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Abstract
This article produces a complete list of all maximal subgroups of the finite simple
groups of type F4, E6 and twisted E6 over all finite fields. Along the way, we deter-
mine the collection of Lie primitive almost simple subgroups of the corresponding
algebraic groups. We give the stabilizers under the actions of outer automorphisms,
from which one can obtain complete information about the maximal subgroups of all
almost simple groups with socle one of these groups. We also provide a new maxi-
mal subgroup of 2F4(8), correcting the maximal subgroups for that group from the
list of Malle. This provides the first new exceptional groups of Lie type to have their
maximal subgroups enumerated for three decades. The techniques are a mixture of
algebraic groups, representation theory, computational algebra, and use of the trilin-
ear form on the 27-dimensional minimal module for E6. We provide a collection of
supplementary Magma files that prove the author’s computational claims, yielding
existence and the number of conjugacy classes of all maximal subgroups mentioned
in the text.
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1 Introduction

In order to use the classification of the finite simple groups, having names for the
simple groups is usually not enough. Frequently, detailed information about their
structure is required. One such piece of structure that appears often—for example in
applications to permutation groups, regular graphs, and so on—is knowledge of the
maximal subgroups of a finite simple group.

On the other hand, knowledge of the maximal subgroups of all finite groups is
equivalent to knowledge of the maximal subgroups and 1-cohomology groups of all
(almost) simple groups [6]. Thus the maximal subgroups of (almost) simple groups
take centre stage.

The maximal subgroups of the sporadic simple groups are all known except for
a few cases for the Monster. For the alternating groups, the O’Nan–Scott theorem
lists the maximal subgroups (up to conjugacy), with several structural classes and
one collection of ‘leftover’ cases, often labelled S , which consist of almost simple
primitive subgroups. The same occurs with the classical groups, where Aschbacher’s
theorem [1] (see also [11, 32]) outlines several geometric classes, and then has a
final class of almost simple groups acting absolutely irreducibly, about which much
is known but still much remains unknown.

For exceptional groups in characteristic p, a similar theorem classifying max-
imal subgroups holds [8, 38]: there are several families that arise from positive-
dimensional subgroups of the corresponding exceptional algebraic group; a set of
‘exotic r-local subgroups’, normalizers of certain r-subgroups for r �= p; the Borovik
subgroup, a particular subgroup of E8(q); a set of ‘subfield subgroups’, which are the
fixed points of outer automorphisms of the finite group (for F4(q) they are F4(q0) if
q0 = qr for r a prime and 2F4(

√
q) if q is a power of 4, for E6(q) they are E6(q0)

and also 2E6(
√

q) if q is a square, and for 2E6(q) they are 2E6(q0) if q0 = qr for r an
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odd prime); and a set S of almost simple maximal subgroups that do not lie in any of
the above sets. (See later in this introduction for more details about the history of the
study of maximal subgroups of these groups.)

The exact set S has been determined for small-rank exceptional groups: the Suzuki
groups 2B2(q), G2(q) and 2G2(q) [20, 30], 3D4(q) [31], and 2F4(q) [49]. Unpub-
lished work of Magaard [48] and Aschbacher [3] made considerable progress on
determining S for F4(q) and E6(q) respectively, but there were numerous remaining
candidates. (The papers [3, 48] do produce a list of subgroups such that every element
of S appears on the list, although whether each element yields maximal subgroups,
and how many conjugacy classes, was left undetermined for some of them.)

This paper makes the first complete determination of S for a family of exceptional
groups in three decades. We obtain a complete solution for F4(q), E6(q) and 2E6(q).
Prior to this paper, a complete answer was only known for F4(2) [52], E6(2) [35]
and 2E6(2) [19, p. 191]. (No proof is given there, but there is a proof given recently
by Wilson [65], which appeared as this work was underway. The proof here depends
on neither [19] nor [65].) Note also that our proof depends on neither [3] nor [48]
(although we use ideas from [3] in Sect. 6), and thus all parts of the determination of
the maximal subgroups of these groups, including any dependencies, are published.

Theorem 1.1 Let Ḡ be an almost simple group with socle G one of F4(q), E6(q) and
2E6(q). All maximal subgroups of Ḡ are known, and are given in Tables 1, 7 and 8
for F4(q), Tables 2 and 9 for E6(q), and Tables 3 and 10 for 2E6(q).

Tables 1 to 3 give the members of S for these groups, and is what is done in
this paper. The other maximal subgroups, in Tables 7 to 10, were already known,
either directly via the work of Magaard and Aschbacher, or as part of a wide-ranging
programme that classifies all maximal subgroups outside S for all exceptional groups
of Lie type,1 primarily by Liebeck and Seitz; see Sect. 7 for full details. (The format
of these tables follows that of [11]. The first column gives the subgroup of the simple
group G, the second the prime p, the third the prime power q , the fourth the number
of classes in the simple group, and the fifth the stabilizer of each class in Out(G).
With this information one can compute the normalizer and number of classes in any
almost simple group Ḡ with socle G, and of course if it is maximal in Ḡ.)

As a remark, these tables make clear that there is a version of Ennola duality for
subgroups. Recall that Ennola duality is broadly the principle that information about
representations of a twisted group of Lie type at q can be obtained from the untwisted
group at ‘−q’, at least in terms of numerical and combinatorial information. Tables 2
and 3 display the same duality. This is explored more in [23].

We should also mention that, in the process of determining the maximal subgroups
of F4(q) for q even, a new maximal subgroup of the large Ree groups was found.
(see Remark 4.11). There are exactly three conjugacy classes of maximal subgroups
PGL2(13) in 2F4(8), permuted transitively by the field automorphism. We explicitly

1This is not technically true in one particular case: for the simple groups E7(q) for p ≥ 5, there are simple
subgroups PSL3(q) and PSU3(q), and their normalizers in the simple group are not determined in [41],
merely in the adjoint group. This remains unresolved in [22], but all other maximal subgroups outside of
S are known for all exceptional groups of Lie type, in particular including the groups we consider here.
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mention this as this subgroup was erroneously excluded in [49]. In addition, another
error came to light during the production of these results, in the main theorem of
[17]: the Lie primitive subgroups PSL2(11) in F4(C) are missing from their list (see
Sect. 5.4.3, and Tables 2 and 3).

All of the subgroups in S have previously been constructed in the algebraic group,
with many in [17], with the exceptions of SL2(8) in F4 for p = 7 (which was erro-
neously ruled out in [48]) and PSL2(11) in E6 (which was erroneously ruled out in
both [3] and [17]). What is new is in many cases the structure of the normalizer of the
simple group, and in almost all cases the number of conjugacy classes, the actions of
the outer automorphisms, and the specific finite groups into which these subgroups
embed.

The following is a somewhat abbreviated history of the classification of the max-
imal subgroups of the simple groups in question. In the same vein as the work of
Kleidman [30, 31], Aschbacher and his student Magaard set about using the geome-
try of the trilinear form on the minimal module for E6 to obtain a list of the maximal
subgroups of the exceptional groups F4(q) and E6(q), more or less entirely by hand.
Magaard’s thesis [48] was never published, and although Aschbacher produced four
papers on E6, starting in this journal more than 30 years ago with [2], the fifth [3],
which attempted a full classification, was never published either. Both of these pa-
pers leave open the question of whether several almost simple groups were maximal
subgroups, and the number of conjugacy classes. At the same time, Cohen and Wales
[17], using hand and computational techniques, started to construct various subgroups
of F4(C) and E6(C), which form the bulk of the maximal subgroups in Tables 1 to 3.

Later, using techniques from algebraic groups, a number of authors, most notably
Liebeck and Seitz, set about classifying the maximal subgroups of all exceptional
groups. These classifications were more broad brush than Aschbacher–Magaard’s,
but also dealt with E7 and E8, which are not amenable to the geometric methods
of Aschbacher–Magaard. The first milestone of this approach (although it is later
chronologically) is [41], which gave the positive-dimensional maximal subgroups
of the exceptional algebraic groups, and furnished us with ‘most’ of the maximal
subgroups of the finite exceptional groups G. A result of Borovik [8] and Liebeck–
Seitz [38] (together with the lists from [18, 43]) reduced the problem of classifying
maximal subgroups of G to classifying almost simple maximal subgroups H .

If H is Lie type in the same characteristic as G (called a ‘generic’ maximal sub-
group) then results of a number of authors (see [39] and the references therein) prove
that either H = H(q) is of semisimple rank at most half of that of G and q is ‘small’
(at most 248 for E6), or H is the fixed points of a maximal positive-dimensional
subgroup of the corresponding algebraic group (and as mentioned earlier, these are
known). For G one of F4, E6 and 2E6, in [24, 25] the former case was removed, and
so all such maximal subgroups for these groups are known.

A complete list of all ‘non-generic’ almost simple groups that embed in excep-
tional algebraic groups was obtained by Liebeck and Seitz in [40], although most of
these cannot be maximal. Using this list, Litterick [46] computed the possible com-
position factors of one of these on both the minimal and adjoint modules, and hence
eliminated several options for a maximal subgroup. More importantly for us here,
[46] eliminates many possible actions, leaving very few sets of composition factors
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for the action of H on minimal and adjoint modules. The author considered the case
where H is alternating in [21]. This paper considers all other options for H , using
the lists in [46] as a jumping-off point.

A few words about our techniques, particularly the use of computers. Theoreti-
cal approaches, most notably Aschbacher’s work [3], make the most headway when
the action of the potential maximal subgroup on the minimal module is ‘easy’, in
the sense that it is a relatively simple task to write down the action of generators of
the group on basis elements of the space, or it stabilizes some geometrically impor-
tant subspace. One of the highlights of [3], which we cannot reproduce using purely
computational ideas, is understanding the action of an outer diagonal automorphism
of E6(q) on classes of SL2(8) subgroups. The group SL2(8).3 ∼= 2G2(3) acts on the
minimal module for E6 as the Steinberg representation, so element actions are very
combinatorial. This allows a detailed examination of the invariant symmetric trilinear
forms. Once one moves to other Lie primitive groups, for example PSL2(11), which
just acts as a sum of simple modules of dimensions 5, 10 and 12, it looks to be a hard
problem to compute the forms. The simple modules are now harder to write down,
and in effect we end up using a computer anyway. Using Aschbacher’s methods to
resolve the dozen or so missing groups from [3]—by hand—appears a daunting task.

We work with the trilinear form here as well when we employ the most commonly
used technique in this paper. We choose a copy G of (the simply connected version
of) E6(k) inside GL27(k), and choose a copy of our putative subgroup H of G, also
inside GL27(k). We find some subgroup L of H that we can already classify conju-
gacy classes of inside G, and arrange our copy of H so that L ≤ G.

If N denotes the normalizer of L inside GL27(k), then we will determine which
n ∈ N satisfy Hn ≤ G. Using the trilinear form f corresponding to G, this reduces
to solving systems of polynomial equations. Producing the polynomials requires ex-
plicit descriptions of H , L, N and f ; it would be essentially impossible to do this
by hand for most groups H , although solving the resulting systems of polynomials
by hand is certainly possible for the groups we consider here, as equations are not
particularly complicated. Section 3.4 describes the process by which the polynomials
are generated.

The computer use is more or less limited to determining the number of conjugacy
classes of various subgroups in the algebraic group. For the finite groups and stabil-
ity under outer automorphisms, the calculations are done by hand. All computations
mentioned here were performed using Magma [9]. Difficult or lengthy computations
are completed in the supplementary materials, and are described in this way. Shorter
computations, for example counting classes of subgroups of certain Weyl groups,
which are easy to perform in Magma, are simply described as ‘a computer check’ or
similar words.

This paper is structured as follows. The next section gathers our notation and gives
some general preliminary results on algebraic groups. Section 3 gives an overview of
the various techniques that are used in this article. Some have appeared in the author’s
previous papers on maximal subgroups of exceptional groups [21, 24, 25], others are
new. The following two sections go through the candidates for maximal subgroups
of F4(q), and then E6(q) and 2E6(q), determining whether they do or do not belong
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Table 1 Members of S for G = F4(q), q a power of p. Here, φ is a generator of the group of field
automorphisms, γ is a non-trivial graph automorphism or 1 if p is odd. The group PSL2(25).2 is the
extension by the field-diagonal automorphism, and is non-split

Subgroup p q No. classes Stabilizer

PSL4(3).22 2 2 1 〈γ 〉
3D4(2).3 p �= 2 p 1 1

PSL2(8).3 7 7 1 1

PSL2(8) p ≡ ±1 mod 7 p 1 1

PSL2(8) p �= 2,3, p ≡ ±2,±3 mod 7 p3 1 〈φ〉
PGL2(13) 7 7 1 1

PGL2(13) p �= 13, p ≡ ±1 mod 7 p 3 1

PGL2(13) p �= 2, p ≡ ±2,±3 mod 7 p3 3 1

PSL2(17) p �= 2, p ≡ ±1,±2,±4,±8 mod 17 p 1 1

PSL2(17) p �= 3, p ≡ ±3,±5,±6,±7 mod 17 p2 1 〈φ〉
PSL2(25).2 p �= 2,5 p 1 1

PSL2(27).3 7 7 1 1

PSL2(27) p ≡ ±1 mod 7 p 1 1

PSL2(27) p �= 3, p ≡ ±2,±3 mod 7 p3 1 〈φ,γ 〉

Table 2 Members of S for G = E6(q), q a power of p. Here, δ is a generator for the group of diagonal au-
tomorphisms, φ is a generator of the group of field automorphisms, γ is a non-trivial graph automorphism,
and e = gcd(3, q − 1). The subgroups PSL2(13) and PSL2(19) labelled ‘Nov.’ are novelty maximals that
only occur if an almost simple group induces γ on G. For PSL2(8), see Theorem 6.8

Subgroup p q No. classes Stabilizer

M12 5 5 4 1

J3 2 4 6 〈φ〉
2F4(2)′.2 p ≡ 1 mod 4 p 2e 1

PSL2(8) or PSL2(8).3 p �= 2,3,7, p ≡ 1,2,4 mod 7 p 2 or 2e 〈δ〉 or 1

PSL2(11) p ≡ ±1 mod 5, p ≡ 1,3,4,5,9 mod 11 p 2e 〈γ 〉
PSL2(11) p ≡ ±2 mod 5 p2 2e 〈γ 〉
PSL2(13) p ≡ 3,5,6 mod 7, p ≡ ±2,±5,±6 mod 13 p e 〈γ 〉
PSL2(19) 5 5 1 〈γ 〉
PSL2(19) p ≡ ±1 mod 5, p ≡ 1,4,5,6,7,9,11,16,17 mod 19 p 2e 〈γ 〉
PSL2(19) p ≡ ±2 mod 5 p2 2e 〈γ 〉
PSL2(13) Nov., p ≡ 1,2,4 mod 7, p ≡ ±1,±3,±4 mod 13 p e 〈γ 〉
PSL2(19) Nov., p = 2 4 6 〈γ 〉

to S . Section 6 deals with whether SL2(8)� 3 lies in E6(q) or 2E6(q). After this we
provide the tables of the other maximal subgroups and prove that they are correct,
and the final section confirms that the subgroups in Tables 1, 2 and 3 do not have
overgroups in F4(q) and εE6(q), by checking all possible obstructions to maximality.
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Table 3 Members of S for G = 2E6(q), q a power of p. Here, δ is a generator for the group of diagonal
automorphisms and φ is a generator of the group of field automorphisms, and e′ = gcd(3, q + 1). The
subgroups �7(3) and PSL2(13) labelled ‘Nov.’ are novelty maximals that only occur if an almost simple
group induces φ on G. For PSL2(8), see Theorem 6.8

Subgroup p q No. classes Stabilizer

Fi22 2 2 3 〈φ〉
2F4(2)′.2 p ≡ 3 mod 4 p 2e′ 1

PSL2(8) or PSL2(8).3 p �= 2,3,7, p ≡ 3,5,6 mod 7 p 2 or 2e′ 〈γ 〉 or 1

PSL2(11) p ≡ ±1 mod 5, p ≡ 2,6,7,8,10 mod 11 p 2e′ 〈φ〉
PSL2(13) p �= 2, p ≡ 1,2,4 mod 7, p ≡ ±2,±5,±6 mod 13 p e′ 〈φ〉
PSL2(19) p ≡ ±1 mod 5, p ≡ 2,3,8,10,12,13,14,15,

18 mod 19
p 2e′ 〈φ〉

�7(3) Nov., 2 2 3 〈φ〉
PSL2(13) Nov., p ≡ 2,5,6 mod 7, p ≡ ±1,±3,±4 mod 13 p e′ 〈φ〉

2 Notation and preliminaries

In this section we review the results that we need for the proofs that follow. Much
of these will be familiar from [24, 25], with a few important new techniques for
attacking ‘non-generic’ subgroups, i.e., simple subgroups that are not of Lie type in
the same characteristic as the algebraic group.

We start with some notation from module theory. Let k be an algebraically closed
field of characteristic p ≥ 0. If H is a finite group and M is a kH -module then MH

denotes the set of H -fixed points of M . If L ≤ H then M↓L is the restriction of M

to L. We often need to describe the socle structure of a kH -module. We use ‘/’ to
separate socle layers, so that

A/B,C/D,E

denotes a module with socle D ⊕ E, second socle B ⊕ C, and third socle A. Let M∗
denote the dual of M . Write Si(M) and �i(M) for the ith symmetric and exterior
power of M respectively. If M is simple, write P(M) for the projective cover of M .

We often use the dimensions of simple kH -modules to label them, rather than give
them special names. For example, if H has simple modules of dimensions 1, 5, 5, 5,
10 and 10, with only the 1- and one 5-dimensional module self-dual, then we would
label these modules 1, 51, 52, 5∗

2, 10 and 10∗.
If p > 0 and u ∈ GLn(k) has p-power order then u is a unipotent element, and acts

(up to conjugacy) as a sum of Jordan blocks of various sizes. We write n
a1
1 , . . . , n

ar
r

to describe the sizes, for example 52, 4, 1 for an element of GL15(k), as in [36].
Let G denote a simple, simply connected algebraic group of type F4, E6, E7 or

E8 over an algebraically closed field of characteristic p, and let σ be a Frobenius en-
domorphism of G, writing Gsc for Gσ . Thus Gsc is one of the groups F4(q), E6(q)sc,
2E6(q)sc, E7(q)sc and E8(q) for some q a power of p (so that, for example E6(q)sc
has a centre of order gcd(q − 1,3)). Write E6(q), and so on, for the simple quotient
of E6(q)sc, and G = Gsc/Z(Gsc). Write Fq for the ‘standard’ Frobenius morphism,
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Table 4 Labels and dimensions for minimal and adjoint modules for exceptional groups

G Label for M(G) Label for L(G) dim(M(G)◦) dim(L(G)◦)

F4 W(λ4) W(λ1) 26 − δp,3 52

E6 L(λ1) or L(λ6) W(λ2) 27 78 − δp,3

E7 L(λ7) W(λ1) 56 133 − δp,2

E8 − L(λ1) − 248

which induces the trivial action on the Weyl group. Thus F4(q) = (F4)
Fq , for exam-

ple. Let T denote a maximal torus of G, and assume it is σ -stable if σ is being consid-
ered. Let Ḡ be an almost simple group with socle G, and Gad be the adjoint version
of G, often denoted by simple group theorists by Inndiag(G). The finite groups G

and Ḡ are the groups whose maximal subgroups we will investigate in this article.
As in [24, 25] (and possibly originally in [45]), write Aut+(G) for the group gen-

erated by the inner automorphisms, the graph automorphisms for G of type E6 (and
the graph morphisms for F4 and p = 2), and the p-power field morphisms of G. Thus
Aut+(G) induces the full group Aut(G) if Gsc = Gσ .

As in [24, 25], a subgroup H of G is Lie imprimitive if H is contained in a proper,
positive-dimensional subgroup X of G, and strongly imprimitive if the subgroup X
may be chosen such that it is NAut+(G)(H)-stable. If H is strongly imprimitive then
NḠ(H̄ ) is contained in NḠ(X̄) for X = Xσ , where H̄ and X̄ are the images of H and
X in G respectively.2

We use the ‘standard’ labelling for highest-weight modules, as in the previous
entries [24, 25] in this series, coming from [10]. Write W(λ) and L(λ) for the Weyl
and simple modules with highest weight λ. We define two modules M(G) and L(G)

for G (minimal and Lie algebra), as the Weyl module with the labels in Table 4. Write
M(G)◦ and L(G)◦ for the quotient of M(G) and L(G) by their fixed points, which
always has codimension at most 1. The dimensions of M(G)◦ and L(G)◦ for the
groups involved are in Table 4. The modules M(G)◦ and L(G)◦ are simple unless
G = F4 and p = 2, when L(G) is a non-split extension of M(G) and M(G)τ , where
τ is a non-trivial graph morphism of G.3 In this case we consider L(G) itself.

A maximal subgroup of Ḡ not containing G itself is either NḠ(X) for a maximal
subgroup X of G, called an ordinary maximal subgroup, or NḠ(X) for X a non-
maximal subgroup of G, called a novelty maximal subgroup. The maximal subgroups
of Ḡ are known except for almost simple subgroups by [8, 38]. The quasisimple sub-
groups for exceptional G are all known, in the sense that there is a list of groups, and
a quasisimple group embeds in G if and only if it appears on that list [40]. What re-
mains for the classification of maximal subgroups of finite simple exceptional groups
is to determine, given H on that list, whether H embeds in Gsc (rather than just G),
if NḠ(H · Z(G)/Z(G)) can be maximal, and if so to count the number of conjugacy

2If Z(G) �= 1 then G is not a subgroup of G, so H is not a subgroup of G, and instead we take the quotient
H · Z(G)/Z(G).
3The map τ may be taken to send xr (t) to xρ(r)(t

α(r)), where ρ is a symmetry of the root system and
α(r) = 1 of r is long and α(r) = p if r is short.
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classes of such subgroups. For notational convenience, as did earlier we write H̄ for
the image of H , a subgroup of G in Ḡ, so the subgroup H · Z(G)/Z(G). So H is a
subgroup of G, and H̄ is a subgroup of G and Ḡ.

Specifically, let X denote the set of maximal positive-dimensional subgroups of
G, and let X σ denote the set of fixed points Xσ for X a σ -stable member of X .
If Z(Gσ ) �= 1, then extend the notation X σ to include the images of elements of
X σ under the quotient map Gσ → G. We extend further by defining X σ for Ḡ to
be NḠ(X) for X lying in the set X σ associated to G. Thus X σ in all cases is the
set of maximal subgroups arising from positive-dimensional subgroups of G. By [38,
Theorem 2] (see also [8]), a maximal subgroup of Ḡ (where Gsc = Gσ ) is one of:

(i) X, where X ∈ X σ ;
(ii) a subgroup of the same type as G, e.g., E6(p) and 2E6(p) in E6(p

2);
(iii) the Borovik subgroup (Alt(5) × Alt(6)).22, which only occurs for G = E8;
(iv) an exotic r-local subgroup, given in [18];
(v) an almost simple group NḠ(H̄ ) for H̄ a simple subgroup of G not contained in

one of the above lists, the collection of which is denoted S .

Furthermore, it follows easily from the definition that if H is strongly imprimitive,
then H is contained in one of the subgroups from (i). All of the subgroups except
those in (v) are known, so here we determine those subgroups in (v) that do not also
lie in (i) and (ii).

The list of potential quasisimple subgroups H naturally divides into two classes:
Lie type in characteristic p (including the cases where the simple quotient is Lie type
but H need not be, e.g., 3 · �7(3) for p = 3), called generic subgroups, and all other
quasisimple groups, called non-generic subgroups. Recently, significant reductions
in the list of potential maximal subgroups NḠ(H̄ ) of Ḡ have been made by Alastair
Litterick [46] and the author [21] for non-generic H .

First, from the author’s previous papers [24, 25] (relying heavily on earlier work
of others, for example [39, 44]), we see that if H is in (v) then H is not a generic
subgroup (this is for F4 and E6, the result is not yet completely known for E7 and
E8). Thus, for G of types F4 and E6, H is one of an alternating group, a sporadic
group, and a group of Lie type in characteristic r �= p. In [21] severe restrictions on
alternating groups were proved, and in [46] there are more results about non-generic
subgroups, and in particular a complete list of all possible sets of composition fac-
tors for M(G)↓H and L(G)↓H was enumerated. A conspicuous set of composition
factors for H is a pair (M,L) of multisets of irreducible kH -modules (or for E8, a
single multiset L) where the eigenvalues of all p′-elements of H on M and L appear
as eigenvalues of semisimple classes of G on M(G) and L(G) respectively. (Notice
that the pair of multisets offers more information; a conjugacy class of G must have
the same eigenvalues as an element of H on both M(G) and L(G) simultaneously.)

We need a few results from the theory of algebraic groups. The first allows us to
find certain subgroups, usually the Borel subgroup of a group PSL2(r) for p � r .

Lemma 2.1 Let L be a finite subgroup of G.

(i) If L is elementary abelian of order r2 for some r �= p then L lies inside a maxi-
mal torus T.



D.A. Craven

(ii) If L is a supersoluble p′-group then L lies inside NG(T) for T a maximal torus.
Furthermore, if L ≤ Gσ then T may be chosen to be σ -stable.

The second of these is a famous result of Borel and Serre [7] (see [59, Theo-
rem II.5.16, p. 210] for a proof in English, with the added conditions on σ -stability).
A reference for (i) is [59, II.5.1, p. 206].

The next lemma will be used occasionally, with X a σ -stable G-conjugacy class
of subgroups.

Lemma 2.2 (See, for example, [50, Theorem 21.11]) Let Y be a connected linear
algebraic group with a Steinberg endomorphism ρ, and write Y = Yρ . Let X be a
non-empty set such that Y and ρ act on X, and such that (xg)ρ = (xρ)(g

ρ) for all
x ∈ X and g ∈ Y. Then Xρ �= ∅, i.e., there are ρ-fixed points in X.

Furthermore, if for some x ∈ X the stabilizer Yx of x is closed, and Y is transitive
on X, then the Y -orbits on the ρ-fixed points of X are in one-to-one correspondence
with ρ-conjugacy classes on Yx/Y◦

x . In particular, if Yx is connected then all ρ-fixed
points of X are Y -conjugate.

The lemma can be used with centralizers, not just of elements—as in [50, Theo-
rem 26.7], for example—but also of subgroups. If X just consists of all G-conjugates
of a subgroup L then the stabilizer is NG(L). So instead we let X consist of all
G-conjugates of a generating set for L, and then Gx is CG(L). If this is connected
(usually in our cases CG(L) is either Z(G) or a torus, depending on L) then all copies
of L inside Gsc are Gsc-conjugate, and if the centralizer is Z(G) then the centralizer
is connected in G/Z(G).

Corollary 2.3 Let Y be a connected linear algebraic group with a Steinberg endo-
morphism ρ, and write Y = Yρ . Let L be a subgroup of Y . All Y-conjugates of L

contained in Y are Y -conjugate if CY(L) is connected, and if CY(L) ≤ Y then the
Y-conjugates of L contained in Y fall into a divisor of n distinct Y -classes, where n

is the number of conjugacy classes of CY(L).

Proof Let l1, . . . , ld be a generating set for L, and let X denote the set

{(lg1 , l
g

2 , . . . , l
g
d ) | g ∈ Y}.

Clearly Y acts transitively on this, and also X is ρ-stable, since l
ρ
i = li , so

(l
g

1 , l
g

2 , . . . , l
g
d )ρ = (l

gρ

1 , l
gρ

2 , . . . , l
gρ

d ) ∈ X.

Thus by Lemma 2.2, the Y -classes on Xρ are in bijection with the ρ-classes of A =
CY(L)/C◦

Y(L). If CY(L) is connected then this means that there is exactly one class.
But if L1 is Y-conjugate to L and contained in Yρ , then L1 is generated by some
tuple in X, and this tuple is also in Xρ . Hence L and L1 are Y -conjugate.

Now suppose that CY(L) ≤ Y , so that A = CY(L). Notice that gρ = g for g ∈
A, so the ρ-classes on A are exactly the usual conjugacy classes on A. We finally
note that two elements x and y of X generate the same subgroup L1 if and only
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if there exists an element g ∈ NY(L1) mapping x to y; say there are m of these.
This condition is conjugation-equivariant, so the number of Y -classes of subgroups
is n/m. The result is proved. �

If H is a σ -stable quasisimple subgroup of an exceptional group G and NḠ(H̄ ) is
an almost simple maximal subgroup of Ḡ then CḠ(H̄ ) = 1. We would like to deduce
that CG(H) = Z(G), but a priori this is not clear, and it certainly is not true in general
that if H̄ is an arbitrary subgroup of G with trivial centralizer then CG(H) = Z(G),
for example when q = 2 and the centralizer is a torus. If X is a group and Z is a
central subgroup of X, let Y be a subgroup of X with image Ȳ in X/Z. Of course,
NX(Y )/Z = NX/Z(Ȳ ), and CX(Y )/Z ≤ CX/Z(Ȳ ). If |Z| is finite and Ȳ is generated
by elements of order prime to |Z|, then CX(Y )/Z = CX/Z(Ȳ ). If Ȳ is simple, the
derived subgroup Y ′ of Y is a central extension of Ȳ , and Y is a central product of Y ′
and Z. If Ȳ is simple and |Ȳ | is divisible by a prime not dividing |Z|, we also have
CX(Y ′) = CX(Y ).

Applied to our case where H is quasisimple with Z(H) ≤ Z(G), CG(H)/Z(G) =
CG/Z(G)(H̄ ), so we must consider the situation where CG(H)σ = Z(G) while
CG(H) > Z(G).

So let H be a quasisimple subgroup of G with CG(H)σ = Z(G) and consider
CG(H), which is σ -stable. If this is positive-dimensional then H is contained in a
proper, positive-dimensional subgroup of G, namely H · CG(H), and so therefore H

is contained in a member of X σ (and the same for H̄ ). On the other hand, if CG(H) is
finite then H ≤ CG(CG(H)). If G does not have type E8 then this double centralizer
is always positive-dimensional by [38, Lemma 1.3(a)], so again H is contained in a
member of X σ .

Since we are considering only F4 and E6 here, we do not need to analyse the
situation further to state that if H̄ is a simple subgroup of G with CG(H̄ ) = 1, then
either CG(H) = Z(G) or NḠ(H̄ ) is contained in a member of X σ . In particular if
NḠ(H̄ ) lies in S then CG(H) = Z(G), so we may use Corollary 2.3. Taking Y =
G/Z(G), this shows that all G/Z(G)-conjugates of a simple subgroup H̄ of G in S
are Gad-conjugate. The same holds for the subgroups H of G, where the Gsc-classes
of conjugates in a single G-class are fused by Outdiag(G).

One of our tasks in computing the maximal subgroups of Ḡ is to determine the
number of G-classes and the stabilizer in Out(Gsc) of a quasisimple group H in S .
The outer diagonal part of this stabilizer very easy in almost all situations. This is
combined with the fact that any two subgroups in S that are G-conjugate are conju-
gate in Gad.

Corollary 2.4 Let G have type E6, and let H be a σ -stable quasisimple subgroup
of G. If |NG(H)/HCG(H)| is not divisible by 3 then the stabilizer of H in Out(Gsc)

contains no non-trivial outer diagonal automorphism.

Proof This is clear. If any elements of Outdiag(G), which has order 1 or 3, nor-
malize H they must correspond to elements of NG(H). If 3 does not divide
|NG(H)/HCG(H)| then any such element must be trivial. �



D.A. Craven

Examining Tables 2 and 3, we see that the only option for H where |Out(H)| has
order divisible by 3 is when H ∼= PSL2(8), and then NG(H) does include the outer
automorphism of order 3. This case is much more delicate than the others and we
devote Sect. 6 to it. (This situation is considerably more complex in [22] for G of
type E7 and p odd, because there |Outdiag(G)| has order 2 and there are several
subgroups H with NG(H)/HCG(H) of order 2.)

Next, we describe some line stabilizers for M(F4)
◦ and M(E6).

Lemma 2.5 Let G be one of F4 and E6. Suppose that a subgroup H of G stabilizes a
line on M(G)◦.

(i) If G is of type F4 then H lies in a maximal parabolic subgroup, in a subgroup
of type B4, or in a subgroup D4.3 (D4.Sym(3) for p = 3). If p �= 3 then B4 and
D4.3 act on M(F4) as

1 ⊕ 9 ⊕ 16 and 1a ⊕ 1∗
a ⊕ 24

respectively, where 1a is a non-trivial 1-dimensional representation, and 24 is
the sum of the three 8-dimensional summands for the action of D4. If p = 3 then
B4 and D4.Sym(3) act on M(F4)

◦ as

9 ⊕ 16 and 1b ⊕ 24

respectively, where 1b is the non-trivial 1-dimensional representation and 24 is
as before.

In particular, if H centralizes a line on M(F4)
◦ and p �= 3, or has no sub-

group of index 2 or 3, then H is contained in a maximal parabolic subgroup or
B4.

(ii) If G is of type E6 then H lies in a subgroup of type F4, a D5T1-parabolic
subgroup, or a subgroup U · B4T1, where U is unipotent of dimension 16.4 If
p �= 3 then the subgroup F4 acts on M(E6) as

1 ⊕ M(F4),

and if p = 3 then it acts as 1/M(F4)
◦/1. The D5-parabolic subgroup and the

B4-type subgroup act as

10/16/1 and 1/16/1,9

respectively (with the latter structure only valid for p odd).

Proof The second part follows immediately from [37, Lemma 5.4]. For the first, by
[14, (B.1)] the statement about the line stabilizers holds. The action of B4 is well
known, for example [62, Theorem 3.1], and from this the action of D4 is clear. To
obtain the action of D4.3 from this for p �= 3, we note that X = D4.Sym(3) does

4Only one of the two classes of D5T1-parabolic subgroups stabilizes a line on M(E6) (with the other
stabilizing a hyperplane). The subgroup U · B4T1 that stabilizes a line does not lie in this class, but in the
other one.
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not stabilize a line on M(F4), so must act as the 2-dimensional simple module on
the fixed-point space M(F4)

D4 . (The simple module of dimension 24 is obviously
a summand, since the triality graph automorphism acts transitively on the three 8-
dimensional factors for D4.)

When p = 3, X stabilizes the line, and must invert it because X still only stabilizes
a single line on M(F4), whence it has both 1-dimensional composition factors on
M(F4) (as there is a non-split extension between the two simple modules for Sym(3),
but no non-split self-extension). Since F4 itself has a trivial composition factor on
M(F4), X must act non-trivially on the 1-dimensional factor in M(F4)

◦. �

Finally, we have a small lemma on some polynomials and their splitting fields.
These polynomials will appear as the minimal polynomials for the irrationalities in
the characters that we examine.

Lemma 2.6 Let:

(i) f1(x) = x2 − x − 4;
(ii) f2(x) = x2 + x + 3;

(iii) f3(x) = x2 + x − 1;
(iv) f4(x) = x2 + x + 5;
(v) f5(x) = x3 − x2 − 2x + 1.

The splitting fields for the first four polynomials over Fp are Fp[√d] for d =
17,−11,5,−19. The element

√
d belongs to Fp if and only if:

(i) p ≡ 0,±1,±2,±4,±8 mod 17,
(ii) p ≡ 0,1,3,4,5,9 mod 11;

(iii) p ≡ 0,±1 mod 5;
(iv) p ≡ 0,1,4,5,6,7,9,11,16,17 mod 19

respectively.
In the final case, f5(x) splits over Fq if and only if q ≡ 0,±1 mod 7.

Proof We just give solutions to the equations in the respective field, assuming p �= 2:

(i) (
√

17 + 1)/2;
(ii) (

√−11 − 1)/2;
(iii) (

√
5 − 1)/2;

(iv) (
√−19 − 1)/2;

(v) −(ζ7 + ζ−1
7 ) (where ζ7 is a primitive 7th root of unity).

(If p = 2 then the first case is x(x − 1), and the next three are all x2 + x + 1, which
is irreducible over F2. Thus the result holds for p = 2 as well.) In the first four cases,
if d = 0 in Fp then the polynomial splits, so we assume this is not the case. The
congruences for the primes follows from quadratic reciprocity in the first four cases.

In the final case, note that the solution certainly lies in Fq if q ≡ 1 mod 7. For
other congruences, embed Fq in Fqa where qa ≡ 1 mod 7 and note that ζ7 + ζ−1

7
remains invariant under the map x �→ xq if and only if q ≡ ±1 mod 7. �
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3 Techniques used in the proof

This section surveys the various ideas that we will use to understand subgroups of
exceptional algebraic groups and their finite versions. The first subsection discusses
strong imprimitivity, a sufficient condition for NḠ(H̄ ) to never be a maximal sub-
group of Ḡ. We then talk a little about how to go from G-conjugacy to G-conjugacy.
After that, we discuss the trilinear form, as used in [25]. The subsection after dis-
cusses novelty maximal subgroups, and finally we consider the Lie algebra structure
of L(G) and subalgebras, as used in [24] to eliminate certain subgroups PSL2(q) in
defining characteristic.

3.1 Strong imprimitivity

In [24, 25], we developed several techniques to prove that a subgroup H of G is
strongly imprimitive. The easiest of these is the following (see [24, Propositions 4.5
and 4.6]).

Proposition 3.1 Suppose that H is a finite subgroup of G possessing no subgroup of
index 2. If H centralizes a line or hyperplane on M(G)◦ or L(G)◦ then H is strongly
imprimitive.

The best way to prove that H centralizes a line on a module is to use the concept
of pressure, which is by now well established. If M is a kH -module then the pressure
of M is

∑

V ∈cf(M)

dim(H 1(H,V )) − δV,k,

where cf(M) is the multiset of composition factors of M . This means that we add
up the 1-cohomologies of all composition factors and subtract the number of trivial
factors.

Proposition 3.2 Let H be a finite group such that Op(H) = H , and let M be
a kH -module. If M has negative pressure then H stabilizes a line on M . If
dim(H 1(H,V )) = dim(H 1(H,V ∗)) for all simple kH -modules V , M has at least
one trivial composition factor, and M has pressure 0 then H stabilizes either a line
or a hyperplane on M .

This appears in for example [21, Lemma 1.8], [24, Lemma 2.2] or [46, Proposi-
tion 3.6], and originally [44, Lemma 1.2]. In [24, Sect. 4] a number of other con-
ditions were produced that guarantee strong imprimitivity. For example, this is [24,
Proposition 4.2].

Proposition 3.3 Let H be a finite subgroup of G. Either H is strongly imprimitive or
H is G-irreducible, i.e., H is not contained in a maximal parabolic subgroup of G.
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We also see in that section the following. A module V is graph-stable if it is
semisimple, has at most two composition factors, and for τ a (possibly trivial) graph
morphism in Aut+(G), the composition factors of V τ are the same as those of V , up
to Frobenius twist. Instructive examples are any semisimple module for E7, M(E6)⊕
M(E6)

∗, and L(λ1) ⊕ L(λ4) for F4 and p = 2 (and odd primes as well, of course),
but not L(λ2) ⊕ L(λ4) for p = 2.

(The example L(λ1)⊕L(λ4) is why we need to add the condition ‘up to Frobenius
twist’ in the definition. Since ‘the’ graph morphism for F4 squares to a Frobenius
endomorphism, in general one cannot remove this condition.) Using the identification
of a module with its Frobenius twist via a suitable semilinear map, we can let τ

permute the subspaces of V .
For the purposes here, we restrict our graph-stable modules to have at most two

composition factors (if we were dealing with D4 we would need three). This is just
to simplify the situation, and the only issue with extending the definition is keeping
track of the maps and the weights.

Proposition 3.4 Let V be a graph-stable module for G, and let H be a subgroup
of G. If there exists an NAut+(G)(H)-orbit W of subspaces of V that is stabilized by
both H and a positive-dimensional subgroup X of G, but not by G itself, then H is
strongly imprimitive.

A result of this type started life in [39, Proposition 1.12], then was generalized in
[46, Sect. 4.2]. The results of that section were distilled into [24, Proposition 4.3],
and this is a special case of that proposition, but this is entirely the work of [39, 46].
A corollary of this, used frequently in the author’s work, is as follows. A subgroup
H is a blueprint for a graph-stable kG-module V if there exists a proper, positive-
dimensional subgroup X of G, such that H and X stabilize the same subspaces of V .

Corollary 3.5 If H is a blueprint for V , then either H and G stabilize the same sub-
spaces of V or H is strongly imprimitive.

Note the fact that if H is a blueprint for V1 and V2, then H need not be a blueprint
for V1 ⊕ V2. This is important when considering groups with a non-trivial graph
morphism.

If p = 3 and G = E6, then X = F4 acts on M(E6) uniserially, with top and socle
the trivial module and heart M(F4)

◦, as opposed to L(0) ⊕ M(F4) for other primes
(see Lemma 2.5). The next lemma shows that if H ≤ X splits this extension then H

is strongly imprimitive.

Lemma 3.6 Let G = E6 and p = 3, and let F4 = X ≤ G. If H is a finite subgroup
of X with no subgroups of index 2, and the action of H on M(E6) is the sum of two
trivial modules and M(F4)

◦↓H , then H is strongly imprimitive in X.

Proof If M(E6)
H has dimension at least 3 then (M(F4)

◦)H �= 0, so H is strongly
imprimitive in X by Proposition 3.1. Thus we may assume that M(E6)

H has di-
mension exactly 2. The centralizer Y of this subspace is positive-dimensional by
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dimension counting (dim(G) = 78 and dim(M(E6)) = 27) so H is contained in a
positive-dimensional subgroup of G. Furthermore, any inner, diagonal and field mor-
phism in NAut+(G)(H) stabilizes M(E6)

H , so stabilizes Y (but we can say nothing
about graph morphisms in Aut+(G)).

Finally, Y must be contained in X, whence H is strongly imprimitive in F4. (Note
that every element of Aut+(X) extends to an element of Aut+(G) not involving a
graph automorphism.) �

3.2 Actions on M(G) and L(G)

Let H be a finite quasisimple subgroup of G with Z(H) ≤ Z(G), and suppose that
H is not of Lie type in characteristic p. The possible sets of composition factors
for M(G)↓H and L(G)↓H are collated in tables in [46, Chap. 6]. As pressure is
also used in [46], the first test is whether the pressure of either M(G)◦ or L(G)◦ is
negative (or possibly pressure 0 if the other conditions are met). If this is the case,
then H is strongly imprimitive by Propositions 3.1 and 3.2, so we may immediately
exclude this. This was done in [46], and in the tables in that paper, exactly those rows
labelled ‘P’ consist of possible embeddings H where both M(G)◦↓H and L(G)◦↓H

have non-negative pressure.
Thus we may always assume that we have one of the sets of composition factors

from those tables when analysing the potential Lie primitive, and then not strongly
imprimitive subgroups. Despite having positive pressure, many of these sets of com-
position factors end up yielding subgroups that always stabilize lines on one of the
two modules, and some sets of factors do not correspond to embeddings of subgroups
at all. Even if the subgroup does exist, and does not stabilize a line on either module,
then it might still be strongly imprimitive.

However, the tables in [46] offer a very good first approximation to the list of
maximal subgroups we will find in this article.

3.3 Conjugacy in the algebraic and finite group

Many of our potential maximal subgroups H are of the form PSL2(r) for some prime
power r , where p � r . A Borel subgroup L of such a group has the form L0 � (r −
1)/2, where L0 is an elementary abelian group of order r and (r − 1)/2 is a cyclic
group (unless r is even, in which case the acting group is (r − 1)). If L0 is non-toral
then L0 is one of very few possibilities, and we can work from there. If L0 does lie
inside a torus, then we normally can place the whole of L inside NG(T) for some
maximal torus T of G. Our first few results attempt to understand the conjugacy
classes of such subgroups L in the latter case.

We start by determining the number of classes of complements to T (and its finite
version when maximally split) in 〈T,w〉, where w is (a preimage of) an element of
the Weyl group.

Lemma 3.7 Let L̄ be a cyclic subgroup of the Weyl group W(G), and suppose that
L̄ has no trivial constituent on the reflection representation of W(G), or equivalently
CT(L̄) is finite. If L1 and L2 are complements to T in the preimage of L̄ in NG(T),
then L1 and L2 are T-conjugate.
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Proof Note that T is connected. If L1 = 〈w〉 then CT(w) is finite. Conjugation by w

is an endomorphism on T with finitely many fixed points, so by the Lang–Steinberg
theorem the map t �→ t−1tw = [t,w] is surjective. Thus if t ∈ T then there exists
u ∈ T such that t = u−1uw . Hence tw−1 = (w−1)u, so wt and w are always conjugate
via an element of T.

This shows that any two elements of the coset wT are T-conjugate, and therefore
any two complements to T in 〈w〉T are T-conjugate, as claimed. �

If we descend to the finite group Gsc then the precise structure of the centralizer
CT(L̄) in the previous lemma becomes important. Of course, Z(G) always lies in
the centralizer (if it lies in Gsc). Notice that Z(G) ≤ Gsc if and only if G possesses
non-trivial diagonal automorphisms, and then Z(G) and Gad/G have the same order.

Lemma 3.8 Let T be a finite abelian group and let w be an element of Aut(T ). Let
H be the group T � 〈w〉. There are at most n conjugacy classes of complements to T

in H , where n is the largest divisor of |CT (w)| that divides a power of o(w) (in other
words, it is the π -part of |CT (w)|, where π is the set of primes dividing o(w)).

Proof Write T = T0 × T1, where gcd(o(w), |T1|) = 1 and |T0| divides a power of
o(w). By the Schur–Zassenhaus theorem, all complements to T1 in 〈T1,w〉 are T1-
conjugate, so it suffices to assume that T = T0, so n = |CT (w)|.

Note that the map t �→ [t,w] is a homomorphism as T is abelian—this is because
[tu,w] = [t,w]u[u,w] in general—and the kernel of the map is CT (w), and the
image is [T ,w], a subgroup of T . Note that wt and wu are conjugate if and only if
t−1u lies in [T ,w], so the coset wT splits into exactly |CT (w)| classes.

As not all of them need consist of elements of order o(w), this means that there
are at most n classes of complements, as needed. �

Note that in general, if w has order n, then (tw)n is the product of the elements
t (w

i) for 0 ≤ i ≤ n − 1, so this can be constructed inside T. Also note that, if one
knows that CT(w) is finite, one may check whether CT(w) = Z(G) by simply check-
ing whether CQ(w) ≤ Z(G) for the elementary abelian subgroups Q of T for the
primes dividing o(w), and the subgroup of elements of order dividing 9 if |Z(G)| = 3
and 3 | o(w).

Suppose we are given the action of L on M(G) and L(G), and we wish to know
if this determines L up to G-conjugacy. The Brauer character values of L on M(G),
and perhaps L(G) also, usually determine the G-class of both L0 and a complement
〈w〉 to L0 in L. The purpose of the above results is to show what extra information
is needed to see that if L0 and 〈w〉 are both determined up to G-conjugacy, then
L ∼= L0 � 〈w〉 is as well.

Suppose that L and L̂ are two (isomorphic) subgroups of G with isomorphic mod-
ule actions on M(G) and L(G), with derived subgroups L′ and L̂′ isomorphic to L0
and G-conjugate, with L = L′

� 〈w〉. Then we may assume that L′ = L ∩ L̂. If L′
is regular, then C◦

G(L′) = T for some maximal torus T. Any element of G that nor-

malizes L′ normalizes C◦
G(L′), whence L and L̂ both lie in NG(T). Then Lemma 3.7

shows that L and L̂ are T-conjugate.
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Thus if L′ is regular and CT(w) is finite, then L is unique up to G-conjugacy. We
explicitly state this as a lemma now.

Lemma 3.9 Let r be a prime power with p � r , and let L and L̂ be subgroups of G
that are isomorphic to a Borel subgroup of the group PSL2(r). Suppose that L and
L̂ have isomorphic actions on M(G) and L(G). Suppose that the derived subgroups
L′ and L̂′ are G-conjugate, and complements 〈w〉 and 〈ŵ〉 to L′ and L̂′ in L and
L̂ respectively are also G-conjugate. If L′ is regular, and CT(w) is finite for some
maximal torus T with L ≤ NG(T), then L and L̂ are G-conjugate.

If one of these conditions does not hold, we will often have to work harder to
prove uniqueness of L up to G-conjugacy. For an example where the hypotheses, and
conclusion, of this lemma do not apply, see Proposition 5.17 later, which classifies
subgroups 11 � 5 in E6. In that situation, although L′ and 〈w〉 are determined up to
G-conjugacy, L is not.

This also seems the right place to place two fundamental results of Larsen and
Serre, which allow us to move between algebraic groups for different primes. The
first result is Serre’s. It allows one to move subgroups of an algebraic group in char-
acteristic 0 to subgroups in characteristic p, maintaining their Brauer characters on
all highest weight modules. Since it is a summary of the results of Sect. 5 of a paper,
we give a brief proof using results from that section.

Theorem 3.10 (Serre [58, Sect. 5]) Let p be a prime and let k be an algebraically
closed field of characteristic p. Let X0 denote a simple algebraic group of adjoint
type over an algebraically closed field of characteristic 0, and let H0 be a finite
subgroup of X0 such that Op(H0) = 1. If Xp denotes a simple algebraic group of
the same type as X0 over an algebraically closed field of characteristic p, then there
exists a finite subgroup Hp of Xp such that H0 ∼= Hp , and for all highest weights λ,
W(λ)↓Hp for Xp is a reduction modulo p of W(λ)↓H0 for X0.

Proof We summarize how to deduce this result from the results of [58, Sect. 5] here,
because there is no direct theorem in that paper that looks like this.

Let K be an algebraic number field, with ring of integers O, with a residue field
F of characteristic p. If H0 is a subgroup of X(K) that can be conjugated into X(O),
then the map X(O) → X(F) restricts to H0 with kernel a p-group by [58, Lemme 4].
As Op(H0) = 1, this means that we obtain a subgroup Hp of X(F) with the same
Brauer character on all highest weight modules.

Not all subgroups of X(K) may be conjugated into X(O) (called a good reduction
in [58]), but by [58, Proposition 8], given H0 there is a finite, totally ramified field
extension K ′/K such that H0 has a good reduction for X(K ′). We thus map H0 into
X(OK ′) and then into X(F′) for some field F

′ of characteristic p.
Any finite subgroup of X0 is conjugate to one over X(K) for some algebraic num-

ber field K , and this therefore completes the proof. �

This says nothing about whether the subgroups H0 and Hp in the theorem are
Lie primitive. Indeed, one may be Lie primitive while the other is not: in this paper,



The maximal subgroups of F4(q), E6(q) and 2E6(q)

PSL2(8) is Lie primitive in F4(C), but modulo 7 it is contained in G2. Another phe-
nomenon is that the PSL2(8) subgroup of D4 inside F4 has the same composition
factors on L(F4) as the Lie primitive one (see [46, Table 6.15]). Similarly, there is
a Lie primitive subgroup M12 in E7 in characteristic 5 acting with composition fac-
tors of dimensions 32, 122 on M(E7), which are the same as the copy of M12 inside
D6 in characteristic 0. However, the author is not aware of any example where a Lie
imprimitive subgroup H in characteristic 0 has the same characters (modulo p) as a
Lie primitive subgroup in characteristic p on both M(G) and L(G), never mind all
highest-weight modules.

Larsen’s result however establishes this bijection between Lie primitive subgroups
in characteristics p and 0 whenever p � |H |.

Theorem 3.11 (Larsen [28, Theorem A.12]) Let X0, Xp be as in Theorem 3.10, let H

be a finite group and suppose that p � |H |. There is a one-to-one correspondence be-
tween conjugacy classes of subgroups of X0 isomorphic to H and conjugacy classes
of subgroups of Xp isomorphic to H . Such a correspondence can be chosen to respect
Lie primitivity.

Although the condition on Lie primitivity is not mentioned in Larsen’s result, it
holds simply because Theorem 3.11 is proved for all split group schemes, so induc-
tion on the dimension of the algebraic group proves the claim.

3.4 Trilinear form

As is well known, the minimal module M(E6) of E6 supports a unique (up to scalar)
symmetric trilinear form. Hence one might be able to prove that a given finite sub-
group H of GL27(k) lies in a given copy of G = E6(k) by showing that H leaves this
trilinear form invariant, or equivalently that the form yielding G lies inside the space
of H -invariant symmetric trilinear forms.

In particular, we immediately see the following, which is occasionally useful. (It
is not very often useful because the condition rarely holds.) It shows that a certain
condition on trilinear forms implies uniqueness up to conjugacy in G.

Lemma 3.12 Let G have type either F4 or simply connected E6. Suppose that H and
Ĥ are isomorphic subgroups of G, and have isomorphic actions on the minimal mod-
ule M(G). Let M denote the restriction of M(G) to H . If S3(M)H is 1-dimensional
then H and Ĥ are G-conjugate.

More often we have the following setup, which is also described in more detail
in [25, Sect. 13]. Let V be a k-vector space, and equip V with a symmetric trilinear
form whose symmetry group is G, either F4 or (simply connected) E6, so that V ∼=
M(G). (By using this setup we imply that we are not fixing once and for all a single
trilinear form, and we will use different forms when constructing different subgroups
of G.) Let L be a subgroup of G, and suppose that we are given L explicitly as linear
transformations of V , which of course stabilize the trilinear form. Let X denote the
normalizer of L in GL(V ). Let H denote any overgroup of L in GL(V ), and let H
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denote the set of conjugates of H that contain L. We wish to understand the set H,
and in particular which elements of H lie in G.

The group X acts by conjugation on H, and if we assume that all subgroups of
H isomorphic to L are H -conjugate (for example, if H is of Lie type and L is a
Borel subgroup) then X acts transitively on H. Of course, the stabilizer of H ∈ H
is NX(H), so we need only consider cosets of X by NX(H). These cosets are often
in our cases covered by elements of the centralizer CGL(V )(L). This group can be
described as a multi-parameter matrix with coefficients in a field k, so we replace a
general element of X by a matrix g with entries in a polynomial ring over k.

We then choose h ∈ H : we see that hg lies in G if and only if, for all u,v,w ∈ V ,
we have f (uhg

, vhg
,whg

)−f (u, v,w) = 0. Since inverting a matrix with polynomial
entries is difficult, so we replace u by ug , and so on, and we instead compute

f (uhg, vhg,whg) − f (ug, vg,wg).

This is zero for all u, v, w if and only if hg lies in G. Thus we obtain a series of
polynomial equations which must be solved. Solving them yields all possible g that
conjugate our fixed h into G. One then needs to take orbits under left multiplica-
tion by elements of CGL(V )(H), yielding all possible conjugation maps that send h

into G. Finally, we may act on the set of all hg by NG(L). The number of orbits
under this simultaneous left and right multiplication is the number of G-conjugacy
classes of subgroups H (that contain a G-conjugate of L, and that act with a given
representation on M(G)).

This method was used to great success in [25, Sect. 13], solving the outstanding
cases of the subgroups PSL3(3) and PSU3(3) for p = 3 acting irreducibly on M(E6).
We will employ it here to resolve many similar cases. Each time we do, we present
in the supplementary materials explicit matrices and explicit computations with the
trilinear form to show our claims, and here do the theoretical work. One particularly
important step is to show that L is unique up to G-conjugacy (if it is), so that we may
give an explicit description of it.

3.5 Novelty maximals

Let H be a finite subgroup of G, and suppose that H is σ -stable. This section explains
how NḠ(H̄ ) could be a novelty maximal subgroup of an almost simple group Ḡ, so
we assume that NG(H̄ ) is not a maximal subgroup of G. This applies to any almost
simple group Ḡ, not just a group of Lie type. It is also well known, and appears in
[64], although our version comes mainly from [11, Sect. 1.3.1].

Let X be a subgroup of G and let K be another subgroup such that NG(X) <

NG(K) < G. We assume that X < K as well, but one can do without this condition.
Let Ḡ be an almost simple group with socle G. We want to understand when NḠ(X)

is not contained in NḠ(K).
First, we may assume that Ḡ = G · NḠ(X), or in other words NḠ(X)/NG(X) ∼=

Ḡ/G, as otherwise NḠ(X) is contained in a proper subgroup of Ḡ containing G.
Write A for Ḡ/G, and view it as a subgroup of Out(G). If Ḡ �= G · NḠ(K) then
clearly NḠ(X) � NḠ(K). We say that H is a type I novelty with respect to K in this
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case. This is easy to test: we compute the order of NḠ(K)/NG(K) and check if it is
|A|. If it is not, X is a type I novelty with respect to K .

Thus we suppose that X is not a type I novelty with respect to K . Let g ∈ NḠ(X).
If g /∈ NḠ(K) then Kg �= K . However, since K is A-stable, there is some x ∈ G such
that Kgx = K , hence gx ∈ NḠ(K). Note that X and Xgx = Xx are both subgroups
of K , so if there exists y ∈ NG(K) such that Xxy = X, then

xy ∈ NG(X) ≤ NG(K) ≤ NḠ(K).

Since gxy ∈ NḠ(K) this implies that g ∈ NḠ(K), a contradiction. Thus if g /∈
NḠ(K) then X and Xgx are not NG(K)-conjugate. However, gx and g induce the
same outer automorphism on K , so there exists an element of A that, in its induced
action on K , does not stabilize the NG(K)-conjugacy class containing X.

Conversely, if there exists g ∈ NḠ(K) such that X and Xg are not NG(K)-
conjugate, then no element of the coset NG(K)g can lie in NḠ(X). Thus if h ∈
NḠ(X) satisfies Gh = Gg (which must exist as Ḡ = GNḠ(X)), then h cannot lie in
NḠ(K). This is a type II novelty.

Thus we have the following.

Lemma 3.13 Let X be a subgroup of the finite simple group G, and let Ḡ be an almost
simple group with socle G. Suppose that Ḡ = G · NḠ(X), and that NG(X) is not a
maximal subgroup of G. Then NḠ(X) is a maximal subgroup of Ḡ if and only if,
for any subgroup K containing X and such that NG(X) < NG(K) < G, one of the
following holds:

(i) Ḡ �= G · NḠ(K);
(ii) Ḡ = G · NḠ(K), and NḠ(K) fuses more than one NG(K)-conjugacy class of

subgroups, one of which contains X.

This lemma will obviously be useful in determining if there are novelty maximal
subgroups in certain situations.

3.6 Lie algebras

Let X be a proper reductive subgroup of G, and let H be a known subgroup of X,
so that H embeds in G with a specific action on L(G) arising from the embedding
H ≤ X ≤ G. One of the summands of this action will be L(X)↓H . In some cases,
it will be the case that any subgroup Ĥ ∼= H of G that embeds with the same com-
position factors on L(G) possesses a summand isomorphic to L(X)↓H , and in this
case one could attempt to prove that Ĥ lies in a conjugate of X. We need a way of
proving this, starting with H ; i.e., first that a specific summand of L(G)↓H is a Lie
subalgebra of L(G), and second that it is a reductive Lie algebra and to identify it.
This result amalgamates [55, Lemmas 1, 5, 6 and 10], with the last part specific to
our applications of it, as we always use it to identify a g2 subalgebra.

Lemma 3.14 Let H be a subgroup of G and let W be a kH -submodule of L(G).
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(i) Suppose that

HomkH (�2(W),W) = HomkH (�2(W),L(G)),

i.e., that the image of any H -map �2(W) → L(G) is contained in W . Then W

is a Lie subalgebra of L(G).
(ii) If, in addition, W is simple and not induced from some subgroup of H , then W

is a simple Lie algebra.
(iii) If, in addition, there is no kH -module quotient of L(G)/W isomorphic to W ∗,

then W has a non-singular trace form.
(iv) If, in addition, p ≥ 5 and dim(W) = 14, then W is a Lie algebra of type G2.

After this lemma, we suppose we have a finite subgroup H that stabilizes a 14-
dimensional simple summand of L(G), and this has been shown to be a Lie algebra
g2. We want to push H into an algebraic subgroup G2 of G.

Perhaps the easiest way to do this is to use the recent classification of maximal sub-
algebras of L(G) in good characteristic, due to Premet and Stewart [54]. Although
their results are stronger than this, we see that for G either F4 or E6, any g2 subalge-
bra of L(F4) or L(E6) (for p ≥ 5) is contained in a maximal subalgebra, and this is
Lie(X) for some maximal connected subgroup X of G.

Proposition 3.15 Let h be a g2 subalgebra of the Lie algebra L(G), where G is either
F4 or E6, and suppose that p ≥ 5. If H ≤ G stabilizes h and acts on L(G) with
factors of dimension either 26, 14, 6, 6 if G = F4, or 32, 32, 14 if G = E6, then h is
a maximal g2 and H is strongly imprimitive.

Proof Since H has no trivial composition factors on L(G), neither does h, and there-
fore h is not contained in the subalgebra of a parabolic.

In both cases of F4 and E6, none of the maximal semisimple subalgebras apart
from g2 has compatible composition factors (see the tables in for example [62]).
Thus h can only be contained in a maximal g2 (and hence is equal to it) and since
H stabilizes it, H lies in a G2 maximal subgroup. Both H and G2 stabilize a unique
14-space of L(G), and thus H is strongly imprimitive by Proposition 3.4. �

The next proposition is used to easily prove existence and/or uniqueness for certain
subgroups of exceptional algebraic groups that act irreducibly on the Lie algebra.

Proposition 3.16 Let H be a finite group and let V be a simple kH -module. Suppose
that there is no subgroup L of H such that V is induced from a 1-dimensional module
for L.

(i) If HomkH (�2(V ),V ) is non-zero and HomkH (�3(V ),V ) = 0 then V carries
the structure of a simple, H -invariant Lie algebra.

(ii) If HomkH (�2(V ),V ) = k then there exists (up to scalar) at most one non-zero
Lie product on V . If, in addition, there exists a simple algebraic group X such
that H embeds in X and L(X)↓H

∼= V , all such subgroups H are Aut(X)-
conjugate.



The maximal subgroups of F4(q), E6(q) and 2E6(q)

(iii) If HomkH (�2(V ),V ) = k and HomkH (�3(V ),V ) = 0, and V is the Lie alge-
bra of the simple algebraic group X, then H embeds in X acting on L(X) as V ,
and any two such subgroups are Aut(X)-conjugate.

The first part is [55, Lemma 2]. The second part is clear since there is a unique
alternating bilinear product on V , so certainly at most one non-abelian, H -invariant
Lie structure on V . (Note that Aut(X) is needed here, rather than just X, as all of
Aut(X) acts on L(X); this is important for X of type E6, for instance.) The third part
is simply the first and second taken together.

If HomkH (�2(V ),V ) = k then we say that V has the Ryba property, and if in
addition HomkH (�3(V ),V ) = 0 we say that V has the strong Ryba property. Since
all subgroups acting irreducibly on the Lie algebra of an exceptional algebraic group
are known [42]—the author has classified them up to conjugacy as well in papers in
preparation—the strong Ryba property is less important, but we mention it because
it offers quick, and indeed faster than often in the literature, proofs of existence and
uniqueness.

3.7 Actions of outer automorphisms

Let H be a quasisimple subgroup of G, with H̄ its image in G/Z(G). Much of the
work in Sects. 4 and 5 is on understanding the actions of outer automorphisms of G
on the G-class of H and on H and H̄ themselves. First, σ centralizes H if and only
if H ≤ Gsc, so we need to understand the action of σ to determine whether H̄ ≤ G.
We need to know if a given Steinberg endomorphism σ stabilizes the G-class of H ,
and then if it normalizes a G-conjugate of H , and then if it centralizes a G-conjugate
of H . We also need to understand stability of H̄ under all outer automorphisms of
G, i.e., determine NAut(G)(H̄ ), because that is how the maximal subgroups of Ḡ are
determined.

We start with Steinberg endomorphisms of G, so let σ ∈ Aut+(G) denote such
a map. There are four possible actions for σ on H . First, σ could map H into a
different G-conjugacy class of subgroups, i.e., fuse conjugacy classes of subgroups.
For the other three options, σ stabilizes the class containing H ; by Lemma 2.2, this
means that σ normalizes some G-conjugate of H , so we assume that σ normalizes H .

The second possible action is that σ acts on H as an element of Aut(H) that does
not lie in AutG(H). The third is that σ acts non-trivially on H , but as an element of
AutG(H), and the fourth is that σ centralizes H , i.e., H lies in the fixed points Gσ .

The third and fourth possibilities are the same, in that if σ acts as an element of
AutG(H) then σ centralizes some other G-conjugate of H . This follows since, in the
group G〈σ 〉, all elements gσ in the coset of σ are G-conjugate, so there is ‘only one’
option for σ (see [50, Corollary 21.8]). Thus if σg centralizes H then σ centralizes
Hx , where x ∈ G conjugates σg to σ in G〈σ 〉. Thus, if σ now denotes a ‘minimal’
Steinberg endomorphism, i.e., one that is not a power of any other Steinberg endo-
morphism, to compute the minimal q such that H ≤ G embeds in Gsc, it suffices to
determine the smallest power of σ that stabilizes the class containing H and acts as
an element of AutG(H) on (a G-conjugate of) H .
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We will find that there is always a single Aut(G)-conjugacy class of simple sub-
groups H with any given character on M(G) and L(G), i.e., H will be determined
up to G-conjugacy by its Brauer characters on M(G) and L(G) (for E6 there might
be two G-classes swapped by the graph automorphism). Thus by studying the irra-
tionalities in these characters one can determine whether σ stabilizes the class con-
taining H . In addition, in most of our cases (but not all, for example PSL2(25) in F4),
outer automorphisms of H permute the character values of M(G)↓H and L(G)↓H ,
so it can be detected whether σ acts as an outer or inner automorphism on H just by
looking at the character values on these modules.

If G is F4 then every outer automorphism in Aut+(G) and Out(G) is Steinberg,
so we may assume from now on that G has type E6.

If γ is a graph automorphism of E6 then again, γ either stabilizes the class con-
taining H (and we say that H is graph-stable) or fuses two classes. This time, the
action of Hγ on M(E6) is the dual of that of H on M(E6), and this is usually enough
to decide whether H is graph-stable (up to conjugacy) or not.

If the class containing H is graph-stable then we also wish to know the outer
automorphism of H̄ induced by γ , i.e., the group NḠ(H̄ ) where Ḡ = 〈G,γ 〉. (Note
that since there are two classes of graph automorphism in Aut(G), it may be the case
that a particular γ can stabilize the class of H̄ without normalizing any element of
the class, so we cannot simply ask for the action of γ on a conjugate of H̄ , but ask for
NḠ(H̄ ).) In our cases it is easy to determine which automorphism of H̄ is induced,
either because Out(H̄ ) is small or because we can explicitly compute the result for
some small field.

Having determined when H ≤ G embeds in Gsc, we now want to know how the
G-classes of subgroups H break up into G- and Gad-classes of subgroups H̄ . First,
if H̄ is simple, and φ is an automorphism of an almost simple group X with socle H̄ ,
and φ centralizes H̄ , then φ = 1. To see this, write A = Aut(X), and note that H̄ is
characteristic in X and Z(X) = 1, so H̄ � A. Thus CA(H̄ ) � A, and CA(H̄ ) ∩ X =
1. Hence [CA(H̄ ),X] = 1, and hence CA(H̄ ) = 1 as well, since no elements of A

centralize X. Thus, if φ centralizes H̄ it centralizes NX(H̄ ). Thus, if H̄ ≤ G then
NG(H)/Z(G) = NG/Z(G)(H̄ ) ≤ Gad.

We also note that, as with Corollary 2.3, since the centralizer of H̄ is trivial in
G/Z(G), hence connected, the G/Z(G)-conjugates of H̄ lying in Gad form a single
Gad-conjugacy class.

The final automorphisms of G are diagonal automorphisms for G of type E6.
Corollary 2.4 is used to prove that diagonal automorphisms fuse three G-classes of
subgroups H̄ into a single Gad-class, except possibly for H̄ ∼= SL2(8). Section 6 is
devoted to understanding the action of diagonal automorphisms on this group.

Remark 3.17 For G = E7(q) there is also the issue of diagonal automorphisms. For
that group, the diagonal automorphism has order 2, of course, which is much more
likely to divide |NG(H) : HZ(G)|. In that case (depending on H ) it can be a sig-
nificant problem to determine the action of diagonal automorphisms. At the time of
writing, one of these – the normalizer of the subgroup A2 in simply connected E7 –
is still unresolved.
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Table 5 Simple groups inside F4 that are not of Lie type in defining characteristic

Prime Group H

p � |H | PSL2(q), q = 4,7,8,9,13,17,25,27, PSL3(3), PSU3(3), 3D4(2)

p = 2 Alt(n), n = 7,9,10, PSL2(q), q = 13,17,25,27, PSL3(3), PSL4(3), J2

p = 3 PSL2(q), q = 4,7,13,17,25, 3D4(2)

p = 5 Alt(7), PSL2(9)

p = 7 Alt(7), PSL2(q), q = 8,13,27, PSU3(3), 3D4(2)

p = 11 M11, J1

p = 13 PSL2(q), q = 25,27, PSL3(3), 3D4(2)

4 Subgroups of G = F4

In this section, we let G denote an algebraic group of type F4 in characteristic p, and
if p > 0 let σ denote a Frobenius endomorphism, with fixed points Gσ = G = F4(q)

for some q a power of p. Since Z(G) = 1, H ∼= H̄ , so H is a simple group, not
just a quasisimple group. Thus in this section we do not need to use H̄ and simply
consider H .

The simple groups H that we consider are given in [40, Tables 10.1–10.4], and
are repeated in Table 5. In each case we must determine if there are Lie primitive
examples, compute their normalizers, determine the G- and G-conjugacy classes,
and whether there are any maximal such subgroups.

We go through each group in turn, collecting them into families: alternating, spo-
radic, Lie type other than PSL2(r), and finally PSL2(r). In each case, as discussed in
Sect. 3.2, we will consult the tables in [46] and determine, for each row labelled with
‘P’, whether such an embedding yields a maximal subgroup (potentially a novelty).
(Of course, we do not do this if the subgroup has already been considered elsewhere.)

For computing the number of G-conjugacy classes, by Theorem 3.11, if H is a
quasisimple group, then we need only consider primes dividing |H |, and then all
other primes and p = 0 are a single case. We will not mention this again in this
section, as it will be used in almost every case for H .

We will also use the ideas from Sect. 3.7 extensively when computing the actions
of outer automorphisms of G and G. The first case where this is done is in Sect. 4.4.2,
and we provide more details then than in subsequent computations.

The aim of this section is to prove that if NḠ(H) is maximal in Ḡ then H ap-
pears in Table 1. We delay until Sect. 8 the proof that the subgroups here are indeed
maximal, by showing that there are no overgroups inside G.

4.1 Alternating groups

Most alternating groups were proved to be Lie imprimitive in [21]. This left the cases
H ∼= Alt(6) and p = 0,3, with specific actions on M(F4) in both cases. The case
p = 3 was settled in [24], and the case p = 0 was settled in [53]. (Note that Cohen–
Wales [17] do not prove that H is always Lie imprimitive.) In all cases we see that H

is strongly imprimitive.
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Proposition 4.1 Let H ∼= Alt(n) be a subgroup of G for some n ≥ 5. Then H is
strongly imprimitive.

Proof If H stabilizes a line on M(F4)
◦ or L(F4) then H is strongly imprimitive by

Proposition 3.1, and if H stabilizes a 2-space on M(F4)
◦ (i.e., n = 5, p = 2, and

H ∼= SL2(4)) then H is strongly imprimitive by [24, Proposition 4.7]. We therefore
assume that neither of these statements holds, and use results from [21] to find all
possibilities for n and p.

If n = 5 then by [21, Propositions 5.1–5.4], p �= 2,3,5, where H lies in A2A2, and
acts on M(F4) with factors 53, 42, 31 (see [46, Table 6.7]). The A2A2 acts semisimply
on M(F4) with modules (10,10), (01,01) and (00,11). Then H lies inside a diagonal
A2, and indeed inside a diagonal A1 irreducible subgroup X of A2 (since 2 · Alt(5)

has a 2-dimensional simple module). Finally, L(X) is a submodule of L(A2), which
is a summand of the diagonal A2, as we see above. Thus X stabilizes 31 as well, and
so H is strongly imprimitive by Proposition 3.4.

If n = 6 then from [21, Sect. 6] we see that for characteristic 0 there is a unique
set of composition factors on M(F4) and L(F4) that have no trivial factors. This is
proved to be Lie imprimitive and unique up to G-conjugacy in [53, Theorem 5.2.1].
In fact, strong imprimitivity is also shown there.

Examining [21, Propositions 6.1–6.3], we see that the other option is p = 3. Here
H ∼= PSL2(9) and H is strongly imprimitive by [24, Proposition 10.3]. �

4.2 Sporadic groups

The three cases were considered in [46], and H was found to be strongly imprimitive.
(For M11 and J1 and p = 11, H always stabilizes a line on M(F4). For J2 and p = 2,
H stabilizes a line on L(F4). In all three cases this is simply using Proposition 3.2.
Hence H is strongly imprimitive by Proposition 3.1.)

Proposition 4.2 If H is a subgroup of G isomorphic to one of M11, J1 and J2, then
H is strongly imprimitive.

4.3 Cross-characteristic subgroups not PSL2(r)

In this subsection we must deal with PSL3(3), PSL4(3), PSU3(3) and 3D4(2). Recall
that we delay proving maximality until Sect. 8.

4.3.1 H ∼= PSL3(3)

We will prove the following.

Proposition 4.3 Let p �= 3 and let H ∼= PSL3(3) act irreducibly on M(F4). Then H

is Lie primitive, unique up to G and G-conjugacy (if H ≤ G), contained in a unique
exotic 3-local subgroup 33

� PSL3(3), and NḠ(H) is never a maximal subgroup
of Ḡ.
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Proof In [16, Theorem A], Cohen and Wales show that H ∼= PSL3(3) is always con-
tained in a unique exotic 3-local subgroup J = 33.PSL3(3) for any G and p �= 2,3
(and this is the normalizer of the 33, see [18, Table 1] for example). Since H normal-
izes a unique 33, so does NG(H), and thus H = NG(H). Finally, since a G-conjugate
of J is centralized by any Frobenius endomorphism σ (see [18, Table 1]), so is H ,
and so NḠ(H) is always contained in NḠ(J ). This completes the proof for p �= 2,3.

Since we do not consider p = 3, it remains to consider p = 2. From [46, Ta-
ble 6.31] we see that M(F4)↓H is irreducible and the action is unique up to isomor-
phism. Let L denote a parabolic subgroup 32

� (SL2(3).2) of H . By Lemma 2.1,
the normal subgroup L0 ∼= 32 of L is toral. Let L1 denote a complement to L0 in L,
which is unique up to L-conjugacy.

Using Magma, one can restrict L(F4) to L0, and the 1-eigenspace of L0 on L(F4)

is exactly 4-dimensional. This means that CG(L0)
◦ is a maximal torus, say T (con-

taining L0). Since NG(L0) normalizes the connected centralizer of L0, NG(L0) lies
in NG(T).

We now prove that L is unique up to G-conjugacy in NG(T), given the action of
H on M(F4). To do so we must first understand the conjugacy classes of subgroups
SL2(3).2 ∼= L1 inside NG(T).

By a computer calculation, there are three conjugacy classes of subgroups K of
the Weyl group NG(T)/T ∼= W(F4) isomorphic to L1, which is a {2,3}-group. For
each of these we compute the number of conjugacy classes of complements to T
in the preimage K̂ of K in NG(T). By the Schur–Zassenhaus theorem, to compute
this number we only need consider the ‘{2,3}-part’ of T, and since p = 2 we only
have to consider the prime 3. In other words, the number of conjugacy classes of
complements to T in K̂ is determined by the 1-cohomology of K on the 3-part of T.

It is easy to see that the only simple module for L1 ∼= SL2(3).2 with non-trivial
1-cohomology in characteristic 3 is 12, the non-trivial 1-dimensional module. How-
ever, by a computer calculation, the action of each subgroup K of W(F4) on the
subgroup 34 of T splits as the sum of two non-isomorphic 2-dimensional modules,
and hence no layer (3n)4/(3n−1)4 can have non-zero 1-cohomology. This proves that
all complements to T in K̂ are conjugate.

In conclusion, we have proved that there are exactly three conjugacy classes of
subgroups SL2(3).2 complementing T in NG(T), each arising from a different class
of subgroups of the Weyl group W(F4). Each of these different classes of subgroups
has a different Brauer character on M(F4) and L(F4), so only one of them is com-
patible with the action of H . Thus L1 is determined up to conjugacy in NG(T).

To move from here to proving that L is determined up to conjugacy in NG(T), we
need to understand copies of L ∼= 32

�L1 inside the subgroup 34
�L1 in T ·L1. There

are exactly two subgroups of order 9 normalized by L1, so we obtain two possible
subgroups L. These are conjugate in NG(T), as confirmed by a computer check in
the supplementary materials.

Thus we have proved that, given the Brauer characters on M(F4) and L(F4), L

is unique up to G-conjugacy. The action of L on M(F4) is easy to describe, and is
the sum of three simple modules, of dimensions 2, 8 and 16. We therefore use the
trilinear form method from Sect. 3.4 to prove uniqueness of H , which is done in the
supplementary materials.
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(The polynomial equations involved are much easier than those we considered in
[25]. If a, b, c are the parameters in a generic element of the centralizer, then each of
a, b, c is non-zero. We obtain an equation ωc2(a + c) = 0, where ω is a cube root of
1, so a = c. Another equation is c2(b + ωc) = 0, so b = ωc. This proves that there
is a unique subgroup H in G containing L.) Thus for p = 2, we still have that H is
contained in an exotic 3-local subgroup.

In this case, unlike p > 3, there is a subgroup PSL3(3).2 of G [52, p. 2821], so
NG(H) = H.2. This is contained in a maximal subgroup PSL4(3).2 of F4(2) (see
[52, p. 2820]). Since both are irreducible subgroups of GL26(k), there is a unique
subgroup PSL4(3).2 containing any given PSL3(3).2. (The same holds for the irre-
ducible subgroup 33

� PSL3(3), so [16, Theorem A] holds without the restriction
p �= 2.)

Since PSL3(3).2 ∼= Aut(H) is already a subgroup of G, it cannot form a novelty
maximal subgroup. This completes the proof. �

4.3.2 H ∼= PSL4(3)

Here p = 2. From [46, Table 6.32], we see that H acts irreducibly on M(F4) and
there are two such actions up to isomorphism, which are Aut(H)-conjugate.

This group lies in F4(2) by [52], so it exists over all fields. In addition, Norton
and Wilson in [52] show that H.2 lies in, and is maximal in, F4(2), and H.22 lies in
F4(2).2, so we see that NG(H) and NG(H) is always H.2. This subgroup can only
be maximal in F4(2).

There are three methods to prove that H ∼= PSL4(3) is unique up to conjugacy
in G. In all cases, let L denote a copy of 33 ·PSL3(3) inside H (i.e., an A2-parabolic).
All subgroups L of G acting irreducibly on M(F4) are G-conjugate [18, Table 1].

First, M(F4)↓H and M(F4)↓L are both irreducible, there are two H -classes of
subgroups L, and CGL26(k)(H) = CGL26(k)(L). Also, the group H.2 contained in G
fuses the two H -classes of subgroups L, and so there is a unique copy of H contain-
ing a given L in GL26(k). Since there is a unique G-class of subgroups L, there is a
unique G-class of subgroups H .

Alternatively, one notes that S3(M(F4))
L and S3(M(F4))

H are both 2-dimen-
sional, so any F4-form stabilized by L is also stabilized by H ; since there is a single
G-conjugacy class of L acting irreducibly on M(F4), (up to scalar) there is a unique
F4-form in S3(M(F4))

L, hence there is a unique F4-form in S3(M(F4))
H .

Finally, a third proof does not use M(F4) at all: the 246-dimensional module
L(λ3) for G (see [47, Appendix A.50]) that is in the exterior square of M(F4) re-
stricts to H as the sum of a 208-dimensional and a 38-dimensional module, by exam-
ining the factors of �2(M(F4)↓H ). The second of these restricts to L as the sum of
a 26- and 12-dimensional module, but the 208-dimensional submodule of L(λ3)↓H

is irreducible on restriction to L. Therefore the 38- and 208-dimensional submod-
ules of L(λ3)↓L are preserved by H , and indeed by any copy of PSL4(3) containing
L. Since NG(H) is Lie primitive, we therefore have that NG(H) is the stabilizer
of the 38-dimensional subspace of L(λ3). Thus again there is a unique subgroup
H ∼= PSL4(3) containing L, which lies in G.
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Proposition 4.4 Let p = 2 and let H ∼= PSL4(3) act irreducibly on M(F4). Then H is
Lie primitive, unique up to G- and G-conjugacy (if H ≤ G), we have NG(H) = H.22,
and NḠ(H) is maximal if and only if G ∼= F4(2). In this case NG(H) = H.22 and
NḠ(H) = H.22 if Ḡ �= G.

The proof of maximality will be given in Sect. 8.

4.3.3 H ∼= PSU3(3)

Since PSU3(3) ∼= G2(2)′, we need only consider p �= 2,3, so p = 7 or p �= 2,3,7.
We see from [46, Table 6.33] that if p � |H | then H must always stabilize a line on
L(F4), hence is strongly imprimitive by Proposition 3.1.

For p = 7, we use the Lie algebra structure, so the ideas from Sect. 3.6. From
[46, Table 6.34], either H stabilizes a line on L(F4) as it has pressure −3 (see
Proposition 3.2), or H acts irreducibly on M(F4) and with factors 26, 14, 62 on
L(F4). The 14 is projective so breaks off as a summand, and its exterior square is
14 ⊕ 21 ⊕ 28 ⊕ 28∗. In particular, by Lemma 3.14 this means that the 14 is a Lie
subalgebra of L(F4), and is L(G2). Finally, from Proposition 3.15 we see that this is
the maximal g2 Lie subalgebra of f4, and H is strongly imprimitive.

This completes the proof of the following result.

Proposition 4.5 If H ∼= PSU3(3) is a subgroup of G then H is strongly imprimitive.

4.3.4 H ∼= 3D4(2)

We delay maximality proofs until Sect. 8, but we state the full result for this group
now anyway.

Proposition 4.6 Let p �= 2 and let H ∼= 3D4(2) act irreducibly on M(F4)
◦. Then H is

Lie primitive, unique up to G- and G-conjugacy, we have NG(H) = H.3, and NḠ(H)

is maximal if and only if Ḡ ∼= F4(p).

Proof For H ∼= 3D4(2) and p �= 2, from [46, Tables 6.35 and 6.36] we see that H must
act irreducibly on M(F4)

◦ and the module is unique up to isomorphism. By a Magma
computation S3(M(F4)

◦)H is 1-dimensional, so there is a unique H -invariant, sym-
metric trilinear form on M(F4)

◦, and this form is invariant under the group H.3, to
which the irreducible module extends. Thus if H embeds in G then it is unique up
to conjugacy by Lemma 3.12. (In addition, H has the Ryba property for all p �= 2.)
This also shows that, if H embeds in G then so does H.3 ∼= Aut(H).

There seem to be two proofs in the literature that 3D4(2) embeds in G. The first is
a discussion in [51, p. 489], and the second is a direct construction involving gener-
alized hexagons [13]. (The Cohen–Wales paper [17, 6.2] references [51] and a paper
that does not contain the result because the reference should point to [13], and [40]
references [17].) Similarly to Norton’s proof, but much easier, is to note that if χ is
the ordinary character for H of degree 52, then 〈�2(χ),χ〉 = 1 but 〈�3(χ),χ〉 = 0,
i.e., it has the strong Ryba property. By Lemma 3.16, and the fact that f4 is the only
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simple complex Lie algebra of dimension 52, H.3 embeds in F4(C) and is unique up
to conjugacy. Hence H.3 embeds in F4(k) for all primes p by Theorem 3.10, and this
embedding acts irreducibly on M(F4). We cannot deduce the strong Ryba property
for p = 3,7,13 (the odd primes dividing |H |) directly from it holding for p = 0.
However, we can just check the Ryba property directly in Magma for these primes,
and it holds, and we do not need the strong Ryba property since existence is already
known. Thus H exists and is unique up to G-conjugacy for all p �= 2.

We now must establish the minimal q for which H (and hence H.3) can embed
in F4(q). Since the ordinary character of H on the 26-space is rational, H embeds
into GL26(q) for any q not a power of 2, 3, 7, 13. In addition, the minimal fields for
p = 3,7,13 are indeed Fp as well (see [29, pp. 251–253], or note that the character
is the reduction modulo p of an rational character), so Fp is the minimal field for the
module for all odd primes p. Since S3(M(F4)

◦)H is 1-dimensional, so the unique H -
invariant symmetric trilinear form is an F4-form, and therefore H embeds in F4(p).
(Alternatively one sees that a Frobenius endomorphism must stabilize the class of
H because it is unique, and then act as an inner automorphism of H.3 since this is
Aut(H) so all automorphisms are inner. As we saw in Sect. 3.7, this implies that σ

centralizes a conjugate of H .) �

4.4 Cross-characteristic subgroups PSL2(r)

Let H ∼= PSL2(r) for r one of 7, 8, 13, 17, 25, 27. We will deal with each case in
turn. We will let L denote a Borel subgroup of H , and L0 its derived subgroup, a
group of order r .

4.4.1 H ∼= PSL2(7)

For H ∼= PSL2(7) ∼= PSL3(2), we may exclude both p = 2 and p = 7, and are thus
left with p = 3 and p �= 2,3,7. If p = 3 then we know that H is strongly imprimitive
by [46], and in fact H always stabilizes a line on L(F4). Indeed, we prove more.

Proposition 4.7 Let p = 3, let X be a simple, simply connected exceptional group of
Lie type not of type G2, and let H ∼= PSL2(7) be a subgroup of X, or H ∼= SL2(7)

with Z(H) = Z(X). Then H stabilizes a line on L(X)◦. In particular, H is always
strongly imprimitive in X.

Proof The non-projective simple kH -modules are of dimensions 1 and 7, with the
projective cover of 7 being 7/1/7. Thus a kH -module either has a trivial submodule
or quotient, or has at least twice as many 7s as 1s. From [46, Tables 6.13, 6.69, 6.162,
6.163 and 6.268], we see that this is never the case, and therefore H always stabilizes
a line on L(X)◦. That H is strongly imprimitive follows from Proposition 3.1. �

If p = 0, it is shown that the embedding of H into G that is fixed-point-free on
both M(F4) and L(F4) lies inside A2A2 in [17, Lemma 8.3]. To check strong im-
primitivity, we note that the composition factors of M(F4)↓H are 3, 3∗, 62, 8 and
M(F4)↓A2A2 acts as (10,10) ⊕ (01,01) ⊕ (00,11) (so dimensions 9, 9 and 8) [62,
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p. 246], so if H is contained in A2A2 then both H and A2A2 stabilize a unique
8-dimensional subspace. Thus H is strongly imprimitive for all primes p (via Theo-
rem 3.11).

Proposition 4.8 If H ∼= PSL2(7) is a subgroup of G then H is strongly imprimitive.

4.4.2 H ∼= PSL2(8)

Since PSL2(8) ∼= 2G2(3)′, we assume that p �= 2,3, so the distinct cases are p = 7
and p �= 2,3,7. Let L denote a Borel subgroup of H , of the form 23

� 7.
If p = 7, then from [46, Table 6.15] either H stabilizes a line on M(F4) or the

factors are 83, 12. If p �= 2,3,7 then either H stabilizes a line on M(F4) or has
composition factors 91, 92, 8 for 91, 92 any two of the three Aut(H)-conjugate 9-
dimensional simple kH -modules. In the case p = 7, the only option that is compatible
with an element of order 7 acting with Jordan blocks from [36, Table 3] is a uniserial
module 8/1/8/1/8. Thus H is strongly imprimitive by Proposition 3.1, or the other
cases mentioned hold.

We will prove the following result, given the action above, with maximality de-
layed until Sect. 8.

Proposition 4.9 Let H ∼= PSL2(8) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 2,3, and that H acts on M(F4)

as either 8/1/8/1/8 or 91 ⊕ 92 ⊕ 8.

(i) There is exactly one G-conjugacy class of subgroups H . If p �= 2,3,7 then H is
Lie primitive and NG(H) = H . If p = 7 then H is contained in a G2 maximal
subgroup of G, but NG(H) = H.3 is Lie primitive.

(ii) There is an embedding of H into G if and only if the polynomial f5(x) = x3 −
x2 − 2x + 1 splits over Fq (i.e., q ≡ 0,±1 mod 7), where G = F4(q). If H

embeds in G then H is unique up to G-conjugacy.
(iii) If Ḡ is an almost simple group with socle G = F4(q), then NḠ(H) is maximal in

Ḡ if and only if either Ḡ = G and Fq is the minimal splitting field for f5(x), or
Ḡ = F4(p

3).3 and H does not embed in F4(p). In this second case, NḠ(H) =
H.3.

The proof proceeds in stages.

Determination of NG(H)

Since M(F4)↓H is not stable under the field automorphism of H for p �= 2,3,7,
of course H.3 cannot embed in G in these cases. For p = 7 a computer calculation
shows that there are three extensions of the module 8/1/8/1/8 to the whole of H.3,
and exactly one of these is self-dual. We prove in the supplementary materials that
this extension indeed embeds in G. Later in this proof we show that all copies of H

are G-conjugate, and this shows that NG(H) = H.3 for all subgroups H .
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Determination of L up to conjugacy

By [17, pp. 135–136] L is unique up to conjugacy in G if p �= 2,7, although we
need this in characteristic 7 as well. Thus we assume that p = 7 from now on. From
the action of H on M(F4), it is easy to check that L acts on M(F4) with structure
(1/1/1/1/1) ⊕ 7⊕3. This means that, by Lemma 2.5, L lies inside either B4 or a
maximal parabolic subgroup. The former is impossible for p = 7, since B4 acts on
M(F4) as 1 ⊕ 9 ⊕ 16.

Note that the C3T1-parabolic has a composition factor of dimension 6 on M(F4),
so L does not embed in that. Also, L does not embed at all in A1A2, so L is con-
tained in a B3T1-parabolic subgroup X. We need to compute the number of classes of
subgroups L inside this parabolic, which means computing the 1-cohomology of L

on the unipotent radical U of X. Since p = 7, X acts on M(F4) as 1/8/1, 7/8/1. We
see that L must act irreducibly on M(B3) = L(100), and as 7 ⊕ 1 on L(001). Thus
the dimensions of the 1-cohomology groups of L on these two modules are 0 and 1
respectively.

As X/[X,X] is a torus, p = 7 and |L/L′| = 7, we see that L definitely lies in
[X,X], which is of the form U · B3. As a module for the B3, U has layers L(100)

and L(001), so the 1-cohomology of L on U has dimension at most the sum of the
dimensions of the 1-cohomologies of the factors, so 0+1 = 1. The T1 part of the Levi
complement normalizes U · B3, and also acts on H 1(L,U). The zero of this group
corresponds to a subgroup of the Levi complement; B3 acts semisimply on M(F4),
and this is incompatible with the structure of M(F4)↓L. Thus L must be one of
the complements to U corresponding to a non-zero point of H 1(L,U). All non-zero
points of H 1(L,U) must be permuted regularly by T1 as this is the only action of k×
on k (see, for example, [60, Lemma 3.2.15]). (Alternatively one may see it directly
in terms of the complements, by assuming that some element of T1 normalizes more
than one complement and proving that it then normalizes all of them.)

Thus L is unique up to conjugacy for all p �= 2.

Determination of H up to conjugacy

Fix some L, and suppose that H contains L. First assume p = 7. From the supple-
mentary materials, we see that all other subgroups J ∼= H containing L are related
by J = Hg for some g ∈ CG(L). Since all L are G-conjugate, this implies that all H

are G-conjugate as well.
For p �= 2,3,7, we first note that, from [46, Table 6.14] we see there are three non-

isomorphic, but Aut(H)-conjugate, sets of composition factors for H that have no
fixed points on either M(F4) or L(F4), and each of these yields a unique embedding
(up to conjugacy) into G by [17, Theorem 6.10 and p. 137]. We claim that these three
possible embeddings yield conjugate subgroups of G (they obviously yield conjugate
subgroups of GL26(k) because the representations are Aut(H)-conjugate).

The group NG(L) acts by conjugation on the overgroups of L isomorphic to H .
We see from [17, p. 136] that there is a subgroup 23 · GL3(2), which obviously con-
tains a subgroup L.3 not contained in LCG(L). An element of order 3 in L.3 \ L

permutes the three classes of elements of order 7 in L, and it is these classes on which
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the three representations for M(F4)↓H differ. Thus this element of order 3 must per-
mute the three classes of embeddings by conjugation, hence they are all G-conjugate.
Thus H is unique up to G-conjugacy.

Action of outer automorphisms

We need only consider the field automorphism σ = Fp of G, since p �= 2. It cannot
fuse classes as H is unique up to G-conjugacy, so we may assume that σ normalizes
H , using Lemma 2.2. If σ acts as an inner automorphism of H then H ≤ Gσ (up to
conjugacy), as we saw in Sect. 3.7. Thus we assume that σ acts as an element not in
AutG(H).

Suppose first that p �= 2,3,7. Notice that the outer automorphism of H permutes
the three representations M(F4)↓H with character irrationalities satisfying f5(x).
Thus if they are defined over Fp then σ cannot induce the outer automorphism, and if
they are not defined over Fp then σ must induce the outer automorphism. Finally, if
p = 7 then Aut(H) already embeds in G, so σ must act as an inner automorphism of
NG(H), and thus centralizes a conjugate of H , as claimed. (In particular, Fp3 always
centralizes (a conjugate of) H .)

4.4.3 H ∼= PSL2(13)

Here we consider H ∼= PSL2(13), when p �= 13, and let L be a Borel subgroup of H ,
a group of the form 13 � 6. From [46, Tables 6.17–6.20], we see that either H stabi-
lizes a line on M(F4)

◦—and hence is strongly imprimitive by Proposition 3.1—or H

acts on M(F4)
◦ as the sum of a 12- and 14-dimensional module for p �= 3,13, and a

12- and 13-dimensional module for p = 3. The 13- and 14-dimensional modules are
always unique up to isomorphism. If p �= 7,13 then there are three non-isomorphic,
non-Aut(H)-conjugate, but algebraically conjugate, representations of dimension 12.
If p = 7 then these three representations become isomorphic.

For p �= 3, the restriction of M(F4) to L is the sum of two copies of each of the
two 6-dimensional modules and one of each of the two 1-dimensional modules with
13 � 4 in the kernel. If p = 3, the structure is

6⊕2
1 ⊕ 6⊕2

2 ⊕ (1/1)

for the 26-dimensional module M(F4)
◦/1.

We will prove the following result, delaying maximality proofs until Sect. 8, as
usual.

Proposition 4.10 Let H ∼= PSL2(13) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 13, and that H acts on M(F4)

as described above.

(i) If p �= 7,13 then there are exactly three G-conjugacy classes of subgroups H ,
H is Lie primitive, and NG(H) = H.2 ∼= PGL2(13). If p = 7 then there is one
G-conjugacy class of subgroups H , H is contained in a G2 maximal subgroup
of G, but NG(H) = H.2 is Lie primitive.
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(ii) There is an embedding of H into G if and only if the polynomial f5(x) = x3 −
x2 − 2x + 1 splits over Fq (i.e., q ≡ 0,±1 mod 7), where G = F4(q). If H

embeds in G then there are exactly three G-conjugacy classes of subgroups H

if p �= 7, and exactly one if p = 7.
(iii) If Ḡ is an almost simple group with socle G = F4(q), then NḠ(H) is maximal

in Ḡ if and only if p �= 2, Ḡ = G and Fq is the minimal splitting field for f5(x).
(For p = 2 a subgroup 2F4(8) contains H .)

The proof proceeds in stages.

Determination of NG(H)

Note that either NG(H) = H or NG(H) = H.2 ∼= PGL2(13). By either [17, 6.9] or
[58], at least one of the classes of H extends to PGL2(13), so we expect NG(H) ∼=
PGL2(13) for all classes. To show this we need to determine the number of G-classes,
which we do below.

Determination of L up to conjugacy

If p �= 3,13 then the subgroup 13 � 3 of L is unique up to G-conjugacy by [15,
Lemma 2.1]. We could use this to show that L = 13�6 is unique, but we also need the
case p = 3, and to understand classes in the finite group. By Lemma 2.1, L ≤ NG(T)

for some maximal torus T, and LT/T has order 6.
To apply Lemmas 3.7 and 3.8, we need to find CT(w) for an element w of order

6 in W(F4) (which is unique up to conjugacy), and in particular the {2,3}-part of it.
We check with a computer that there are no elements of order 2 or 3 in T centralized
by w by examining the action of w on elementary abelian subgroups of a torus, so w

is unique up to conjugacy in both G and any finite group G containing L.
We now move up to the group L. The subgroup L0 = 13 is unique up to G-

conjugacy, and since it is regular, the G- and NG(T)-classes of subgroups L0 in T
are the same. In particular, L is unique up to G-conjugacy. Moreover, by Lemma 2.2,
all subgroups L0 are G-conjugate, and therefore we obtain that L is unique up to G-
and G-conjugacy, as needed.

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies in G of H con-
taining L under the centralizer of L in GL26(k). We find exactly one for each repre-
sentation of H . This is done in the supplementary materials for p = 2,3,7, and for
p �= 2,3,7,13 it is accomplished in [15, Theorem 3.1(ii)]. Thus if p �= 7,13, there
are exactly three subgroups H containing a given subgroup L, one from each class,
and for p = 7 there is exactly one.

Action of outer automorphisms

We only need consider the field automorphism σ = Fp of G for p odd, and the graph
and field automorphisms for p = 2. Here, since Aut(H) already embeds in G, either
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σ fuses classes—only possible if the Brauer character values of M(F4)↓H (which
has irrationalities satisfying f5(x)) lie outside Fp—or acts as an inner automorphism
of NG(H), and hence centralizes NG(H) up to conjugacy. Thus σ fuses the three
classes of H if f5(x) does not split over Fp , and centralizes H (up to conjugacy) if it
does split.

For p = 2, we also need the graph automorphism. Note that F8 centralizes (a
conjugate of) H , so we may assume that the graph automorphism acts on G = F4(8)

and has order 6. It still must permute the three G-classes of subgroups, so its cube
must stabilize each class. However, Aut(H) embeds in G, so it therefore acts as an
inner automorphism on NG(H), and hence up to conjugacy H and NG(H) lie in
2F4(8).

Remark 4.11 As mentioned in the introduction, the existence of PGL2(13) in 2F4(8)

was overlooked in [49]. The proof above shows that there are three classes, permuted
transitively by the field automorphism of that group. To confirm this answer, the
author has produced a direct construction of PGL2(13) inside 2F4(8), and this is
given in the supplementary materials.

4.4.4 H ∼= PSL2(17)

Here we consider H ∼= PSL2(17), when p �= 17. There are three cases to consider:
p = 2, p = 3 and p �= 2,3,17. The first two of these are easy to do, and we prove that
H is strongly imprimitive in both cases. For the others, we proceed as in the previous
section.

If p = 2 then the pressure of M(F4)↓H is non-positive and there are trivial com-
position factors (see [46, Table 6.23]), so H centralizes a line on M(F4) (as M(F4)

is self-dual) by Proposition 3.2. We therefore have that H is strongly imprimitive by
Proposition 3.1, agreeing with [46, Theorem 1].

Now suppose that p = 3, and we suppose that H ≤ F4 ≤ E6, so that H acts on
M(E6) as well as M(F4)

◦. Let u be an element of order 9 in H . The action of H on
M(F4)

◦ (which has dimension 25 since p = 3) is 16 ⊕ 9 (see [46, Table 6.22]). The
element u acts on this module with Jordan blocks 92, 7. Thus u lies in class F4(a1)

as we see from [24, Table 6.1], and this table gives the Jordan blocks of the action of
u on M(E6), namely 92, 7, 12.

A computer calculation shows that the module 9 has no extension with the trivial
module, but Ext1kH (16,1) is 1-dimensional. The action of u on the module 9⊕ (16/1)

is 92, 8, which does not match the action of u on M(E6). Thus H must act on M(E6)

as 16 ⊕ 9 ⊕ 1⊕2. Hence H is strongly imprimitive by Lemma 3.6.
For other primes we see from [46, Table 6.21] that either H stabilizes a line on

M(F4) or acts as a module 17 ⊕ 9. The module 17 is unique up to isomorphism, and
there are two non-isomorphic but Aut(H)-conjugate modules 9. For this embedding,
we have the following result, delaying maximality proofs until Sect. 8, as usual.

Proposition 4.12 Let H ∼= PSL2(17) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 2,3,17, and that H acts as
described above.
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(i) There is a unique G-conjugacy class of subgroups isomorphic to H , H is Lie
primitive, and NG(H) = H .

(ii) The subgroup H embeds into G = F4(q) if and only if the polynomial f1(x) =
x2 − x − 4 splits over Fq (i.e., q ≡ ±1,±2,±4,±8 mod 17). In this case there
is a unique G-conjugacy class of subgroups H .

(iii) If Ḡ is an almost simple group with socle G = F4(q), then NḠ(H) is maximal
in Ḡ if and only if, either Ḡ = G and Fq is the minimal field over which f1(x)

splits, or f1(x) does not split over Fp , q = p2, and Ḡ = G.2. In this latter case,
NḠ(H) ∼= PGL2(17).

As usual, the proof proceeds in stages.

Determination of NG(H)

Since the module M(F4)↓H is not stable under the outer automorphism of H , we
must have that NG(H) = H .

Determination of L up to conjugacy

Note first that L0 of order 17 in L is regular, and CG(L0) = T. Also, if w ∈ L has
order 8, then CT(w) has order 2. This can either be seen inside NG(T), or can be
proved directly in the supplementary materials. Either way, we see that the centralizer
of w in T is finite, so we may apply Lemmas 3.7 and 3.9 to see that w, and then L, is
unique up to conjugacy in G.

In the finite group, things are slightly different. Note that |CG(L)| = 2 and if L ≤
G then CG(L) ≤ G. Write z for the involution in CG(L). Thus by Lemma 3.8 there
are at most two classes of elements w, and hence at most two classes of subgroups L.
(Since CG(L0) is a torus, by Lemma 2.2 all such subgroups L0 are conjugate.) Note
that NG(L) in particular normalizes L0; we see that NG(L) = 〈L,z〉.

To see that there are exactly two classes of subgroups L in G, note that all involu-
tions in G that are G-conjugate are G-conjugate, so we may assume that if L and L1
are two subgroups 17 � 8 that are conjugate in G, then CG(L) = CG(L1). If L and
L1 are conjugate then they are via an element of CG(z), which is B4 (as z has trace
−6 on M(F4), by a computer check). The finite version of this is Spin9(q), which has
an outer automorphism of order 2. Since this lies in B4 (as it is diagonal) it cannot
normalize L, as NG(L) ≤ G. Thus it must fuse two classes, so there are exactly two
classes of subgroups L in the finite group G.

Determination of H up to conjugacy

Using the standard centralizer method from Sect. 3.4, in the supplementary materials
we find exactly two subgroups H containing a given subgroup L. These are conjugate
via the involution in CG(L). Since all subgroups L are conjugate in G, this means
that all subgroups H are conjugate in G. Applying Corollary 2.3, we obtain that H is
unique up to G-conjugacy as well, whenever H ≤ G.

(One might be surprised that there are two classes of subgroups L in G but only
one of H . Each class of subgroups L of G has two overgroups H in G: for one class,
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both of these lie in G, and for the other the two classes are swapped by σ , with them
lying in Gσ 2

but not in Gσ .)

Action of outer automorphisms

We only need consider the field automorphisms of G since p is odd. Since H is
unique up to conjugacy in G, a Frobenius endomorphism σ cannot fuse classes, so
must normalize H . As |Out(H)| = 2, H is centralized (up to conjugacy) by Fp2 , so
H ≤ F4(p

2). Note that the character χ of M(F4)↓H has values in Fq if and only
if f1(x) splits, as is easily checkable, and an element g ∈ H of order 17 has non-
rational character value. If σ = Fp and f1(x) does not split over Fp , then σ has to
send χ(g) to χ(g3), so cannot centralize H . In particular, we obtain the statement
that NḠ(H) ∼= PGL2(17) when f1(x) does not split over Fp .

If f1(x) does split over Fp however, then σ cannot send χ(g) to χ(g3), so σ can-
not induce the outer automorphism on H . Thus σ must induce an inner automorphism
on H , so some conjugate of H is centralized by σ , as claimed.

4.4.5 H ∼= PSL2(25)

Here we consider H ∼= PSL2(25), when p �= 5, and let L be the Borel subgroup of
H , a group of the form 52

� 12. From [46, Tables 6.24–6.26], we see that H acts
irreducibly on M(F4)

◦, and there is a unique such action. The restriction to L is the
sum of the two simple 12-dimensional modules and the two 1-dimensional modules
with kernel 52

� 4 unless p = 3, in which case the structure is

121 ⊕ 122 ⊕ (1/1)

on the 26-dimensional module M(F4).
The subgroup H was constructed in F4(C) in [17, 6.6], and therefore occurs in all

characteristics by Theorem 3.10. We will prove the following result, as usual delaying
proofs of maximality until Sect. 8.

Proposition 4.13 Let H ∼= PSL2(25) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 5, and that H acts as described
above.

(i) There is a unique G-conjugacy class of subgroups isomorphic to H , H is Lie
primitive, and NG(H) = H.2, with the extension being non-split and with the
field-diagonal automorphism (PSL2(25).23 in Atlas notation).

(ii) There is always an embedding of H into G, and H is unique up to G-conjugacy.
(iii) If Ḡ is an almost simple group with socle G = F4(q), then NḠ(H) is maximal

in Ḡ if and only if Ḡ = G and q = p �= 2.

The proof proceeds in stages.
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Determination of NG(H)

Since Out(H) ∼= 22, and M(F4)↓H is Out(H)-stable in all cases, we have to check
traces for p odd and unipotent actions for p = 2, so we start with p odd. In Aut(H)

there are two classes of outer involutions, with traces 0 and ±4 on any extension of the
26-dimensional module to Aut(H). Since these are not traces of involutions in G, we
see that NG(H) cannot be a split extension of H by a non-trivial 2-group. This means
that NG(H) is either H or is the extension with the diagonal-field automorphism. It
follows that NG(H) > H in characteristic 0, and therefore for all characteristics by
Theorem 3.10.

(It is stated in [17, 6.6] that H.2 embeds in F4(C), but the proof in [17] is incorrect.
In [17], the proof is that the field-diagonal automorphism is present for p = 2, and
therefore is true for all characteristics. This only works if the automorphism is present
for a characteristic not dividing |H | (where one may use Theorem 3.11), and is false
in general; for a counterexample, see Sect. 4.4.2.)

In characteristic 2, the two outer involutions act on the (unique) 26-dimensional
simple module for H with Jordan blocks 213 and 211, 14. As neither of these appears
in [36, Table 3], we see again that NG(H) is not a split extension with a non-trivial
2-group, and the result holds again (see also [52]).

Determination of L up to conjugacy

Note that the subgroup L0 ∼= 52 of L is toral by Lemma 2.1, and has exactly four
trivial factors on L(F4), whence C◦

G(L0) = T for some maximal torus T. Since any
element of G that normalizes L0 normalizes C◦

G(L0), we have

L ≤ NG(L0) ≤ NG(T).

We can then show that L is unique up to conjugacy in NG(T), completing the
proof that L is unique up to G-conjugacy. First, there is a unique W(F4)-class of
groups of order 52 in T whose Brauer character consists only of values 26 and 1 (as
M(F4)↓L must). The centralizer of this group in NG(T) is simply T, so the central-
izer is connected. In addition, we check that CT(w) = 1 for w ∈ L of order 12, and
hence all copies of L containing a fixed L0 are T-conjugate using Lemma 3.9. Note
that w acts on 54 to normalize a 52 × 52 decomposition; both 52s are G-conjugate
to L0.

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies of H containing
L under the centralizer of L in GL26(k). We find exactly one. This is done in the
supplementary materials for p = 2,3,13, and for p �= 2,3,5,13 it is accomplished
in [53, Theorem 4.2.2]. (Uniqueness was not given in [17, Sect. 6.6].)

Action of outer automorphisms

We only need consider the field automorphisms of G if p is odd, and the graph
automorphism (that powers to the field automorphism) for p = 2. Notice that, by
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Corollary 2.3, H is unique up to G-conjugacy if H ≤ G. If p = 2 then H ≤ F4(2),
and in fact H ≤ 2F4(2) (see [63] or, for example, [19, p. 74] for a list of maximal
subgroups of 2F4(2)). Thus H is centralized by all outer automorphisms of G, but H

is not maximal if p = 2. Thus p is odd.
As H is unique up to G-conjugacy, Fp cannot fuse classes, so must normalize H .

Since Out(H) has exponent 2, certainly Fp2 always centralizes (up to conjugacy)
H , so the question is whether H embeds in F4(p) or whether Fp induces an outer
automorphism on H .

We could check if L embeds in G = F4(p). If this is the case then the Frobenius
endomorphism Fp permutes the overgroups of L isomorphic to H (since it centralizes
L), and as we have proved there is exactly one such overgroup, Fp normalizes H . But
then Fp acts as an automorphism of H centralizing L, and thus Fp centralizes H . If
p ≡ ±1 mod 5 then there is a subgroup 54 of G, normalized by the Weyl group, so
L embeds in G.

From, for example, [12, Table 3], the complex reflection group G8 is the automizer
of a Sylow 5-subgroup of F4(p) for p ≡ ±2 mod 5. This contains elements of order
12, so there is a group 52

� 12 in F4(p) for these primes. Indeed, as we stated above,
given the element of order 12, there is a unique (up to conjugacy) group of order 25
that it normalizes, and so the group 52

� 12 must be G-conjugate to L. In particular,
this proves that H embeds in F4(p) for all primes p.

4.4.6 H ∼= PSL2(27)

Here we consider H ∼= PSL2(27), when p �= 3, and let L be a Borel subgroup of H ,
a group of the form 33

� 13.
From [46, Tables 6.27–6.29], we see that H acts irreducibly on M(F4), and if p �=

3,7 then there are three non-isomorphic, but Aut(H)-conjugate, such representations.
If p = 7 then these representations become isomorphic. The restriction to L is the
sum of two 13-dimensional modules in all cases.

We will prove the following result, delaying maximality proofs until Sect. 8.

Proposition 4.14 Let H ∼= PSL2(27) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 3, and that H acts as described
above.

(i) There is a unique G-conjugacy class of subgroups isomorphic to H , H is Lie
primitive, and NG(H) = H .

(ii) There is an embedding of H into G if and only if the polynomial f5(x) = x3 −
x2 − 2x + 1 splits over Fq (i.e., q ≡ 0,±1 mod 7), where G = F4(q). If H

embeds in G then H is unique up to G-conjugacy.
(iii) Let Ḡ be an almost simple group with socle G = F4(q). If p is odd, then NḠ(H)

is maximal in Ḡ if and only if Fq is the minimal splitting field for f5(x), and
NḠ(H) = H if Ḡ = G, and is H.3 if Ḡ = G.3. If p = 2 then NḠ(H) is always
maximal in Ḡ, if G = F4(8).

The proof proceeds in stages.
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Determination of NG(H)

First, note that PGL2(27) does not embed in G for p �= 3. For p �= 2,3, this is because
an outer involution has trace 0, hence cannot be conspicuous. For p = 2, an outer
involution acts on all 26-dimensional modules for PGL2(27) with blocks 213, which
does not appear in [36, Table 3]. If p �= 3,7 then the Aut(H)-class of simple modules
of dimension 26 has length 3, so H.3 cannot embed in G. For p = 7, we will prove
that |NG(H) : H | ≥ 3, so is equal to 3 as it cannot be 6. Thus NG(H) = H for all
p �= 3,7 and NG(H) = H.3 for p = 7.

Determination of L up to conjugacy

By, for example, [27, Table II], this group is unique up to conjugacy in G, and even
in the finite group G (see [18], for example, or [17, Theorem 3.5] for a list of several
other proofs).

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies of H containing
L under the centralizer of L in GL26(k). For p �= 3,7, we find exactly three subgroups
H , permuted by a generator for NG(L)/NH (L), which has order 3. This is done in
the supplementary materials for p = 2,13, and for p �= 2,3,7,13 it is accomplished
in [53, Theorem 4.3.2]. (Uniqueness was not given in [17, Sect. 6.5].) Hence all
subgroups H are G-conjugate. For p = 7, in fact NG(L) normalizes H , so NG(L) =
H.3 embeds in G, as claimed earlier, and again all subgroups are G-conjugate.

Action of outer automorphisms

For odd primes we need only consider the field automorphisms of G, whereas for
p = 2 we have the field and the graph automorphisms.

No automorphism can fuse classes as H is unique up to G-conjugacy. Thus any
automorphism either acts as an outer automorphism on (a conjugate of) H , or cen-
tralizes (a conjugate of) H .

We start with p = 2, and let τ denote a generator for Out(G), where G = F4(2n).
Thus τ has order 2n. Note that Out(H) is cyclic of order 6, and that M(F4)↓H

requires F8 to be a subfield to be realized. Thus n is a multiple of 3, so o(τ) is a
multiple of 6. Thus τ 6 must centralize H , so H ≤ F4(8) and we may assume that
n = 3. Since H �

2F4(8) (as noted in [49], H has 3-rank 3 and 2F4(8) has 3-rank 2),
we have that 〈τ 〉 induces the full group Out(H) on H .

If p = 7 then H embeds in F4(7), as we see in the supplementary materials, so σ

always centralizes H , and we may assume that p �= 2,3,7.
For other primes p, note that L is centralized by σ = Fp , so σ either permutes

the three subgroups H containing L or it normalizes at least one of them. But then
σ acts as an automorphism of H that centralizes L, and this is only 1. Thus either σ

permutes the three subgroups or σ centralizes H . In the former case, σ must induce
the field automorphism of H , which also permutes the three representations of H .
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Table 6 Simple groups inside E6 that are not of Lie type in defining characteristic

Prime Group

p � |H | Alt(7), M11, PSL2(q), q = 4,7,8,9,11,13,17,19,25,27,
PSL3(3), PSU3(3), PSU4(2), 3D4(2), 2F4(2)′

p = 2 Alt(n), n = 7,9,10,11,12, M11, M12, M22,
J2, J3, Fi22, PSL2(q), q = 11,13,17,19,25,27,
PSL3(3), PSL4(3), PSU4(3), �7(3), G2(3)

p = 3 Alt(7), M11, PSL2(q), q = 4,7,11,13,17,19,25, 3D4(2), 2F4(2)′
p = 5 Alt(7), M11, M12, PSL2(q), q = 9,11,19, PSU4(2), 2F4(2)′
p = 7 Alt(7), PSL2(q), q = 8,13,27, PSU3(3), 3D4(2)

p = 11 M11, J1

p = 13 PSL2(q), q = 25,27, PSL3(3), 3D4(2), 2F4(2)′

This can only occur if f5(x) does not split over Fp , for then the Galois automorphism
of Fp3 permutes the roots of f5(x), hence the Brauer character values of the three
representations.

This completes the proof of the proposition.

Remark 4.15 Kay Magaard and Chris Parker have produced a proof that H is unique
up to conjugacy in F4(8) that is theoretical in nature, using the symmetric trilinear
form directly. As of the time of writing, this proof is not publicly available.

5 Subgroups of G = E6

Now let G = E6, so that M(G) has dimension 27 and L(G)◦ has dimension 78−δp,3.
Table 6 lists the groups and primes that we need to consider. We start from the list
given in [40], and then subtract those that have been dealt with in [21] and [46], where
explicit theorems were tabulated at the start. For other papers, particularly [17], which
includes lots of results about Lie primitive subgroups, we use them as and when the
results apply. (This paper is not as useful to us as one might think because many of
the proofs are existence proofs, which we will need to reprove on the way to counting
numbers of classes.)

In the general setup, H is a quasisimple subgroup of G such that H̄ is a simple
group in G/Z(G), and in G whenever H is centralized by σ . If Z(H) = 1 then we
may identify H and H̄ , and we do so, so H̄ will only make an appearance when
Z(H) = Z(G) > 1. By Theorem 3.11, if H is a quasisimple group, then we need
only consider primes dividing |H |, and then all other primes and p = 0 are a single
case. We will not mention this again in this section, as it will be used in almost every
case for H .

The aim of this section is to prove that, if NḠ(H̄ ) is maximal in Ḡ then H̄ appears
in Tables 2 and 3. We delay until Sect. 8 the proof that the subgroups here are indeed
maximal, by showing that there are no overgroups inside G.
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5.1 Alternating groups

Most alternating groups were dealt with in [21]. This left over a couple of cases, for
Alt(6) and p = 0. One case was proved to be Lie imprimitive in [21], but strong
imprimitivity was not proved there. The other case was settled in [53]. In all cases we
can prove that H is strongly imprimitive.

Proposition 5.1 Let H ∼= Alt(n) be a subgroup of G for some n ≥ 5, or H ∼= 3 ·
Alt(n). Then H is strongly imprimitive.

Proof As in the proof of Proposition 4.1, if H stabilizes a 1- or 2-space on M(E6), or
a line on L(E6)

◦, then H is strongly imprimitive. If H ∼= Alt(n) ≤ G then from [21]
this is always the case except for n = 6 and p = 0, and for n = 7 and H contained
in a maximal A2 subgroup X acting as 19/8 on M(E6) (up to duality). In the former
case, H is shown to lie in a subgroup of type C4 and be strongly imprimitive in [53,
Theorem 5.3.1]. In the latter case, since H acts on M(E6) with composition factors
6, 8, 13 (see [46, Table 6.45]), and as 6, 13/8, we see that H and X stabilize a unique
8-space on M(E6) ⊕ M(E6)

∗. Hence H is strongly imprimitive by Proposition 3.4.
If H ∼= 3 · Alt(7) then H always stabilizes a line on L(E6) by [21].

The rest of the proof deals with the case where H ∼= 3 ·Alt(6), so assume this from
now on. If p = 2 we use [25, Proposition 10.3], which states that H is always strongly
imprimitive. For p = 5 this result is proved in [21], but we offer a shorter alternative
proof below. Finally, for p = 0 in [21] we showed that H is Lie imprimitive but did
not show strong imprimitivity.

Thus suppose that H ≤ X for some maximal, connected, positive-dimensional
subgroup X, which are listed, for example, in [41] or [62, Theorem 3.1]. Note that X
cannot split over Z(G), which severely curtails the possibilities for X, to A5A1, an
A5-parabolic subgroup, A2A2A2, and A2G2.

If p = 0 then from [46, Table 6.51] we are left with the case of dimensions 92,
6, 3. Since H cannot map onto A1, if X = A5A1 then H lies in A5. This acts on
M(E6) with factors 15, 6, 6, which is not compatible with the factors of H . Since
Alt(6) does not embed in G2 (see [30]), we cannot have a copy of H ∼= 3 · Alt(6) in
A2G2 with Z(H) = Z(G). This leaves A2A2A2.

Suppose that X = A2A2A2, and note that M(E6)↓X is the sum of the three mod-
ules

(10,01,00), (00,10,01), (01,00,10).

In order for H to lie in X, Z(H) must act on the three different modules M(A2)

as (up to permutation) the scalar matrices 1, ζ 2 and ζ , where ζ is a primitive cube
root of unity. Since there is no (non-trivial) 3-dimensional representation of Alt(6),
H must act trivially on one of the factors; hence there are at least six 3-dimensional
factors in the action of such a subgroup H on M(E6).

Thus this case cannot occur in G. (This agrees with [26, Table 44] and [17].)
If p = 5 then we see from [46, 6.53] that H could act on L(E6) with factors 102,

87, 12 and still not stabilize a line on L(E6). This case was resolved in [21], but we
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present a shorter proof here. If H does not stabilize a line on L(E6), then H acts on
L(E6) as

10⊕2 ⊕ P(8)⊕2 ⊕ 8,

where P(8) is the projective cover of 8, of the form 8/1, 8/8. If u denotes an element
of order 5 in H , then u acts on this module with Jordan blocks 515, 3, whence we see
that u belongs to class A4 + A1 from [36, Table 6]. This class acts on M(E6) with
blocks 55, 2. The composition factors of H on M(E6) are either 15, 62 or 63, 33.
The former must be semisimple as there are no extensions between factors (an easy
computer check), but then u acts with blocks 55, 12, which is a contradiction. In the
second case, to produce a single non-projective summand (as the action of u requires),
the action must be up to duality P(6) ⊕ (3/3,6). Thus H is Lie imprimitive as it
stabilizes a 3-space on M(E6), and by simple dimension counting such stabilizers
are positive-dimensional.

So far we have followed the proof of [21, Proposition 6.1]. But now we use our
above options for X that H must lie in. The 15 + 12 decomposition above rules out
A2A2A2, A2G2 and the A5-Levi, hence A5A1, so H lies in the A5-parabolic. But if
H acts on M(A5) as 6 then the factors of M(E6)↓H are 15, 62, and if it acts as 32

then the factors are 6, 33. Neither of these is as required, so H cannot embed in this
way. �

5.2 Sporadic groups

Here we have the group M11 for all primes, and then M12 for p = 2,5, and also M22,
J2, J3 and Fi22 for p = 2 and J1 for p = 11.

5.2.1 H ∼= M11

From Table 6 we see that p = 2, p = 3, p = 5, p = 11, or p �= 2,3,5,11. Unless
p = 3,5, H is shown to be strongly imprimitive in [46, Theorem 1]. Thus we assume
that p = 3,5. If p = 5 then from [46, Table 6.58] we have that the composition factors
of H on M(E6) have dimensions 11 and 16. If p = 3 then from [46, Table 6.59] we
find multiple conspicuous sets of factors that have positive pressure but have trivial
factors as well. We will show that these always yield stabilized lines.

We prove the following result.

Proposition 5.2 Let H ∼= M11 be a subgroup of G.

(i) If p �= 5 then H is strongly imprimitive.
(ii) If p = 5 then H is either strongly imprimitive or Lie primitive, and in the latter

case is contained in a copy of M12. The group NḠ(H) is not maximal in any
almost simple group Ḡ.

Proof When p = 3 we prove that H stabilizes a line or hyperplane on M(E6), and
hence is strongly imprimitive by Proposition 3.1 again. First, note that if H is Lie
imprimitive then it stabilizes a line: since H does not embed in F4 (see Table 5),
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G2 (as it is not in F4), A3 (no non-trivial module of dimension 4) or C4 (no non-
trivial self-dual module of dimension 8), we must have that H lies in either a D5-
parabolic subgroup, hence stabilizes a line or hyperplane on M(E6), or inside an A5-
parabolic subgroup. But since H has simple modules of dimensions 1, 5 and 10, H

must stabilize a line or hyperplane on M(A5), hence lie in an A4-parabolic subgroup,
thus in a D5-parabolic subgroup. Since a D5-parabolic subgroup stabilizes a line or
hyperplane, we are done.

Thus we must prove that H is Lie imprimitive. If H stabilizes a line or hyperplane
on M(E6) then H is strongly imprimitive by Proposition 3.1, so we may assume that
this is not the case. There are two kH -modules with non-trivial 1-cohomology (see
[46, Table A.3]): in the notation of [46], they are 5∗ and 10b . in [46, Table 6.59], we
see that either H has negative pressure on either M(E6) or its dual, hence stabilizes
a line on one of them, or has composition factors 10∗

b , 5, (5∗)2, 12. Of these factors,
only 5∗ has non-zero 1-cohomology: by quotienting out by any submodules 10∗

b and
5, we obtain a module W whose socle is either 5∗ or 5∗ ⊕ 5∗, and with two trivial
composition factors, but no trivial quotient (by assumption).

A short Magma computation shows that the largest submodule of P(5∗) with com-
position factors in {1,5,5∗,10∗

b} is

1/5∗/5,10∗
b/1/5∗.

This does not have two trivial composition factors that are not quotients, so 5∗ cannot
be the socle of W . Thus W must have the socle structure 5, 10b/1, 1/5∗, 5∗, and in
particular W is the whole of M(E6)↓H . Up to isomorphism there is a unique such
module that has no trivial quotient, namely

(5/1/5∗) ⊕ (10∗
b/1/5∗).

Now let L denote a subgroup PSL2(11) of H . The restriction of this module to L is

1 ⊕ (10/1) ⊕ 5∗ ⊕ (5/5∗).

Since L stabilizes a hyperplane and does not lie in F4 (as M(E6)↓H is not self-dual,
or see Table 5) we see that L lies inside a D5-parabolic subgroup acting uniserially
with layers 1/16/10 on M(E6). In particular, L must act on M(D5) as 5/5∗ and
hence stabilize a 5-space on M(D5), whose stabilizer is an A4-parabolic subgroup X
of D5. Of course, X stabilizes this 5-dimensional subspace of M(E6), which H also
stabilizes. Thus H is Lie imprimitive, as claimed.

We finally consider p = 5, where the factors of M(E6)↓H have dimensions 11 and
16. We restrict to L ∼= PSL2(11), where the simple module 11 becomes 1 ⊕ 101, and
the 16 becomes 5 ⊕ 11. (Note that 5 is not self dual.) Since M(E6)↓L has pressure
zero, L stabilizes a line or hyperplane of M(E6), thus L is contained in F4 or a
D5-parabolic. As with p = 3, the former is impossible.

We now classify copies of PSL2(11) inside the D5-parabolic that act as 101 on
M(E6), and therefore act as 5 ⊕ 11 on the 16. Clearly there is a unique class in the
D5-Levi subgroup, and so we need to understand H 1(L,16), which is 1-dimensional
(see, for example, [46, Table A.4]). Let J be a copy of M11 inside the D5-Levi
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subgroup acting on M(E6) with composition factors 10, 16, 1. The restriction map
H 1(J,16) → H 1(L,11 ⊕ 5) is an isomorphism. So every copy of PSL2(11) in the
D5-parabolic subgroup whose image in the D5-Levi subgroup is correct is contained
in a copy of M11, a complement with image J in the Levi. Therefore we see that the
stabilizer of the unique 11-space stabilized by L contains a copy of M11 inside the
D5-parabolic.

Thus if there is another copy H of M11 acting on M(E6) as 16/11, it is contained
in this 11-space stabilizer, which must be larger than H . Thus while H is Lie prim-
itive, it is not maximal. Indeed, we will see in Sect. 5.2.2 below that there is such a
class, and the subspace stabilizer is M12.

Since Out(H) = 1, there can be no novelty maximals, and this completes the
proof. �

5.2.2 H ∼= M12

The group M12 embeds in G for p = 2,5. If p = 2 then H is strongly imprimitive
by [46, Theorem 1], so we assume that p = 5. In this case, from [46, Table 6.61]
we see that H must act on M(E6) with composition factors 11, 16. There are two
non-isomorphic, Aut(H)-conjugate 11-dimensional modules, both self-dual, and two
dual 16-dimensional modules, again Aut(H)-conjugate. In order to comply with the
unipotent action from [36, Table 5], the module M(E6)↓H cannot be semisimple,
and the projective cover of 111 is, for some choice of labelling,

111/16∗/112/16/111.

So there are four non-isomorphic and non-Aut(H)-conjugate indecomposable mod-
ules of dimension 27 with factors of dimension 11 and 16, yielding exactly four
potential types of embeddings of M12 inside G. These subgroups were constructed
in [34] but maximality was not proved there. We delay our maximality proofs until
Sect. 8.

Proposition 5.3 Let p = 5, and let H ∼= M12 be a subgroup of G, and suppose that
H acts as described above.

(i) There are exactly four G-conjugacy classes of subgroups H , one for each rep-
resentation, and NG(H) = H × Z(G) in all cases. They are swapped in pairs
by the graph automorphism.

(ii) Each class has a representative in G = E6(5) and there are 4 · gcd(3, q − 1)

distinct E6(q)-conjugacy classes. The group H does not embed in 2E6(q) for
any q .

(iii) The subgroup H is maximal in Ḡ if and only if Ḡ = E6(5), and there are four
classes in this group.

Proof Since M(E6)↓H is not stable under the outer automorphism of H , we have that
NG(H) = H · Z(G). Since it is not self-dual either we obtain the second statement
from (i).

In [34] it is proved that there are exactly four classes of subgroups M12 in E6(5),
that are fused into two by the graph automorphism. We thus want to prove that every
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copy of M12 lying in E6(5n) is conjugate to one in E6(5), for all n ≥ 1. Hence if we
fix an isomorphism type of M(E6)↓H , we wish to show that all such embeddings are
E6(5n)-conjugate to one in E6(5). For definiteness, set it to be 16/111.

Let L denote a copy of M11 in M12 such that L stabilizes a line on 111. (There
are two classes L1 and L2 of M11 inside M12, and Li fixes a point on 11i but not
on 113−i . Thus the other M11 acts on M(E6) as 16/11, as suggested in the previous
section.) The restriction of 16/111 to L is

10 ⊕ (16/1),

with of course the 111 restricting to the 10 ⊕ 1 and the 16 restricting irreducibly. In
particular, L stabilizes a unique 11-dimensional subspace W of M(E6).

We now count such copies of M11 inside E6, proving that there is a unique class
in the finite group Gad as well. Since L stabilizes a line on M(E6), and M(E6)↓L

is not self-dual (as 5 is not self-dual), we have that L is contained in a D5-parabolic
subgroup X, which acts on M(E6) uniserially with factors 10/16/1. We see that the
image L̄ of L inside the D5-Levi subgroup acts as 10 on the natural and 16 on the
16. Let Y denote the preimage of L̄ in X. In particular, H 1(L,16) is 1-dimensional,
so there are exactly two conjugacy classes of complements to the unipotent radical
in Y by, for example, [60, Lemma 3.2.15]. One class of complements is contained
in the D5-Levi subgroup and this acts semisimply on M(E6) as 1 ⊕ 10 ⊕ 16, so L

must belong to the other class of complements in Y. Thus unique up to G-conjugacy
subject to that action on M(E6), as needed.

Since L may be embedded in E6(5), one may conjugate H so that L is contained
in E6(5). As L stabilizes a unique 11-space W , this subspace is σ -stable, whence
its stabilizer is σ -stable. But the stabilizer of W contains M12, and as M12 is Lie
primitive and maximal in E6(5) (see Sect. 8 later), M12 is the stabilizer of W . Thus
the Frobenius endomorphism F5 must normalize H and centralize L ≤ H . There is
no non-trivial such automorphism, so H ≤ E6(5).

To see the actions of outer automorphisms, note that diagonal automorphisms must
fuse classes together by Corollary 2.4, since NG(H) = H ·Z(G). The graph automor-
phism must fuse the two classes that act as duals to one another on M(E6), as in [34].
Since H embeds in E6(5), the field automorphism centralizes H .

We have now proved all of this except the statement about 2E6(q); but the field
automorphisms stabilize the classes of subgroups H and the graph automorphism
fuses classes of subgroups H , so H can never be σ -stable if σ is not a standard
Frobenius endomorphism. �

5.2.3 H ∼= 3 ·M22

If H̄ ∼= M22 then H ∼= 3 · M22 and p = 2 in this case, and by [46, Theorem 1] H is
strongly imprimitive. In fact, H must stabilize a line on L(E6), as we see from [46,
Table 6.63].

Proposition 5.4 Any copy of H ∼= 3 · M22 in G for p = 2 is strongly imprimitive.
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5.2.4 H ∼= J1

From Table 6 we see that p = 11. The minimal dimension of a representation of H

is 7. There are two conspicuous sets of composition factors for M(E6)↓H in this
case: 73, 16 and an irreducible action 27. For 73, 16, there are no extensions between
the composition factors (by a computer check, for example, or using the Brauer tree
of H ) so M(E6)↓H is semisimple. Since H centralizes a 6-space it lies in a D5-
parabolic subgroup, then inside a D5-Levi subgroup as it stabilizes a complement to
the line, and then inside a G2 subgroup as H must act as 7 ⊕ 1⊕3 on M(D5). This is
the copy of G2 that lies inside the A2G2 maximal subgroup of G (see [62, p. 246],
for example, for the composition factors of maximal reductive subgroups of G on
M(E6)).

If H acts irreducibly on M(E6) then H also lies in a G2 subgroup, but the ir-
reducible one. There are two ways to prove this. The first is to note that the space
of H -invariant symmetric trilinear forms on the 27-dimensional simple module is 2-
dimensional, and the same is true for G2(11). Since there is a unique copy of G2(11)

containing J1 in GL27(11) (as J1 is unique up to conjugacy in G2(11), they are both
irreducible on the 27-space and have no outer automorphisms5) we see that any E6-
form for J1 extends to an E6-form for G2(11). (Since G2 contains H , the space of
forms is at most 2-dimensional, and since there are two classes of G2 in E6, the space
of forms cannot be 1-dimensional. Thus one does not need to check the claim with a
computer.)

Alternatively, we note that the action of H on L(E6) is 14 ⊕ 64, and
HomkH (�2(14),14 ⊕ 64) is 1-dimensional, with image contained in the 14. Thus
the 14 is a subalgebra of the Lie algebra of E6, and we may proceed as in the proof
for PSU3(3) in F4 in Sect. 4.3.3 to see that H must lie in a maximal G2 (for exactly
the same reason). Notice that G2 also acts on L(E6) as 14 ⊕ 64, so H is strongly
imprimitive by Proposition 3.4.

Proposition 5.5 Every copy of H ∼= J1 inside G for p = 11 lies inside a σ -stable G2
subgroup of G. In particular, H is strongly imprimitive.

Remark 5.6 This case is left unresolved in [3], being subgroup 14 in UNK. The con-
dition on the field F in that statement, that x2 + 7 splits over F , is unnecessary, as
over F11 this factorizes as (x − 2)(x + 2).

5.2.5 H ∼= J2

From Table 6, this only occurs for p = 2. Let L ∼= PSU3(3) be a subgroup of H .
From [25, Proposition 10.4], either L stabilizes a line on M(E6) or L(E6), or L acts
as 14 ⊕ 321 ⊕ 322 on L(E6), and L is contained in a G2-subgroup acting as 14 ⊕ 64.

5If there were more than one copy of J ∼= G2(11) containing H ∼= J1 in GL27(11), then there would exist

g ∈ GL27(11) such that H ≤ J,J g . Then Hg−1 ≤ J so there exists n ∈ J such that Hng−1 = H and

Jng−1 = Jg . Then ng−1 normalizes H but not J , but our conditions force the normalizer of H inside the
normalizer of J .
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From [29, p. 102], we see that the dimensions of simple kH -modules are 1, 6, 14,
36, 64, 84, 160. If L acts on L(E6) as 14 ⊕ 321 ⊕ 322 then clearly H must act as
14 ⊕ 64 for some modules 14 and 64, and we see that H is a blueprint for L(E6).

The permutation module PL of H on the cosets of L has structure

1,36/61,62/1,1/61,62/1,36,

and the only quotient of this not involving a copy of 36 is 1. Thus if L stabilizes a
line on M(E6) then so does H . (Of course, a copy of 36 cannot appear in M(E6)↓H

since it has dimension 27.)
The final option is that L stabilizes a line on L(E6), in which case from the proof

of [25, Proposition 10.4] the composition factors of L(E6)↓L are 142, 67, 18. Since
the kH -module 36 restricts to L with composition factors 142, 6, 12, and only 6-
dimensional simple kH -modules have non-zero 1-cohomology by [46, Table A.2],
we see that H always has non-positive pressure on L(E6). As L(E6) is self-dual, this
means that H stabilizes a line on L(E6) by Proposition 3.2.

In all cases, we have the following result by Propositions 3.1 and 3.4.

Proposition 5.7 Any subgroup H ∼= J2 of G for p = 2 is strongly imprimitive.

5.2.6 H ∼= 3 ·J3

From Table 6, we only need consider p = 2 here, with an embedding of H ∼=
3 · J3 inside G with centres coinciding, acting irreducibly on L(E6) (see [46, Ta-
ble 6.66]). A short computer calculation shows that HomkH (�2(L(E6)),L(E6)) is
1-dimensional, hence J3 has the Ryba property and so is unique up to conjugacy
inside Aut(G). There are two 78-dimensional simple kH -modules though, swapped
by the outer automorphism of H , so H.2 cannot embed in Aut(G). In particular,
this means that the graph automorphism of G fuses two G-classes of subgroups H .
This tallies with, and extends to all fields, [34, Theorem 1], which states that there
are exactly six classes of J3 over F4, fused by the outer automorphism group. As-
chbacher has also provided a computer-free construction, and uniqueness proof, of
J3 in [5]. As |Out(H)| = 2 and the outer automorphism of H does not stabilize the
78-dimensional module, NG(H) = H .

In [34] it is shown that the field automorphism of E6(4) normalizes (but does
not centralize) H and all other automorphisms fuse classes. This means that, if G =
E6(4), then NḠ(H̄ ) is maximal in Ḡ if and only if Ḡ = G or Ḡ is G extended by
a field automorphism. Furthermore, because the field automorphism normalizes H

and the graph automorphism does not, H cannot be centralized by any field-graph
automorphism. Thus H̄ does not lie in 2E6(2n) for any n. Diagonal automorphisms
fuse classes by Corollary 2.4.

Proposition 5.8 If p = 2, there are exactly two G-conjugacy classes of subgroups
isomorphic to H ∼= 3 ·J3, each Lie primitive. The graph automorphism swaps the two
classes.

In the finite groups G = E6(22n), there are six classes of subgroups isomorphic to
J3. The group Ḡ possesses a maximal subgroup NḠ(H̄ ) if and only if n = 1 and Ḡ is
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either G or G extended by the field automorphism, and there are six such classes in
both cases.

The group J3 does not embed in 2E6(2n) for any n.

Maximality of this subgroup was not proved in either [34] or [5]. We delay our
maximality proofs until Sect. 8.

5.2.7 H ∼= 3 ·Fi22

As with J3, H̄ ∼= Fi22 only embeds in G for p = 2, and H ∼= 3 ·Fi22 acts irreducibly
on both M(E6) and L(E6) (see [46, 6.2.67]). We again have that H has the Ryba
property and so H is unique up to Aut(G)-conjugacy, but this time there is a unique
78-dimensional simple module, so this module extends to H.2 and must also have
the Ryba property. (This is forced: since p = 2 and the index is 2, the trivial kH -
submodule of Homk(�

2(L),L) (where L is the 78-dimensional module) must extend
to a trivial module for H.2, since there is only one 1-dimensional module for H.2
when p = 2.) Thus H.2 embeds in G.2.

Since the outer automorphism of H inverts Z(H), NG(H) = H . Thus since H.2
embeds in G.2, we must have a single G-class of subgroups H , normalized by the
graph automorphism.

Since the G-class of H contains all subgroups isomorphic to H , it is stable un-
der any Frobenius endomorphism, in particular F2. Since clearly H � E6(2) (as
Z(GF2) = 1), we must have that F2 normalizes but does not act as an inner auto-
morphism. (We can also see this as the Brauer character values of the 27-dimensional
module lie in F4 but not in F2). Hence H lies in E6(4)sc but not in E6(2). Fur-
thermore, since the graph automorphism also normalizes, but clearly cannot cen-
tralize, H , the graph-field automorphism must act as an inner automorphism, hence
H̄ ≤ G = 2E6(2). This agrees with [19, p. 191].

The group of diagonal automorphisms of G must fuse G-classes by Corollary 2.4.
Since there is a single Aut(G)-class of subgroups H̄ , there must be three in G, per-
muted by the Sym(3) of automorphisms, with the graph fixing one class and swap-
ping the other two. (This again agrees with [19, p. 191].)

Proposition 5.9 Let p = 2 and let H be 3 · Fi22. Then H is Lie primitive, NG(H) =
H , and there is exactly one G-conjugacy class of subgroups H , normalized by the
graph automorphism of G. Furthermore, H̄ embeds in G if and only if G is either
E6(4n) and 2E6(22n+1) for some n, and is unique up to Aut(G)-conjugacy in this
case.

If NḠ(H̄ ) is maximal in Ḡ then G = 2E6(2), and either Ḡ = G and there are three
G-classes of subgroups H̄ , or Ḡ = G.2 and there is exactly one class of maximal
subgroups H̄ .2.

We will prove maximality in Sect. 8, or see [65].

5.3 Cross-characteristic subgroups not PSL2(r)

According to Table 6, the groups in this section are PSL3(3), PSU3(3), PSU4(2),
3D4(2) and 2F4(2)′ for all p, and �7(3) and G2(3) for p = 2. Maximality proofs can
be found in Sect. 8.
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5.3.1 H ∼= PSL3(3)

We assume p �= 3, so the cases to consider are p = 2, p = 13, and p �= 2,3,13.
From [46, Tables 6.96–6.98] we can find the composition factors of H ∼= PSL3(3) on
M(E6) in all characteristics (other than 3). If p = 2 then H acts with factors 26, 1,
so clearly H stabilizes a line or hyperplane on M(E6) and lies in F4 by Lemma 2.5,
hence is strongly imprimitive by Proposition 3.1. If p > 3 then one possibility is
again that H acts on M(E6) with factors 26, 1, stabilizes a line or hyperplane on
M(E6) and then lies in F4. The other option is that H acts irreducibly on M(E6) for
p �= 13, and H acts with factors 16, 11 when p = 13.

Proposition 5.10 Let H ∼= PSL3(3) be a subgroup of G for p �= 2,3, and suppose
that H acts irreducibly on M(E6). Then H is Lie primitive, and NG(H) = Z(G) ×
(H.2). There are two G-conjugacy classes of subgroups H , swapped by the graph
automorphism of G. Each such subgroup H is contained in a single subgroup J ∼=
2F4(2).

Each subgroup H of the finite group G is contained in a copy of J inside G, and
NḠ(H) is never maximal in any almost simple group Ḡ.

Proof Let L denote a maximal parabolic of H , which has the form 32
� SL2(3).2.

The action of this on M(E6) is the sum of 3-, 8- and 16-dimensional simple modules.
Such a subgroup must lie in a proper, positive-dimensional subgroup of G.

The group L′′ ∼= 32
�Q8 acts on M(E6) as

12 ⊕ 13 ⊕ 14 ⊕ 8⊕3,

and so stabilizes three distinct lines on M(E6). Since it acts non-trivially on these
lines (and p � |L| so it lies inside a Levi subgroup whenever it lies in a parabolic
subgroup), L′′ lies first in D5T1 (see Lemma 2.5 for the line stabilizers on M(E6)),
then in a line stabilizer on M(D5), so B4T1, then in a line stabilizer on M(B4),
hence D4T2. Furthermore, the component group of NG(D4T2) is Sym(3), and this
is also the quotient L/L′′, so the projection of L′′ on D4 is normalized by all graph
automorphisms of D4. Thus the projection of L′′ is determined up to conjugacy in
D4, by for example [11, Lemma 1.8.10(ii)]. The projection of L′′ onto the T2 factor
is unique (not even just up to conjugacy), as it is simply the Klein four group. Thus
L′′ is determined up to conjugacy in each of D4 and T2.

However, because there is no element of D4 acting as an outer element of order
2 on the subgroup L′′, there are two D4T2-conjugacy classes of subgroups L′′ di-
agonally embedded in D4T2: one is obtained by twisting one of the two factors by
the graph automorphism of order 2. Of course, both are stable under the Sym(3) of
graph automorphisms acting simultaneously on both D4 and T2, so both extend to
subgroups L in G. Notice that the graph automorphism of G induces a graph auto-
morphism of order 2 on one of the factors D4 and T2, hence swaps these two copies
of L. (There is an element of order 3 in D4 acting like the graph automorphism of
order 3 on L′′, so we see only two classes, not six.)
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In the supplementary materials we show that there is a unique copy of H in G
above a given copy of L. Hence there are exactly two G-conjugacy classes of sub-
groups H , swapped by the graph automorphism. We then apply Corollary 2.3 to ob-
tain either six or two Gsc-conjugacy classes of subgroups H , depending on whether
Out(G) contains diagonal automorphisms or not.

Now note that there are two G-classes of subgroups 2F4(2), each containing a
class of subgroups PSL3(3).2, swapped by the graph automorphism. (See Sect. 5.3.5
below, which does not depend on this section.) Thus each copy of H is contained in
a copy of J ∼= 2F4(2), and exactly one since there is a unique copy of J containing
H in GL26(k). Also, since every copy of H is contained in a copy of Aut(H) ≤ G,
any Frobenius endomorphism σ of G either centralizes H or fuses classes, as with
J . Furthermore, σ centralizes H if and only if it centralizes J , so NḠ(H) cannot be
maximal for any Ḡ. In Sect. 5.3.5 below we determine that J embeds in G = E6(q)

if q ≡ 1 mod 4 and in 2E6(q) for q ≡ −1 mod 4. �

5.3.2 H ∼= PSU3(3)

Let H ∼= PSU3(3) ∼= G2(2)′. Here p = 7 or p �= 2,3,7. In the first case, H stabilizes
a line on either M(E6) or L(E6), as we see from [46, Table 6.101]. Hence H is
strongly imprimitive by Proposition 3.1, as stated in [46]. For p �= 2,3,7, we note
that H either stabilizes a line on M(E6) or L(E6), or acts irreducibly on M(E6) by
[46, Table 6.100]. In this latter case, H stabilizes a g2 subalgebra and thus is strongly
imprimitive by Proposition 3.15, as seen in the proof of [17, Lemma 8.2]. Thus we
obtain the following result.

Proposition 5.11 Any copy of PSU3(3) in G is strongly imprimitive.

5.3.3 H ∼= PSL4(3),PSU4(2),3 ·PSU4(3), 3D4(2)

Each of these was proved in [46] to be strongly imprimitive. Indeed, in all cases H

stabilizes a line on either M(E6) or L(E6).

Proposition 5.12 Any copy of PSL4(3), PSU4(2), 3 · PSU4(3) or 3D4(2) in G is
strongly imprimitive.

5.3.4 H ∼= 3 ·�7(3), 3 ·G2(3)

These two cases only occur for p = 2, and if H̄ is simple then H ∼= 3 · H̄ . In both
cases, H must act irreducibly on L(E6). Also in both cases Hom(�2(78),78) is 1-
dimensional, so H has the Ryba property, and the 78-dimensional module is unique
up to isomorphism. Thus each of these is unique up to Aut(G)-conjugacy, and unique
up to Aut(Gad)-conjugacy whenever H̄ embeds in the finite group Gad. Furthermore,
it shows that H extends to H.2 in G.2 (as with 3 · Fi22). As with 3 · Fi22, this means
that there is a unique G-class of both groups, normalized by the graph automorphism.

The proof for minimal field and action of automorphisms is the same as for 3 ·Fi22
in Sect. 5.2.7, so we are a bit less detailed in this case. Again, H̄ ≤ E6(4) but H̄ �

E6(2) because of the fact that Z(E6(2)sc) = 1. Consequently H̄ ≤ 2E6(2).
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Note that

G2(3) ≤ �7(3) ≤ Fi22 ≤ 2E6(2),

with the final inclusion appearing in Proposition 5.9 (see also [19, p. 191]). Thus
we see that H̄ embeds in E6(4n) and 2E6(22n+1) for all n; in particular, such G

always have a non-trivial diagonal automorphism, which cannot normalize H̄ by
Corollary 2.4. Thus if NḠ(H̄ ) is maximal in Ḡ then Ḡ cannot induce this diagonal
automorphism on G.

If NḠ(H̄ ) is maximal in Ḡ, then G = 2E6(2) and either Ḡ = G or Ḡ = G.2. We
can just read off the answer from [19] now, and find no classes of maximal G2(3)s,
and one class of (novelty) maximal �7(3).2 in the group Ḡ = G.2. To prove it inde-
pendently of [19], Out(G) acts as Sym(3) on the three conjugacy classes of �7(3)

and G2(3), and therefore exactly one is normalized in G.2, which yields �7(3).2 and
G2(3).2. Since the graph automorphism of Fi22 interchanges two classes of �7(3)

[33], we see that this subgroup �7(3).2 cannot lie in Fi22.2, so yields a novelty
maximal. On the other hand, the group G2(3).2 is contained as a novelty maximal
subgroup of Fi22.2 (see [33] again), hence is not a novelty maximal of Ḡ.

Proposition 5.13 Let p = 2 and let H be one of 3 · G2(3) or 3 · �7(3). Then H is
Lie primitive, NG(H) = H , and there is exactly one G-conjugacy class of subgroups
H , normalized by the graph automorphism of G. Furthermore, H̄ embeds in G if
and only if G is one of E6(4n) and 2E6(22n+1) for some n, there are exactly three
G-conjugacy classes of subgroups in this case, permuted transitively by the diagonal
automorphism of G.

If NḠ(H̄ ) is maximal in Ḡ then H̄ ∼= �7(3), G = 2E6(2), and Ḡ = G.2, in which
case there is one class of novelty maximal subgroups.

We will prove maximality in Sect. 8, or see [65].

5.3.5 H ∼= 2F4(2)′

For all characteristics p �= 2,3, the action of H on L(E6) is irreducible, and
again possesses the Ryba property, so we are done as for the previous two
cases. In characteristic 3 we must be very slightly more careful, and note that
HomkH (�2(L(E6)

◦),L(E6)
◦) is 1-dimensional instead. (In characteristic 0 this was

already noted by Cohen and Wales [17, 6.1].) This kH -module homomorphism ex-
tends to one for H.2, so this group lies in G.2 and is also unique up to conjugacy. (In
fact, H has the strong Ryba property in characteristic 0, so existence is also easily
proved via Theorem 3.10.)

Note that the ordinary character of M(E6)↓H has field of values Q(i) [19, p. 75].
The same holds for the Brauer characters when p = 3,5,13, so we always require
that f (x) = x2 + 1 splits over Fq for H to be defined over Fq .

As M(E6)↓H is not self-dual, and the 27-dimensional modules for H are not
swapped by the outer automorphism of H , we see that H.2 in fact is contained in
G, not just G.2, and so there must be two G-conjugacy classes of subgroups H (and
H.2), swapped by the graph automorphism.
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Suppose that p ≡ 3 mod 4. In this case the Brauer character values of M(E6)↓H

are not fixed by Fp , and so Fp must swap the two G-classes. Since the graph auto-
morphism also swaps them, the product σ normalizes a representative H.2, and since
Aut(H.2) = Aut(H), must act as an inner automorphism. Hence H.2 ≤ Gσ = G =
2E6(p), and NG(H) = H.2 must be maximal in this group.

The opposite holds if p ≡ 1 mod 4. In this case Fp fixes the Brauer character
values and σ does not, so H ≤ E6(p).

Diagonal automorphisms always fuse classes by Corollary 2.4. We will prove
maximality in Sect. 8.

Proposition 5.14 Let H ∼= 2F4(2)′ and p �= 2. Then H is Lie primitive, NG(H) =
Z(G) × (H.2) and there are exactly two G-conjugacy classes of subgroups H ,
swapped by the graph automorphism of G. If H ≤ G then H is unique up to Aut(G)-
conjugacy.

If p ≡ 1 mod 4 then for all n, H ≤ E6(p
n), and if p ≡ 3 mod 4 then for all n,

H ≤ 2E6(p
2n+1),E6(p

2n). If NḠ(H) is maximal in Ḡ then Ḡ = G, NG(H) = H.2,
G = εE6(p) for the appropriate ε and there are exactly 2 · gcd(3, q − ε) many G-
conjugacy classes.

5.4 Cross-characteristic subgroups PSL2(r)

Let H ∼= PSL2(r) for r one of 7, 8, 11, 13, 17, 19, 25, 27, and let L denote a Borel
subgroup of H . We will deal with each case in turn. Proofs of maximality, as with
the other groups before, are completed in Sect. 8.

5.4.1 H ∼= PSL2(7)

Here p = 3 or p �= 2,3,7. If p = 3 then H is strongly imprimitive by Proposition 4.7.
This leaves p �= 2,3,7. From [46, Table 6.68], there is a unique conspicuous set of
composition factors for which H acts fixed point freely on both M(E6) and L(E6);
it acts on M(E6) with factors 8, 7, 62 and on L(E6) with factors 85, 72, 62, (3,3∗)2.
A copy of H with these composition factors on M(G) and L(G) is known to exist as
it lies in Sp8 or G2. (Note that there is a copy of H in A5 with the same action on
M(E6), but it has fixed points on L(E6).)

Proposition 5.15 Suppose that p �= 2,3,7 and H ∼= PSL2(7) acts fixed-point freely
on both M(E6) and L(E6). Then H is unique up to G-conjugacy, NG(H) = Z(G)×
PGL2(7), and H is strongly imprimitive.

The proof of this proposition has both theoretical and computational aspects. It is
among the more challenging of the proofs here.

Determination of NG(H)

This will become clear once we have proved that H is unique up to G-conjugacy.
Since PGL2(7) ≤ PSU3(3) ≤ G2(p), and CG(H) = Z(H), we obtain the result.



D.A. Craven

Determination of L up to conjugacy

Let w ∈ L have order 3. The action of L on M(E6) has four each of the two 3-
dimensional simple kL-modules, and a single copy of each 1-dimensional simple
module. In particular, L centralizes a line, so lies in F4 or D5T1. However, if L ≤
D5T1 then L must act as 3 + 3 + 3 + 1 on M(D5), but such a module cannot be self-
dual as the two 3-dimensional modules are dual to one another (and the 1-dimensional
module is not self-dual). Thus L ≤ F4.

Since L is a supersoluble p′-group it lies in NG(T) by Lemma 2.1, where T is
a maximal torus of F4, not of E6. Now we note that w lies in the class of elements
of order 3 that act on M(F4) and L(F4) with traces −1 and −2 respectively. Such a
class does not have eigenvalue 1 on a torus, so the centralizer of w on T is finite. Thus
by Lemma 3.7, all elements of order 3 in Tw are conjugate, so we may choose one.
There are sixteen classes of subgroups 7� 3 in T� 〈w〉, which fall into two NG(T)-
classes, one for each rational F4-class of elements of order 7. Thus L is determined
up to conjugacy.

Determination of H up to conjugacy

This is done in the supplementary materials using the trilinear form method from
Sect. 3.4, as we do in the other cases, but this is much more difficult and one can-
not simply solve the equations. The main obstacle here is the determination of the
centralizer CG(L), which is more complicated than most other cases. Since this cen-
tralizer acts on the solutions, a complicated centralizer yields a complicated set of
solutions.

One may determine CG(L) theoretically, but since we need explicit elements from
it, we may as well use the computer. This determines that CG(L) is the semidirect
product of a rank-2 torus by a group 3 ×3. We also require the centralizer in GL27(k)

of H , which is clearly isomorphic to GL2(k) × (k×)2, so of dimension 6. Notice that
the centralizer C in GL27(k) of L has dimension 35, and is of the form

GL4(k) × GL4(k) × k× × k× × k×.

One may therefore write an arbitrary element of C in terms of 35 parameters, which
in the supplementary materials are m1, . . . ,m16 (corresponding to matrix entries for
the first subgroup), n1, . . . , n16 (for the second), and a, b, c (which are parameters
for the 3-dimensional torus).

In order to be able to do the computations, we need to take representatives for the
orbits on C of CG(L) on the right and the centralizer of H in GL27(k) on the left. In
fact, we will move the centre of GL27(k) to the right to make the descriptions easier
to understand.

The rest of the proof that is here is to show that the orbit representatives for the
left and right actions, that are used in the supplementary materials, are correct.

We have a torus S of rank 3 acting on the right. The elements of S, written as triples
(t1, t2, t3) in k3, act as polynomials on the 35 variables in C. This action preserves
the subset {m9,m11,m12} of the variables (in the labelling of the supplementary ma-
terials), in the sense that the action of the triple on m9 only involves the ti , m9, m11
and m12, and similarly for m11 and m12.
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For t1, t2, t3 ∈ k, write

f (t1, t2, t3) = t3
1 + t3

2 + t3
3 −3t1t2t3 = (t1 + t2 + t3)(t1 +ωt2 +ω2t3)(t1 +ω2t2 +ωt3),

where ω is a primitive cube root of unity. With respect to the specific action of the ti
given in the supplementary materials, it is not true that a triple (t1, t2, t3) ∈ k3 lies in
S if and only if t1t2t3 �= 0, but rather that f (t1, t2, t3) �= 0.

The action of (t1, t2, t3) on (m9,m11,m12) is

(m9,m11,m12)
(t1,t2,t3)

= (m9t3 + m11t1 + m12t2,m9t2 + m11t3 + m12t1,m9t1 + m11t2 + m12t3).

(For example, the centre of GL27(k) is given by (0,0, t3).) Of course it would be
possible to reparametrize S so that (t1, t2, t3) lies in S if and only if t1t2t3 �= 0, but
then the action on the mi would be much more complicated.

We claim that there are exactly eight orbits of S on all triples (m9,m11,m12) ∈ k3:

• One orbit containing all points such that f (m9,m11,m12) �= 0;
• Six orbits of non-zero points such that f (m9,m11,m12) = 0, with representatives

(1,−ωi,0) for i = 0,1,2, (these have stabilizer a rank-1 torus) and (1,ω,ω2), for
i = 0,1,2 (these have stabilizer a rank-2 torus);

• One orbit consisting of (0,0,0).

We prove this now. A fast way to prove this is to determine the stabilizer of a point
in each orbit over Fq , then note that

q3 = (q − 1)3 + 3(q − 1)2 + 3(q − 1) + 1.

We provide a direct proof, both to show where the orbits come from and also because
it then works over any field of characteristic p with a cube root of unity.

For ζ any cube root of unity, write fζ (t1, t2, t3) = t1 + ζ t2 + ζ 2t3. We first
note that, if (a, b, c) ∈ k3 and (t1, t2, t3) ∈ S, then fζ (a, b, c) = 0 if and only if
fζ

(
(a, b, c)(t1,t2,t3)

) = 0. Our proposed orbits are exactly the collections of triples
(a, b, c) for which some fixed subset of the fζ is zero.

This shows first that each of our eight elements lie in different orbits, so we do not
need to prove that. If � denotes the set of all non-zero triples satisfying fζ = 0 and
fζ ′ = 0 for ζ �= ζ ′, then since fζ and fζ ′ are distinct linear conditions, � is simply
all scalar multiples of a single non-zero element. Furthermore, since we may scale by
any non-zero element of k, this forms a single orbit.

The orbit containing (1,0,0) is also clear: it is given by

(1,0,0)(t1,t2,t3) = (t3, t2, t1),

such that f (t1, t2, t3) �= 0. Thus all triples (m9,m11,m12) such that f (m9,m11,

m12) �= 0 lie in the same orbit.
The only case left is the orbit of (1,−1,0), which is (t3 − t1, t2 − t3, t1 − t2) for

all t1, t2, t3 such that f (t1, t2, t3) �= 0. If this is (α,β,−α − β), then t3 = t1 + α and
t2 = t3 + β = t1 + α + β . Thus for any α, β we have

(1,−1,0)(t1,t1+α+β,t1+α) = (α.β,−α − β).
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Furthermore,

f (t1, t1 + α + β, t1 + α) = (α2 + αβ + β2)(t1 + 2α + β)/3.

As t1 can be chosen arbitrarily, this is non-zero unless α2 +αβ +β2 = 0, i.e., α = ωβ

or α = ω2β . The element is then (1,ω,−1 − ω) = (1,ω,ω2) or (1,ω2,ω), which is
indeed in a different orbit, as we have already seen.

One of the elements in the centralizer but not inside S, denoted w in the supple-
mentary materials, has action on (m9,m11,m12) given by

(m9,m11,m12) �→ (m9,ωm11,ω
2m12).

This clearly permutes the three orbits with representatives (1,1,1), (1,ω,ω2) and
(1,ω2,ω), and with representatives (1,−1,0), (1,−ω,0) and (1,−ω2,0).

This completes the proof of the claim.
Having computed the orbits, this means that we have exactly four options for

(m9,m11,m12). We can use still more of the centralizer of H in GL27(k). The copy
of GL2(k) in that centralizer acts as 2 × 2 matrices on the variables in C labelled m1,
m2, m5, m6. Thus if s1, s2, s3, s4 are the variables in a (2 × 2)-matrix element

(
s1 s2
s3 s4

)

of the GL2(k) subgroup of the centralizer, we have

(m1,m2,m5,m6)
(s1,s2,s3,s4)

= (m1s1 + m5s2,m2s1 + m6s2,m1s3 + m5s4,m2s3 + m6s4).

The orbits of 2×2 matrices under left multiplication by elements of GL2(k) are much
clearer than for the triples above, and they are of course

(
1 0
0 1

)
,

(
1 m2
0 0

)
,

(
0 1
0 0

) (
0 0
0 0

)
.

For each pair (m9,m11,m12) and (m1,m2,m5,m6) of orbit representatives we
can compute the number of solutions to the equations given by imposing the trilinear
form as in Sect. 3.4, and find a single solution up to action of the centralizer (which
occurs when the representatives are (1,0,0) and (1,0,0,1)).

Thus H is unique up to G-conjugacy.

Strong imprimitivity

To prove this is easy, once we know that H is unique up to G-conjugacy. Since
NG(H) = Z(G) × PGL2(7), we see that any Frobenius endomorphism induces an
inner automorphism on some conjugate of H . Thus H is contained in all groups G.
In any adjoint group Gad there exists a unique class of subgroups PSp8(q).2 (see
Tables 9 and 10), which contains a copy of H.2. Also, there exists a unique class of
subgroups H , which is necessarily contained in PSp8(q). Thus H , and indeed H.2,
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is always contained in PSp8(q).2, and thus NḠ(H) can never be maximal in Ḡ. We
even obtain strong imprimitivity because the group PSp8(q).2 is the fixed points of a
C4 subgroup.

5.4.2 H ∼= PSL2(8)

Let H ∼= PSL2(8) ∼= 2G2(3)′. The only cases are p = 7 and p �= 2,3,7. For p = 7
we always have that H is strongly imprimitive (see [46, Table 6.71]), and for p �=
2,3,7 if H is not strongly imprimitive then M(E6)↓H is the sum of the three non-
isomorphic but Aut(H)-conjugate 9-dimensional modules (see [46, Table 6.70]).

For p �= 2,3,7, [3, Theorem 29.3] proves the result, but since that work is unpub-
lished, we will reprove the result here using similar, but not quite the same, means. In
[56], it is proved that there are two G-conjugacy classes of subgroups H.3, swapped
by the graph automorphism. However, this says nothing about the group H itself,
which could have classes that are self-normalizing.

We will not determine, in this section, if NG(H) = H or NG(H) = H.3 in the
simple group G. The proof of this is complicated, and will be delayed until Sect. 6.
We will prove maximality in Sect. 8.

Proposition 5.16 Let H ∼= PSL2(8), suppose that p �= 2,3,7, and that H acts as
described above.

(i) We have NG(H) = Z(G) × (H.3).
(ii) There are exactly two G-conjugacy classes of subgroups H , swapped by the

graph automorphism of G.
(iii) The group H embeds in G = E6(q) if q ≡ 1,2,4 mod 7, and in 2E6(q) if q ≡

3,5,6 mod 7.

The proof proceeds in stages.

Determination of NG(H)

We show in the supplementary materials, or see also [3] and [56], that in fact H.3
embeds in G, rather than just H . In the course of the proof we will see that all copies
of H are Aut(G)-conjugate, and so NG(H) = Z(G) × (H.3).

Determination of L up to conjugacy

The action of L on M(E6) is the sum of the six non-trivial 1-dimensional modules
and three copies of the 7-dimensional module. This places H inside D5T1, then inside
B3T2 since H must stabilize three lines on M(D5). The copy of L inside B3 acts
irreducibly on M(B3) and lies in G2, whence L lies in G2T2 ≤ G2A2. From the
structure above, we see that L lies diagonally in G2A2, projecting as L on G2 and 7
on A2. There is a unique class of 7s in A2 that act on S2(M(A2)) as the sum of all six
non-trivial modules, and L is unique up to conjugacy in G2. Furthermore, each side
is normalized by a 3, so since |Out(L)| = 3 and |Out(7)| = 6, there are two diagonal
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classes of L in G2A2. Since the graph automorphism of E6 normalizes (but does not
act as an inner automorphism on) the A2 factor, it swaps these two classes of L.

Thus there are two G-classes of subgroups L in G, swapped by the graph au-
tomorphism. Note that L can be chosen to lie in an irreducible G2 subgroup, and
inside G2(p). (See [30] for a list of the maximal subgroups of G2(q), which includes
23 · SL3(2) ≤ G2(p) for p ≥ 5.)

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies of H containing
L under the centralizer of L in GL27(k). Since CG(L) is a 2-dimensional torus, we
must find many overgroups H of a given subgroup L. However, we prove in the
supplementary materials, by a counting argument, that all overgroups H are CG(L)-
conjugate.

Action of some outer automorphisms

As H.3 has no outer automorphisms, an automorphism σ of G either fuses the two G-
classes or it acts as an inner automorphism on them, hence centralizes a representative
from each class by Lemma 2.2.

By [30], H lies in G2(q) if and only if x3 − 3x + 1 splits over Fq (i.e., q ≡
±1,±3,±4 mod 13), so in particular H ≤ G2(p

3) always. We see from Tables 9 and
10 that H ≤ G2(p

3) ≤ E6(p
3) if p ≡ 1,2,4 mod 7, and H ≤ G2(p

3) ≤ 2E6(p
3) if

p ≡ 3,5,6 mod 7. Notice that Fp swaps the two classes if and only if Fp3 does, so
Fp centralizes H (up to conjugacy) if and only if p ≡ 1,2,4 mod 7. Thus H ≤ E6(p)

if p ≡ 1,2,4 mod 7 and H ≤ 2E6(p) if p ≡ 3,5,6 mod 7.
The remaining question is whether a non-trivial diagonal automorphism of G (if it

exists) induces the outer automorphism of H , i.e., if NG(H) = H.3 when H ≤ G. Of
course, if p �≡ ε mod 3 then G = εE6(p) does not have a non-trivial (outer) diagonal
automorphism, so NG(H) = H.3 in this case. We complete this in Sect. 6.

5.4.3 H ∼= PSL2(11)

Let H ∼= PSL2(11). The possible cases are p = 2, p = 3, p = 5 and p �= 2,3,5,11.
Contrary to the assertions in [3] and [17], we will find a Lie primitive copy of H

inside G in all characteristics not equal to 5 and 11.
We start with a preliminary lemma, which might be of independent interest. It

classifies non-abelian subgroups of order 55 in G, for p �= 5,11. It gives a case where
Lemma 3.9 does not apply, and there are two G-classes of subgroup 11�5 where the
subgroups 11 are both G-conjugate and the subgroups 5 are both G-conjugate, but
there are two non-conjugate ways to put them together.

Proposition 5.17 Let p �= 5,11. There are three conjugacy classes of non-abelian
subgroups 11 � 5 of order 55 in G, with representatives L1, L2, L3. We may choose
labellings and representatives so that L1 has a rational element of order 5, and L2
and L3 both have semirational elements of order 5 with trace ζ + ζ−1 on M(E6).
The subgroups of orders 5 and 11 in L2 and L3 are G-conjugate, but L2 and L3 are
not G-conjugate.
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Proof Using Theorem 3.11, to count the number of G-classes of subgroups 11�5 we
may assume that G has characteristic 2. Embed a subgroup L ∼= 11 � 5 into NG(T)

via Lemma 2.1. Tori are complemented in their normalizer in characteristic 2 (but not
in odd characteristics) so we may assume that NG(T) = T�W(E6), which simplifies
matters. (We can proceed without this assumption, but things are more complicated.)

Note that W(E6) contains a unique class of elements of order 5, so let w be a
representative of this class. Any element of order 5 in NG(T) is conjugate to an
element of the form tw for t ∈ T. We first count the number of classes of elements of
order 5 in T.〈w〉 whose image modulo T is w. For this we need the action of W(E6)

on T.
Since W(E6) has a unique class of elements of order 5, and Sym(5) ≤ W(E6),

we may choose a subgroup Sym(5) containing w. (There are actually four conjugacy
classes of subgroups Sym(5) in W(E6).) By choosing the correct subgroup Sym(5),
it acts on T as the direct sum of the permutation representation and the trivial repre-
sentation, i.e., there is a spanning set Ti of six 1-dimensional tori with Tw

i = Ti+1
for 1 ≤ i ≤ 4, Tw

5 = T1 and w centralizes T6.
For explicit computations we will move to finite groups. Choosing T to be max-

imally split with respect to a Frobenius endomorphism Fq , any element of order 5
lies in some NG(T)Fq for some q . In the finite group T � 〈w〉 ∼= (q − 1)6

� 〈w〉, we
count elements of order 5 not in the homocyclic subgroup (q − 1)6. By the Schur–
Zassenhaus theorem, to count conjugacy classes we may replace T � 〈w〉 with a
group X � 〈w〉, where X is the Sylow 5-subgroup of T , and we do this.

Let t ∈ X. Notice that tw has order 5 if and only the product of tw
i

for i = 0, . . . ,4
is 1. If x1, . . . , x6 is a basis for X, then we may choose that xi so that xw

i = xi+1 for
1 ≤ i ≤ 4, xw

5 = x1 and xw
6 = x6.

Write t = x
a1
1 x

a2
2 . . . x

a6
6 , and let 5n be the order of each xi . We have

4∏

i=0

tw
i = (x1x2x3x4x5)

a1+a2+a3+a4+a5 · x5a6
6 .

Thus 5n | (a1 + a2 + a3 + a4 + a5) and 5n−1 | a6. This yields 54n+1 options for the
ai , so there are that number of elements t such that o(tw) = 5. On the other hand,
|CX(tw)| = |CX(w)| = 52n, and |X| = 56n. Hence there are exactly five conjugacy
classes of elements of order 5 in T〈w〉 with image w modulo T. (They are xi

6w for
the appropriate i.)

The normalizer in W(E6) of 〈w〉 has order 40 = 8 · 5, and a Sylow 2-subgroup Q

of this acts on the five conjugacy classes of complements above. Of course it stabilizes
〈w〉. We check with a computer (by constructing them in a subgroup 56

�5 of G) that
the four classes other than w have Brauer character ζ5 + ζ−1

5 (ζ5 a primitive fifth root
of unity) on M(E6), so cannot be rational. Thus the stabilizer in Q of any conjugacy
class other than the one containing 〈w〉 has order 2, and Q acts transitively on the
classes. Thus in NG(T) there are exactly two classes of subgroups of order 5 outside
T, 〈w〉 and (say) 〈w1〉. (One may also simple check in 56

�W(E6) that there are two
classes of subgroups of order 5 outside the subgroup 56.)

To produce a subgroup L, we need to consider the action of 〈w〉 and 〈w1〉 on the
subgroup 116 of T. We know from above that, as a 6-dimensional module over F11,
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〈w〉 and 〈w1〉 act the same, and as a sum of two trivial modules and one copy each
of the four non-trivial modules. For 〈w〉, the normalizer of 〈w〉 acts to permute all
non-trivial modules, and hence there is up to NG(T)-conjugacy a unique subgroup
11 � 5 containing w. For 〈w1〉, the normalizer has order 2, so the four non-trivial
modules are swapped in pairs, and we obtain two non-conjugate subgroups L2 and
L3 containing w1.

To see that L2 and L3 are non-conjugate in G, not just in NG(T), we actually note
that they are non-conjugate even in GL27(k), because the modules are not Aut(Li)-
conjugate. Let 11, 12, 1∗

2, 13, 1∗
3 denote the five 1-dimensional kL-modules. The

module action of L2 on M(E6) is

5⊕3 ⊕ (5∗)⊕2 ⊕ 12 ⊕ 1∗
2,

and this is not Aut(L2)-conjugate to the sum of those 5-dimensional modules and
13 ⊕ 1∗

3. Thus L2 and L3 are non-conjugate in G. The three subgroups L1, L2 and
L3 are not GL27(k)-conjugate, so are certainly not G-conjugate. �

Now we come back to H ∼= PSL2(11). In [46, Tables 6.73–6.76], we see that if
p = 5 then H is strongly imprimitive, so we assume that p �= 5,11. If p = 2 then
there are two rows of [46, Table 6.76] labelled ‘P’. One of these, row 4, has factors
10, 52, 5∗, 12 on M(E6). Both 5 and 5∗ have non-zero 1-cohomology (but 10 has
zero 1-cohomology) [46, Table A.4], so the pressure is 1. However, we show that
H nevertheless must stabilize a line or hyperplane on M(E6), and hence is strongly
imprimitive. As the pressure is 1, we may assume that the socle is 5 or 5∗: a computer
check on Magma shows that the largest submodule of P(5) with composition factors
from the set {10,5,5∗,1} has structure

5/1,5∗/5.

Since there is only one trivial module in this module, we cannot produce a module
with factors 10, 52, 5∗, 12 with two trivial composition factors and no trivial submod-
ule or quotient. Thus this row may be excluded, and there is a single row to consider
for each of p = 2, p = 3 and p � |H |.

If p = 2 or p � |H | then the dimensions of the composition factors of M(E6)↓H

are 5, 10 and 12. There are two (dual) possible simple modules of dimension 5 and
two of dimension 12, yielding four possibilities for M(E6)↓H (two up to outer au-
tomorphism of H , as it swaps the two 12-dimensional modules). If p = 3 then again
there are two possible simple modules of dimension 12 and two (dual) of dimension
5, and the factors of M(E6)↓H are 12, 5, 5, 5∗. Thus for p �= 5,11, we obtain four
possibilities for the composition factors of M(E6)↓H , two up to Aut(H)-conjugacy.

For p �= 3, M(E6)↓H must be semisimple. For p = 3, the only action compati-
ble with the unipotent action from [36, Table 5] is (5/5∗/5) ⊕ 12, so this must be
M(E6)↓H .

For this action, we have the following result, delaying the proof of maximality
until Sect. 8.

Proposition 5.18 Let H ∼= PSL2(11) and let p �= 5,11. Suppose that H acts as de-
scribed above.
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(i) The group H is Lie primitive and NG(H) = Z(G) × H .
(ii) There are two G-classes of subgroups H , both normalized by the graph auto-

morphism, so that H.2 ∼= PGL2(11) embeds in G.2.
(iii) The group H always embeds in E6(p

2), and embeds in E6(p) if and only if
f2(x) = x2 +x+3 and f3(x) = x2 +x−1 split over Fp (i.e., p ≡ ±1 mod 5 and
p ≡ 1,3,4,5,9 mod 11). If f3(x) splits but f2(x) does not (i.e., p ≡ ±1 mod 5
and p ≡ 2,6,7,8,10 mod 11) then H embeds in 2E6(p).

(iv) The subgroup H is maximal in G if and only if G = εE6(p
a) is the min-

imal group into which H embeds, as given in the previous part. There are
2 · gcd(3,p − ε) classes of subgroups H . If Ḡ �= G and NḠ(H) is maximal
in Ḡ then Ḡ = G.2, H is maximal in G, Ḡ induces a graph automorphism on
G, and there are two Ḡ-classes of subgroups H.2.

The proof proceeds in stages.

Determination of NG(H)

Since M(E6)↓H is not stable under the outer automorphism of H , we must have
NG(H) = Z(G) × H .

Determination of L up to conjugacy

The Brauer character of H implies that an element of order 5 acts on M(E6) with
character ζ5 + ζ−1

5 . Hence there are two options for L up to G-conjugacy, by Propo-
sition 5.17.

Determination of H up to conjugacy

In the supplementary materials we pick one of the two classes of subgroups L, and
prove that for all primes, all subgroups H containing L are CG(L)-conjugate. Thus
there are exactly two G-conjugacy classes of subgroups H .

(Note that we only construct one of the classes of subgroups H in the supplemen-
tary materials. We will prove the other case exists in the next part.)

Action of outer automorphisms

Note that an outer automorphism of H swaps the kH -modules 5 and 5∗ and fixes 121
and 122. Thus a graph automorphism of G cannot fuse classes, and cannot centralize
H as H is not contained in F4 or C4, the centralizers of graph automorphisms of G.
Thus it normalizes both classes, and PGL2(11) embeds in G.2.

The diagonal automorphisms of course merge classes in the finite group by Corol-
lary 2.4, so it remains to consider the field automorphisms. Note that the module 5
exists over Fq if and only if the polynomial f2(x) splits (and this irrationality ap-
pears for an element of order 11), and the module 121 exists over Fq if and only if
the polynomial f3(x) splits (and this irrationality appears for an element of order 5).
Of course, Fp2 fixes all of these irrationalities, so Fp2 centralizes H . Whether Fp
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centralizes H , normalizes H , or fuses the two G-classes, depends on the splitting of
f2(x) and f3(x). This also proves that the second class over G exists, since it must
do for certain primes (as the field automorphism does not stabilize a class) and hence
for all primes by Theorem 3.10.

The map Fp swaps the two G-classes if and only if f3(x) does not split over Fp ,
so we assume that f3(x) splits over Fp , and therefore Fp normalizes H . If f2(x)

does not split over Fp then H cannot embed in E6(p), so that Fp acts as an outer
automorphism on H and the product with the graph centralizes H . Thus H ≤ 2E6(p).
Conversely if f2(x) splits over Fp then Fp centralizes all four representations of H ,
so cannot act as the outer automorphism. Thus H ≤ E6(p). In both cases for G, H.2
embeds in G.2.

This completes the proof.

Remark 5.19 The error in [3] appears in the proof of (17.1), where it is assumed that
(in that notation) h is equal to k. Since CT(w) is positive-dimensional (where w is
of order 5 in W(E6)) there can be, and are, multiple classes of complements. As no
proof is given in [17], the source of the error there cannot be found.

5.4.4 H ∼= PSL2(13)

Let H ∼= PSL2(13), and let L denote the subgroup 13 � 6 of H . Let L1 denote the
subgroup 13 � 3 of index 2 in L. The cases to consider are p = 2, p = 3, p = 7
and p �= 2,3,7,13. If p = 7 then H is strongly imprimitive by [46, Theorem 1],
so we ignore this case. From [46, Tables 6.77, 6.79 and 6.80], we see that either
H is strongly imprimitive or the composition factors of M(E6)↓H are: 13 + 14 for
p �= 2,3,7,13 (a unique such module with rational character values); 132, 1 if p = 3
(and such a module must be uniserial 13/1/13, else H stabilizes a line on M(E6));
14, 61, 62, 1 if p = 2. In the final case, the 14 splits off as a summand, since it
lies in a different block, and if H does not stabilize a line or hyperplane on M(E6)

the remaining summand must be (up to automorphism) 61/1/62. So in all cases the
module M(E6)↓H is determined completely, up to automorphism for p = 2.

The character of M(E6)↓H is always rational-valued, so there is no obstacle to H

lying in G = E6(p) for any prime p.
We will prove the following, delaying the proof of maximality until Sect. 8.

Proposition 5.20 Let p �= 7,13 and H ∼= PSL2(13) be a subgroup of G, and let σ

be a Frobenius endomorphism of G with G = Gσ . Suppose that H acts as described
above.

(i) There is a unique G-conjugacy class of subgroups isomorphic to H , H is con-
tained in a maximal G2 subgroup of G, and NG(H) = Z(G) × H . The group
H.2 ∼= PGL2(13) embeds in G.2 and is Lie primitive.

(ii) H embeds into exactly one of E6(p) and 2E6(p). It embeds in 2E6(p) if and
only if exactly one of p ≡ 1,2,4 mod 7 and p ≡ ±1,±3,±4 mod 13 holds.

(iii) If p = 2 then NḠ(H) is never maximal in an almost simple group Ḡ. If p is odd,
then H is maximal in G = εE6(p) if and only if p ≡ ±2,±5,±6 mod 13. If
p ≡ ±1,±3,±4 mod 13 then H.2 is a novelty maximal subgroup of εE6(p).2.
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There are gcd(3,p − ε) classes of subgroups NG(H) and one class in NḠ(H)

for Ḡ = G.2.

The proof proceeds in stages.

Determination of NG(H)

Although M(E6)↓H is stable under the outer automorphism of H , any extension
of it to PGL2(13) has trace ±1 for an outer involution. Thus NG(H) = Z(G) ×
H for p �= 2. For p = 2, as the 6-dimensional simple modules are swapped by the
outer automorphism, M(E6)↓H is not stable under the outer automorphism. Thus
NG(H) = Z(G) × H in all cases.

Determination of L up to conjugacy

By [15, Lemma 2.1], L1 is unique up to G-conjugacy for p �= 3,13, and L is unique
up to G-conjugacy for p �= 2,3,13. Thus we first assume that p = 3, where we will
show that L1 is again unique up to conjugacy. As an element x of order 13 in L

is regular, C◦
G(x) is a torus. Since any element normalizing 〈x〉 normalizes C◦

G(x),
L ≤ NG(T). Finally, we need to understand elements of order 3 in W(E6). There
are three conjugacy classes, each belonging to a different unipotent class of G (as
demonstrated by their Jordan block action on M(E6) and L(E6)). Thus w ∈ L1 of
order 3 is determined, and subgroups 13 � 3 of NG(T) containing w are NG(T)-
conjugate. Thus L1 is unique up to conjugacy in characteristic 3.

To obtain uniqueness of L, we just need to know that CG(L1) has odd order, for
then 13 � 6 must be uniquely determined in NG(L1). For p = 2, we have CG(x) =
T since G is simply connected, so CG(L1) is a group of odd order, and thus L is
unique up to conjugacy. For p = 3, we need to check that L1 does not centralize an
involution in T, and this is also the case. Thus L is unique up to G-conjugacy in all
characteristics.

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies of H containing
L under the centralizer of L in GL26(k). If p �= 2,3,7,13 then in [15, Theorem 3.1]
it was proved that there are exactly two subgroups H in G containing a fixed L, and
these can be conjugated by an element of NG(L) (in which NH (L)×Z(G) has index
2). Thus H is unique up to G-conjugacy. In fact, H is contained in a maximal G2
subgroup, as proved in [15].

For p = 2,3, in the supplementary materials we also find exactly two subgroups
H containing L, swapped by NG(L). In these cases we also find a copy of G2 con-
taining H .

Action of outer automorphisms

The graph automorphism cannot fuse classes, and cannot centralize H as H is not
contained in F4 or C4. Thus it normalizes H , and PGL2(13) embeds in G.2.
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Again, Fp cannot fuse classes, so it either centralizes H—in which case H ≤
E6(p)—or it acts as an outer automorphism on H—in which H ≤ 2E6(p). In both
cases H lies in E6(p

2), in fact in G2(p
2) ≤ E6(p

2).
Since H ≤ G2(p) if and only if p ≡ ±1,±3,±4 mod 13 (see [30] or [11, Ta-

ble 8.41]), if p is congruent to one of those numbers then H ≤ E6(p) if and
only if G2(p) ≤ E6(p), i.e., p ≡ 1,2,4 mod 7. Thus we may assume that p ≡
±2,±5,±6 mod 13 and thus the field automorphism of G2(p

2) acts as an outer au-
tomorphism on H .

If p ≡ 1,2,4 mod 7 then the field automorphism Fp does not swap the two classes
of G2 subgroup, so induces a field automorphism on them. Thus G2(p

2).2 is a sub-
group of E6(p

2).2 (field automorphism). Thus the field automorphism Fp of E6(p
2)

induces an outer automorphism on H . Hence H ≤ 2E6(p).
On the other hand, if p ≡ 3,5,6 mod 7 then the field-graph automorphism Fp ·

τ of E6 normalizes the two G2 classes, and so G2(p
2).2 ≤ E6(p

2).2 (field-graph
automorphism). As in the previous paragraph, we obtain H ≤ E6(p).

Thus H ≤ E6(p) if and only if p ≡ ±1,±3,±4 mod 13 and p ≡ 1,2,4 mod 7,
or p ≡ ±2,±5,±6 mod 13 and p ≡ 3,5,6 mod 7. On the other hand, H ≤ 2E6(p) if
and only if p ≡ ±1,±3,±4 mod 13 and p ≡ 3,5,6 mod 7, or p ≡ ±2,±5,±6 mod
13 and p ≡ 1,2,4 mod 7.

Note that H.2 is a novelty maximal subgroup of εE6(p).2 if and only if H ≤
G2(p), so p ≡ ±1,±3,±4 mod 13, and in the other cases H is a maximal subgroup
of G. (Proof of maximality is in Sect. 8.) The only case where this is not true is for
p = 2, since H is contained in G2(3) ≤ �7(3) ≤ 2E6(2). To see that H cannot form a
novelty maximal subgroup, from [11, Table 8.42] there is a single class of subgroups
PSL2(13) in G2(3), and that the graph automorphism of G2(3) normalizes PSL2(13).
Thus H cannot form either a type I or a type II novelty. (This tallies with [19, p. 191],
where H does not appear as a novelty maximal subgroup of 2E6(2).)

5.4.5 H ∼= PSL2(17)

Let H ∼= PSL2(17). The possible primes here are p = 2, p = 3 and p �= 2,3,17.
This case appears to have been erroneously excluded in both [3, Sect. 21] and [17],
particularly as in both cases it is proved that a subgroup acting with composition
factors of degrees 9 and 18 on M(E6) does not exist. One exists in C4. Because of
this we shall be particularly careful. If p = 2 then H is always strongly imprimitive
by [46].

Let L ∼= 17 � 8 denote a Borel subgroup of H . Notice that M(E6)↓L is self-dual,
but not stable under the outer automorphism of L (that forms 17 � 16). Hence L

is centralized by a graph automorphism, thus lies inside F4 or C4. The former is
impossible since L does not centralize a line on M(E6), so L ≤ C4. Then L is unique
up to conjugacy in G by [11, Lemma 1.8.10(ii)].

We see in the supplementary materials that in characteristic p �= 2,17 there is a
unique copy of H containing a given L, up to CG(L)-conjugacy. Since there is a copy
of H inside C4 we must have that H is Lie imprimitive.

To prove strong imprimitivity, we use the Lie algebra. In characteristic p �=
2,3,17, the composition factors of H on L(E6) have dimensions 9, 16, 17, 18 and
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18, and the dimensions of the factors of C4 on L(E6) are 36 and 42. Thus H is
strongly imprimitive by Proposition 3.4, since clearly the 36 is the sum of the two
18s. In characteristic 3, the factors for H are 1, 9, 16, 16, 18, 18 (as L(E6) has a
trivial factor for p = 3), and the factors for C4 are 1, 36, 41. Again, the 36 is the sum
of the two 18s, and so H is strongly imprimitive again.

Proposition 5.21 Any subgroup H ∼= PSL2(17) in G is strongly imprimitive.

5.4.6 H ∼= PSL2(19)

Let H ∼= PSL2(19), so we may assume p �= 19. The cases to consider are p = 2,
p = 3, p = 5 and p �= 2,3,5,19. For p = 2 there is a copy of PSL2(19) inside J3,
which lies in E6(4), so we might expect to see a different answer for p = 2 to other
primes.

Consulting [46, Tables 6.84–6.87], the composition factors of M(E6)↓H are of
dimensions 9 and 18 unless p = 5, in which case they are 9, 9, 9∗. Furthermore,
there are no extensions between 9 and 18 so the module is always semisimple for
p �= 5. For p = 5 the 9-dimensional modules have no self-extensions, but there is a
non-split extension between 9 and 9∗. An element u ∈ H of order 5 acts on each 9
with Jordan blocks 5, 4, and on 9/9∗ with blocks 53, 3, and on 9/9∗/9 with Jordan
blocks 55, 2. We see from [36, Table 5] that the only option is 9/9∗/9.

There are two dual irreducible kH -modules of dimension 9, permuted by the outer
automorphism of H , and for p �= 5 two 18-dimensional kH -modules (with trace of
involution +2) that are stabilized by the outer automorphism of H . Thus one obtains
four conjugacy classes of representations of H on M(E6), two up to duality for p �=
5, and two classes of representations and one up to duality for p = 5.

We will delay the proof of maximality in the next proposition until Sect. 8.

Proposition 5.22 Let H ∼= PSL2(19) be a subgroup of G and let σ be a Frobenius
endomorphism of G with G = Gσ . Suppose that p �= 19, and that H acts as described
above.

(i) If p �= 5 there are exactly two G-conjugacy classes of subgroups isomorphic
to H , and if p = 5 there is a single G-conjugacy class of subgroups isomor-
phic to H . In both cases, H is always Lie primitive, and NG(H) = Z(G) × H .
Furthermore, H extends to H.2 ∼= PGL2(19) in G.2.

(ii) There is an embedding of H into G = E6(q) if and only if the polyno-
mial (x2 − x − 1)(x2 + x + 5) splits over Fq (i.e., q ≡ 0,±1 mod 5 and
q ≡ 1,4,5,6,7,9,11,16,17 mod 19). If H embeds in G then there are 2 ·
gcd(3, q − 1) conjugacy classes. Furthermore, H embeds in G = 2E6(p) if and
only if f3(x) = x2 − x − 1 splits but f4(x) = x2 + x + 5 does not split (i.e.,
p ≡ 0,±1 mod 5 and p ≡ 2,3,8,10,12,13,14,15,18 mod 19). In this case
there are 2 · gcd(3,p + 1) conjugacy classes.

(iii) Suppose that Ḡ is an almost simple group such that NḠ(H) is maximal in Ḡ.
Suppose that p is odd. If G = E6(q) then either q = p2 and p ≡ ±2 mod 5, or
q = p and both f3(x) and f4(x) split over Fp . In both cases, either Ḡ = G or
Ḡ = G.2, where the outer automorphism of G is the graph automorphism.
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If G = 2E6(q), then q = p and f3(x) splits over Fp but f4(x) does not. The
group Ḡ is either G or G.2.

If p = 2 then Ḡ = E6(4).2 with the extension being the graph automorphism,
and NḠ(H) ∼= PGL2(19) is a novelty maximal subgroup. There are two such
classes, swapped by the subgroup consisting of field automorphisms.

The proof proceeds in stages.

Determination of NG(H)

Since M(E6)↓H is not stable under the outer automorphism of H , we must have
NG(H) = Z(G) × H .

Determination of L up to conjugacy

Since L0 ≤ L of order 19 is regular, the normalizer of L0 is contained in NG(T).
Hence L is contained in NG(T) in all cases.

Let w ∈ L have order 9. An easy computer check shows that the centralizer of w

on T is finite, so all elements of Tw are T-conjugate by Lemma 3.7. (See also [17,
Proof of 6.7].) If p = 3 then T possesses no 3-elements, so as there is a single class of
elements of order 9 in W(E6), we see that L is unique up to conjugacy in NG(T). If
p �= 3,19 then L is a supersoluble p′-group, and is unique up to G-conjugacy. This
can be seen since the 19 is regular and the centralizer of the 9 on T is finite (and
we may apply Lemma 3.9), and also appears in [17]. In fact, one can see that the
centralizer of L in G is Z(G) so all copies of L in any finite G are conjugate in Gad
by Corollary 2.3.

Determination of H up to conjugacy

Using the method from Sect. 3.4, we compute the number of copies of H containing
L under the centralizer of L in GL27(k). We find exactly one for each representation
of H , so two copies of H containing L for p �= 5,19, and one for p = 5. This is done
in the supplementary materials for p = 2, p = 3, p = 5 and p �= 2,3,5,19.

Action of outer automorphisms

Note that the graph automorphism must act as the outer H -automorphism on each
G-class, since M(E6)

∗↓H is the image of M(E6)↓H under the automorphism. The
character of M(E6)↓H has two irrationalities: elements of order 5 require the poly-
nomial f3(x) = x2 − x − 1 to split; elements of order 19 require the polynomial
f4(x) = x2 + x + 5 to split. So in order for M(E6)↓H to exist over Fq , the polyno-
mial (x2 − x − 1)(x2 + x + 5) must split over Fq .

Since L is unique up to G-conjugacy, we see that Fp2 must centralize L. Since one
cannot normalize H while centralizing L without centralizing H , and Fp2 cannot
fuse G-classes of subgroups, we see that Fp2 also centralizes H . Since the graph
automorphism acts as the outer automorphism, we have that Fp normalizes H if
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and only if its product with the graph automorphism does. In this case, exactly one
centralizes H . Diagonal automorphisms of G fuse classes by Corollary 2.4.

Note that the two 18-dimensional modules are not swapped by the outer auto-
morphism of H . Thus if the character values of these modules do not lie in Fp then
Fp swaps the two characters, hence swaps the two G-classes of subgroups H . Thus
we may suppose that f3(x) (which is the minimal polynomial for an irrationality
in the character of an 18) splits over Fp . If f4(x) splits over Fp then the two dual
9-dimensional modules, which are swapped by the outer automorphism of H , are
stabilized by Fp , hence Fp centralizes H and the product of Fp with the graph au-
tomorphism does not centralize H . The converse holds: if f4(x) does not split over
Fp then Fp normalizes but doesn’t centralize H , and the product with the graph au-
tomorphism does centralize H . This yields the proposition above.

We just need to check that H ≤ J ∼= J3 for p = 2. First, H ≤ E6(4) as (x2 +
1)(x2 + x + 5) splits over F4, but H does not lie in either E6(2) or 2E6(2). Note that
there are two subgroups 3 · J3 contained in G, and since PSL2(19) ≤ J3 we cannot
have that H is maximal in G. Note that H is normalized by a graph automorphism,
and so is J , so any potential novelty maximal subgroup lies in this group Ḡ = G.2.
The outer automorphism of J3 fuses the two classes of PSL2(19) subgroups, and so
PGL2(19) cannot be contained in NḠ(H). This completes the proof.

5.4.7 H ∼= PSL2(25) or H ∼= PSL2(27)

In both of these cases, H was proved to be strongly imprimitive for all primes in [46],
so we have the following result.

Proposition 5.23 Let H be isomorphic to either PSL2(25) or PSL2(27), and suppose
that H is a subgroup of G. Then H is strongly imprimitive.

6 PSL2(8)

This section considers the question of whether, in εE6(q), the subgroup PSL2(8) is
self-normalizing, where q is a power of a prime p �= 2,3,7. It turns out that this is a
subtle question, depending on whether a particular number is a cube in Fq .

The proof here follows closely that of [3, Sect. 29]. Indeed, it relies heavily
upon Aschbacher’s ideas, particularly when constructing the E6-forms on the 27-
dimensional module for H = PSL2(8).3. However, our proof is not identical to that
of [3]; the author had difficulty with the final paragraph of the proof of [3, (29.18)(4)],
so we proceed in a different way, more in keeping with the philosophy of this paper.
This means that we determine the maximal subgroups of the finite groups by con-
sidering the action of field automorphisms on the subgroups of the algebraic group,
rather than work directly in the finite group. Because we work with PSL2(8).3 rather
than PSL2(8), the calculations are significantly easier.

Let p �= 2,3,7 be a prime, and let G be the simply connected E6 in characteris-
tic p. We begin with an easy lemma that gives some elementary facts about H in G.
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Lemma 6.1 Let σ be a Frobenius endomorphism on G such that σ centralizes H ′ ∼=
PSL2(8).

(i) There are exactly six G-conjugacy classes of subgroups H acting irreducibly on
M(E6).

(ii) We have that σ centralizes a subgroup of NG(H ′) isomorphic to H (but not
necessarily H itself) if and only if σ 2 centralizes H .

(iii) If σ inverts Z(G) (i.e., Gσ has no diagonal automorphisms) then σ centralizes
a subgroup of NG(H ′) isomorphic to H .

(iv) It is always true that σ 3 centralizes a subgroup of NG(H ′) isomorphic to H .

Proof From Proposition 5.16 we see that there are two G-conjugacy classes of the
subgroup H ′. Certainly H lies inside NG(H ′) = Z(G) × H by Proposition 5.16.
Inside here there are four subgroups of index 3, one of which is 3 ×H ′, and the other
three are isomorphic to H . Let H1 and H2 be two of them. If g ∈ G conjugates H1

to H2, then g normalizes Z(G) × H1 = Z(G) × H2. But then g normalizes H ′, and
this is a clear contradiction. Thus each class of H ′ contributes three classes of H , so
six classes in total. This proves (i).

For the rest of the proof, note first that if σ normalizes H (or one of the sub-
groups of H × Z(G) isomorphic to H ) then it centralizes it, since σ centralizes H ′.
Since σ centralizes H ′ it normalizes its normalizer, which is Z(G) × H . Note that
Out(Z(G) × H) ∼= Sym(3), acting faithfully on the three subgroups isomorphic with
H , and with elements of order 2 inverting Z(G). If σ does not centralize Z(G) then
it inverts it, and so has order 2. Thus σ normalizes one of the three subgroups iso-
morphic to H , hence centralizes it. This proves (iii).

Certainly σ 3 cannot induce an outer automorphism of order 3 on Z(G) × H , so
it is either outer of order 2—and so (iv) holds as (iii) held above—or is inner and
centralizes Z(G) × H ′, thus is trivial and (iv) holds again. It remains to show (ii).
But in this case σ cannot be outer of order 3 as then σ 2 would also, so it has order 1
or 2, and thus (ii) holds as it held for (iii) and (iv). �

Assume that σ centralizes H ′ ∼= PSL2(8), and write Gsc = Gσ . We are inter-
ested in whether NG(H ′) = H ′. The previous lemma shows that if Gσ is 2E6(p

3)

or Z(Gsc) = 1 then H ′.3 ≤ NG(H ′), and also if G = 2E6(p) then NG(H ′) is equal
to its normalizer in E6(p

2). Thus we may assume that σ is a power of the standard
Frobenius endomorphism that centralizes Z(G) in what follows.

We will construct the six E6-forms on M(E6) (there are six by Lemma 6.1(i)) and
then consider the action of σ on these. We see that σ centralizes all six forms if and
only if all six G-conjugacy classes have a σ -fixed representative. Since σ centralizes
the centre of G, the only other alternative is that it permutes the six forms in two 3-
cycles, and then H does not embed in Gσ . Thus we can determine if H is contained
in Gσ by considering the coefficients of the E6-forms on M(E6).

With this approach we can then use the results from [3, Sect. 29]. Since this work
is unpublished, we reproduce (with permission) what we need from it, but we can
simplify the calculations somewhat because we are considering H rather than H ′, as
was done in [3].
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We begin by defining some elements of H , and then construct the 27-dimensional
module V that is isomorphic to M(E6)↓H . Let p �= 2,3,7, and let k be an alge-
braically closed field of characteristic p. Let ξ be a primitive 7th root of unity in
F8 and let ζ be a primitive 7th root of unity in k. Over F2, x7 − 1 factorizes as
(x − 1)(x3 + x + 1)(x3 + x2 + 1), so choose ξ to satisfy x3 + x + 1. If i ∈ F

×
8 , write

log(i) for the quantity determined by i = ξ log(i). For i ∈ F8 and j ∈ F
×
8 , write

gi =
(

1 i

0 1

)
, hj =

(
j−1 0

0 j

)
, t =

(
0 1
1 0

)
.

Let s be the element of H that centralizes 〈g1, t〉 ∼= SL2(2) and maps gξ to gξ2 . Let
B = 〈g1, hξ 〉 be a Borel subgroup of H ′.

Let Uζ be the 9-dimensional kB-module with basis {x∞} ∪ {xi : i ∈ F8}, so a
projective line. The actions of gi , hj and t are as follows.

Basis element Image under gi Image under hj Image under t

x∞ x∞ ζ log(j)x∞ x0

x0 x1 ζ− log(j)x0 x∞
xl , l �= 0 xl+i ζ− log(j)xlj2 ζ log(l)xl−1

Define Y and Z similarly, with bases {y∞} ∪ {yi : i ∈ F8} and {z∞} ∪ {zi : i ∈ F8}
respectively, and with actions given as for X but with ζ replaced by ζ 4 and ζ 2 re-
spectively. Let V = X ⊕ Y ⊕ Z, a vector space of dimension 27.

The action of s is defined by s3 = 1, and x∞s = y∞, y∞s = z∞. From this and the
fact that sg1 = g1s and st = ts, we see that x0s = y0, x1s = y1, and similarly y0s = z0
and y1s = z1. The rest of the basis elements are permuted in a more complicated
way, but it is not necessary to know what it is in what follows. (In the supplementary
materials we give this representation and prove that it is indeed a representation of
H .)

The subgroup B acts on V as the sum of all six non-trivial kB-modules and three
copies of the 7-dimensional kB-module. The 1-dimensional modules are spanned by
x∞, y∞, z∞,

x� =
∑

i∈F8

xi, y� =
∑

i∈F8

yi, z� =
∑

i∈F8

zi .

Notice that

x�gi = x�, x�hj = ζ− log(j)x�.

Let f be a symmetric trilinear form on V , and suppose that f has symmetry group
E6. Recall that a point x ∈ V is singular if, for all y ∈ V , f (x, x, y) = 0. (This is the
same as a white or D5-parabolic point of V .) By [2, (3.16)(2)] G is transitive on
singular points, and by [2, (3.6)(1)], the dimension of x�, the radical of the bilinear
form f (x,−,−), is 17-dimensional whenever x is singular. Notice that the space x�

of elements y such that f (x, x, y) = 0 is either 26- or 27-dimensional, since it is the
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kernel of the linear transformation y �→ f (x, x, y). If 〈x〉 is a kB-submodule of V

then so are x� and x�.
In Sect. 5.4.2, we proved that the Borel subgroup B lies in D5T1 and then inside

B4T1. Thus B stabilizes both D5-parabolic and B4-type lines on M(E6) (white and
grey lines in the language of, for example, [14]). Since x∞, y∞ and z∞ lie in an
s-orbit, and x� , y� and z� lie in an s-orbit, one must be white and one must be grey.

Since H ′ is 3-transitive on the projective line we determine f on all triples of
basis elements if we determine f on all triples of basis elements with subscripts from
{∞,0,1}. Thus we define:

cx = f (x∞, x0, x1), cxy = f (x∞, y0, y1), cyx = f (y∞, x0, x1),

c∞ = f (x∞, y∞, z∞), c = f (x∞, y0, z1).

We claim that f (x∞, x∞, v) = 0 if v is one of x∞, x0, y∞, y0, z∞, so the only
one for which the form could possibly be non-zero is v = z0. To see this, we use
hξ -equivariance: for example,

f (x∞, x∞, x0) = f (x∞hξ , x∞hξ , x0hξ ) = f (ζx∞, ζx∞, ζ−1x0)

= ζf (x∞, x∞, x0),

so f (x∞, x∞, x0) = 0. The same holds for v one of x∞, y0, y∞, z0 or z∞ unless
vhξ = ζ−2v, which is only true for z0. Since x∞� is a kB-submodule of dimension
least 26, it is either V itself or a complement to 〈z�〉.

Similarly, f (x�,x�, v) = 0 for v one of x∞, x� , y∞, y� , z� , and only
f (x�,x�, z∞) can be non-zero. For f (x∞, y∞, v), we again see that this is zero
for v = x∞, x�, y∞, y�, z� , so can be non-zero only for z∞ (where it takes value
c∞).

We now can compute the value of the form when each of the basis elements lies
in X. We do the same for Y and Z.

Lemma 6.2 ([3, (29.6)]) We have

f (x∞, xi, xj ) = cxζ
4 log(i+j), f (y∞, yi, yj ) = cxζ

2 log(i+j),

f (z∞, zi , zj ) = cxζ
log(i+j).

Proof Since B is 2-transitive on {xi : i ∈ F8}, we need merely show that this formula
is equivariant with respect to g1 and hξ . Thus:

f (x∞g1, xig1, xj g1) = f (x∞, xi+1, xj+1) = cxζ
4 log(i+j),

and

f (x∞hξ , xihξ , xjhξ ) = f (ζx∞, ζ−1xiξ2, ζ
−1xjξ2)

= ζ−1cxζ
4 log((i+j)ξ2) = cxζ

4 log(i+j),
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proving the result. To obtain the other two formulae, note that Y has the same action
as X except for ζ replaced by ζ 4 (so ζ 4 log(i+j) becomes ζ 16 log(i+j) = ζ 2 log(i+j), and
Z has the same action as X except for ζ replaced by ζ 2. �

We have a very similar lemma when the basis elements do not all come from the
same kH ′-submodule.

Lemma 6.3 ([3, (29.8)(2)]) We have

f (x∞, yi, yj ) = cxy, f (y∞, xi, xj ) = ζ− log(i+j)cyx,

f (x∞, yi, zj ) = ζ− log(i+j)c.

Proof The proof is the same as for Lemma 6.2. We have

f (x∞g1, y0g1, y1g1) = f (x∞, y1, y0) = cxy,

and

f (x∞hξ , yihξ , yjhξ ) = f (ζx∞, ζ−4yiξ2, ζ
−4yjξ2) = ζ 1−8cxy = cxy.

The other two cases are proved in the same way, and are omitted. �

Notice that B lies in D5T1, and this latter subgroup is invariant under the graph
automorphism. The graph automorphism inverts the torus, so in effect sends the 1-
dimensional modules in V ↓B to their duals. This swaps x∞ and x� ; thus we may
assume that x∞ is singular, and we will do so. We aim to produce three distinct
trilinear forms on V , under this assumption.

As x∞ is singular, x� is non-singular, and therefore z∞ lies outside x��. Hence
0 �= f (z∞, xi, xj ) = f (x∞, yi, yj ) for some i, j ∈ F8, and in particular this means
that cxy �= 0.

Lemma 6.4 x∞� contains x∞, x� and z� , and does not contain y∞, z∞ and y� .

Proof Since x∞ is singular, certainly f (x∞, x∞, v) = 0 for all v ∈ V , so x∞ ∈ x∞�.
If y∞ ∈ x∞� then by applying s−1 we see that z∞ ∈ x∞�, as f (x∞, y∞, v) = 0 for
all v ∈ V if and only if f (z∞, x∞, v) = 0 for all v ∈ V . Since x∞� is a kB-module
of dimension 17, it contains two copies of the 7-dimensional kB-module and three
1-dimensional modules.

We now show that x� lies in x∞�, thus proving that y∞ and z∞ do not lie in it.
For this we show that f (x∞, x�, v) = 0 for v each basis element of V . Note that

f (x∞hξ , x�hξ , vhξ ) = f (x∞, x�, vhξ ),

and if v ∈ {x∞, x0, y∞, y0, z∞, z0} then vhξ is a non-unity multiple of v. Hence
f (x∞, x�, v) = 0 for those elements. We then use the fact that B is transitive on
xi for i ∈ F8, and stabilizes x∞ and x� , to see that f (x∞, x�, v) = 0 for all v ∈ V .



D.A. Craven

Thus it remains to check whether y� ∈ x∞� or z� ∈ x∞�. Notice that

f (x∞hξ , z�hξ , vhξ ) = ζ−1f (x∞, x�, vhξ ),

and if v ∈ {x0, y∞, y0, z∞, z0} then vhξ �= ζv, but is some other scalar multiple of v.
The last case, v = x∞, does work, but x∞ is singular so the form is zero for this
option for v as well. Thus, as the previous case, z� ∈ x∞�.

Alternatively, one sees that f (x∞, y�, y�) = 56cxy �= 0 by Lemma 6.3. �

From this we see that f (x∞, y∞, v) �= 0 for some basis element v. As with the
previous proof, we see that the form vanishes on this triple for v one of x∞, x0, y∞,
y0, z0, and so the only option is that c∞ = f (x∞, y∞, z∞) �= 0.

Thus we have so far proved that cxy and c∞ are non-zero. In fact, cx , cyx and c are
also non-zero, but we need to determine the two 7-dimensional submodules in x∞�

to prove that.
Inside X, the 7-dimensional submodule is simply all elements

∑

i∈F8

aixi

such that
∑

ai = 0. The same holds for Y and Z. However the isomorphism from
this summand to X to this summand of Y is more delicate to write down. In [3,
pp. 141–142] a ‘fixed point’ is found for this map, and we show this directly in the
supplementary materials. Write

xe = (x0 + xξ + xξ2 + xξ4) − (x1 − xξ3 − xξ5 − xξ6).

(Note that ξ , ξ2 and ξ4 are those powers of ξ that satisfy the polynomial x3 + x +
1, and the other roots satisfy x3 + x2 + 1.) We define ye and ze similarly. In any
isomorphism from the 7-dimensional summand of X to that of Y , xe is mapped to
(a scalar multiple of) ye, and similarly for ze. Thus a generic 7-dimensional kB-
submodule of V is generated by u = αxe + βye + γ ze , where α,β, γ ∈ k.

Suppose that u lies in x∞�. By evaluating f (x∞, u, v) = 0 for various basis el-
ements v we obtain equations in α, β and γ that must be satisfied. We use these to
produce relations between the coefficients cx , cxy , cyx and c. (Clearly c∞ will not
appear.)

To evaluate f (x∞, u, x0), we need an easy lemma. First, write

ω = ζ + ζ 2 + ζ 4 − (ζ−1 + ζ−2 − ζ−4);
note that ω2 = −7.

Lemma 6.5 We have

f (x∞, x0, xj ) = ζ 4 log(j)cx, f (x∞, x0, yj ) = ζ 2 log(j)cyx,

f (x∞, x0, zj ) = ζ log(j)cxy.



The maximal subgroups of F4(q), E6(q) and 2E6(q)

Consequently,

f (x∞, xe, x0) = cx(ω − 1), f (x∞, ye, x0) = cyx(ω − 1),

f (x∞, ze, x0) = cxy(ω − 1).

Proof The first case follows from Lemma 6.2. For the second, apply gj , then t , then
evaluate using Lemma 6.3. For the third, apply gj , then t , then s, then evaluate using
Lemma 6.3.

To see the consequence, note that f (x∞, x0, x0) = f (x∞, y0, x0) = f (x∞,

z0, x0) = 0. Then the conclusion follows easily, once one notices that ω is invari-
ant under replacing ζ by either ζ 2 or ζ 4. �

From this we see that if u ∈ x∞� then

αcx + βcyx + γ cxy = 0. (6.1)

We now do the same thing, but with y0 instead of x0.

Lemma 6.6 We have

f (x∞, y0, xj ) = ζ 2 log(j)cyx, f (x∞, y0, yj ) = cxy, f (x∞, y0, zj ) = ζ− log(j)c.

Consequently,

f (x∞, xe, y0) = cyx(ω−1), f (x∞, ye, y0) = −cxy, f (x∞, ze, y0) = −c(ω+1).

Proof The first case follows by applying t then evaluating using Lemma 6.3. The
second and third cases follow directly from Lemma 6.3. The consequences are proved
as with Lemma 6.5. �

From this we see that if u ∈ x∞� then

αcyx(ω − 1) − βcxy − γ c(ω + 1) = 0. (6.2)

Finally we use z0.

Lemma 6.7 We have

f (x∞, z0, xj ) = ζ log(j)cxy, f (x∞, z0, yj ) = ζ− log(j)c,

f (x∞, z0, zj ) = ζ− log(j)cyx.

Consequently,

f (x∞, z0, xe) = cxy(ω − 1), f (x∞, z0, ye) = −c(ω + 1),

f (x∞, z0, ze) = −cyx(ω + 1).
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Proof The first case follows by applying t then s, then evaluating using Lemma 6.3.
The second and third cases follow from applying gj and s respectively, then applying
Lemma 6.3. The consequences are proved as with Lemma 6.5. �

From this we see that if u ∈ x∞� then

αcxy(ω − 1) − βc(ω + 1) − γ cyx(ω + 1) = 0. (6.3)

We now consider simultaneous solutions (α,β, γ ) to (6.1), (6.2) and (6.3). Note
that, as cxy �= 0, (1,0,0) is not a solution to (6.3), (0,1,0) is not a solution to (6.2)
and (0,0,1) is not a solution to (6.1).

Since there is a 2-space of solutions, there exists a unique solution (0,1, γ ) for
some γ ∈ k. The three equations become

cyx + γ cxy = cxy + γ (ω + 1)c = c + γ cyx = 0.

Since cxy �= 0, we see that both cyx and c are non-zero. Solving for γ yields

γ = −cyx/cxy = cxy/(ω + 1)c = −c/cyx. (6.4)

We do the same with a solution of the form (1,0, γ ) to yield

cx + γ cxy = cyx(ω − 1) − γ c(ω + 1) = cxy(ω − 1) − γ cyx(ω + 1).

This time we see that cx is also non-zero. Solving for γ yields

γ = −cx/cxy = cyx(ω − 1)/c(ω + 1) = cxy(ω − 1)/cyx(ω + 1). (6.5)

We may scale the trilinear form so that cxy = 1. Then from (6.4) we obtain c = c2
yx

and c3
yx = −1/(ω+1), and from (6.5) we obtain cx = (1−ω)/cyx(ω+1) = c2

yx(ω−
1). The only parameter we have not fixed yet is c∞; it is proved in [3, p. 144] that
c∞ is uniquely determined using special planes and hyperbolic subspaces. We can be
much more naive, as we have Proposition 5.16 already. (In [3] this statement was used
to prove Proposition 5.16.) Thus we know that there is a unique (up to CGL(V )(H

′)-
conjugacy) E6-form for which x∞ is singular. Thus some element of CGL(V )(H

′)
conjugates any such E6-form to any other, in particular, between two with the same
values for cx , cxy , cyx and c, but with different values of c∞.

But CGL(V )(H
′) is simply a scalar matrix acting on each of X, Y and Z. Since

cx is fixed, the scalar on each of X, Y and Z is a cube root of unity, and since cxy

is fixed, it is the same cube root of unity for each factor. But then this is simply the
centre of E6, so this does not affect c∞, and the result is proved.

We thus have six trilinear forms: the three given by the three cube roots of
−1/(ω + 1), and the three given by their images under the graph automorphism
(where x∞ is non-singular). Let σ denote a q-power map x �→ xq on k, for q a power
of p. Suppose first that σ fixes ζ (q ≡ 1 mod 7), so that σ centralizes the H -action
on V , and hence permutes the six trilinear forms on V . If σ fixes the cube roots of
ω + 1 then σ fixes all six trilinear forms, and in particular H embeds in the simple
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group E6(q). On the other hand, if σ does not fix the cube roots of ω + 1 then σ does
not fix any trilinear form, and so H cannot embed in E6(q).

If σ does not fix ζ (q �≡ 1 mod 7) then σ maps the H -action on V to a slightly
different action. In order to obtain a permutation of the trilinear forms, we must re-
place the q-power map with the product of that and an element of GL(V ) that maps
this twisted H -action back to the original one.

However, the effect of the q-power map is easy to see: it cycles bodily the sub-
spaces X, Y and Z (which way depends on whether ζ maps to ζ 2 or ζ 4), and so
multiplying by a permutation matrix

⎛

⎝
0 I 0
0 0 I

I 0 0

⎞

⎠ ,

where I is a 9 × 9 identity matrix, is enough to centralize H again. Notice that the
product of a q-power map and a permutation matrix does not affect the value of
f (x∞, y0, y1) (as the permutation matrix cycles the factors), so the effect on the six
forms is the same as the q-power map itself. Thus the same conclusion holds, and we
have the following theorem.

Theorem 6.8 Let H ∼= SL2(8).3, and let q be a power of p �= 2,3,7. Let ω denote a
square root of −7 in F̄p .

(i) The group H ′ embeds in the simple group E6(q), acting irreducibly on M(E6),
if and only if q ≡ 1,2,4 mod 7, and in 2E6(q), acting irreducibly on M(E6), if
and only if q ≡ −1,−2,−4 mod 7.

(ii) The group H embeds in the simple group E6(q) if and only if q ≡ 1,2,4 mod 7,
and one of the following holds:
(a) q ≡ 2 mod 3;
(b) q = p3n for some integer n;
(c) ω + 1 has a cube root in Fq .

(iii) The group H embeds in the simple group 2E6(q) if and only if it embeds in
E6(q

2).
(iv) If H embeds in εE6(p) then it is always maximal in εE6(p). If H embeds in

εE6(p).3 but not εE6(p) then it is always maximal in εE6(p).3. If H does not
embed in εE6(p) then H ′ is maximal in εE6(p) if and only if x3 − 3x + 1 does
not split over Fp , i.e., p �≡ ±1 mod 9.

7 The remaining maximal subgroups of F4(q) and εE6(q)

Let G be of type F4 or E6. Let H be a maximal subgroup of Gsc = Gσ that is not
a member of S . As mentioned in Sect. 2, H is one of: the fixed points Xσ for X a
maximal positive-dimensional subgroup of G; a subgroup of the same type as G; an
exotic r-local subgroup for some r �= p. The exotic r-local subgroups are given in
[18]. The maximal-rank subgroups that are Xσ are given in [43, Tables 5.1 and 5.2],
and the other maximal positive-dimensional subgroups appear in [41].
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For F4(q), since there are no diagonal outer automorphisms the tables are fairly
easy to write down, and we have Table 7 for q odd and Table 8 for q even. The tables
are split into two because of the presence of a large number of novelty maximal
subgroups whenever Ḡ induces a graph automorphism on G.

For a simple group of type E6, the tables become quite complicated as there are
field, diagonal and graph automorphisms. All of the subgroups are stabilized by field
automorphisms, but stability under diagonal and graph automorphisms are more com-
plicated.

Let d = gcd(2, q − 1), e = gcd(3, q − 1), e′ = gcd(3, q + 1), f = gcd(4, q − 1)

and f ′ = gcd(4, q + 1). We write δ, of order e for E6(q) and e′ for 2E6(q), for a
generator of the group of diagonal automorphisms, γ for a graph automorphism, and
φ for a generator of the group of field automorphisms. If G = 2E6(q) then γ lies in
〈φ〉, so we simply use φ in this case.

The tables include the subgroup H̄ of G for which NḠ(H̄ ) is maximal in Ḡ, the
conditions on p and q , and the number of classes of H̄ in G. Note that we have
written H̄ so that NG(H̄ ) = H̄ , but of course NḠ(H̄ ) will be larger. We include the
stabilizer in Out(G) of H̄ so that the reader may compute the maximal subgroups of
the almost simple groups Ḡ.

We now show why the particular groups in these tables appear for E6 and 2E6.
As we said earlier, we obtain from [43] the maximal-rank subgroups, the parabolics
are simple to understand (if not describe), and the local maximal subgroups appear
in [18]; so we must deal with reductive subgroups that are not maximal rank. These
are: F4, C4, A2G2, G2 (two classes) and A2 (two classes).

For X = F4 there is little to say. It is centralized by the graph automorphism of G
so appears in both tables. The fixed points must be F4(q), and the diagonal automor-
phism cannot normalize them, so there are e or e′ classes.

For X = C4 the composition factors on the minimal module show that X has ad-
joint type in G (and it is not the centralizer of an involution). As it is centralized by
a graph automorphism, it appears in both tables. Since the diagonal automorphism of
G has order 3 it cannot induce the diagonal automorphism of PSp8(q), so δ cannot
normalize Xσ . Thus Xσ is PSp8(q).2 and there are e or e′ classes.

For X = A2G2, the group is self-normalizing in G, contrary to the statement in
[41, p. 3]; this references [57, (3.15)], which does not prove this fact, and indeed the
composition factors of M(E6)↓X do not allow this. In addition, X is normalized by
the graph automorphism, so if |NG(X)/X| = 2 then X would be centralized by the
graph, so lie in F4 or C4. In the simply connected group the composition factors on
the minimal module show the A2 is simply connected. Thus the form of the group
in E6(q) is PSL3(q) × G2(q) or PSU3(q) × G2(q), depending on the action of σ

on the A2 factor. In addition, the diagonal automorphism must induce the diagonal
automorphism on the A2-factor, so there is a single class.

Since the graph automorphism normalizes X, exactly one of E6(q) and 2E6(q)

contains PSL3(q) × G2(q) and the other contains PSU3(q) × G2(q). From [4,
(5.7.6)], we see that PSL3(q) × G2(q) embeds in E6(q), completing the proof.

For X = G2, the graph automorphism swaps the two classes of X. Of course
NG(X) = X · Z(G). We must decide if the standard Frobenius morphism of G
stabilizes the classes or swaps them. In [61, Theorem G.2] it is shown that if
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q ≡ 1,2,4 mod 7 then there are two (non-conjugate) subgroups G2(q) in E6(q),
swapped by the graph automorphism. If q ≡ 3,5,6 mod 7 then the standard Frobe-
nius map swaps the two square roots of −7, so maps one class from that theorem
to the other. In particular, the product with the graph automorphism does stabilize
the class, so we find two classes of G2(q) in 2E6(q) in this case. Since the diagonal
automorphism cannot normalize G2(q), we see that there are 2e classes in E6(q) and
2e′ classes in 2E6(q). (This tallies with [3, p. 5].)

Finally, for X = A2, the graph automorphism swaps the two classes of X. Note that
G induces a graph automorphism on X by [61, Claim on p. 314]. The composition
factors of M(E6)↓X show that X has adjoint type (and it cannot centralize an element
of order 3, of course). Thus the subgroup of E6(q) is either PGL3(q).2 or PGU3(q).2,
depending on the action of σ . As with G2, in [61, Theorem A.2] we find that if the
standard Frobenius map fixes

√−1 then it stabilizes the two G-classes, and if it does
not fix

√−1 then it does not stabilize the two classes. Thus if q ≡ 1 mod 4 then we
should see classes in E6(q) and if q ≡ 3 mod 4 then we should see classes in 2E6(q).

Unlike in the G2 case though, NG(X)/Z(G) · X has order 2, so NG(X) is dis-
connected in the adjoint version of E6. Lemma 2.2 shows that there are exactly two
classes in the adjoint version of Gσ , and are the fixed points under σ and wσ , where
w is an element that induces the graph automorphism on A2. But then this means
that the two classes are not the same type, so one must be PGL3(q).2 and the other
PGU3(q).2. This is true for both G-classes, so we obtain four classes in the adjoint
group, swapped in pairs by the graph. Thus we obtain 2e classes of each in E6(q)

and 2e′ classes of each in 2E6(q). (This tallies with [3, pp. 5–6].)

8 Checking overgroups

What we have not yet done is to check that there are no overgroups of the claimed
maximal subgroups, apart from those mentioned in the text when they are not maxi-
mal, or form novelty maximal subgroups. The quasisimple subgroups H we need to
consider are those in Tables 1, 2 and 3, and the possible overgroups X are from those
tables, and Tables 7 to 10.

Suppose that both H and X are members of S . Notice that no group PSL2(r)

contains a subgroup PSL2(s) unless r is a power of s or PSL2(s) ∼= Alt(5), which
does not appear in our tables. Thus X must not be of type PSL2(r).

Let G = F4(q) first. Thus X is one of PSL4(3) and 3D4(2). The group PSL4(3)

cannot contain any of the other groups in Table 1. The group 3D4(2) only contains
PSL2(8), and this is unique up to conjugacy. The restriction of 26 to it has factors 82,
7, 13 in characteristic 0, and so this cannot be the one in Table 1.

Now let G = E6(q), so that X is one of M12, J3 and 2F4(2)′. The group M12 con-
tains PSL2(11), but this does not appear in Table 2 in characteristic 5. The group J3
contains PSL2(19), and this is why PSL2(19) does not appear in Table 2 in charac-
teristic 2. Finally, 2F4(2) contains no other group in Table 2.

Finally, for G = 2E6(q), X is one of Fi22 and 2F4(2)′. The group Fi22 contains
�7(3) (which is why it is a novelty maximal), and 2F4(2)′ and PSL2(8), but p = 2
and neither of these groups is in Table 3. If X is 2F4(2)′ then again there are no
possibilities for H .
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Table 7 Subgroups H such that NḠ(H) is a maximal subgroup of an almost simple group Ḡ with socle
F4(q) not belonging to S , q odd

Group Conditions No. classes Stabilizer

[q15].Sp6(q).(q − 1) – 1 〈φ〉
[q20].(SL2(q) × SL3(q)).(q − 1) – 1 〈φ〉
[q20].(SL3(q) × SL2(q)).(q − 1) – 1 〈φ〉
[q15].2 · �7(q).(q − 1) – 1 〈φ〉
2 · �9(q) – 1 〈φ〉
22 · P�+

8 (q).Sym(3) – 1 〈φ〉
3D4(q).3 – 1 〈φ〉
(Sp6(q) ◦ SL2(q)).2 – 1 〈φ〉
(SL3(q) ◦ SL3(q)).gcd(3, q − 1).2 – 1 〈φ〉
(SU3(q) ◦ SU3(q)).gcd(3, q + 1).2 – 1 〈φ〉
PGL2(q) × G2(q) q �= 3 1 〈φ〉
F4(q0) q = qr

0 , r prime 1 〈φ〉
PGL2(q) p ≥ 13 1 〈φ〉
G2(q) p = 7 1 〈φ〉
33

� SL3(3) q = p ≥ 5 1 1

Table 8 Subgroups H such that NḠ(H) is a maximal subgroup of an almost simple group Ḡ with socle
F4(q) not belonging to S , q even. Those labelled ‘Nov.’ are novelty maximals that only occur when Ḡ

induces a graph automorphism on G

Group Conditions No. classes Stabilizer

[q15].Sp6(q) × (q − 1) – 2 〈φ〉
[q20].(SL2(q) × SL3(q)).(q − 1) – 2 〈φ〉
Sp8(q) – 2 〈φ〉
P�+

8 (q).Sym(3) – 2 〈φ〉
3D4(q).3 – 2 〈φ〉
(SL3(q) ◦ SL3(q)).gcd(3, q − 1).2 – 1 〈γ,φ〉
(SU3(q) ◦ SU3(q)).gcd(3, q + 1).2 – 1 〈γ,φ〉
F4(q0) q = qr

0 , r prime 1 〈γ,φ〉
2F4(q0) q = q2

0 1 〈γ,φ〉
[q20].Sp4(q).(q − 1)2 Nov. 1 〈γ,φ〉
[q22].(SL2(q) × SL2(q)).(q − 1)2 Nov. 1 〈γ,φ〉
(Sp4(q) × Sp4(q)).2 Nov. 1 〈γ,φ〉
Sp4(q2).2 Nov. 1 〈γ,φ〉
(q − 1)4.W(F4) Nov., q > 4 1 〈γ,φ〉
(q + 1)4.W(F4) Nov., q > 2 1 〈γ,φ〉
(q2 + q + 1)2.(3 × SL2(3)) Nov. 1 〈γ,φ〉
(q2 + 1)2.(4 ◦ GL2(3)) Nov., q > 2 1 〈γ,φ〉
(q2 − q + 1)2.(3 × SL2(3)) Nov., q > 2 1 〈γ,φ〉
(q4 − q2 + 1).12 Nov., q > 2 1 〈γ,φ〉
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Table 9 Subgroups H such that NḠ(H) is a maximal subgroup of an almost simple group Ḡ with socle
E6(q) not belonging to S . Those labelled ‘Nov.’ are novelty maximals that only occur when Ḡ induces a
graph automorphism on G

Group Conditions No. classes Stabilizer

[q16].Spin+
10(q).(q − 1)/e – 2 〈δ,φ〉

[q21].(d.PSL6(q)).(q − 1) – 1 〈δ, γ,φ〉
[q25].(SL2(q) × SL5(q)).(q − 1)/e – 2 〈δ,φ〉
[q29].(SL3(q) ◦ SL3(q) × SL2(q)).(q − 1) – 1 〈δ, γ,φ〉
d.(PSL2(q) × PSL6(q)).d – 1 〈δ, γ,φ〉
e.(PSL3(q)×3).e.Sym(3) – 1 〈δ, γ,φ〉
e′.(PSL3(q2) × PSU3(q)).e′.2 – 1 〈δ, γ,φ〉
PSL3(q3).3 – 1 〈δ, γ,φ〉
d2.(P�+

8 (q) × ((q − 1)/d)2/e).d2.Sym(3) q > 2 1 〈δ, γ,φ〉
(3D4(q) × (q2 + q + 1)/e).3 – 1 〈δ, γ,φ〉
((q − 1)6/e).W(E6) q > 4 1 〈δ, γ,φ〉
(q2 + q + 1)3/e.(31+2.SL2(3)) – 1 〈δ, γ,φ〉
F4(q) – e 〈γ,φ〉
PSp8(q).2 p �= 2 e 〈γ,φ〉
PSL3(q) × G2(q) – 1 〈δ, γ,φ〉
G2(q) q ≡ 1,2,4 mod 7 2e 〈φγ 〉 or 〈φ〉
PGL3(q).2 p ≥ 5, q ≡ 1 mod 4 2e 〈φγ 〉 or 〈φ〉
PGU3(q).2 p ≥ 5, q ≡ 1 mod 4 2e 〈φγ 〉 or 〈φ〉
E6(q0).gcd(e, r) q = qr

0 , r prime gcd(e, r) 〈δgcd(e,r), γ,φ〉
2E6(q0) q = q2

0 gcd(q0 − 1,3) 〈δgcd(q0−1,3), γ,φ〉
33+3 � SL3(3) q = p ≥ 5, 3 | p − 1 3 〈γ 〉
[q24].Spin+

8 (q).(q − 1)2/e Nov. 1 〈δ, γ,φ〉
[q31].(SL2(q)×SL2(q)×PSL3(q)).(q −1) Nov. 1 〈δ, γ,φ〉
f.(P�+

10(q) × (q − 1)/ef ).f Nov. 1 〈δ, γ,φ〉

Thus we may assume that X is one of the groups from Tables 7 to 10. Notice that
none of our possibilities for H has a projective representation of dimension less than
5, so subgroups of type A1 and A2 can be ignored. We can also of course exclude
subfield subgroups like F4(q0) ≤ F4(q) and εE6(q0) ≤ ±E6(q). We will deal with
the possibility H ≤ G2(q) later, so ignore this case for now.

If G = F4(q) and X = B4(q) then X stabilizes a line on M(F4)
◦ unless p = 3.

The same holds for the D4 and 3D4 subgroups, so these can be eliminated. If p =
3 on the other hand, B4 acts with factors 9, 16, and this is incompatible with the
factors of the groups in Table 1 for p = 3. The Sp6-parabolic stabilizes a 6-space on
M(F4) and none of the members of S does. The B3-parabolic has a Levi subgroup
contained in B4, so this cannot occur. The group SL3(3) is a minimal simple group,
so 33

� SL3(3) cannot contain H . Apart from G2 subgroups, all other options for X

have been eliminated.
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Table 10 Subgroups H such that NḠ(H) is a maximal subgroup of an almost simple group Ḡ with socle
2E6(q) not belonging to S . Those labelled ‘Nov.’ are novelty maximals that only occur when Ḡ induces a
diagonal automorphism on G

Group Conditions No. classes Stabilizer

[q21].(d.PSU6(q)).(q − 1) – 1 〈δ,φ〉
[q24].Spin−

8 (q).(q2 − 1)/e′ – 1 〈δ,φ〉
[q29].(PSL3(q2) × SL2(q)).(q − 1) – 1 〈δ,φ〉
[q31].(SL3(q) × SL2(q2)).(q2 − 1)/e′ – 1 〈δ,φ〉
f ′.(P�−

10(q) × (q + 1)/e′f ′).f ′ – 1 〈δ,φ〉
d.(PSL2(q) × PSU6(q)).d – 1 〈δ,φ〉
e′.(PSU3(q)×3).e′.Sym(3) – 1 〈δ,φ〉
e.(PSL3(q2) × PSL3(q)).e.2 – 1 〈δ,φ〉
PSU3(q3).3 – 1 〈δ,φ〉
d2.(P�+

8 (q) × ((q + 1)/d)2).d2.Sym(3) – 1 〈δ,φ〉
(3D4(q) × (q2 − q + 1)/e′).3 q > 2 1 〈δ,φ〉
(q + 1)6/e′.W(E6) q > 2 1 〈δ,φ〉
(q2 − q + 1)3/e′.(31+2.SL2(3)) q > 2 1 〈δ,φ〉
F4(q) – e′ 〈φ〉
PSp8(q).2 p �= 2 e′ 〈φ〉
PSU3(q) × G2(q) – 1 〈δ,φ〉
G2(q) q ≡ 3,5,6 mod 7 2e′ 〈φ2〉
PGL3(q).2 p ≥ 5, q ≡ 3 mod 4 2e′ 〈φ2〉
PGU3(q).2 p ≥ 5, q ≡ 3 mod 4 2e′ 〈φ2〉
2E6(q0).gcd(e′, r) q = qr

0 , r odd prime gcd(e′, r) 〈δgcd(e′,r), φ〉
33+3

� SL3(3) q = p ≥ 5, 3 | p + 1 3 〈φ〉
(3D4(q) × (q2 − q + 1)/e′).3 Nov., q = 2 1 〈δ,φ〉
(q + 1)6/e′.W(E6) Nov., q = 2 1 〈δ,φ〉

If G = εE6(q), then parabolic subgroups stabilize spaces of (co)dimension 1, 2, 3
or 6, and H does not, and X cannot be F4(q) as then H stabilizes a line on M(E6). All
of the D4 type subgroups have connected component inside D5, so can be ignored.
The 3-local subgroup 33+3 � SL3(3) again cannot be X. Apart from G2 subgroups,
we have the Weyl group W(E6) and the subgroup PSp8(q). The Weyl group has
simple factor PSp4(3) ∼= PSU4(2), and does not contain any of our subgroups H .

The group X = PSp8(q) when p is odd acts irreducibly on M(E6), so could
contain some of our groups. The groups H that can embed in X are PSL2(r) for
r = 8,11,13. Since the minimal degree for a non-trivial projective representation for
H is 5, the restriction of M(C4) to (a central extension of) H has a single non-
trivial factor. If it has dimension less than 7, then H stabilizes a line and a hy-
perplane on M(C4), and we see that H must stabilize a line on M(E6) (note that
S2(M(C4)) = 1 ⊕ M(E6)↓C4 as p is odd). If it has dimension 7, then H acts on
M(C4) as 1 ⊕ 7, but this cannot stabilize an alternating form. Thus H acts irre-
ducibly on M(C4). But the three choices for r cannot yield an irreducible embedding
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H → X. (The group PSL2(17) can be irreducibly embedded in Sp8(q), and this is
why it does not appear in Tables 2 or 3.)

The last remaining case is when X has a G2 factor. If X is of type A1G2 ≤ F4
or A2G2 ≤ E6 then H embeds in the G2 factor alone. But this stabilizes lines on
M(F4) and M(E6) respectively, so this cannot be the case. Thus H embeds in a G2
that acts irreducibly on the minimal module. The possibilities for H are tabulated in
[11, Tables 8.41–8.43], and are PSL2(8) and PSL2(13). But the irreducible G2 has
already been noted to contain these options for H in their respective sections, so no
new cases can emerge.

This completes the proof that there are no overgroups of the members of S listed
in the tables.
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