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a b s t r a c t 

1 H Magnetic Resonance Spectroscopy (MRS) is an important non-invasive tool for measuring brain metabolism, 
with numerous applications in the neuroscientific and clinical domains. In this work we present a new analy- 
sis pipeline (SLIPMAT), designed to extract high-quality, tissue-specific, spectral profiles from MR spectroscopic 
imaging data (MRSI). Spectral decomposition is combined with spatially dependant frequency and phase correc- 
tion to yield high SNR white and grey matter spectra without partial-volume contamination. A subsequent series 
of spectral processing steps are applied to reduce unwanted spectral variation, such as baseline correction and 
linewidth matching, before direct spectral analysis with machine learning and traditional statistical methods. 
The method is validated using a 2D semi-LASER MRSI sequence, with a 5-minute duration, from data acquired in 
triplicate across 8 healthy participants. Reliable spectral profiles are confirmed with principal component analy- 
sis, revealing the importance of total-choline and scyllo-inositol levels in distinguishing between individuals – in 
good agreement with our previous work. Furthermore, since the method allows the simultaneous measurement 
of metabolites in grey and white matter, we show the strong discriminative value of these metabolites in both 
tissue types for the first time. In conclusion, we present a novel and time efficient MRSI acquisition and processing 
pipeline, capable of detecting reliable neuro-metabolic differences between healthy individuals, and suitable for 
the sensitive neurometabolic profiling of in-vivo brain tissue. 
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. Introduction 

Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is an estab-
ished technique for the non-invasive measurement of metabolism, of-
ering unique insight into brain function and health. While widely used
linically for characterisation of healthy and pathological brain tis-
ue ( Oz et al., 2014 ), MRS can also be used to investigate functional
hanges in brain metabolites. Using MRS, the levels of primary excita-
ory and inhibitory neurotransmitters: glutamate and GABA, have been
hown to modulate in response to motor learning tasks ( Kolasinski et al.,
019 ), visual stimulation ( Bedna ř ík et al., 2015 ) and other experimental
aradigms ( Mullins, 2018 ) – demonstrating direct links between neuro-
ransmitter levels; brain activation and plasticity. Glutamate responses
ave also been recently shown to distinguish between perceived and un-
erceived visual stimuli in primary visual cortex ( DiNuzzo et al., 2022 ),
rucially in the absence of neurovascular changes measured with fMRI.
he specific role and action of other MRS-detectable molecules are less
ell understood but equally implicated in cognitive processes. For exam-
le, N-Acetylaspartic acid (NAA), one of the most abundant metabolites
∗ Corresponding author. 
E-mail address: wilsonmp@bham.ac.uk (M. Wilson) . 
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n the human brain, has been shown to relate to fluid intelligence and
reativity ( Jung et al., 2009 ; Nikolaidis et al., 2017 ). 

Whilst short term alterations in metabolites such as glutamate, GABA
nd lactate are reasonably well characterised in response to basic vi-
ual stimuli and motor tasks over periods of minutes, longer term
hanges are only beginning to be established. Recent work suggests
hat glutamate in the lateral prefrontal cortex accumulates over pe-
iod of hours in response to hard cognitive work ( Wiehler et al., 2022 ),
ighlighting an important relationship between cognitive fatigue; sleep
nd neuro-metabolism. Alternatively, we may query which aspects of
euro-metabolism are reliably different between individuals over a
onger time-period of months – with recent work demonstrating the dis-
riminative value of choline-containing metabolites and scyllo-inositol
 Wu et al., 2022 ). 

Despite the historical and recent scientific insights derived from MRS
easures of neuro-metabolism, the technique remains relatively under-
sed in the field of cognitive neuroscience – particularly when com-
ared to other MR-based methods such as functional-MRI and diffusion-
RI. Difficulties in obtaining high data quality; accurate signal localisa-
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2023.120235
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120235&domain=pdf
mailto:wilsonmp@bham.ac.uk
https://doi.org/10.1016/j.neuroimage.2023.120235
http://creativecommons.org/licenses/by/4.0/


O. Vella, A.P. Bagshaw and M. Wilson NeuroImage 277 (2023) 120235 

t  

e  

r  

(  

2
 

r  

n  

q  

v  

u  

c  

v  

s  

t  

r  

d  

c  

a  

s  

a  

o  

s  

a  

i  

s  

t  

a  

t  

g  

e  

g
i

2

2

 

a  

t  

d  

d  

t  

p

 

e  

p  

t  

s  

t  

r  

a  

S  

a  

F  

o  

d  

s  

A  

B  

r  

w

 

s  

t  

s  

i  

m  

p  

t  

g
 

t  

c

 

s  

e  

y  

p  

a  

t  

i  

a  

b  

i  

o  

b
 

t  

c  

s  

i  

F  

m  

a  

f
 

t  

i

2

 

B  

w  

g  

T  

F  

2  

f  

a  

v  

d  

a  

f  

(  

c  

p  

r  

V  

t  

w  

r

ion and robust analysis methods likely explain this discrepancy. How-
ver the wider availability of modern methods established by the MRS
esearch community is expected to address these technical challenges
 Bogner et al., 2021 ; Maudsley et al., 2021 ; Near et al., 2021 ; Öz et al.,
021 ; Vidya Shankar et al., 2019 ; Wilson et al., 2019 ). 

In this work, we present a novel analysis pipeline designed to amelio-
ate several technical challenges associated with obtaining high quality
euro-metabolic spectral profiles from MRS. The most common MRS ac-
uisition technique (single voxel MRS) is known to suffer from partial
olume effects, making it difficult to avoid spectral contamination from
nwanted tissue types. For instance, a 2 cm sided voxel placed in corti-
al grey matter will always contain a degree of white matter tissue, and
ariations in cortical thickness will introduce unwanted variance in the
pectral data due to the metabolic differences between the two tissue
ypes. To address this limitation, we employ a 2D semi-LASER magnetic
esonance spectroscopic imaging (MRSI) sequence to acquire spectral
ata from an axial slice just above the corpus collosum. These spectra,
ontaining a mixture of white and grey matter contributions, are first
ligned in terms of phase and frequency ( Wilson, 2019 ), before applying
pectral decomposition ( Goryawala et al., 2018 ) to obtain “pure ” white
nd grey matter spectra with high SNR and spectral resolution. A series
f spectral processing steps are then applied to minimise the expected
pectral variations related to experimental, rather than metabolic, vari-
bility. Finally, the processed white and grey matter spectra may be
nvestigated separately, or in combination, to form a neuro-metabolic
pectral profile – amenable for further analysis with machine-learning or
raditional statistical approaches. We refer to this new analysis pipeline
s SLIPMAT: SpectraL Image Processing for Metabolic Analysis of Tissue-
ypes, since metabolically distinct tissue types are extracted from a sin-
le MRSI dataset. The method is applied to MRSI data and shown to
xtract high quality neuro-metabolic spectral profiles, capable of distin-
uishing between individuals when combined with machine learning –
n good agreement with our previous work ( Wu et al., 2022 ). 

. Methods 

.1. SLIPMAT algorithm 

The objective of the SLIPMAT method is to extract high quality white
nd grey matter spectra for analysis with machine-learning or conven-
ional techniques. In practice, this requires MRSI and volumetric MRI
atasets to be acquired from the same participant, ensuring the two
atasets are spatially consistent. The simplest approach, as used here, is
o ensure both scans are acquired in the same session and the partici-
ant’s head remains static throughout the session. 

Step 1: intra-scan spectral correction and tissue decomposition 

The first analysis step involves extracting the useful region of inter-
st (ROI) in the MRSI dataset, for instance excluding voxels outside the
re-localised volume of interest (VOI) region or brain. A reference spec-
rum is then defined for frequency and phase alignment. Here, we used a
ingle spectrum central to the acquisition region to minimise the poten-
ial for scalp lipid contamination. However, in more challenging brain
egions, an “ideal ” reference spectra could be simulated to match the
cquisition protocol to ensure perfect baseline, phasing, lineshape and
NR. The frequency and phase of all other spectra within the ROI are
djusted to match the reference using the RATS method ( Wilson, 2019 ).
ollowing alignment, spectra are intensity normalised based on the sum
f the metabolite-rich spectral data points between 4 and 0.2 ppm to re-
uce the influence of B1 inhomogeneity. Since broad signal components,
uch as residual water tails, can heavily influence normalisation, the
symmetric Least Squares (ALS) baseline correction method ( Eilers and
oelens, 2005 ) is applied prior to summation. Note, the baseline cor-
ected spectra are only used to derive the normalisation scaling values,
hich are subsequently applied to the uncorrected spectra. 
2 
In parallel, the volumetric MRI is segmented into tissue types using
tandard tools ( Zhang et al., 2001 ), before being spatially co-registered
o the MRSI data – assuming no movement between the MRI and MRSI
cans. Knowledge of the proportion of white and grey matter contribut-
ng to each voxel allows the spectra of the two tissue types to be deter-
ined with simple linear algebra ( Goryawala et al., 2018 ) – eliminating
artial volume effects and significantly boosting the spectral SNR rela-
ive to individual MRSI voxels. These processing steps are summarised
raphically in Fig. 1 . 

At this stage of the algorithm, two high quality tissue-specific spec-
ra have been derived from the MRSI data and could be analysed with
onventional fitting approaches ( Near et al., 2021 ). 

Step 2: inter-scan consistency correction and scaling 

Once the tissue-specific spectra have been determined, a further
tage of frequency and phase correction is applied ( Wilson, 2019 ) to
nsure consistency between all MRS scans involved in subsequent anal-
sis. In our data the mean spectrum was calculated across all decom-
osed white and grey matter spectra and used as a reference. However,
 good quality spectrum taken from a single scan, or a simulated spec-
rum, could also be used. A simple zero-order baseline correction step
s applied, subtracting any intensity offset from zero as measured from
 flat spectral region (0 to − 1 ppm). A variable degree of gaussian line
roadening is also applied to each spectrum to reduce the influence of
nconsistent shimming between spectra. For our data, the largest FWHM
f the tNAA resonance was 0.06004 ppm, therefore all spectra were
roadened to 0.061 ppm. 

Zero-filling to twice the original length is performed to improve spec-
ral SNR ( Bartholdi and Ernst, 1973 ), before discarding the imaginary
omponent and removing spectral points outside the metabolite-rich
pectral region (4 to 0.2 ppm). ALS baseline correction is applied to elim-
nate signals from residual water or broad out-of-volume scalp lipids.
inally, white and grey matter spectra are separately scaled by the sum-
ation of spectral data points. These spectra, derived from the same

cquisition, may be used individually or concatenated to form a single
eature vector for further analysis ( Fig. 2 ). 

All spectral processing and co-registration steps are implemented in
he open-source spectral analysis package spant ( Wilson, 2021a ) and
mage segmentation is performed with FSL ( Woolrich et al., 2009 ). 

.2. MR acquisition 

A validation MR dataset was acquired at the Centre for Human
rain Health from 8 healthy adults (2 female, mean age 21 years)
ith a 3 T Siemens Magnetom Prisma (Siemens Healthcare, Erlan-
en, Germany) system using a 32-channel receiver head coil-array. A
1-weighted MRI scan was acquired with a 3D-MPRAGE sequence:
OV = 208 × 256 × 256 mm, resolution = 1 × 1 × 1 mm, TE / TR = 2 ms /
000 ms, inversion time = 880 ms, flip angle = 8°, GRAPPA acceleration
actor = 2, 4 min 54 s scan duration. Water supressed MRSI data were
cquired with 2D phase-encoding: FOV = 160 × 160 × 15 mm, nominal
oxel resolution 10 × 10 × 15 mm, TE / TR = 40 ms / 2000 ms, complex
ata points = 1024, sampling frequency = 2000 Hz. The MRSI slice was
ligned axially in the subcallosal plane with an approximately 1 mm gap
rom the upper surface of the corpus callosum. The semi-LASER method
 Scheenen et al., 2008 ) was used localize a 100 × 100 × 15 mm VOI,
entral to the FOV, four saturation regions were placed around the VOI
rescribing a 100 × 100 mm interior, and an additional four saturation
egions were positioned to intersect the four corners of the semi-LASER
OI to provide additional scalp lipid suppression. The total acquisition

ime for a single MRSI scan was 5 min and 6 s, and three MRSI datasets
ere acquired sequentially during the same session to assess technical

epeatability. 
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Fig. 1. The initial phase of the SLIPMAT method, resulting in a grey and white matter spectral pair for further processing. 

Fig. 2. The final phase of the SLIPMAT method, designed to produce high quality spectra with consistent linewidth, baseline, phase and frequency offsets between 
scans. 
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.3. Algorithm validation 

The SLIPMAT method was applied to 60 voxels taken from the cen-
ral 8 × 8 grid of each MRSI dataset, with the 4 corner voxels being ex-
luded due to their proximity to the diagonal saturation regions. Eight
articipants were scanned, and three MRSI scans were acquired in each
f the eight sessions, resulting in 24 pairs of processed white and grey
atter spectra for further analysis. The study was conducted according

o the principles expressed in the Declaration of Helsinki and partici-
ants gave written informed consent before data collection. All T1 scans
ere defaced (fsl_deface tool) as a first step for data sharing purposes. 

To validate the approach the dataset was interrogated in three ways.
irstly, principal component analysis (PCA) was applied to the processed
8 white and grey matter spectra to explore the greatest sources of
pectral variance. Secondly, the white and grey matter spectral pairs
3 
ere concatenated and PCA was applied to establish the reliability and
niqueness of an individual’s neuro-metabolic profile. Finally, one-way
NOVA was applied to each spectral data point, with the participant ID
sed as a factor variable, to further examine which spectral regions were
ost unique to an individual. Results were compared with known spec-

ral differences between white and grey matter, and a previous study
xploring individual differences in neurometabolism to assess consis-
ency. 

The segmented MRI volume and MRSI voxels are spatially co-
egistered, based on the geometry information embedded in the ex-
orted data files (affine matrix), and therefore our method assumes that
he subjects head remains static during the session. To assess the sen-
itivity of our method to movement, the MRSI affine matrix was ma-
ipulated to simulate shifts in the x-y plane of the scanner coordinate
ystem. 0, 2, 5, 8, 10 and 15 mm displacements were applied to each
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Fig. 3. Representative comparison of spectral quality with and without the frequency and phase correction (RATS) step for decomposed grey (A, C) and white (B, 
D) matter spectra. Corrected spectra (C, D) show improved SNR and spectral resolution compared to uncorrected (A, B). Abbreviations: LW - linewidth, SNR - signal 
to noise ratio, Ins - myo-inositol, tCho – total-choline, Glu – glutamate, NAAG - N-Acetylaspartylglutamic acid, Lac – lactate. 
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ession, with the first scan remaining unaffected and the second and
hird shifted along the x = y line. For example, with the 2 mm shift,
he first scan was not modified, the second scan was shifted 1.414 mm
long the x and y directions and the third scan was shifted 1.414 mm
long the -x and -y directions. The SLIPMAT method was applied to each
isplacement level and PCA was performed on the concatenated white
nd grey matter spectral pairs (as above) to assess how spatial shifts in-
uence the uniqueness of an individual’s neuro-metabolic profile. PCA

oadings calculated from the 0 mm shift were used for all displacements
o ensure consistency between analyses and aiding visual comparison. 

The SLIPMAT method exacts spectra corresponding to the two tissue
omponents, grey and white matter, which are known to have distinct
pectral patterns. To explore the possibility of spectral variability within
hese tissues types we applied spectral decomposition to three tissue
lasses: 1) grey matter, 2) central white matter and 3) peripheral white
atter. Central and peripheral white matter regions were distinguished

y calculating the median proportion of segmented white matter across
he analysis region (60 voxels). Voxels with greater than 1.5 times the
edian white matter proportion had their white matter contribution as-

igned to central white matter, whereas those voxel below the threshold
ere assigned peripheral white matter. A cut-off of 1.5 times the median
as chosen to approximately balance the SNR of the two decomposed
hite matter types. The SLIPMAT method was applied as previously de-

cribed, however for this analysis the output was increased (from two) to
hree spectra per MRSI acquisition, one per tissue class. Finally, PCA was
pplied to the individual spectra to assess any metabolic differences be-
ween central and peripheral white matter across all the acquired MRSI
ata. 

All MRS analysis, statistics and machine-learning was performed
ith the R statistical computing platform ( R Core Team, 2021 ) and
nalysis scripts used to generate the figures and tables in this paper
re available from https://github.com/martin3141/slipmat _ paper . MRS
nd MRI data are available in NIfTI format ( Clarke et al., 2022 ) from
enodo in BIDS format: https://doi.org/10.5281/zenodo.7189139 . 

. Results 

Compared to other MR techniques, MRS is particularly sensitive to
nhomogeneities in the static field across the VOI. Spatially dependant
4 
hanges in the frequency and phase of metabolite resonances results
n destructive interference when combing spectra, either through sim-
le spatial averaging or spectral decomposition. To mitigate these ef-
ects, the SLIPMAT method first corrects the spatially dependant fre-
uency and phase inconsistencies using the RATS algorithm – designed
o be robust to confounding spectral features, such as baseline insta-
ility ( Wilson, 2019 ). To evaluate the improvement in spectral quality,
he pre-processing pipeline ( Fig 1 ) was applied with and without the
requency and phase correction (RATS) step. Fig. 3 shows how the SNR
nd spectral linewidth of decomposed white and grey matter spectra are
ignificantly improved through the correction of spatial phase and fre-
uency inconsistencies, as performed by the first phase of the pipeline
 Fig 1 ). Average improvements in SNR across all MRSI scans were 51%
178 to 268, paired t -test p = 2.2e-16) accompanied by a 20% reduc-
ion (0.056 to 0.045 ppm, paired t -test p = 5.9e-5) in spectral linewidth,
easured from the tNAA resonance at 2.01 ppm. These improvements

re visually confirmed by comparing the grey matter lactate doublet at
.3 ppm – which is clearly distinct from the noise in the corrected data
 Fig 3 C) compared to the uncorrected ( Fig 3 A). 

The metabolite profiles of white and grey matter are known to be dif-
erent ( Pouwels and Frahm, 1998 ) and our results support these observa-
ions. For example, glutamate and myo-inositol are stronger in parietal
rey matter, whereas NAAG and total-choline are stronger in parietal
hite matter ( Fig. 3 C vs D). 

PCA was applied to the full set of white and grey matter spectra
cross 8 individuals to confirm the primary sources of spectral vari-
nce arise from genuine neuro-metabolic differences, rather than spec-
ral artifacts such as residual water signals and scalp lipid interference.
ig. 4 shows 80% of the variance (PC1) can be explained by differ-
nces between the two tissue types. PCA loading plots show which spec-
ral regions contribute most strongly to the scores, with the loadings
lot for PC1 ( Fig 4 . part B) highlighting total-choline (3.2 ppm), NAAG
2.0 ppm) and glutamate (2.4 ppm). The intensity of these resonances
grees with expected differences between white and grey matter, with
otal-choline and NAAG being elevated in white matter (positive scores
n PC1) and glutatmate being elevated in grey matter (negative scores
n PC1). 

In addition to tissue-types, Fig. 4 also demonstrates consistent spec-
ral differences between subjects, with some clustering of repeat mea-

https://github.com/martin3141/slipmat_paper
https://doi.org/10.5281/zenodo.7189139
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Fig. 4. PCA scores (A) and loadings for PC1 (B) of all white and grey matter spectra following processing with SLIPMAT. Clear separation is seen between the two 
tissue types in agreement with known metabolic characteristics. 

Fig. 5. PCA scores (A) and loadings (B-E) of concatenated white and grey matter spectral pairs following processing with SLIPMAT. Loadings for the PCs have been 
split into white and grey matter and displayed separately to aid spectral interpretation. Grey matter spectral scores are shown in parts B) and D) corresponding to 
PC 1 and PC 2 respectively. White matter spectral scores are shown in parts C) and E) corresponding to PC 1 and PC 2 respectively. 
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ures observed in PC2. To explore these differences further, the grey
nd white matter spectra for each MRSI dataset were combined into a
ingle feature vector – allowing both tissue types to contribute to an
ndividual’s neuro-metabolic spectral profile. PCA scores of these com-
ined profiles ( Fig. 5 A) shows a clear separation between subjects – with
he variance between repeats (technical variance) being smaller than
he variance between individuals (biological variance). Inspection of
he PCA loadings ( Fig. 5 B-E) highlights the importance of total-choline
3.21 ppm) and scyllo-inositol (3.34 ppm) in discriminating between in-
ividuals, in strong agreement with our previous work ( Wu et al., 2022 ).

Unsupervised methods such as PCA are informative for validation
urposes, but in practice the neuro-metabolic influence of a known in-
ervention or disease state is more commonly sought. One simple ap-
roach is to apply a conventional statistical technique, such as a t -test
n the case of two groups, to each spectral data-point to identify key fre-
uencies and metabolites related to the known grouping. Here we use a
ne-way analysis of variance (ANOVA) to assess which spectral features
re the most discriminatory between individuals for both white and grey
atter. 

Strong individual differences in total-choline and scyllo-inositol are
pparent from the high ANOVA F-statistics in those spectral regions
 Fig. 6 ), with larger differences observed in white matter compared to
rey matter. We note the strong similarities between Fig. 6 B) in this
5 
eport and Fig. 3 from ( Wu et al., 2022 ), with both plots highlighting
imilar spectral regions, despite differences in: scanner hardware and
ocation; participant cohort; acquisition protocol (single-voxel PRESS
s semi-LASER MRSI) and analysis pipeline ( Wilson, 2021b ). We also
ote, for the first time, that total-choline and scyllo-inositol are strong
iscriminatory features in white matter, whereas this was not possible
o determine from our previous work, where a single-voxel was placed
n the ACC region containing an average tissue proportion of 75% grey
atter and 25% white matter. 

The results from simulated spatial displacements between the MRSI
nd anatomical scan are presented in Fig. 7 . Only minor changes in PCA
cores are observed for displacements up to 10 mm, demonstrating that
LIPMAT is tolerant to displacements below this level. Larger displace-
ents cause the triplicate scans, belonging to each subject, to become

ess tightly clustered and increase their overlap with other subjects – in-
icating the spectral variability from spatial displacement is becoming
reater than the spectral variability between participants. 

The SLIPMAT method assumes MRSI data may be split into two pri-
ary tissue types, white and grey matter, and these are chosen due to

heir known distinct spectral features ( Fig. 4 ). However, less is known
bout how metabolite levels vary spatially within these tissue types,
herefore we extended the SLIPMAT method to examine differences
n central and peripheral white matter regions. Fig. 8 shows how the
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Fig. 6. Spectral ANOVA results performed on each frequency domain point independently and grouped over participants for decomposed (A) white and (B) grey 
matter spectra. Large F-statistic values correspond to a strong difference in the spectral intensity between participants. Dashed horizonal lines represent the Bonferroni 
corrected significance threshold ( p < 1e-4). Predominant spectral differences between participants are clear in both tissue types at 3.35 and 3.2 ppm assigned as sIns 
and tCho respectively. 

Fig. 7. PCA scores of concatenated white and grey matter spectral pairs following processing with SLIPMAT. Increasing levels of spatial displacement have been 
artificially applied in each panel to explore how movement between anatomical and MRSI acquisitions is likely to degrade the uniqueness of an individual’s neu- 
rometabolic spectral profile. 
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argest source of variance (PC1, 73%) remains the difference between
hite and grey matter, however splitting central and peripheral white
atter shows smaller (PC2, 9.7%), but consistent, differences between

hese tissue types. For each subject, central white matter regions show
igher scores in PC2 relative to peripheral white matter, correspond-
ng to greater levels of tCho and lower levels of tNAA ( Fig. 8 part B).
otably, the variance between central and peripheral white matter (PC
) is orthogonal to the variance between white and grey matter (PC 1),
uggesting the differences between central and peripheral white matter
annot be explained by differing levels of erroneous spectral contamina-
6 
ion between white and grey matter. If spectral contamination between
hite and grey matter was a primary factor, scores for peripheral white
atter would be expected to move closer to the grey matter cluster, e.g.
egative scores for PC1. 

. Discussion 

The primary goal of MRS analysis is to extract biologically mean-
ngful measures, whilst reducing the influence of variability from tech-
ical / experimental factors. In this work, we demonstrate how the se-
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Fig. 8. PCA scores (A) and loadings for PC2 (B) of a three-way decomposition of all grey matter (gm), central white matter (cwm) and peripheral white matter 
(pwm) spectra following processing with SLIPMAT. Clear separation is seen between grey and white matter (PC1), with additional and orthogonal variability apparent 
between central and peripheral white matter (PC2). 
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uential application of discrete spectral processing steps can achieve
his aim. Partial volume effects; frequency and phase inconsistencies;
aseline; and linewidth variability are reduced using a variety of tech-
iques ( Eilers and Boelens, 2005 ; Goryawala et al., 2018 ; Wilson, 2019 ),
nd combined into a novel and fully automated analysis pipeline: SLIP-
AT. The method is validated using MRSI data from 8 healthy par-

icipants, highlighting subtle spectral features associated with individ-
al differences in neuro-metabolism in strong agreement with previous
ork ( Wu et al., 2022 ). 

Conventional MRS analysis relies heavily on parametric least-squares
tting of a known basis-set of metabolite, macromolecule and lipid sig-
als ( Near et al., 2021 ). However, in this work, we take the approach of
xtracting spectral “fingerprints ” for further analysis with multivariate
nd machine learning techniques, a strategy more commonly associated
ith analytical chemistry – known as chemometrics ( Wehrens, 2020 ).
ne significant advantage of this approach includes the potential to dis-
over spectral features that are not typically incorporated into a fitting
asis-set, e.g., novel metabolites. In addition, this methodology is rel-
tively simple in design compared to modern MRS fitting algorithms,
here differing algorithmic approaches result in weak agreement be-

ween software packages ( Craven et al., 2022 ). A modular, pipeline-
ased, design simplifies the evaluation of each individual processing
tep, allowing improvements to be made in a more systematic and trans-
arent fashion. For instance, although not required for our data, an ad-
itional preprocessing step to incorporate scalp-lipid suppression could
e incorporated for more technically challenging acquisition protocols
uch as 3D-FID-MRSI ( Bilgic et al., 2014 ; Moser et al., 2020 ). 

To the best of the author’s knowledge, this study is the first to investi-
ate the efficacy of the spectral decomposition method for conventional
D semi-LASER MRSI, demonstrating excellent spectral resolution and
NR ( Fig. 3 ) when combined with spatial frequency and phase correc-
ion ( Wilson, 2019 ). Whilst 2D semi-LASER is limited to a single slice,
he 5-minute acquisition protocol is time efficient and comparable to a
linical single voxel duration. 

In this study, we incorporate the spectral decomposition method into
ur processing pipeline ( Goryawala et al., 2018 ), however we note that
he SLIM family of localisation methods could also be used in its place
 Hu et al., 1988 ; Lee et al., 2017 ). Both approaches make use of high-
esolution segmented imaging data to extract spectra associated with
ach segmented tissue type from an MRSI acquisition. Example white
nd grey matter spectral output from the first phase of the SLIPMAT
ethod ( Fig. 3 C, D) show good visual agreement with spectra obtained
ith BASE-SLIM ( Adany et al., 2016 ) suggesting that both methods are
7 
ikely to yield similar results. However, BASE-SLIM requires the addi-
ional acquisition of B0 and B1 maps, which are subsequently incor-
orated into the reconstruction, whereas in this work we combine fre-
uency and phase correction ( Wilson, 2019 ) with spectral decomposi-
ion as separate processing steps, without requiring an additional B0
cquisition. To the best of the author’s knowledge, a direct compari-
on between SLIM based approaches and spectral decomposition has not
een reported and would therefore make an interesting future study. 

We tested and validated our proposed method using 2D MRSI ac-
uired from the centrum semiovale in healthy participants and assumed
hat tissue metabolism in this region could be well characterized into
wo types: white and grey matter. However, additional variability in
etabolite levels is likely to exist within these tissue types, and we used

n exploratory three compartment model to show that peripheral and
entral white matter have small, but consistent, differences in tNAA and
Cho ( Fig. 8 ). These findings are not surprising, as low level spatial het-
rogeneity in metabolite levels have also be observed with high resolu-
ion MRSI at 7T ( Hangel et al., 2018 ). Additional spatial variability is
herefore expected for the analysis of greater brain volumes, for exam-
le whole-brain MRSI, and a more detailed classification of tissue types
ay be required. However, this represents a trade-off, where the ad-
ition of more tissue types and regions of interest will reduce spectral
NR, potentially obscuring low level metabolites that could act as novel
iagnostic markers. Furthermore, the use of SLIPMAT for focal disease,
uch as brain tumours or stroke, may not be optimal due to the loss
f spatial information. For these cases, one potential extension to the
echnique could involve modelling the individual (spatially resolved)
RSI spectra as a linear combination of the “pure ” white and grey mat-

er spectra derived from the SLIPMAT method. Local discrepancies from
he two-compartment model could be identified by evaluating the fitting
esiduals from this process, potentially defining additional tissue classes
hat could be automatically incorporated into a subsequent SLIPMAT
nalysis with a higher number of tissue components. We also note that
ow-rank decomposition methods, such as SPICE ( Lam and Liang, 2014 ;
a et al., 2015 ), may be more appropriate for the analysis of MRSI with
ultiple unknown tissue compartments. 

The importance of correcting spatially dependant frequency shifts
n MRSI data processing have been shown previously, with alignment
ethods including cross-correlation ( Ebel and Maudsley, 2003 ), wa-

er reference data ( Maudsley et al., 2006 ) and magnitude-based spec-
ral correction ( Le Fur and Cozzone, 2014 ). Here we use the RATS
ethod ( Wilson, 2019 ) – originally developed for correcting frequency

nd phase inconsistencies for single-voxel MRS. The method is shown
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o perform well for MRSI data ( Fig. 3 ) and may be especially suited to
his application due to its robustness to baseline instability – a common
rtefact for MRSI datasets. More generally, this work supports the use of
orrecting spatially dependant frequency and phase differences in MRSI
o improve data quality, in agreement with recent recommendations
 Maudsley et al., 2021 ). 

Single-voxel MRS remains more popular than MRSI due to reduced
echnical demands ( Wilson et al., 2019 ), however we envisage our pro-
osed method may be an attractive alternative for certain applications.
n clinical MRS, reduced scan time is particularly crucial, and the op-
ortunity to acquire high quality white and grey matter spectra, free
rom partial volume effects, within the same 5-minute scan represents
 compelling advance. Potential clinical applications include biomarker
iscovery for early-stage neurodegeneration or mental illness – where
hanges in conventional MRI are either absent or occur too late in the
isease process for effective treatment. In cognitive neuroscience, where
elevant changes in neurometabolism are likely to be small, partial vol-
me effects introduce unwanted variability and have the potential to
ominate over genuine metabolic modulations. We anticipate the pro-
osed method will be a more sensitive tool for detecting small changes
n metabolite levels due to the elimination of these partial volume effects
ith spectral decomposition. 

Whilst we chose a chemometric approach for spectral processing,
e note that conventional fitting methods could also be applied di-

ectly to the decomposed white and grey-matter spectra ( Fig. 1 ). This
as been demonstrated previously with a high-resolution whole-brain
RSI protocol ( Goryawala et al., 2018 ). A dedicated comparison be-

ween chemometric and conventional fitting approaches is warranted
or larger MRS datasets, and we anticipate this will be aided by recent
ffects to lower barriers associated with MRS data sharing ( Clarke et al.,
022 ; Soher et al., 2022 ). 

One limitation of the study is that subjects were scanned in triplicate
n the same session, and therefore the observed differences could be re-
ated to session, rather than biological, variability. Comparing results
rom this study with our previous work, where subjects were scanned
sing SVS across multiple sessions, we note the strong similarities be-
ween Fig. 6 B) from this report and Fig. 3 from Wu et al. (2022) which
oth show total-choline and scyllo-inositol as being strong discrimina-
ory features between healthy individuals. Considering the large effect
izes detected in both studies, we believe it is more likely that biological,
ather than session dependant, factors underly the observed discrimina-
ory spectral features. 

Movement between, and during, the anatomical and MRSI scans has
he potential to bias metabolite profiles. Spatial shifts were artificially
pplied to the MRSI data to estimate the sensitivity of SLIPMAT to the
nfluence of typical head movements, and the method was shown to be
obust to displacements up to approximately 10 mm ( Fig. 7 ). An assess-
ent of typical head movements in MRI was conducted using 42,874

cans from the UK Biobank dataset ( Alfaro-Almagro et al., 2018 ), show-
ng that 99% of participants moved less than 5 mm over a 10 min win-
ow ( Hess et al., 2022 ). In this study, the anatomical and MRSI scan
ere both acquired within 10 min, suggesting that head movement is
nlikely to be significant problem for our proposed protocol and analy-
is pipeline. For cases where higher levels of movement are anticipated,
or example paediatric studies, the post-acquisition alignment of MRSI
nd anatomical imaging could be performed using a rigid registration
ethod ( Maudsley et al., 2006 ) to maintain spatial consistency between

he scans. 
Potential disadvantages of the proposed method include difficulties

n combining datasets acquired under different experimental conditions.
or example, a dataset acquired at 1.5 and 3 T magnetic field strengths
ould have differing spectral features for any metabolites containing

-coupled resonances, and these features may dominate over biological
ariability. Fitting based methods are expected to be less susceptible
o these differences, since the basis set may be adapted to match the
agnetic field strength and specific acquisition protocol ( Near et al.,
8 
013 ). Future work could include the evaluation of more modern ma-
hine learning approaches, such as deep learning, to reduce the impact
f combining spectral profiles acquired with differing acquisition proto-
ols. 

In conclusion, we have developed a novel and time efficient MRSI
cquisition and processing pipeline, capable of detecting reliable neuro-
etabolic differences between healthy individuals. Future work will in-

estigate how rapid tissue-specific neuro-metabolic profiling can be ap-
lied to neuroscientific investigation and clinical studies of the brain. 
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