditions are more dissimilar whereas dark 
blue colours show conditions are more similar in terms of the Euclidean distance between 
conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure S2. Supplemental behavioural analysis of choice and force. Related to Figure 2.  
3D plots showing percentage acceptance of work over rest offers on self and other trials and 
the difference between them. (A) Percentage acceptance on self trials as a function of reward 
and effort level. (B) Percentage acceptance on other trials as a function of reward and effort 
level. (C) Difference in percentage acceptance between self and other trials. (D) ACCg 
representations of effort for another person during the choice phase, taken from the RSA 
analysis, positively correlate with amount of force subsequently exerted for other (Pearson’s 
r(36)=0.38, p=0.018). (E) Univariate responses in ACCg to force required for other negatively 
correlate with proportion of choices to benefit other (Pearson’s r(36)=-0.38, p=0.018). 

 
 
 
 



 
Figure S3. Model identifiability and model comparison with all models and different Κ 
bounds. Related to Figure 2. (A) Data simulated from each of the 40 models (see section 
‘Computational Modelling’ below for details) for 100 participants. The model comparison 
procedure identifies the model that simulated the data, demonstrated by the strong diagonal, 
for models 1-12, which include an effort discounting and an inverse temperature parameter. 
However, models 13-24 (additional reward sensitivity parameter), models 25-36 (only a 
reward sensitivity parameter, no effort discounting parameter) and models 37-40 (linear 
models only, parameter scaling difference between effort and reward) show poor identifiability. 
(B) We repeated the simulations and fittings ten times and quantified the winning model as 



with the modelling of participants’ data as the model with the lowest Bayesian Information 
Criterion (BIC), summing the number of times that model won across the ten runs. We also 
calculated the percentage of simulated participants for which each model had the best fit to 
the data and averaged this over the ten runs. (C) Model comparison of all 40 models shows 
that even those models with comparable BICs explain behaviour in fewer participants than 
model 7. (D) We also tested empirically whether the estimated K’s were sensitive to the 
bounds we placed on them. Increasing the maximum K value to 3 did not change the winning 
model (Model 7). (E) Repeating the model fitting with the upper K bound as 10 also gave 
identical results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S4. Distinct portions of the cingulate cortex involved in domain general and 
domain specific computations. Related to Figure 4, Table S6 and S7. (A) anatomical 
regions of interest in ACCg (blue) and dACC/dmPFC (pink) overlaid on an anatomical scans 
of the medial surface. Notably, the two areas of the cingulate cortex are distinct. Whereas the 
ACCg signalled representations of effort for others only, the dACC/dmPFC signalled patterns 
of subjective value for both self and other. (B) univariate analyses show that activation in the 
ACCg (blue) for force exerted for others only is distinct from a separate areas of the anterior 
cingulate cortex in the dACC/dmPFC (pink) that negatively tracked trial-by-trial subjective 
value for both self and other. (C) univariate analysis show that activation in the ventral anterior 
insula (vAI) that responds more strongly on self than other trials does not overlap with the 
domain general portion of anterior insula (pink) that tracks subjective value in a conjunction 
analysis for both self and other.  
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Figure S5. vmPFC and VS multivariate patterns of effort, reward and subjective value. 
Related to Table S6 and STAR Methods. We conducted additional exploratory analysis 
with two ROIs in vmPFC and VS that have more recently been suggested to encode effort, 
reward and subjective value. We found vmPFC coded reward and subjective value for self 
but only subjective value for other. In contrast ventral striatum only encoded reward for self. 
Reward was represented more strongly than effort in vmPFC for self but this was not the 
case for other (Table S6). 
  



 
 
Figure S6. Multivariate and univariate GLMs were decorrelated. Related to STAR 
Methods. (A) Correlation between regressors in the Representational Similarity Analysis 
GLM. A 50x50 GLM of regressors modelled each effort/reward combination separately for self 
(columns 1-25) and other (columns 26-50) trials. Within this GLM all correlations were below 
r<|0.007|, indicating that conditions could be appropriately estimated with independence from 
one another. The GLM also modelled the onset of the force period and the onset of the 
outcome for each recipient (self and other). (B) Correlation between regressors in the 
univariate GLM. The correlations between choice (subjective value) and effort parametric 
regressors were below r<|0.01|, indicating that all conditions of interest (subjective value at 
the offer stage, effort required at the force stage) could be appropriately estimated with 
independence from one another. SV: subjective value. 
 
 
 
 
 
 
 
 
 
 
 
  



Table S1. Generalised linear mixed-effects model predicting choices. Related to Figure 
2. 
  OR SE CI low CI up Z χ2 df p 
(Intercept) 6.98 2.52 3.44 14.15 5.39    
Recipient (Self vs. 
Other) 4.04 0.99 2.49 6.54 5.66 23.05 1 0.001 

Effort 0.13 0.02 0.09 0.17 -12.38 64.24 1 0.001 
Reward 6.10 1.18 4.18 8.90 9.38 46.05 1 0.001 
Recipient (Self vs. 
Other) * Effort 1.20 0.09 1.03 1.40 2.40 6.53 1 0.011 

Recipient (Self vs. 
Other) * Reward 1.31 0.11 1.11 1.55 3.20 9.51 1 0.003 

Effort * Reward 1.18 0.11 0.99 1.42 1.83 3.38 1 0.088 
Recipient (Self vs. 
Other) * Effort * Reward 0.97 0.05 0.87 1.09 -0.47 0.19 1 0.67 

Note. OR: odds ratio, SE: standard error, CI: 95% confidence interval for odds ratio, low: lower 
CI, up: upper CI, p values are from type 2 tests of fixed effects using parametric bootstrapping 
(see Methods). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2. Linear mixed-effects model predicting normalised force. Related to Figure 3. 
  χ2 df p 
Recipient (Self vs. Other) 7.09 1 0.013 
Effort 409.15 4 0.001 
Reward 65.66 4 0.001 
Recipient (Self vs. Other) * Effort 5.36 4 0.24 
Recipient (Self vs. Other) * Reward 13.21 4 0.014 
Effort * Reward 49.88 16 0.001 
Recipient (Self vs. Other) * Effort * Reward 42.03 16 0.002 

Note. df: degrees of freedom, p values are from type 2 tests of fixed effects using parametric 
bootstrapping (see Methods). 
  



Table S3. Kendall’s τA correlations between brain RDMs and model RDMs for 
additional ROIs. Related to STAR Methods. 
      Mean SE p FDR p 

Other effort RDM vmPFC 0.01 0.01 0.03 0.06 
VS 0.01 0.01 0.24 0.29 

Self effort RDM vmPFC 0.01 0.01 0.03 0.06 
VS 0.01 0.01 0.61 0.61 

Other reward 
RDM 

vmPFC 0.01 0.01 0.05 0.09 
VS 0.01 0.01 0.24 0.29 

Self reward RDM vmPFC 0.04 0.01 <0.001 <0.001 
VS 0.02 0.01 0.00 0.01 

Other subjective 
value RDM 

vmPFC 0.02 0.01 0.02 0.05 
VS 0.00 0.01 0.49 0.54 

Self subjective 
value RDM 

vmPFC 0.03 0.01 <0.001 0.00 
VS 0.02 0.01 0.06 0.09 

Note. RDM: representational dissimilarity matrix, Mean: Kendall’s τA correlations between 
brain RDMs and model RDMs, SE: standard error of the mean, FDR p: false-discovery rate 
corrected p value across 12 comparisons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4. Comparing RDMs between effort and reward for each recipient. Related to 
STAR Methods. 
      Z r CI low CI up p 
Reward vs. effort 

self RDM 
vmPFC -2.28 0.37 0.06 0.62 0.02 

VS -1.49 0.24 0.02 0.54 0.14 
Reward vs. effort 

other RDM 
vmPFC -0.50 0.08 0.01 0.41 0.62 

VS -0.17 0.03 0.00 0.37 0.86 
Note. RDM: representational dissimilarity matrix, r: standardised effect size, CI: 95% 
confidence interval for odds ratio, low: lower CI, up: upper CI, values are from Wilcoxon two-
sided rank tests comparing effort and reward. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table S5. Kendall’s τA correlations between brain RDMs and model RDMs. Related to 
Figure 4. 
      Mean SE p FDR p 

Other effort RDM 

ACCg 0.026 0.009 0.005 0.009 
AI 0.021 0.008 0.006 0.009 
dACC/dmPFC 0.029 0.008 0.001 0.003 
TPJ 0.033 0.010 0.001 0.003 

Self effort RDM 

ACCg 0.002 0.009 0.610 0.610 
AI 0.008 0.009 0.400 0.420 
dACC/dmPFC 0.016 0.012 0.160 0.170 
TPJ 0.024 0.013 0.026 0.032 

Other reward RDM 

ACCg 0.009 0.007 0.16 0.170 
AI 0.020 0.008 0.006 0.009 
dACC/dmPFC 0.025 0.007 0.001 0.003 
TPJ 0.016 0.007 0.027 0.033 

Self reward RDM 

ACCg 0.038 0.008 <0.001 <0.001 
AI 0.035 0.009 <0.001 0.002 
dACC/dmPFC 0.041 0.009 <0.001 <0.001 
TPJ 0.026 0.009 0.005 0.008 

Other subjective value RDM 

ACCg 0.038 0.014 0.009 0.013 
AI 0.051 0.013 <0.001 <0.001 
dACC/dmPFC 0.073 0.011 <0.001 <0.001 
TPJ 0.044 0.012 <0.001 <0.001 

Self subjective value RDM 

ACCg 0.055 0.012 <0.001 <0.001 
AI 0.047 0.012 <0.001 <0.001 
dACC/dmPFC 0.064 0.012 <0.001 <0.001 
TPJ 0.026 0.011 0.018 0.024 

Note. RDM: representational dissimilarity matrix, Mean: Kendall’s τA correlations between 
brain RDMs and model RDMs, SE: standard error of the mean, FDR p: false-discovery rate 
corrected p value across 24 comparisons.  
 
 
 
 
 
 
 
 
 
 
 
 
  



Table S6. Whole-brain RSA searchlight results. Related to Figure 5 and Figure 6. 

 
 



Table S7. Whole-brain univariate results. Related to Figure 5 and Figure 6. 
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