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Abstract

Everyday perception-action interaction often requires selection of a single goal from multiple

possibilities. According to a recent framework of attentional control, object selection is

guided not only by the well-established factors of perceptual salience and current goals but

also by selection history. Yet, underlying mechanisms linking selection history and visually-

guided actions are poorly understood. To examine such interplay and disentangle the

impact of target and distractor history on action selection, we employed a priming-of-popout

(PoP) paradigm combined with continuous tracking of reaching movements and computa-

tional modeling. Participants reached an odd-colored target among homogeneous distrac-

tors while we systematically manipulated the sequence of target and distractor colors from

one trial to the next. We observed that current reach movements were significantly influ-

enced by the interaction between attraction by the prior target feature and repulsion by the

prior distractor feature. With principal component regression, we found that inhibition led by

prior distractors influenced reach target selection earlier than facilitation led by the prior tar-

get. In parallel, our newly developed computational model validated that current reach target

selection can be explained best by the mechanism postulating the preceded impact of previ-

ous distractors followed by a previous target. Such converging empirical and computational

evidence suggests that the prior selection history triggers a dynamic interplay between tar-

get facilitation and distractor inhibition to guide goal-directed action successfully. This, in

turn, highlights the necessity of an explicitly integrated approach to determine how visual

attentional selection links with adaptive actions in a complex environment.

Author summary

Most real-world visual scenes are complex and crowded, where multiple objects compete

for attention and goal-directed action. The interactions between mechanisms of atten-

tional selection and action selection are at the root of many complex behaviors. However,

their link has been understudied. To examine this interplay and disentangle the impact of
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target and distractor history on action selection, we employed a priming-of-popout (PoP)

paradigm combined with continuous tracking of reaching movements and computational

modeling. This integrated approach constitutes a significant departure from existing prac-

tice, where attention and action selection mechanisms are typically investigated separately.

Our converging evidence supports the notion that prior selection history triggers a

dynamic interplay between target facilitation and distractor inhibition to guide goal-

directed action successfully. This finding highlights the necessity of an explicitly inte-

grated approach to determine how visual attentional selection links with adaptive actions

in complex environments. Taken together, our study provides valuable insights into the

mechanisms underlying attentional selection and action selection, and has important

implications for future research in this field.

Introduction

In a complex and dynamic environment, survival depends not only on our ability to select rele-

vant information amongst distractors but also on selecting appropriate actions. Successful

interactions with such complex environments require seamless coordination between mecha-

nisms of attentional selection that help us make sense of the world and those that underlie

action selection, allowing us to generate appropriate adaptive movements. How attentional

mechanisms select a single object as a target has been typically framed in terms of a dichotomy

between top-down control by the current goals and bottom-up control by the physical salience

of objects. However, the role of past experiences, also known as selection history, has recently

gained popularity as a third factor guiding attention [1–3]. In everyday activities, people need

to perceive, look at, and reach target objects to interact with them and achieve their goals. If we

do not consider the full scope of vision, we may overlook key processes that determine visu-

ally-guided actions. Similarly, if we view the motor system as simply executing decisions based

on visual processing, we may miss important aspects of motor function [4–6]. Recent studies

have underscored the value and necessity of combining visually guided actions with traditional

psychophysical approaches to fully understand how we integrate perception and action to

accomplish behavioral goals and resolve competing internal processes in complex visual envi-

ronments [4–7].

For instance, Moher et al. [8] examined the impact of salient distractors on action selection

and discovered an unexpected dissociation between action selection and visual attention. They

showed that the same external information, such as perceptual salience or the associated value

of a stimulus, can trigger a suppression mechanism for action but not for attention: higher

contrast or high-valued stimuli were more distracting in perceptual tasks, whereas they were

less disruptive when quick motor actions were required. Such distinction between attentional

and goal-directed action selection cannot be captured by conventional approaches, in which

these two processes are studied separately. Moher and Song [9] also supported that earlier per-

ceptual and cognitive processing before decision "leaks" into motor systems. They showed that

if the target color is repeated in consecutive trials, it results in faster target selection. Conversely,

if the target color is switched, it leads to slower target selection even if the type of action is

changed (e.g., switching from a saccade to a reach or vice versa). Such transfer suggests that the

eyes and hands rely on a shared representation of selection history that biases attention towards

or away from specific features. In parallel, recent modeling efforts have characterized such leak-

age between cognitive and motor processes as a simple product of neurobiologically-plausible

processes where target selection and movement production processes operate in parallel
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[10,11]. Together, these empirical and computational findings cannot be explained by the con-

ventional "modular" approach, assuming a functional architecture of serial information process-

ing stages categorized as perceptual, cognitive, and motor control modules [4–6].

Here, we aimed to unify attentional and action selection in the context of selection history

by adopting an integrative approach. We combined the priming of pop-out (PoP) paradigm

requiring a color-oddity selection with tracking of continuous reach movement, while imple-

menting a neurobiologically-plausible model of attention and reaching (i.e., Selection History

(SH)-Continuous Reach (CoR) model). Many studies on selection history have predominantly

emphasized the role of target facilitation, but there is also considerable evidence supporting

the role of distractor inhibition [12–25]. To disentangle the impact of prior history of target

and distractor processing on current action selection, a color-oddity task was modified by add-

ing partial repetition and partial swap conditions to the conventional full repeat conditions,

where both target and distractor colors are repeated (TRDR, dark red border), and full swap

(TSDS, dark green border) conditions, where target and distractor colors are swapped (Fig

1A). In partial repetition conditions, either target (TRDN, orange border) or only the distractor

(TNDR, red border) color was repeated from a previous trial while the counterpart was in a

new color. In partial swap conditions, either the target was swapped with a previous distractor

(TSDN, green border) or only distractors (TNDS, light green border) were swapped with a pre-

vious target color.

Using this paradigm, we first evaluated empirical evidence of prior target facilitation and

distractor inhibition on current goal-directed action. We examined whether the magnitude of

reaching movements deviated either toward distractors or a target in comparison with trials

without features associated with the immediate history, which demonstrates the selection his-

tory effect for each condition (Fig 1C). Next, to further differentiate and quantify the contribu-

tions of previous target and distractor history to the overall PoP effect, we conducted principal

component regression (PCR) analysis [26] (Fig 2). PCR analysis showed that the repetition of

previous distractor features is linked to the early stages of reaching, while the repetition of pre-

vious target features is associated with the later stages. This suggests that selection history

affects target selection through initial inhibition followed by subsequent facilitation.

In parallel, we have developed a new computational model called SH-CoR (Fig 3), building

on our previous work with CoRLEGO (Choice Reaching with a LEGO arm robot). This model

simulates reach trajectories and incorporates both facilitatory and inhibitory selection history

mechanisms [11], as well as competitive selection mechanisms commonly used in selective

attention models [27–30]. With SH-CoR, we can evaluate the effects of three different selection

history mechanisms: target facilitation only, distractor inhibition only, or both. When both

mechanisms are involved, we can examine whether they operate simultaneously or sequen-

tially. Our results provide converging empirical and computational evidence that the inhibi-

tory impact of previous distractors is followed by the facilitatory impact of a previous target

during target selection for action.

Results

Behavioral analysis: Spatio-temporal impacts of selection history on reach

movements

In this study, we primarily focused on the target-defining feature priming effect (i.e. color). In

prior studies, we showed that other features such as target location-based repetition are much

weaker and unstable [31]. Overall, the participants accurately (92.5% ±1.4) performed the

color-oddity task, in which they were required to reach to touch an odd-colored target among
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Fig 1. Schematic of the color-oddity task, sample reach trajectories, and behavioral results. (A) Schematic display sequences for different types of

experimental conditions. An odd-colored target is presented with three homogeneously colored distractors in the color-oddity task. Participants search for

and reach toward the odd-colored target with their index fingers. The colors of the target and distractors are pseudo-randomly selected from a pool of four

colors (red, green, blue, and purple). The target location is randomly selected from one of the four corners of the imaginary square. We plotted the subset of

color feature combinations inside a color-coded frame with a condition label for the demonstration purpose only. Experimental conditions are created

depending on whether both (full) or one of the two-color features (partial) from a previous trial (Trial n-1) reappeared in a current trial (Trial n) and

whether the reappeared color feature served the repeated (R) or swapped (S) target/distractor role. Each condition is labeled to indicate whether the color of

the current target (T) or distractor (D) is repeated (R), swapped (S), or new (N) concerning the previous trial. For instance, in the TRDN condition, while the

color of the target is repeated from the previous one, that of distractors is new. In the TNDS condition, while the color of the target is new, that of distractors

is swapped from a previous target color. (B) Examples of reach movement trajectories from one participant. Curved reach trajectories from the full swap

(TSDS, dark green) condition are contrasted with direct movements from the full repeat condition (TRDR, dark red). (C) Attraction scores for all six

experimental conditions. The positive value of the attraction score represents hand movement toward the distractors, whereas the negative value represents

hand movement toward the target. The shaded region represents the within-subject standard error of the mean. Color codes are identical to Fig 1B.

https://doi.org/10.1371/journal.pcbi.1011283.g001
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homogeneous distractor, without any significant difference between the experimental condi-

tions (see Table 1) (F(6,120) = 0.694, p = .655, Z2
p = 0.034, ηG = 0.003).

PoP during reach target selection. To establish the validity of our paradigm, we first

focused on the performance in the two standard conditions, i.e., full swap (TSDS) and full

repeat (TRDR) conditions. For instance, in prior studies where humans and non-human pri-

mates perform a color-oddity task, both saccades and reach to the target are facilitated in the

TRDR condition, i.e., reaches are completed relatively quickly and are less deviated. In contrast,

in the TSDS condition, initial saccades and reaches are directed toward a distractor more often

and subsequently corrected in-flight to the target (i.e., more curved trajectories) [9,30,31].

In accord, we first observed that participants moved (movement time, t(20) = 4.16, p<
.001, d = 0.9) and completed the reach (total time, t(20) = 3.42, p = .003, d = 0.747) faster in

TRDR compared to the TSDS condition, though they initiated movements similarly (initiation

latency, t(20) = 0.217, p = .83, d = 0.047) (see Table 1). We also observed that movement trajec-

tories deviated more toward distractors in the TSDS (dark green trajectories) than in the TRDR

Fig 2. Results of the principal component regression (PCR) analysis. (A) The regression coefficient (B) of the

principal components predicts PoP. The three PCs are represented by dashed, dotted, and solid plots. Circle and

triangle markers represent the significant reach distances (p<.05) in the early phase (11–36% distance) for PC2 and

late phase (38–77% distance) for PC3, respectively. (B) Factor loadings of PC2. (C) Factor loadings of PC3. The

distances between two vertical dashed lines correspond to the distances found significant in regression. PC2 was

positively loaded by TSDN and negatively by TNDR in the early phase (between vertical dashed lines in Fig 3B), both

containing prior distractor color features. PC3 was positively loaded by TNDS and negatively by TRDN in the late phase

(between vertical dashed lines in Fig 2C), containing prior target color features. See supplementary information for the

factor loadings of PC1 and the eigenvalues (Figs A and B in S2 Text).

https://doi.org/10.1371/journal.pcbi.1011283.g002
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Fig 3. An overview of SH-CoR architecture. The model consists of two processes: Target Selection (left) and Movement Production (right). Each

process comprises several modules (boxes with solid black lines). The Target Selection process consists of layers of model neurons (illustrated dotted

lines, as circles C1, C2, C3, and C4 for four colors used in the experiment) in the modules, modeling the neuron-like responses to the four colors. The

shading of the nodes illustrates the level of activation for the current trial, with white being the highest activation and black the lowest. Both processes

and their modules operate in parallel (analogous to brain regions), allowing SH-CoR to produce the leakage effect. The first stage of Target Selection

(Color Processing module) determines color Feature Maps and the saliency of the colors present in the Color Display using different color units (Color

Saliency Layer). For instance, in the above display, C1 (white circle) and C2 (gray) represent the most and least salient colors in the display, while C3 and

C4 (black circles) represent colors absent in the display. Based on the output of the Color Saliency Layer (see S3.A and Eq. S1 in S3 Text), the Odd Color

Selection module selects the most salient color. It identifies the distractor and absent colors via color competition (Eq. S2 in S3 Text). These feature units

are assigned labels, T (target color), D (distractor color), and N (absent color). The line graphs above the units remind us that color competition is a

temporal process (not instantaneous) whose speed is proportional to the color saliency. These temporal activations are combined with the output of the

Feature Maps in a multiplicative way (Eq. S3 in S3 Text). Initially, all possible item locations compete to become the target location, but the color

competition ensures that the salient item dominates the location competition. This way, the feature map of the winning color (odd-color) eventually

dominates the input to a competition of locations, generating the Target Location Representation (Eq. S4 in S3 Text). In addition, the Target Selection is

also influenced by the Selection History module. This process stores the target and distractor features from the previous trial (see dotted lines; Eq. S6 in

S3 Text) in separate layers. The layers in the Selection History module, in turn, influence the selection of the current target through facilitation and/or

inhibition mechanism depending on which of the five models of inter-trial selection history are implemented in a particular instantiation of SH-CoR (see

the gray dialog box).

https://doi.org/10.1371/journal.pcbi.1011283.g003

Table 1. Display the mean (SE) for behavioral performance in the color-oddity task for the six experimental conditions with one baseline condition.

Conditions Accuracy (%) Initiation latency (ms) Movement time (ms) Total time (ms)
Full repeat (TRDR) 93.07 (1.38) 315.87 (10.69) 489.20 (14.05) 805.07 (20.31)

Target repeat (TRDN) 92.83 (1.48) 315.53 (11.09) 493.65 (14.24) 809.18 (20.41)

Distractor repeat (TNDR) 92.31 (1.51) 318.07 (11.20) 493.62 (14.36) 811.69 (20.73)

Target swap (TSDN) 92.27 (1.52) 315.43 (11.34) 497.41 (13.49) 813.20 (19.75)

Distractor swap (TNDS) 92.95 (1.45) 317.43 (11.04) 495.02 (14.26) 812.46 (20.45)

Full swap (TSDS) 92.23 (1.42) 316.20 (11.06) 499.14 (13.05) 815.34 (19.06)

No repeat, no swap (TNDN) 92.31 (1.49) 318.00 (11.01) 494.13 (13.76) 812.13 (19.97)

https://doi.org/10.1371/journal.pcbi.1011283.t001
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condition (dark red trajectories) (Fig 1B). We calculated average attraction scores across par-

ticipants to understand how action selection evolves as the hand moves toward the target.

Attraction scores indicate how far reach trajectories deviate toward a target (represented as a

negative value) or away from the target (i.e., toward distractors; represented as a positive

value) in comparison with trials without features associated with immediate history (TNDN)

(see Methods: Procedure). Fig 1C depicts attraction scores as a function of normalized reach

distance. A cluster-based permutation test [32] (see Methods for details) revealed that trajecto-

ries were attracted more toward the distractors in the TSDS (dark green) from 2% to 93% of

reach distance and were attracted toward the target in the TRDR condition (dark red) from

10% to 79% of reach distance. Consequently, we observed a significant difference between the

attraction scores from these two conditions (2–94%), characterizing the PoP effect reflected in

reach trajectories.

To summarize, the PoP effect in spatio-temporal domains shows that perceptual history

can significantly enhance the efficiency of target selection for action, which reduces the occur-

rences of a redirected movement from a distractor to the target in accordance with previous

studies [33,34]. We also compared the priming effect for full vs. partial conditions in a separate

analysis. As expected, the overall priming effect was stronger for full conditions than for partial

conditions (Fig A in S1 Text).

Effects of recent experience of the target and distractor features on reach target selec-

tion. We examined the separate contribution of target facilitation and distractor inhibition for

reach target selection based on the partial repetition and partial swap conditions. First, we delved

into whether repetition of a previous target (TRDN) or previous distractor feature (TNDR) differ-

ently influences reach target selection. Overall, participants showed similar movement time

(TRDN vs. TNDR, t(20) = 0.017, p = .987, d = 0.004) and total time (TRDN vs. TNDR, t(20) = 1.381,

p = .183, d = 0.301) in both conditions. However, participants initiated the reach relatively faster

in the TRDN compared to the TNDR condition (t(20) = 2.29, p = .032, d = 0.502) (see Table 1). The

cluster-based analysis of attraction score revealed that these two conditions significantly diverge

from 23% to 70% of reach distance, where TNDR has a larger attraction. Thus, it appears that pre-

vious distractor feature repetition has a stronger impact on reach target selection.

Next, we examined whether the previous distractor becoming the current target (TSDN) or

the previous target becoming the current distractor (TNDS) differently affects reach target

selection. Overall both conditions did not differ significantly in terms of initiation latency (t
(20) = 1.192, p = .247, d = 0.26), movement time (t(20) = 1.65, p = .114, d = 0.361) or total time

(t(20) = 0.472, p = .642, d = 0.103) (see Table 1). However, attraction scores (Fig 1B) indicate

that reach trajectories were significantly swayed toward the distractors regardless of whether

the target (TSDN, green, 4–82% distance) or distractor (TNDS, light green, 12–84%) were

swapped, which is confirmed by the cluster-based permutation test. Interestingly, the deviation

in the TSDN condition was more pronounced than in the TNDS condition (21–67%), suggest-

ing that the previous distractor that became the current target had a stronger influence than

the previous target that became a distractor. This is also consistent with the prominent role of

previous distractors in the partial repetition (TNDR) condition, as seen above.

It is worth noting that the reach attraction toward the target in the TNDR condition and

toward the distractor in the TSDN condition can be attributed to the distractor inhibition from

previous distractors. Similarly, the reach attraction toward the target in the TRDN condition

and toward the distractor in the TNDS condition can be attributed to the target activation from

the previous target. While we observed that the reappearance of the previous target features

influences target selection, we consistently observed that the previous distractor feature has a

stronger impact, regardless of whether it serves the same distractor role (TNDR) or swapped to

the target role (TSDN) in the current trial. These results suggested that inhibition from

PLOS COMPUTATIONAL BIOLOGY Dynamics of selection history

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011283 July 17, 2023 7 / 20

https://doi.org/10.1371/journal.pcbi.1011283


previous distractor features and facilitation from previous target features are likely to contrib-

ute to PoP during target selection. However, it is challenging to dissociate and systematically

evaluate the relative contribution of the previous target and distractor to PoP over time solely

based on conventional behavioral analysis. In the next section, thus, we applied the principal

component regression analysis (PCR) to attraction scores across the distance. This approach

can reveal the temporal dynamics of the PoP effect led by previous target facilitation and dis-

tractor inhibition while avoiding any collinearity arising from the nature of evolving move-

ment kinematics across conditions.

Principal component regression (PCR) analysis: Dissociating relative

contributions of previous target and distractor features in selection history

With PCR analysis, we intended to determine whether the linear composite of the partial con-

ditions (TRDN, TNDR, TSDN, TNDS) extract interpretable new variables (principal components,

PCs) representing previous or current target and distractor features and whether we can

explain the PoP effect using these PCs. First, PCR analysis extracted the most important PCs

in the attraction scores of the four partial conditions (Fig 1C) using principal component anal-

ysis (PCA). Then the obtained PCs were regressed to the PoP effect, i.e., attraction score differ-

ence between TSDS and TRDR conditions across the reach distance. This allows us to interpret

further each PC’s relative contributions to spatio-temporal dynamics in PoP. Fig 3A depicts

the regression coefficients (B) of the first three PC: PC1 (dashed), PC2 (dotted), and PC3 (solid

line) across the reach distance. The first three PCs, which explained 95% of the variance at

each distance, were used for further regression analysis (Fig B in S2 Text). Note that we

reported an averaged regression coefficient B (± standard deviation) for each PC and the

mean-variance R2 (± standard deviation) of the regression model. As shown in Fig 3A, the

regression analysis revealed that PC2 (dotted line) significantly predicted PoP (R2 = 0.35±0.06,
B = 0.97±0.18) in the early phase (11–36%, marked by a circle) while PC3 (solid line) signifi-

cantly predicted PoP (R2 = 0.52±0.11, B = 1.77±0.37) in the late phase of reach movements

(38–77%, marked by triangle). PC1 (dashed line) did not significantly predict the priming

effect at all distances (p = 0.39, B = 0.19±0.17).
Then, we examined PC loadings of four partial conditions during the significant reach

phase identified by the regression analysis: the early phase of PC2 (11–36%) in Fig 3B and the

late phase of PC3 (38–77%) in the Fig 2C. We focused on partial conditions that loaded beyond

the cut off value of 0.35, which is conventionally considered meaningful and provides a consis-

tent and reasonable criteria for evaluating all conditions [35–37]. To ensure the validity of our

results, we also applied rigorous statistical criteria to avoid overinterpretation: a factor loading

must exceed the cut-off for at least 15% of consecutive distances to be considered significant.

In the early phase of PC2 (Fig 2B), TSDN (green) and TNDR (red) were considered: TSDN

(green) was loaded positively (M= 0.61, ranging from 0.35 to 0.76), whereas TNDR (red) was

loaded negatively (M= -0.70, ranging -0.77 to -0.58). In these two partial conditions, prior dis-

tractor color reappeared in the current trials while serving the same in the TNDR but reversed

in the TSDN. In both, attraction scores (Fig 1C) show that reaches were more swerved away

from the stimulus sharing a previous distractor feature (i.e., distractors in TNDR and a target in

TSDN). Overall, it is consistent with the idea that suppressed previous distractor features can

result in the repulsion of reach movements. Therefore, we postulated that PC2 reflects inhibi-

tion from the previous distractor features, which primarily manifests in the early phase.

In the late phase of PC3 (Fig 2C), the TNDS (light green) and TRDN (orange) conditions

were loaded positively (M= 0.63, ranging 0.49 to 0.83) and negatively (M= -0.62, ranging -0.80
to -0.36, after 42% distance), respectively. In contrast to the early phase of PC2 loaded by TSDN
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(green) and TNDR (red) conditions, including the reappearance of the prior distractor features,

the late phase of PC3 is loaded primarily by the other two partial conditions, TNDS and TRDN.

In these two partial conditions, the prior target color reappeared in the current trial while serv-

ing the same in the TRDN but reversed in the TNDS condition. In both, attraction scores (Fig

1C) demonstrated that reaches were relatively attracted toward the stimulus sharing a previous

target feature (i.e., a target in TRDN and distractors in TSDN). It is in accord with the notion

that facilitated previous target features can attract reach movements. Therefore, we postulated

that PC3 reflects facilitation from the previous target features. Hence, it is plausible to primar-

ily align PC2 with an early phase inhibitory influence from the previous trial and PC3 with a

late phase facilitatory influence from the previous trial.

To summarize, PCR results further appear to narrow down the exact mechanisms of selec-

tion history influencing action, suggesting that impacts from previous target features are pre-

ceded by previous distractor features. However, because PCR analysis only assumes linear

relationships between conditions, it may not fully capture non-linear effects of selection his-

tory modulating reach movements. To obtain stronger converging evidence, we implemented

SH-CoR, a computational model based on well-established biological mechanisms involved in

attentional selection and movement production. This allowed us to directly evaluate whether

the mechanism of selection history suggested by PCR (i.e., target facilitation preceded by dis-

tractor inhibition) or an alternative mechanism is most likely to drive our behavioral findings

under plausible biological constraints.

Computational modeling with SH-CoR: Extracting mechanisms underlying

selection history via neurobiologically-plausible mechanistic constraints

To link biological constraints with continuous reach data from humans, here, we simulated

human performance with SH-CoR and determined which model could explain the impact of

the history selection for reach target selection the best.

SH-CoR’s architecture consists of two processes (Fig 3): Target Selection (left) and Move-

ment Production (right). The Movement Production process generates reaching movements

toward the odd-colored target as localized by the Target Selection process. The target is local-

ized based on the Odd Color Selection module, which is influenced by the Selection History

module. The Selection History module stores the target and distractor features from the previ-

ous trial in separate layers (dotted lines). The layers in the Selection History module influence

the selection of the current target through facilitation and/or inhibition mechanisms.

The specific mechanism used depends on which of the five models of inter-trial selection

history are implemented in a particular instance of SH-CoR. These models include target facil-

itation only (model 1), distractor inhibition only (model 2), and both (model 3). In model 3,

we also considered three variants of temporal weightings that combine prior target and dis-

tractor features. Three variants included simultaneous co-contribution (model 3a), facilitation
precedes inhibition (model 3b), and inhibition precedes facilitation (model 3c). Note that previ-

ous studies, which primarily employed drift-diffusion models, cannot distinguish between

these alternative mechanisms because they typically do not consider separate target facilitation

and distractor inhibition and primarily focus on perceptual selection history [38–40].

According to our behavioral and PCR analysis, models 1 and 2 are unlikely to be consistent

with observed reaching behaviors. However, we included them as a cross-check while focusing

on the three equally likely variants of model 3. For instance, if the right level of facilitation and

inhibition is chosen, model 3a can successfully reproduce our findings. However, SH-CoR’s

neurobiologically-plausible mechanisms impose constraints on these values, which may limit

the success of the models.
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Among the constraints, here, we highlighted those imposed on the Odd Color Selection

module as it is the most critical module. This module is governed by the suppression of dis-

tractors through global inhibition (see coefficient d in Eq. S2 in S3 Text) and the selection of

the target through self-excitation (see coefficient b in Eq. S2 in S3 Text). This asymmetry in

terms of suppression and excitation suggests that whether previous features serve the same

(repeat condition) or reserved role (swap condition) can result in different magnitudes of

movement attraction (Fig 1C). If the biases from the Selection History module are excessive,

the Odd Color Selection module creates reaches in the swap conditions that are pulled too

much towards a distractor and pushed too far away from a target. To prevent such erroneous

target selection, the Odd Color Selection module also constraints the magnitude of inhibition

and facilitation.

Fig 4A illustrates the set-up of SH-CoR with the input displays of the six experimental con-

ditions (see Method: SH-CoR). The quality of the fits was evaluated by minimizing the error

between the model and mean human trajectories at each distance (see Eq. S19 in S3 Text). We

found the best fitting parameter settings for each of the five alternative models (see Table B in

S3 Text). Fig 4B shows the averaged attraction scores from the best fit of each model together

with fitting errors. As expected from the PCR analysis and the behavioral analysis, the mean

fitting error indicates that the simultaneous facilitation and inhibition model (model 3a,

error = 0.86 ± 0.05) result in clearly better fits than the models which assumes facilitation only

(model 1, error = 2.06 ± 0.0001, t(20) = 22.90, p<0.001) and inhibition-only model (model 2,

error = 2.05 ± 0.03, t(20) = 18.23, p<0.001). Among variants of model 3, we found that model

3c (error = 0.64 ± 0.01) fits the best compared to model 3a (t(20) = 4.11, p<0.001) and model

3b (error = 0.99 ± 0.03, t(20) = 10.34, p<0.001).
Our simulation clearly supported model 3c (inhibition precedes facilitation) as the best

model. A close inspection of the results indicated that the two partial swap conditions, TNDS

(light green) and TSDN (green), were critical for determining the success or failure of each

model. For instance, under the constraints set by biological mechanisms (e.g., erroneous target

selection), the Odd Color Selection module in model 3a (simultaneous co-contribution) was

unable to generate the proper combination of simultaneously operating facilitation and inhibi-

tion processes to mimic human behavior. In contrast, Model 3b, which were not constrained

by the simultaneous implementation of inhibition and facilitation processes like Model 3c, led

to better simulation results than model 3a.

However, implementing facilitation first and then inhibition in model 3b resulted in out-

comes that were not exhibited in human performance. For example, TSDN had a smaller

attraction score than TNDS at the early phase of movement (Fig 4B). This was due to a mecha-

nistic flaw in model 3b. Specifically, in TNDS, initial facilitation causes reach movements to be

attracted towards a distractor in the early phase of movements. In contrast, in TSDN, due to

the lack of inhibition, this attraction is minimal. In the late phase of movements, their relation-

ship is reversed to simulate human data as closely as possible. Fig 4B represents outputs with

the best-fit parameters that minimize the mismatch with human data, so the difference

between TSDN and TNDS at the early phase appears subtle. Fig C in S2 Text illustrates an

increased reversal effect with the level of facilitation and inhibition that does not provide the

best-fit.

Further analysis also confirmed the robustness of model 3c, even when switching inhibition

and facilitation at different times. For instance, instead of switching at 65% between the onsets

of display and movement, which produced the best fit, switching at 80% still resulted in better

performance (error = 0.71) than model 3b. Therefore, Model 3c and the results of PCR analysis

(Fig 2) provide converging evidence supporting the preceded impact of previous distractors

followed by a previous target during reach target selection.
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Discussion

The present study used an ecologically valid continuous reach tracking approach combined

with neurobiologically inspired computational modeling. The results demonstrated the prece-

dence of the distractor inhibitory process followed by target facilitation in the color-oddity

task for goal-directed reaching movements. We also demonstrated that target and distractor

Fig 4. Simulation results and performance of SH-CoR modeling. (A) Examples of the modeling displays and

simulated reaching trajectories (black lines) in a single trial. Colored squares represent targets and distractors in each

display. The display in the previous trial would have the same target and distractor colors as in TRDR. Here we only

show the displays and the examples of reaching trajectories for each condition in the current trial. Note that the target

is always positioned at the bottom-right corner of the display for a clear illustration. (B) The averaged attraction scores

of twenty-one repetitions for each best-fitted model with the application of noise in the color selection process and the

goodness-of-fit for the five models. The parameter settings of each model can be found in Table C in S3 Text. The

model performance is presented as error measurements (Eq. S16-19 in S3 Text), with error bars indicating a standard

error (Methods and S3.D-E in S3 Text for more details).

https://doi.org/10.1371/journal.pcbi.1011283.g004
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history from the previous trial influences attentional selection, which leaks into the motor sys-

tem and influences the action selection process, as reflected in the curved reach trajectories

both in behavior as well as in model simulations. Selection history also encompasses past expe-

riences associated with rewards, aversive stimuli, perceptual features, or statistical learning

[12,41–43]. We focused on how the interplay between facilitation and inhibition of previous

perceptual features guides intertrial priming during target selection for goal-directed action.

First, the present study contributes to long-standing debates in understanding selection his-

tory mechanisms, especially supporting an integrated framework where perception and action

dynamically interact to achieve behavioral goals. While most researchers agree upon the role

of target facilitation and/or distractor inhibition governing selection history [12, 15, 22–25],

there is debate regarding the level of contribution and dynamics of the target facilitation and

distractor inhibition [18–20,24]. For instance, Maljkovic and Nakayama [12] suggested that

target facilitation and distractor inhibition contribute to selection history while target facilita-

tion has a stronger role. Findings based on drift-diffusion modeling further suggested that the

target feature plays a critical role in the selection history [39]. Whether similar mechanisms

operate when a task involves goal-directed action has not been examined.

Using SH-CoR, we compared three possible mechanistic models to explain selection history

and validated that distractor inhibition contributes to the early phase of reach target selection.

In contrast, target facilitation contributes more during the later phase of reach target selection.

Our result of distractor inhibition preceding target activation in the reaching behavior is in

accord with previous studies emphasizing the role of distractor processing along with targets

[24,44]. For instance, a recent study investigating statistical learning-based selection history

demonstrated the stronger role of distractor suppression [20]. Another study using event-

related potentials and behavioral data showed that inhibition of distractor features, rather than

activation of target features, is the primary driver of early feature-based selection, thus suggest-

ing that inhibition plays a larger role at an earlier stage of target selection than previously rec-

ognized [19]. Moher et al. [8] also showed that action selection could trigger early suppression

of both physical and reward-driven salient distractors in contrast to perceptual selection. It is

worth further investigating whether the observed pattern of inhibition leading to facilitation

during attentional selection in visually-guided reaching is a true computational motif or sim-

ply a reflection of the specific task’s default cost function. For example, altering the costs attrib-

uted to distractors and targets could potentially modify this particular sequence.

Second, our biologically inspired modeling approach elucidated the link between atten-

tional and action selection (SH-CoR, Fig 2). Most computational studies on understanding

selection history effects in an oddity target search experiment [38–40] have been based on Rat-

cliff’s diffusion model (RDM) [45]. RDM conceptualizes decision-making in such visual exper-

iments as a noisy accumulation process of decision-relevant perceptual evidence (e.g., the

color), parameterized by the rate of evidence accumulation, the response threshold determin-

ing the amount of evidence needed to generate a response, and the bias toward a certain

response. Nevertheless, these models do not consider neurobiological processes such as

dynamics of inhibition and facilitation. Furthermore, these studies are based on the traditional

PoP, including only full repeat and full swap and requiring discrete responses (e.g., key-

presses). Consequently, these studies are unlikely to address questions as to separate impacts

of facilitation and inhibition in selection history and their time course of guiding goal-directed

action.

By implementing a leakage mechanism simulating the interaction between target selection

and movement production, SH-CoR is uniquely positioned to investigate moment-by-

moment spatio-temporal dynamics driven by selection history during goal-directed action

selection while confirming the basic findings by RDM. This is possible because SH-CoR’s
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competitive selection mechanism (e.g., Eq. S2 in S3 Text) is similar to RDM’s noisy evidence

accumulation. The time constant of our model neuron can be seen as analogous to the accu-

mulation rate, and the response threshold is implemented through parameters in the motor

system. RDM’s response bias has a similar effect to our model neurons’ input (e.g., Eq. S2 in S3

Text). Critically, the RDM studies find that color priming can be best described through

changes in the response bias and not by the other two parameters (see Ásgeirsson et al. [46] for

an alternative account), which is consistent with SH-CoR’s realization because SH-CoR’s selec-

tion history module forms an input into Color Competition Layer. Beyond such basic PoP

effect, SH-CoR can uncover mechanisms for the change of response bias, i.e., inhibition led by

prior distractor feature and facilitation led by prior target feature on reach target selection

(Model 3c).

One RDM-based study explored the inhibitory influence of distractors on response bias in a

classic PoP experiment [38]. Allenmark et al. [38] found that a model analogous to our model 1

(facilitation-only) is superior to a combination of facilitation and inhibition (Model 3a). On the

face of it, these findings seem to be inconsistent with ours. However, they did not consider the

dynamic influence of facilitation and inhibition (models 3b and 3c). Our results suggest that

these models could have provided a much better fit than their facilitation-only model. The dif-

ference could also stem from their experimental design lacking the partial conditions, which

can provide more precisely estimated contributions of facilitation and inhibition, or their key-

press-only design and our continuous reach target selection. Furthermore, one benefit of our

reach paradigm is that it can reveal the time course of the facilitation and inhibition effects

given that it is uses a continous measure.

Here, the SH-CoR model is optimized to explain intertrial priming showing transient

short-term inter-trial effects. However, some types of selection history, such as rewards, can

have a long-term effect [12, 47]. For instance, Anderson and Yantis [47] showed that reward

history associated with attention capture could last up to six months. The Selection History

module in the SH-CoR model can be easily extended to incorporate such long-term history

effects. As such, SH-CoR can serve as an all-in-one generalized model, which provides a com-

prehensive framework for various selection history mechanisms guiding attentional and action

selection. Furthermore, it would be also worthwhile for future studies to examine the gener-

alizability of our finding that the history of inhibition leads to facilitation during attentional

selection in visually-guided reaching. For instance, a prior study [8] demonstrated a strong

resemblance between the suppression of physically salient distractors, as in our study, and

reward-driven distractors during action selection.

To summarize, our findings have implications for understanding the dynamic interaction

between the integrated attention-action systems in humans. Furthermore, since the SH-CoR

model can easily integrate robotics which could behave on par with human-like performance,

it can also lead to the development of better and more efficient human-computer interaction

systems. Therefore, we urge that combining perception and action provides exceptional

research opportunities that will enhance our understanding of a wide range of brain mecha-

nisms, enabling seamless coordination of behavior in the complex world.

Methods

Ethics statement

The experimental protocol was approved by the Brown University Institutional Review Board

in accordance with the Code of Ethics of the World Medical Association (Declaration of Hel-

sinki) for experiments involving humans. Informed written consent was obtained from all the

participants.
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Behavioral experiment and data analysis methods for the current study were adapted largely

from that of Moher & Song [31,48].

Participants

Twenty-one Brown University undergraduate volunteers (five females, mean age 20.19±1.36

years) participated in this experiment for course credit. All participants were right-handed and

had a normal or corrected-to-normal vision.

Apparatus

All the stimuli were projected on a plexiglass display perpendicular to the table. The projector

was placed behind the plexiglass. Observers were seated on a non-metallic chair and facing the

plexiglass at approximately 57 cm from their line of vision. The three-dimensional hand posi-

tion was recorded at approximately 240 Hz using an electromagnetic position and orientation

recording system [Polhemus Liberty; Polhemus Inc., Colchester, VT] with a measuring error

of .03 cm root mean square. The observer’s index finger rested on a Styrofoam block placed in

front of them on the table, located 27 cm from the screen along the z-dimension (i.e., the axis

bounded by the observer and the display). A motion tracking marker was secured with a Vel-

cro strap near the tip of the right index finger. The finger was aligned with the bottom of the

display along the y dimension (i.e., the axis bounded by the top and bottom of the display) and

the horizontal midline of the display along the x-dimension. Stimulus presentation was con-

ducted using custom software designed with MATLAB (version 2015b) [49] and

Psychtoolbox [50].

Stimuli

All stimuli were presented on a black background. Each trial began with a fixation cross at the

center of the screen with a width and length of 0.7 cm (0.7˚ of visual angle).

Procedure

At the beginning of the experiment, a nine-point calibration was conducted for hand position.

All stimuli were presented on a black background. Participants were instructed to place their

right index finger on the starting position. Each trial began with a fixation cross presented for

500ms, ensuring that the participant’s index finger remained within starting position. After

fixation, four circles, each with a 2 cm diameter (2˚), were presented at four corners of an

imaginary square with a side of 13 cm (12.7˚) (measured from center to center). The circles

were rendered in either red (RGB: 195, 107, 107), green (RGB: 61, 152, 63), blue (RGB: 114,

125, 180) or purple (RGB: 177, 104, 190). All colors were approximately equiluminant using

photometer calibration (red: 17.45 cd/m2, green: 17.36 cd/m2, blue: 17.45 cd/m2, purple 17.42

cd/m2). Out of four, one circle was always rendered in odd color (target) compared to the

other three homogeneously colored circles (distractors). The color and location of the target

were randomized across trials. Participants were instructed to reach and touch an odd-colored

circle with their right index finger as quickly and accurately as possible within 1500 ms. Fol-

lowing every trial, participants were given auditory feedback to indicate whether their response

was accurate (600Hz beep) or inaccurate (300Hz beep). The reach data were recorded for an

extra 200ms once they touched the screen. The experiment began with 12 practice trials, fol-

lowed by seven blocks of 120 trials each. In each block, we had approximately equal numbers

of randomly mixed seven trial types based on whether the target and distractor features were

repeated or swapped compared to the previous trial: full repeat (TRDR), full swap (TSDS),
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partial target repeat (TRDN), partial distractor repeat (TNDR), partial target swap (TSDN), par-

tial distractor swap (TNDS), and no repeat no swap (TNDN) (Fig 1A).

Data analysis

Reach data analysis. Hand movement data were analyzed using custom MATLAB (ver-

sion R2021b) [49] software. Three-dimensional resultant speed scalars were created for each

trial using a differentiation procedure. These scalars were then submitted to a second order,

low-pass Butterworth filter with a cutoff of 10 Hz. Movement onset was calculated as the first

time point on each trial after stimulus onset at which hand movement speed exceeded 15 cm/s.

Movement offset was the first subsequent measurement on each trial when speed decreased to

below 15 cm/s. Each individual trial was visually inspected [34]; for trials in which the default

threshold clearly missed part of the movement or included substantial movement back to the

starting point, thresholds were adjusted manually to more appropriate levels for that trial

(<1% of all trials). All trajectories were normalized to 100 data points across reach distance

using functional normalization [51,52]. Attraction scores were calculated in the following way.

First, horizontal (x-dimension) and vertical (y-dimension) deviation scores were calculated for

each trial by subtracting the corresponding mean trajectory for TNDN separately for each of

the four target locations.

We assigned positive signs to deviation scores if the deviation was toward the distractors

and negative signs if it was toward the target. For example, for a top-left target, a rightward

deviation would have a positive horizontal deviation score and a leftward deviation would

have a negative score with respect to the TNDN condition. Similarly, an upward deviation

would have a negative vertical deviation score and a downward deviation would have a positive

score. Therefore, this sign assignment takes into account each target location in relation to its

distractors. We then combined the horizontal and vertical deviation scores using their Euclid-

ean distance and assigned the sign of the winner of the horizontal vs. vertical to get the attrac-

tion scores. The average attraction scores across participants for each condition are shown in

Fig 1C.

For all analyses, we excluded all trials with incorrect current or previous target selection,

excessive reach sampling drop, or no movement. We conducted paired t-tests whenever

means of two conditions were compared and used one-way repeated measures ANOVA when

means of seven conditions were compared. Assumptions of normality (Shapiro-Wilk) and

sphericity (Mauchly’s test) were checked, and appropriate corrections (Greenhouse-Geisser)

were applied in case of violation. After conducting planned comparisons following a one-way

ANOVA, we applied the Bonferroni correction for multiple comparisons. However, we only

corrected for the number of planned comparisons and did not include other possible compari-

sons that were not performed. The significance level applies to the family of comparisons

rather than each individual comparison [53,54]. Statistical analysis was conducted using JASP

[55].

We used a cluster-based analysis to determine when during the reach movement the attrac-

tion scores significantly swayed toward the target or distractors [32]. Following Moher et al.

[8], we calculated the t-statistic for the attraction score at each time point and searched for the

largest consecutive cluster of time points where the t-statistic was above the threshold. We

then calculated the sum of t-values within that cluster (the threshold was set based on the t-

value for the degrees of freedom of the experiment at α = .05). Next, we randomly permuted

the order of t-statistic values 100,000 times and performed the same cluster analysis on each

permutation to get a distribution of possible cluster sizes. We then calculated a p-value for the

observed cluster size against this distribution. If the observed cluster size was significant with p
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< .05, we reported the start and end points of the cluster as the points of movement affected

by distractor presence.

Principal component regression (PCR) analysis. The PCR analysis consists of two: The

data is analyzed with a principal component analysis (PCA) then the resulting principal com-

ponents are regressed on a predictor variable. Applied to our data first we performed a PCA

on the four partial conditions and then regressed the principal component scores on the

attractor score differences between the full repeat condition and the full swap condition using

a no-intercept linear regression model. We also included an additional analysis step to ensure

an accurate representation of attraction scores across all distances since the sign of PCA’s prin-

cipal components (PCs) is mathematically indeterminate. In other words, positive or negative

PCs can be an equally valid outcome of a PCA analysis. Consequently, the sign of a PC can

change as a result of small changes in the data and the numerical implementation of the PCA

analysis. In a standard application of PCA, these signs do not play a role as the interpretation

of the component is typically independent of the sign. However, since we applied PCA to

attraction scores across all distances, changes of the sign from distance to distance misrepre-

sent the smoothly changing attraction scores. Therefore, we compared PC loadings between

two consecutive distances across 11–90%. If the dot product between the two components was

larger, i.e., the angular differences between the two vectors are more than 120˚, we flipped the

signs of the PCs of the second distance. Note that we performed PCR between 11–90% reach

distances to apply our data. The first and the last 10% distances were cut off as the attraction

scores of all conditions are near zero at the beginning and the end of the reach movement (Fig

1C).

Computational modeling: SH-CoR. SH-CoR model implements Dynamic Neural Fields

(DNFs) Theory for the Movement Production process and the Target Location Representation

[56,57]. The color competition is performed using a modified Grossberg recurrent neural net-

work [58]. SH-CoR is implemented in MATLAB (version R2019b) [49] using the COSIVINA

Toolbox [57]. The equations and the parameters can be found in S3 Text.

SH-CoR used 2D movements while the display was processed from a bird’s eye view with-

out considering moving toward the display (i.e., not considering the z-axis). It reduced the

complexity of the behavioral experiment in a 3D environment (e.g., coordinate transforma-

tions, solving inverse kinematics, 3D perception, etc.) to a feasible level in terms of computa-

tional demand and complexity while maintaining critical elements to address research

questions, including simulating reach trajectories. To match the analysis of human data, we

also calculated attraction scores by taking the trajectories of the No-repeat-no-swap (TNDN)

condition as a baseline and subtracting it from that of each condition. To find the best parame-

ter values, we ran a grid search [59] for each model guided by a goodness-of-fit function (S3.

D-E in S3 Text for details).
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