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Abstract

We show how combinatorial optimisation algorithms can be applied to the problem of identifying c-optimal experimental
designs when there may be correlation between and within experimental units and evaluate the performance of relevant
algorithms. We assume the data generating process is a generalised linear mixed model and show that the c-optimal design
criterion is a monotone supermodular function amenable to a set of simple minimisation algorithms. We evaluate the per-
formance of three relevant algorithms: the local search, the greedy search, and the reverse greedy search. We show that the
local and reverse greedy searches provide comparable performance with the worst design outputs having variance < 10%
greater than the best design, across a range of covariance structures. We show that these algorithms perform as well or better
than multiplicative methods that generate weights to place on experimental units. We extend these algorithms to identifying

modle-robust c-optimal designs.

Keywords Optimal design - Experimental design - Algorithms - Optimisation - GLMM

1 Introduction

We consider the question of how to identify a c-optimal
design when the observations are correlated. In particular, we
assume the data generating process can be described using
a generalised linear mixed model (GLMM). For a N-length
vector of outcomes y, with an N x P matrix X of covariates
anda N x Q ‘design matrix’ for random effects Z, a GLMM
can be written as:

y~ F(h™ ' (X + Zu), ¢) (1

where B are mean function parameters, A(.) is a link func-
tion, F(.) is a distribution function with scale parameter(s)
¢, and u ~ N(0, D) is a vector of random effects with
covariance matrix D. Such models provide a flexible para-
metric approach for the estimation of covariate effects when
the observations are correlated, such as longitudinal designs
(Zeger et al. 1988), cluster randomised trials (Hussey and
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Hughes 2007), and geospatial statistical modelling (Diggle
et al. 1998).

To set up the design problem, we assume the rows i =
1,..., N of matrices X and Z enumerate and completely
define all the possible observations that could be made as
part of our experimental study. Discrete design points could
be formed by a uniform lattice over a continuous design
space (e.g. Yang et al. 2013), for example, by determining
a discrete set of potential sampling locations across an area
of interest. Alternatively, observations may be possible with
discrete groups or clusters at different times, such asin a clus-
ter randomised trial. Indeed, GLMMs are frequently used in
blocked designs or designs with groups or clusters of obser-
vations; we refer to such a group as an ‘experimental unit’.
An experimental unit is defined here as a subset of the indices
1,...,N:

e; C{l,... N}

for j =1, ..., J. Where we refer to the ‘observations’ in an
experimental unit, we mean the rows of X and Z indexed
by the indices in e;. We assume Uj ej = {1,...,N} and
ejNej =@ for j # j', that is all observations (indices)
are in one and only one experimental unit. Without loss of
generality we assume that all the experimental units have the
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same size r. A design space consists of all the experimental
units:

Di=fe;j:j=1,..,J}

A design d C D of size m < J is defined in terms of its
experimental units:

d:={ej :ej € D;|d| =m}

The total number of observations in the designisn = mr. The
design problem we consider is how to find the design d* C
D of size m < J that minimises some objective function.
There are multiple criteria used in the experimental design
literature, here we only discuss c-optimality.

1.1 Information matrix
We consider GLMMs where F(.) is in the exponential fam-

ily, including Gaussian, binomial, and Poisson models. The
likelihood is

L.9.00) = [ [T ntila. .9 futwlp)dn @

i=1

where fyu(yilu, B, #) = exp (yini —c(n:))/a(P) + d(yi, P),

fu 1s the multivariate Gaussian density, n; = x; 8 + z;u is
the linear predictor, x; and z; are the ith rows of matrices X
and Z, and @ are the parameters that define the covariance
matrix D.

The information matrix for the model parameters g is:

M=xTE, [(alogL(ﬂ,¢,9|y>>
0f

dlog L(B, ¢,0|y)\ T
( og (fﬁas |y>) |ﬂ79,¢}x 3

For the generalised least squares estimator, which is the best
linear unbiased estimator of the GLMM, the information
matrix is equivalent to

M=xTz"1x )

where ¥ = Cov(y). We use My to denote the information
matrix for design d formed by the rows of X and Z indexed
by the indices in the experimental conditions in the design.

The c-optimal objective function g : 2¢ — R>0 we con-
sider is then:

T as—1
"M, ¢

00 otherwise

for M, positive semi-definite

gd) = (&)

where c is a p-length vector such that ¢ € range(M) to ensure
estimability of ¢! B (Pukelsheim 1980). The vector ¢ often
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has all elements equal to zero except for a one at the position
corresponding to the treatment effect parameter of interest. It
is possible for a design not to produce a positive semi-definite
information matrix, such as when the matrix X is not of
full rank, which will occur if there are too few observations,
for example. For these cases we assume that the objective
function takes the value of infinity, i.e. the design provides
no information about the parameters. The consequences of
this choice are discussed later. Our optimisation problem is
the to find the design d C D of size m that minimises g(d).

1.2 Previous literature

It is generally not possible to identify exact c-optimal designs
in this context. For designs with correlated observations per-
haps the most common approximate method is to identify
the optimal ‘weights’ to place on each experimental unit
or design point. These weights can be interpreted as an
“amount of effort” to place on the observations in the design.
Elfving’s Theorem is a classic result in theory of optimal
designs that underlies this method (Elfving 1952; Ford et al.
1992; Studden 2005). For independent identically distributed
observations (i.e. when ¥ = o2]) we can write the infor-
mation matrix as thesum M = ) ; xl.Tx,' for all observations
i = 1,..,N. We can place a probability measure over the
observations p = {(p;j, x;) : i = 1,...N; p € [0, 1]} where
p; are the weights on each observation. The information
matrix of the approximate design is M (p) = Zi xl.Txi Di-
Elfving’s theorem provides a geometric characterisation of
c-optimality and shows that an optimal design p lies at the
intersection of the convex hull of the x; and the vector defined
by c¢. The values of p for the optimal design can then be
obtained using linear programming methods (Harman and
Jurik 2008).

Holland-Letz et al. (2011) and Sagnol (2011) extended
Elfving’s theorem to design spaces with experimental units
in which the observations may be correlated, but where there
is no correlation between experimental units. In this case,
the information matrix (4) can be written as the sum of the
information matrices for each experimental unit:

J
M = ZXZ/ ze—jlxej (6)
j=1

where we use X,; to represent the rows of X indexed by
the indices in e;, and similarly Eej is the submatrix of X
given by the indices in e;. The weights p are placed on
each experimental unit so that a design can be represented by
the pairs {(e1, p1), ..., (es, p;)} and the problem reduces to
identifying the optimal weights using the generalised Elfving
theorem. Sagnol (2011) shows that the optimal weights for
each experimental condition can be solved using conic opimi-
sation methods with a second order cone program. We refer to
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these approaches generally as ‘multiplicative’. Holland-Letz
et al. (2012) provide an estimate on the lower bound of the
efficiency of multiplicative methods in a article examining
optimal assignment of individuals to different dose sched-
ules in a pharmacokinetic study. Prior approaches to optimal
experimental designs with correlated observations relied on
asymptotic arguments (Sacks and Ylvisaker 1968; Muller
and Pazman 2003; Nather 1985).

One potential limitation of multiplicative methods is that
there are several different approaches to rounding weights
to integer totals of experimental units (Balinski and Young
2002). Pukelsheim and Rieder (1992) determine the optimal
rounding scheme when at least one of each type of experi-
mental unit is required. However, for many design problems
this restriction is not necessary. As such, different rounding
methods may produce different designs, which may not nec-
essarily be optimal. Multiplicative methods currently also
have the limitation that they cannot be extended to designs
where there may be correlation between experimental units.
We may also wish to accommodate restrictions in the design
space, such as a maximum or minimum number (or weight)
on particular experimental conditions given practical restric-
tions.

In this article, we show that a set of simple algorithms are
applicable to the problem of identifying c-optimal experi-
mental designs with correlated observations both within and
between experimental units, and we compare their perfor-
mance with a set of example study designs. These algorithms
are combinatorial optimisation methods, which aim to select
the optimal set of items from a larger finite discrete set. Where
relevant, we refer to these methods as ‘combinatorial algo-
rithms’ to differentiate them from the multiplicative methods.
These algorithms can identify local minima, however, as we
discuss, combinatorial approach cannot guarantee a global
minimum is found. Results from the optimisation literature
show that the difference between the solutions from the algo-
rithms and global minima can be bounded though. We discuss
the relevant combinatorial algorithms in Sect. 2 and show
that they can be applied to the c-optimal design problem.
We consider approximations to the information matrix to
accommodate non-Gaussian models. In Sect. 3 we compare
the performance of these algorithms across a set of example
problems. Sect. 4 compares the performance of multiplica-
tive and combinatorial approaches, and Sect. 5 extends the
discussion to robust optimisation.

2 Monotone supermodular function
minimisaton

A function g is called supermodular if:

gdU{e;}) —g(d) > g(d Ufe}) —g(d) @)

foralld’ C d.Thatis, there are diminimising marginal reduc-
tions in the function with increasing size of the design. The
function is monotone decreasing iftd’ C d — g(d') > g(d).
A function is called submodular if in Eq. (7) the inequality
is reversed.

Equation (6) shows that when the observations in differ-
ent experimental units are independent, then the information
matrix can be written as a sum of information matrices for
each unit. We can derive a more general expression for the
marginal change to the information matrix when observations
are added. Let d’ and d be two designs such thatd’ C d C D
andd = d' Ud"”. We let X1 and X, be the covariate matri-
ces for designs d’ and d”, respectively, and ¥ and ¥, be
their covariance matrices. X1 is the covariance between the
observations in designs d’ and d”. Then,

T —1
M, — X X X2 X
X2 2, = X2
C[x] E - etens s -2 s n s X
= x —57 sy s~ X2
=X{ 27X+ X757 X - X £ 257X
—xIs'epeiix +xTeishs iene
=My + X2 - SHLETXTS7 X, - 2l e X))
=My + My 40 3

where S = (X — 2{221_1212) is the Schur complement,
which we assume is invertible, and we use § My 47 to rep-
resent the marginal change in the information matrix of My
when the additional observations in d” are added. It is evi-
dent that if X1 = 0 then 6 My 4 reduces to X2T E;le as
in Eq. (6). We also note that §M 4~ is positive definite such
that My > My (where A > B means A — B is positive
semi-definite), which implies that g(d) < g(d’) ford’ C d.
Thus, the function g is monotone decreasing.

For our specific c-optimality problem, we can re-express
(7) using Equation (8) as:

" (IMa + 8Marav + M, ;17" — [Mar + 6Myr.ar] e
>l (Mg +8Myr o 17" — M e

T [My + My g0 + (Mg
+8Md,,d~)aM[;;j (Mg +8Myg g)] "¢

<My + Md/sM(;}ej Mg1" e 9)

where the second line follows from Hua’s identity. The func-
tion is then supermodular if:

MalMy " +8My, IMa = My IMy' +8My, 1Mar (10)

It can be shown that this condition is satisfied if Mg,
is symmetric, positive semidefinite for all d, which Eq. (8)

@ Springer
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shows to be the case if the covariance matrix and Schur com-
plement are symmetric and invertible. Thus, the c-optimal
design problem for the GLMM under the GLS estimator is
monotone supermodular.

2.1 Algorithms
2.1.1 Local search algorithm

Algorithm 1 shows the local search algorithm. We start with
a random design of size m and at each step of the algorithm
the best swap of an experimental unit in the design with one
not in the design is made until there are no more swaps that
improve the design.

For monotone supermodular function minimisation in
general, there is no guarantee the local search will converge
to the globally optimal design. However, the algorithm does
have a provable ‘constant factor approximation’. If d is the
output of the local search algorithm and d* is the global min-
imiser of the function, then the constant factor approximation
is the upper bound of g(d)/g(d™*). Fisheretal. (1978) showed
that under a cardinality constraint (such as |d| < n) the opti-
mality bound is 3 /2. Filmus and Ward (2014) improved this
bound to (1 + 1/e) by using an auxilliary function in place
of g that excludes poor local optima. Feige (1998) showed
that further improving these bounds is an NP-hard problem
and Nemhauser and Wolsey (1978) showed that algorithms
that improve on these bounds require an exponential number
of function evaluations, rather than the polynomial num-
ber of the local search. In practice the local algorithm, and
those discussed below, may perform significantly better than
their lower bounds would suggest, however there exists little
empirical evidence for the types of design we consider. We
also note that Fedorov (1972) developed the first local search
algorithm for D-optimal designs (i.e. a design that maximises
det(My)) with independent observations; several variants
were later proposed (Nguyen and Miller 1992). Although
there is presently no proof that such an approach converges
to a D-optimal design.

Data: X,Z,Q2,6,¢0,D
Result: An optimal design d*
Let dy be size m design ;
Setd§ =1landd <« dy;
while § < 0 do
foreach ¢; € d and ej € D/d do Calculate
g(d/{ej}Ufej)); Setd' <« argmin; ;, g(d/{e;j}U{e;});
§=g(d) —g@);
if 6 > 0 then
| d<d
end
end

@ Springer

2.1.2 Greedy and reverse greedy search algorithms

Algorithm 2 shows the “greedy algorithm”. We start from
the empty set (d = ¢J) and at each step of the algorithm add
the experimental unit with the smallest marginal increase
in the objective function. Rather than sequentially adding
experimental units, one can start from the complete design
space D and sequentially remove units. This is the “reverse
greedy algorithm”, which is shown in Algorithm 3.

Data: X,Z,Q,6,¢,D,n

Result: An optimal design d*

Let d be a non-degenerate design of size p <s <m ;
Setk = 0;

while k < m do

foreach ¢; € D/d do Calculate g(d U {¢}); Set
d<«dU argminej gdUle;});

k<—k+1

end

Data: X,Z,Q.8,6,D,n

Result: An optimal design d*

Let d = D be the design containing all experimental conditions;
Setk = J;

while k > m do

foreach ¢; € d do Calculate g(d/{e}}); Set

d < d/argmin, g(d/{e;}) :

k<~ k—1

end

The constant factor approximations for the greedy and
reverse greedy algorithms are more complex that the local
search case. In the case of submodular function maximisa-
tion, a famous result is that the constant factor approximation
is 1 + 1/e (Nemhauser and Wolsey 1978). However, this
result does not carry over to minimising a supermodular func-
tion (I'ev 2001). Indeed, it is not possible to implement the
greedy algorithm for the design problems we discuss, as all
designs with fewer than p observations, and many with more
than p observations, will result in a non-positive semidef-
inite information matrix. We can start the algorithm from
a random small design, as Algorithm 2 describes, but this
of course would sacrifice any theoretical guarantees. II’ev
(2001) discusses the approximation factor for the reverse
greedy algorithm in the case of minimising a supermodular
function. The result depends on the ‘steepness’ or curvature
of the function g, which is defined as:

ax 8 —8®) — (¢(D) — g(D/e))
e€D (g(e) — g(®))
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In Eq. (5) we specified that the function had infinite vari-
ance for the empty set, in which case the steepness would be
one, which is equivalent to an unbounded curvature. In these
cases the reverse greedy search does not have an approxima-
tion factor (I'ev 2001; Sviridenko et al. 2017). Specifying
the value of the function to be undefined would also fail to
provide a bound.

Greedy algorithms have been used in the experimental
design literature previously. Yang et al. (2013) developed a
continuous sequential/greedy algorithm to identify optimal
designs for generalised linear models under a range optimal-
ity criteria, although not for c-optimality. They discretised
the design space using a regular lattice and showed conver-
gence to optimal designs as the number of lattice cells grows.
Variants and combinations of these methods have also been
proposed, for example, the ‘Cocktail algorithm’ combines
a sequential algorithm with two other algorithms in each
step to find D-optimal designs (Yu 2011). Fedorov (1972)
proposed a variant of this algorithm for D-optimal designs,
often called a sequential algorithm, in which observations
are sequentially added to an existing design until a conver-
gence criterion identifying D-optimality is reached. Fedorov
(1972) showed this algorithm produced a D-optimal design
for linear models without cardinality constraint. Accelerated
(or adaptive) greedy algorithms provide significant compu-
tational improvements on the standard greedy algorithm by
avoiding recomputation of the objective function (Robertazzi
and Schwartz 1989). Accelerated greedy algorithms have
been used in experimental design, designing sensor networks,
and other problems (Yang et al. 2019; Zou et al. 2016; Guo
et al. 2019). However, again, there are few applications for
c-optimality.

Given the lack of theoretical guarantees, one may consider
these algorithms irrelevant to the c-optimal design problem.
However, for some of the areas we use as examples below,
they have been used anyway. For example, there has been
growing interest in methods to identify c-optimal designs for
cluster randomised trials (e.g. Girling and Hemming (2016);
Hooper et al. (2020)). Several recent articles have used an
algorithmic approach that involves sequential removal of
observations from a design space to identify c-optimal clus-
ter randomised trial designs (Hooper et al. 2020), or using the
change in variance of treatment effect estimators when exper-
imental units are removed to identify efficient designs (Kasza
and Forbes 2019). While these algorithms lack theoretical
guarantees, they may empirically still perform adequately
for these design problems. They also run faster than the local
search. So we include them in the empirical comparisons
below.

2.2 Computation and approximation
2.2.1 Information matrix approximations

The greatest limitation on executing these algorithms is the
evaluation of the information matrix (4) as it requires calcu-
lation and inversion of ¥ or calculation of the gradient of the
log likelihood. As we discuss in Sect.2.2.2, once the covari-
ance matrix is obtained, updating its inverse after adding or
removing an observation can be done relatively efficiently.
However, an efficient means of generating X is still required
for non-linear models. Breslow and Clayton (1993) used the
marginal quasilikelihood of the GLMM to propose the fol-
lowing first-order approximation:

s~Wwl+zpz" (1)

an—' (2
an

Var(y|u)), which are recognisable as the GLM iterated
weights (McCullagh and Nelder 1989). The approximation is
exact for the Gaussian model with identity link. Higher order
approximations exist in the literature, however, their use has
not been found to improve the quality of optimal designs,
at least in the case of D-optimality. Waite and Woods (2015)
consider the case of D-optimal designs and compare (11) with
the GEE working covariance matrix. They find it does not
perform as well as the approximation based on the marginal
quasilikelihood. We do not consider the GEE covariance in
this article, as we aim to use explicit covariance functions
with different parameterisations.

Zeger et al. (1988) suggests that when using the marginal
quasilikelihood a better approximation to the marginal mean
can be found by “attenuating” the linear predictor in non-
linear models. For example, with the log link the “attenuated”
mean is E(y;) ~ h~'(x;B + z;Dz! /2) and for the logit
link E(y;) ~ h~'(x;pdet@Dz]z; + N7?) with a =
16+/3/(157). Waite and Woods (2015) find that using atten-
uated parameters with the approximation (11) can achieve
more efficient designs for D-optimality. For the non-linear
models below we compare with and without attenutation.
Waite and Woods (2015) also propose approximations based
on (3). They consider blocked designs where there is no cor-
relation between experimental units, and so the information
matrix can be computed as the sum of information matrices
of the units in the design as Eq. (8). For a binomial-logistic
model, the information matrix can then be calculated using
(3) by completely enumerating the outcome space if the size
of the experimental unit is relatively small. However, we

where W is a diagonal matrix with entries W;; =
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consider designs where there may be correlation between
experimental units, limiting the computational tractability of
such an approach as a complete enumeration of the outcome
space would be infeasible.

2.2.2 Algorithm efficiency

Equation (8) also shows how we can achieve some com-
putational efficiency with correlated observations. A naive
optimisation approach that recalculated the information
matrix for each design would require at least O (1) opera-
tions by needing to invert the covariance matrix each time. We
can iteratively add or remove single observations at a time,
i.e. moving fromd tod/{i}U{i’} and i # i’, so the calculation
only requires O (rn”) operations to add or remove an exper-
imental unit through rank-1 up/down dates of the inverse
covariance matrix (see “Appendix”). The total running time
of the local search algorithm scales with Om*r3(J —m)),
as we have to evaluate swapping m experimental units with
J — m remaining units of size r up to m times. The exper-
imental units are not always unique, in these cases we can
detect any duplicated experimental conditions and only eval-
uate any swap involving it once, while keeping track of the
number of copies in the design space and design, to reduce
running time. As such the values of m and J in the expression
for complexity can be interpreted as the numbers of unique
experimental units in the design and design space, respec-
tively.

The computational complexity of the greedy search algo-
rithm scales as O (m3r3(J — m)), however it generally runs
much faster than the local search since most function evalu-
ations are of designs smaller than m. The complexity of the
reverse greedy algorithm scales as O (J3r3(J — m)).

3 Comparative performance
3.1 Comparison of algorithms

We consider several examples to compare the three algo-
rithms described above. We compare them in two areas:
quality of solution and computational time. As the local and
greedy search algorithms have a random starting set, we run
them each 100 times; the reverse greedy search is determin-
istic and so is run only once per example.

We use the approximation (11) for all the analyses. For
the examples using a Gaussian-identity model, the approx-
imation is exact. For non-linear models (binomial-logistic,
binomial-log, and poisson-log) we make the additional
comparison between an approximation with and without
attenuation as described in Sect.2.2.1.

For each example we calculate the ‘relative efficiency’
as the ratio (expressed as a percentage) of the variance (i.e.

@ Springer

the value of cTMd*1 ¢) of the design(s) from each algorithm
compared to the variance of the best design from all algo-
rithms. For the non-linear models, we only evaluate the single
best design from each algorithm, with and without attenu-
ated parameters, using Eq. (6). Enumerating the complete
outcome space to evaluate the expectations in (6) would not
be possible, so we use Monte Carlo integration with 100,000
iterations to estimate the relative variance.

We also report the approximate running time of each algo-
rithm. Timings were made on a computer with Intel Core
17-9700K, 32GB RAM, Windows 10. We make all these
algorithms available as part of the g1mmrOpt im package for
R. Code to reproduce the analyses in this article is included
as a supplementary file.

3.2 Applied examples

Our examples are derived from two study types that moti-
vated this article. Identifying optimal cluster randomised trial
designs, and determining optimal sampling locations to esti-
mate treatment effects in a geospatial setting. We describe
each of these in turn along with their associated examples.

3.2.1 Cluster randomised trial

A cluster randomised trial is a type of randomised trial design
in which groups, or ‘clusters’, of individuals are randomly
allocated to receive either a treatment or control. Cluster trials
are typically used to evaluate interventions that are applied to
groups of people rather than individuals, for example, quality
improvement initiatives for healthcare clinics, or educational
interventions in classrooms. Figure 1 describes a design space
for a cluster randomised trial with repeated measures. Each

Cluster

1 2 3 4 5
Time

Fig. 1 An illustration of a cluster randomised trial design space. Each
cell represents a cluster-period and is comprised of observations from
individuals within the cell. Yellow = control status with no intervention;
blue = with intervention. (Color figure online)
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Table 1 Model specifications for the comparison examples for the cluster randomised trial

Model Parameters
F h Cov B %

Cluster trial—cross-sectional

A Gaussian Identity Exc N/A 01 =0250,=0.10,=1

B Gaussian Identity Exc N/A 01 =0.10p =0.10, =1

C Gaussian Identity AR1 N/A o1 =0.25X1=0.60, =1

D Gaussian Identity AR1 N/A 01=01A1=090, =1

E Binomial Logit Exc Bo = 0.1 o1 =0.250, =0.1
B =[-0.5,-0.3,-0.1,0.1,0.3]

F Binomial Logit Exc Bo = 0.1 o1 =0.10p=0.1
B =[-0.5,-0.3,-0.1,0.1,0.3]

G Binomial Log AR1 Po=0.1 01 =02514=0.6
p1=[-15-13,-1.1,-0.9, -0.7]

H Binomial Log ARI1 Bo=0.1 o =0.11=09
p1=[-15-13,-1.1,-0.9, -0.7]

Cluster trial—cohort

I Gaussian Identity Exc N/A 01 =0250=0.102=0802=0.2

J Gaussian Identity Exc N/A o1 =0.100 =0.1 a(.z =0.8 aez =0.2

K Gaussian Identity ARI N/A 01=0251=060?=0.802=02

L Gaussian Identity AR1 N/A 061=011=0902=0802=02

Geospatial sampling

M Gaussian Identity Exp N/A o1 =0251=0.25

N Binomial Logit Exp Bo=0p1 =log(2), pp =4 o1 =0251=0.25

Exc. exchangeable covariance function, AR/ autoregressive covariance function, Exp. exponential covariance function

cell is a cluster-period within which we can observe multiple
individuals. There are K = 6 clusters and 7 = 5 total time
periods. The linear predictor for an observation i in cluster k
at time 7 is:

Nike = BoAkr + B1Tr + €iks (12)

where Ag; is a treatment indicator equal to one if the cell
has the intervention and zero otherwise as shown in Fig. 1, 7;
are T time-period indicators (so we do not include an inter-
cept). We consider two covariance function specifications for
€ at the cluster-level and examine both cross-sectional and
cohort designs. The covariance functions represent the most
widely used specifications for these studies (Li et al. 2021).
First, an exchangeable covariance function with cluster and
cluster-period random effects with cross-sectional sampling
in each time period (Hussey and Hughes 2007; Hemming
et al. 2015):

U]2+022 ifk=k,t=1¢
Cov(eikr, €)= {01 ifk=Fk,t#1
0 otherwise

Second, an autoregressive covariance function:

o2l itk =k
Cov(€iks, €irkr) = .
0 otherwise

For models with cohort effects where the same individu-
als appear in each cluster in every period, we modify these
covariance functions by adding an additional term UCZ to the
covariance if the individual is the same i = i’. For Gaussian
models we notate the observation-level variance of the error
term as o 2.

Table 1 lists the different model specifications we exam-
ined for the cluster randomised trial and other examples.
We include both linear and non-linear models with differing
covariance structures and parameters. The choice of covari-
ates generally represents arange from ‘high’ to ‘low’ levels of
between-cluster correlation in these settings (Hemming et al.
2015, 2020). We specify a maximum number of individuals
per cluster-period of 10, and aim to identify an optimal design
of m = 100 individuals (out of a possible 300); an experi-
mental unit is a single observation from an individual. We
setc = (1,0, ...,0)7.
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Table 2 Relative efficiency and

approximate running time of the Local Greedy Reverse greedy

three algorithms for Examples Rel.eff. Time (s) Rel.eff. Time (s) Rel.eff. Time (s)

using Gaussian-Identity model
A 100.0-100.2 1-2 102.9-109.1 0-1 100.0 2
B 100.0-100.4 1-2 102.2-109.5 0-1 100.0 2
C 100.0-100.2 1-2 101.4-107.0 0-1 100.1 2
D 100.0-100.8 1-2 103.9-109.5 0-1 100.0 2
I 101.2-108.2 40-50 116.0-345.6 1-2 100.0 10
J 100.3-106.0 40-50 114.0-201.0 1-2 100.0 10
K 100.9-106.2 40-50 111.8-184.1 1-2 100.0 10
L 101.9-112.7 40-50 130.3-161.3 12 100.0 10
M 100.0-100.0 90-100 100.3-101.9 2-3 100.0 3

3.2.2 Geospatial sampling

There is a broad literature on selecting the optimal sam-
pling locations (and times) to draw samples across an area
of interest (e.g. Chipeta et al. 2017). However, these sam-
pling patterns are generally designed to estimate a statistic
like the prevalence of a disease across an area and its spatio-
temporal distribution. A related, but possibly more complex,
question asks where across an area one should sample to pro-
vide the most efficient estimates of point-source interventions
with spatially-heterogeneous effects. A geospatial statistical
model can be represented as a GLMM (Diggle et al. 1998),
thus if the possible sampling locations are discretised, the
design problem is amenable to the methods in this article.

Our design space is a unit-square A = [0, 1]>. The space is
divided into a regular 15 x 15 lattice, where observations are
made at the cell centroids @ € A. An intervention is located
at the point z = (0.5, 0.5). The mean function is specified
as:

ni(a) = Bo + Biexp(—Pz2la — z|) + €4 (13)
To accomodate the non-linear mean function in the frame-
work described above we use an additional first-order
approximation to the information matrix [following Holland-
Letz et al. (2011, 2012) and others]:

My=FTs"'F (14)
where the first column of F' is a vector of ones, the second
columnis du /9B = exp(—pBala — z|), and the third column
is 0u/0B2 = —Pila — zlexp(—pala — z|). We set fo = 1,
B1 = In(2), and B, = 4. We specify a Poisson distribution
with log link function. Finally, we specify an exponential
covariance function:

Cov(ey, €) = ofexp(—Ala —a')) (15)
which is commonly used in geospatial applications. Our aim
is to find an optimal design of size m = 80 (of a total possible

@ Springer

325). Wesetc = (0, 1, 0.1)7. Table 1 lists the parameter and
model specifications for these examples.

3.3 Results

Table 2 reports the relative efficiency and approximate com-
putational times for the Gaussian examples. The greedy
search performed the worst of the three algorithms in all
examples. The local and reverse greedy searches both often
found the optimal design, although the reverse greedy algo-
rithm was more consistent with the worst design having a
variance only 0.1% greater than the local search. Figure?2
shows the distribution of variances of the designs from the
local search compared to the reverse greedy search. For the
cross-sectional cluster trial designs the worst design pro-
duced by the local search had a variance less that 1% greater
than the best design, but with the cohort cluster trial designs
this rose to 12%. The same design was produced on every
iteration for the geospatial example. Running times for these
examples ranged from 1 to 100s. The local search scaled
poorly. The cross-sectional cluster trial examples had 30
unique experimental units compared to 60 for the cohort
design and 325 for the geospatial example.

Table 3 reports the results for the non-Gaussian examples.
Similarly to the Gaussian examples, the local and reverse
greedy searches performed the best with either one or both
finding the best design. Attenuation appears to make little
difference to the quality of the solutions in these examples.
Figures 3 and 4 show the best design for examples E, H, and
M. Notably, the optimal design for Example H is not symmet-
ric owing to the heteroskedastic variance of the binomial-log
model.

4 Comparison with multiplicative methods

An approximate ‘multiplicative’ design is characterised by
a probability measure over unique experimental units ¢ =
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Fig. 2 Histogram showing the values of the c-optimal criterion from the local search for each of the examples. The dashed red line indicates the
value from the reverse greedy search. X-axis values are multiplied by 100

Table 3 Relative efficiency and

. . Att Local Greedy Reverse greedy
approximate running of the best
designs from the three Rel.eff. Time (s) Rel.eff. Time (s) Rel.eff. Time (s)
algorithms with and without
attenutation (Att.) for the E N 100.0 12 104.4 0-1 100.0 2
examples with non-Gaussian Y 100.7 12 101.1 0-1 100.0 2
models F N 100.0 1-2 101.9 0-1 100.0 2
Y 100.0 1-2 100.0 0-1 100.0 2
G N 100.0 1-2 100.4 0-1 100.2 2
Y 100.0 1-2 100.3 0-1 100.2 2
H N 100.0 1-2 100.5 0-1 100.0 2
Y 100.0 1-2 100.5 0-1 100.0 2
N N 100.0 90-100 100.2 2-3 100.0 3
Y 100.0 90-100 100.1 2-3 100.0 3

{(pj,ej) : j =1,.J;p; €[0,1]; Zj pj = 1} where  and Young 2002). Briefly, for a given set of weights p; and a
pj are the weights associated with each experimental units.  target total of number of experimental units m in the design,
These weights can be identified for design spaces withuncor-  the methods for determining the number of each experimen-
related experimental units (Holland-Letz et al. 2012; Sagnol tal units m ; such that 3 jmj =m,are:

2011). However, there are several methods for rounding pro-

portions to integer counts that sum to a given total (Balinski
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Fig.3 Optimal designs for Examples E and G. The 0 and 1 labels in the top row indicate the treatment status of the cluster period
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1. Hamilton’s method Let m; = n * pj, we assign || of
each experimental condition. The remaining total is filled
by the experimental conditions with the largest remain-
ders |7 — |7 || until we have n experimental conditions.

2. Divisor methods Start withalln; = Oandlet; = n*¢;.
Proceeding iteratively, we choose the next experimental
condition in the design to be that with max ; 7r; /a(n ;), for
which we update the total until the condition ) jnj=n
is met.

(a) Jefferson’s method a(nj) =n; + 1

(b) Webster’s method a(nj) =n; +0.5

(¢) Adam’s method a(n ;) = n;j. Initially we include one
of each experimental condition with r; > 0.

@ Springer

Pukelsheim and Rieder (1992) showed that the optimal
rounding method was a variant of Adam’s method, although
under the assumption that there is at least one of each
experimental unit. However, for many experimental design
problems this assumption is not required, including the exam-
ple we examine below. To compare the performance of the
multiplicative methods discussed in Sect. 1.2, we take the
best design from the three combinatorial algorithms, and
compare it to the design with the lowest variance from across
all rounding methods. To identify the optimal approximate
design p we use the second-order cone program proposed by
Sagnol (2011), which is also implemented in the R package
glmmrOptim along with the rounding methods.
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Fig.5 Ratio of the variance of the design from each method to the highest variance for 6 to 30 clusters in example D
4.1 Example Gu ={Gy, ..., Gy} (16)

We return to the cluster randomised trial examples, setting
the experimental unit to a whole cluster sequence, i.e. a row
consisting of five time periods each with ten individuals in
Fig. 1. We wish to include m clusters in the design, each of
which may be assigned to any of the experimental conditions,
and consider m = 6 to m = 30. We use the models specified
as Examples A-D in Table 1.

Figure 5 presents the ratio of the variance of the best
design from the multiplicative algorithm to the variance of the
best design from the combinatorial algorithms. For smaller
sample sizes, particularly with an odd sample size, the multi-
plicative algorithm performed worst than the comibinatorial
approach, although the worst design had a variance only 2%
larger than the best design. For larger sample sizes the two
methods generally produced the same optimal design.

5 Robust optimal designs

The analysis and discussion so far has been based on the
assumption that the correct model specification is known.
However, this is typically an unrealistic assumption, and it
is well known that an optimal design for one model may
perform very poorly for an alternative model. We consider
a model robust optimal design criterion that is amenable
to combinatorial optimisation. Following Dette (1993), we
assume that the “true” model belongs to a known class
of GLMMs. We can define a model with the collection
G = (F, h, B, 0). The class of models is then

The vector p = (py, ..., py) wWith p > 0is then called a prior
for the class G with the values reflecting the belief about the
relative probability or adequacy of each model. The objective
function (5) can be written for a specific model as g,(d) =
g(d; G,) and we can define the robust objective function as:

U
h(d) = pugu(d) (17)
u=1

The objective function (17) is also monotone super-
modular since 25:1 pugn(d U {e}) — Z;lf:l ougn(d) =
St Pulgn(d U fe)) — gn(@)] = 31 pulgn(d U {e)) —
gn(d)] and Y0, pugn(d) = Y u_| pugn(d’) ford' < d
if all the g, are themselves monotone submodular. We can
therefore use the algorithms described above. A design min-
imising (17) is then said to be optimal for Gy over the prior
p. We note that other robust specifications such as minimax
(h(d) max, g,(d)) are not supermodular, so we do not
consider them here.

Dette (1993) provides a geometric characterisation of the
model robust criterion for c-optimal designs with uncor-
related observations, using the objective function h(d) =
>, Pulog(gu(d)), building on similar work for D-optimal
designs. However, this has not yet been extended to correlated
experimental units to permit use of multiplicative methods
in this context.

We examine two examples for the robust optimal design.
The examples A-D and E-H are taken as two classes of
models. We assign equal weight to each design in each class
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Table 4 Relative efficiency of

the best designs from the three Alt Local Greedy Reverse greedy
algorithms with and without Rel.eff. Time (s) Rel.eff. Time (s) Rel.eff. Time (s)
attenutation for Examples E-H
and J with non-Gaussian models A-D N/A 100.0-100.3 2-4 102.9-109.0 0-1 100.0 7
E-H N 100.0 2-4 104.3 0-1 100.0 6
Y 100.0 2-4 104.1 0-1 100.0 6
Total

Cluster
Cluster

-
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_
o

Time

Time

Fig.6 Approximate robust and Bayesian optimal designs for examples D—G. The 0 and 1 labels in the top row indicate the treatment status of the

cluster period

as the prior. For the class E-H, we use both attenuated and
non-attenutated linear predictors for the approximation.

5.1 Results

Table 4 shows the results for the two robust optimal design
examples. The results reflect those from all the previous
examples: the greedy search performs relatively poorly with
variances up to 10% larger than the best design. Both the
local and reverse greedy searches identify the best design in
each class. Figure 6 shows the model-robust optimal designs.

6 Conclusion

In this article, we have showed that the c-optimal design crite-
rion is a monotone supermodular function for GLMMs using
the GLS information matrix. We evaluated the performance
of three supermodular function minimisation algorithms
to identify c-optimal experimental designs with correlated
experimental units. The theoretical upper bound on the rel-
ative variance of a design from the local search algorithm is
1.5 and no bound exists for the greedy and reverse greedy
algorithms, however, for the examples we considered the
performance is significantly better than 1.5 times the best

@ Springer

design. The greedy algorithm performed the worst, which
was to be expected given that it cannot be executed fully as it
cannot start from the empty set. The local search and reverse
greedy searches performed comparably in terms of their best
designs, although the local search could produce designs with
varaince more than 10% larger than the output of the reverse
greedy search. Thus, the local search needs running multiple
times to provide a reliable output. The local search also had
poorer scaling in terms of computation time than the reverse
greedy. Thus, while the reverse greedy search lacks a the-
oretical guarantee, it would be favoured empirically for the
types of study design considered here.

We showed that the algorithms could also be applied for
model robust optimal design identification using a weighted
average design criterion. The method uses a prior, specifying
the weights to place on each possible model. This specifi-
cation suggests a way of applying these algorithms for use
in Bayesian optimal design. Chaloner and Verdinelli (1995)
comprehensively review Bayesian experimental design cri-
teria and show the Bayesian c-optimality function to be:

f / (T [My + Vol ') p(@) p(B)dOd B

where V) is the prior covariance of the 8 parameters and p(6)
and p(p) the prior density function for the covariance and
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linear predictor parameters, respectively. One can approxi-
mate the integral above using a Riemann sum, which would
discretise the parameter space and provide a set of weights to
place on each model. Recent advances have generated gen-
eral algorithms for Bayesian optimal design problems with
non-linear models, in particular Overstall and Woods (2017).
Further research is needed to determine whether an approx-
imation using the simple algorithms in this paper provide a
viable or useful alternative to more advanced approaches.

We cannot guarantee that the optimal design was included
in the output of any of the algorithms. However, our com-
parison with other multiplicative methods provides some
reassurance. For designs with correlation within but not
between experimental units, deriving weights using mul-
tiplicative methods for each experimental unit provides
one method of approximating an optimal design (Holland-
Letz et al. 2011; Sagnol 2011). Combinatorial approaches
produced the same or better designs in the examples we con-
sidered.

Optimal designs may sometimes be impractical or diffi-
cult to implement. The design in the right panel of Fig.3
is highly unlikely to ever be implemented. However, being
able to identify approximately optimal designs provides a
benchmark against which to justify proposed experiments.
Many types of study that can be described by GLMMs,
such as cluster randomised trials or spatio-temporal sampling
across an area, can be significant and expensive undertakings.
The combinatorial algorithms provide a means of identify-
ing near-optimal or optimal designs to support their planning.
Many design problems are not inherently discrete; however,
we can discretise the design space by specifying a set of
design points (Yang et al. 2013). Thus, the methods evalu-
ated in this article provide a useful set of tools to support
study design.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10280-
w.
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Appendix

Rank-1 down/up dating to remove/add obser-
vations

Removing an observation

For a design d with m observations with inverse covariance
matrix Z;l we can obtain the inverse of the covariance
matrix of the design with one observation removed d’ =
d/{i}, E;l as follows. Without loss of generality we assume
that the observation to be removed is the last row/column of
251. We can write E;l as

2= ((lCT i) (18)

where C is the (m — 1) x (m — 1) principal submatrix of B, d
is a column vector of length (m — 1) and e is a scalar. Then,

G=x;'"=C—dd" /e (19)

/iy =
Adding an observation

For a design d with m observations with inverse covariance
matrix Z;l, we aim now to obtain the inverse covariance
matrix of the design d’ = d U {i’}. Recall that Z is a R x
Q design effect matrix with each row corresponding to a

possible observation. We want to generate H~! = 2;1.
Note that:

G' f
H=Y,= 2

where f = Z;cqDZ; is the column vector corresponding to
the elements of & = W~ 4+ ZDZT with rows in the current
design and column corresponding to i’, and h is the scalar
Wlf’;, + Z#DZ}. Also now define:

H* = (%d 2) 1)
so that

o = (Eg | 1?/1) @2)
and

H™ = <ZO" }’:) (23)

and u = (f7,0)7 and v = (0, ...,0, )7, both of which
are length m column vectors. So we can get H** from H*
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using a rank-1 update as H** = H* + uv! and similarly
H = H** 4 vu’ . Using the Sherman-Morison formula:

H*—luvTH*—l
kk—1 *—1
B = T Ty @)
and
H**—lv TH**—I
R : (25)

1+ ul H= 1y

So we have calculated the updated inverse with only matrix—
vector multiplication, which is O (n?).
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