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Cognition underpins the flexibility of human eating and disruption to higher
cognitive processes, such as inhibitory control and memory, and can result in
increased food intake, which in the long term could result in weight gain.
The aim of this review is to provide an overview of the current evidence
on cognition as a causal factor in the development of obesity in humans. Evi-
dence from meta-analyses supports the suggestion that cognitive function is
cross-sectionally associated with obesity even when controlling for a range
of confounding variables. However, this association could be explained by
reverse causality because there is also evidence that the metabolic syndrome
and a history of excess western diet consumption alters brain structure and
cognitive function. Data from longitudinal and interventional studies and
from non-human animal models suggest a reciprocal relationship between
obesity and cognitive function exists but whether disruption to higher
cognitive processes is a primary cause of obesity in humans remains unclear.

This article is part of a discussion meeting issue ‘Causes of obesity:
theories, conjectures and evidence (Part I)’.

1. Introduction

Obesity is a prevalent disease characterized by an excess amount of body fat that
impairs health [1]. In broad terms, obesity arises from the interaction between gen-
etic and environmental factors that act through behaviour and underpinning
psychobiological processes to alter energy intake and/or expenditure. Research
on the specific psychobiological processes that may contribute to the development
of obesity has burgeoned in recent years and it has been argued that disruption to
higher cognitive processes contributes to overeating and weight gain [2—4]. The aim
of this review is to draw together the recent literature (focusing on studies of
humans) and to evaluate the evidence in relation to the claim that higher cognitive
functions play a causal role in the development of obesity.

2. Why might higher cognitive functions constitute a causal
factor in the development of obesity?

Higher cognitive functions are mental processes that allow the organization,
control and flexible adaptation of behaviour. These functions include processes
that come under the umbrella of executive function: inhibitory control, working
memory and cognitive flexibility [5], as well as episodic memory (memory for
specific personal events) [6]. Human eating is a complex behaviour that is
notable for its flexible adaptation to internal and external factors. We may
experience feelings of hunger and seek out food on one occasion but on another
occasion put off eating and prioritize other activities. We might be drawn to a
high-calorie tasty food choice but decline consumption if we have recently eaten
or decide to opt for a lower calorie option if we have a goal to reduce consump-
tion of certain foods for health. Higher cognitive functions underpin this
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flexibility and so disruption of such processes could result in
eating that that is less sensitive to moderating influences
and/or more driven by automatic responses to food [7]. In
the context of an environment characterized by an abundance
of high calories foods, such behaviour could result in high
levels of consumption leading to weight gain. Disruption to
higher cognitive processes could also affect the propensity
to engage in physical activity patterns and so reduce
energy expenditure [8], but given that changes in the food
environment have been identified as the likely primary
driver of the recent population increase in the prevalence of
obesity [9], the focus of this review is on the link between
cognition, energy intake and obesity.

3. Higher cognitive functions and flexible eating

The inhibition of an impulse to consume one food item (e.g.
fries) over another (e.g. salad) owing to having a healthy
eating plan is an example of flexible eating. The ability to
resist the tasty fries and align behaviour with a longer-term
goal is often referred to as self-control. Key to this conceptu-
alization is that self-control (or will-power) involves resolving
a conflict between competing goals: on the one hand, the
immediate desire to consume a tasty food and on the other
hand, a health goal to avoid consumption of high-calorie
foods. According to dual process theories, enacting self-
control relies on a reflective/flexible system in the brain
that encodes long-term goals suppressing an impulsive/
automatic system that encodes immediate rewards [10]. Dis-
ruption to the neural processes that underlie this ability to
inhibit automatic responding to calorific foods may result
in positive energy balance. Supporting the dual process
view, there is evidence that tasty food cues can elicit strong
conditioned responses including craving and automatic
approach tendencies (reflected in enhanced activity in reward-
related brain regions) but that with effort, these responses can
be suppressed (which is reflected in activity in control regions
such as the dorso-lateral prefrontal cortex (dIPFC)) [11,12].
Conversely, experimental attenuation of dIPFC activity using
repetitive transcranial magnetic stimulation increased intake
of palatable food via stimulation-inductions reductions in
inhibitory control [3].

Although inhibition of automatic responses applies to
some aspects of dietary decision making, it does not capture
the full complexity of the choices that we make about
whether, what, when, where and how much to eat. Consider
the following: you decide to get a coffee with a friend and
your friend takes a cake with their drink. In this situation
you may forgo having the cake, not because you are resisting
a temptation, but because in that moment the cake is not an
attractive option. There may be several factors that weigh into
this decision such as the fact that you have not long had your
lunch, the cake is expensive, and it is not your favourite
flavour. This kind of situation is better accounted for by
value-based choice models of self-control which suggest
that deciding between two options (e.g. take cake or not
take cake) involves a cost benefit evaluation of the attributes
and consequences of enacting each choice, with the most
valuable action in that moment wining out [13]. Importantly,
in the case of eating-related decisions, this kind of framework
provides one account of how nutritional state can influence
consumption behaviours, since homeostatic signals can be

integrated alongside other inputs such as taste and monetary [ 2 |

costs to affect the current reward value assigned to a food
choice [14]. Accordingly, food choices leading to weight
gain would not be viewed as failures of self-control but
merely the outcome of the process of integrating multiple
factors that influence the attractiveness of the choice.

Cognition is involved in the construction of value-based
choices. For example, working memory is required for the
integration of decision inputs and working memory capacity
will affect the number of inputs/options that are considered
[15]. Episodic memory is involved in predicting the value
of outcomes/attributes based on past experiences [6]. There-
fore, disruption to these processes could result in biased
choices that favour overconsumption and weight gain,
especially in an environment in which attractive foods are
readily available. One example of biased choice would be fail-
ing to attend to the predicted effect of consumption on the
body resulting in reduced sensitivity to satiety signals.
Another would be undervaluing the delayed benefits of
a choice (known as delayed discounting) which favours
immediate enjoyment of consuming a food over future effects
on health. Various lines of evidence support the role of work-
ing and episodic memory in food choices, including that
there is a positive correlation between working memory
and fruit/vegetable intake [16,17] and that the relationship
between successful dietary restraint and healthy food intake
is mediated by working memory capacity [18,19]. There is
also evidence that disruption to episodic memory impairs
satiety [20,21]. These data highlight the importance of
higher cognitive functions in food choices but is there evi-
dence that disruption to cognition in results in weight gain
and the development of obesity?

4. Cross-sectional associations between higher
cognitive functions and obesity in humans

Several studies have examined the cross-sectional association
between Body Mass Index (BMI) and cognitive function in
adulthood. Meta-analyses of the results of these studies
suggest that higher BMI is associated with lower performance
on tasks assessing working memory, inhibitory control and
delay discounting [22-25]. Similar associations have been
reported for children and adolescents [26] with the strongest
evidence supporting an association between poor inhibitory
control and higher BMI [27,28]. There have been fewer
studies that have assessed the relationship between obesity
and episodic memory function, but most have reported a
negative association [29]. Cheke ef al. [30] examined perform-
ance on a computerized episodic memory task that required
participants to ‘hide’ items around a complex scene and then
recall the identity, location and timing of when an item was
hidden. Participants with obesity performed less well on
spatial, temporal and item memory and made more errors
when combining these elements into a ‘what-where-when’
memory. Other aspects of task performance were unaffected
(e.g. reaction time), which is consistent with the suggestion
that obesity is associated with reduced higher cognitive func-
tion specifically rather than a general decline in ability to
perform a task [31]. Higher BMI in children has also been
associated with poorer performance on a spatial episodic
memory task [32]. The association between obesity and cog-
nitive function has further been reported to be robust to
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adjustment for various confounders including demographics,
education and health conditions [33,34] but few studies have
controlled for the effects of depression and stigma directed
towards people with a high BMI, even though these factors
are known to be associated with poorer cognitive function
[35,36]. An umbrella review that included a quantitative syn-
thesis of effect sizes from published meta-analyses reported a
small but significant relationship between several measures
of higher cognitive function and heavier body weight [37].

The results from behavioural studies are supported by the
results from studies that have examined brain function in
adults with and without obesity using brain imaging tech-
niques. There is evidence that having obesity is associated
with altered functional connectivity between brain regions.
A meta-analysis of 29 studies that used resting-state func-
tional magnetic resonance imaging found evidence that
higher BMI is associated with decreased functional connec-
tivity in networks associated with cognition and increased
connectivity in networks associated with reward processing
[38,39]. There is also more recent evidence for disruption
to the hierarchical functional organization of large-scale
networks in the brain in obesity [40]. An analysis of studies
that examined neural responses to visual presentation food
cues in the scanner found that compared with lean participants,
participants with obesity had reduced activation in regions
associated with cognitive control and increased activation in
reward-related brain regions [41]. A recent meta-analysis
found no evidence for reduced activity in cognitive control
areas in obesity [42] but this result may be explained by the
fact that only passive food viewing paradigms were included
in the analysis and studies assessing activation during tasks
requiring inhibitory control were excluded.

Obesity is also associated with altered brain morphology.
The results from four meta-analyses report an association
between higher BMI and reduced grey matter (GM) volume
in areas of the brain that underpin higher cognitive function
including the prefrontal cortex [43-46]. These effects have
been reported to be present from an early age and have
been linked to cognitive performance [47,48]. The collective
results from individual small-scale studies are supported by
findings from big data studies that have analysed findings
from large population cohorts (e.g. of data from 40000 indi-
viduals in the UK Biobank database) [49]. Taken together,
these data suggest that having obesity is associated with
reduced GM volume in areas of the brain associated with
higher cognitive functions.

Studies on white matter (WM) microstructure have
reported that obesity is associated with reduced WM integ-
rity (e.g. [50]), but the pattern of findings, albeit from a
limited number of studies, has been inconsistent. The first
meta-analysis of 16 studies found an association between
having obesity and reduced WM integrity in the anterior
part of the corpus callosum, a tract that links frontal areas
involved in higher cognitive functions [51]. A more recently
published analysis of 31 studies of adults and children
found evidence for altered WM integrity in obesity but an
inconsistent pattern across studies [52]. A recent large-scale
study of data from the UK Biobank reported no association
between measures of central obesity (e.g. waist to hip ratio)
and WM volume or integrity [53]. The inconsistencies in
results relating to WM tract structure may be explained by
the small number of studies conducted to date that have
used a range of different measures to assess WM integrity.

In addition, control for confounding variables (e.g. age, sex, n

comorbidities) has been inconsistent across studies. A com-
parison of WM integrity in adolescents with obesity who
either also had or did not have type 2 diabetes, reported
changes in WM integrity associated with diabetes, but not
with obesity [54]. Having type 2 diabetes is associated with
reduced cognitive performance which is mediated by a
range of comorbidities including sleep disturbances, micro
vascular problems and depression [55]. Controlling for a
range of comorbidities is necessary to draw conclusions
about the specific association between obesity, brain structure
and cognition.

Collectively the data from cross-sectional behavioural and
brain imaging studies converge to suggest that obesity is
associated with disrupted higher cognitive function, particu-
larly in the domains of inhibitory control and memory.
However, the results from these studies do not shed any
light on whether the cognitive profile is a causal factor in
the development of obesity. In fact, it is possible that no
causal relationship exists, and that the association is
explained by a common third factor exerting an independent
effect on both cognition and obesity. There could be causal
pathway from cognition to obesity, but the cross-sectional
association could equally be explained by the reverse causal
pathway: an impact of adiposity on cognitive function.
Indeed, there is evidence that prolonged consumption of a
high fat diet, accumulation of excess adipose tissue and
development of the metabolic syndrome is associated with
reduced cognitive function via several mechanisms including
oxidative stress, inflammation, insulin resistance and altered
neurochemical signalling [56-59]. Cross-sectional measure-
ment of variables at one time point, means that it is
impossible to draw conclusions about whether obesity pre-
cedes altered cognitive function or the other way round.
Longitudinal studies allow for testing of the temporal
relationships between variables, which is necessary to show
a cause precedes an effect. Testing over multiple time
points at an early age before weight gain has occurred also
reduces the possibility that any association between cognition
and adiposity is explained by the long-term effects of dietary
pattern and/or living with obesity on the brain.

Poorer inhibitory control and reduced ability to wait to obtain
a higher reward have been linked to weight gain in children
(e.g. [60,61]). Children with low executive function were also
found to have a significantly higher probability of transition-
ing to a pattern of behaviour characterized by a high-calorie
low-nutrient diet over 30 months than did children with high
executive function [62].

Several recent studies have examined predictors of weight
gain using data from the Adolescent Brain Cognitive Develop-
ment (ABCD) Study, which is a longitudinal, observational
study of over 10000 children recruited at ages 9-10 years
from 21 sites throughout the United States [63]. Hall et al.
[64] reported that increased volume, thickness and surface
area in a region containing the dIPFC, predicted lower BMI
one year later and that this relationship was mediated by per-
formance on a task assessing non-verbal abstract reasoning.
Children with obesity (but not lean children) had lower GM



volume in areas including orbitofrontal cortex, hippocampus,
caudate, amygdala and thalamus at 2-years follow-up
compared to baseline [65]. An analysis by Adise et al. [66]
identified brain structural predictors of belonging to a
weight-gaining versus weight-stable group of youth from the
ABDC study, including reduced cortical thickness in frontal
areas. However, these predictors differed from previously
identified predictors of 1-year weight gain in the same
cohort [67], which requires further investigation.

The results of longitudinal studies in children are consist-
ent with the suggestion that cognition may have a role to play
in the development of obesity, but given that some children in
the cohorts studied had already developed obesity it is not
possible to draw definitive conclusions about causality.
Indeed, there is evidence to support a reciprocal relationship
from longitudinal studies whereby obesity predicts cognitive
function which in turn predicts greater adiposity. For
example, a study of a large cohort of children found that
greater adiposity at the age of 9 predicted poorer working
memory at the age of 10 but also that poorer working
memory at the age of 10 predicted greater adiposity at
the age of 15.5 [68]. A meta-analysis of 18 longitudinal studies
conducted in children and adolescents found that executive
function, particularly inhibitory control, predicted weight
status and the development of obesity [69]. The opposite
relationship was also found whereby weight status was associ-
ated with poorer executive function, particularly working
memory [69]. Bidirectional associations between obesity and
cognition have also been reported in a large cohort of adults
from the Canadian Longitudinal Study on Ageing [70].
Higher baseline waist circumference was associated with
lower executive function at 3-year follow-up for middle aged
adults and lower baseline executive function predicted higher
waist circumference at follow-up. Hence, in longitudinal obser-
vational studies where measurement occurs after there has
already been a chance for obesity to develop, it is not possible
to establish which factor initiated the reciprocal relationship.
In addition, although it is possible to control for potential
confounding variables, confounding cannot be ruled out in
observational studies.

6. Strengthening causal inference in
observational studies

Causal inference in observational research can be strength-
ened by using methods that exploit genetic information.
These approaches rely on the fact that genetic variation tem-
porally precedes outcomes. Mendelian randomization (MR)
uses genetic variants associated with the factor of interest
(e.g. cognition) to test the hypothesis that this factor increases
the risk of developing a particular outcome (e.g. obesity) [71].
Using this method, one study found a causal effect of waist to
hip ratio adjusted for BMI to impair cognition but did not
assess the reverse effect of cognition on adiposity [72]. Two
studies found a negative causal effect of educational attain-
ment (which may be a proxy for cognitive ability) on BMI
[73,74], whereas another found no causal association between
educational ability and BMI, although the authors noted
that the study was underpowered [75]. Another genetically
informed approach is direction of causation (DoC) twin
modelling, which uses data observed in monozygotic and
dizygotic twins to test causal hypotheses. The approach is

based on the premise that different cross-twin/cross-trait [ 4 |

covariances are expected for different types of causal
models [76]. Future studies should examine causal effects of
specific cognitive abilities on BMI and other measures of
adiposity using the MR and DoC approaches.

Experimental designs involving randomization and
manipulation of a hypothesized causal factor provide the
strongest basis for making causal inference. Interventions
that have been used to assess causal relationships between
higher cognitive functions and obesity include cognitive train-
ing, weight loss interventions and manipulations of cognitive
performance and diet in non-human animal models.

7. Effects of cognitive training on food intake
and body weight

Cognitive training interventions involve repeated completion
of digital based tasks that engage a specific cognitive function
over several weeks [77]. Training of executive functions can
lead to significant improvements in performance of the trained
tasks with evidence for transfer to non-trained tasks [78]. The
causal effect of cognitive function on obesity can, therefore, be
tested by examining whether enhancing cognitive function via
practice prevents weight gain or assists with weight manage-
ment. Studies conducted to date have focused on first
establishing whether cognitive training affects food intake as
an intervening variable in the potential causal chain between
cognition and weight gain and development of obesity. The
findings from two reviews suggest that cognitive training of
working memory, episodic future thinking and food-specific
inhibitory control, results in a decrease short-term food
intake [79,80]. However, at present there is not sufficient
evidence to suggest that these effects are translated into a
reduction body weight either in adults or children [81,82].

The findings on cognitive training need to be interpreted in
the light of limitations to the studies conducted to date. Most
studies have been conducted on small populations of normal
weight adult participants and so the lack of effects of training
on body weight may be explained by several factors, including
whether the training is appropriately targeted at individuals
who might benefit the most, e.g. participants with obesity
and lower baseline levels of performance [79]. Future studies
should also ensure that the training is engaging enough to
maintain adherence [18,19]. It is possible that training may
be more effective if it occurs during neurodevelopmental
periods when the brain is maturing. During adolescence, the
brain undergoes extensive remodelling especially in regions
associated with higher cognitive functions such as the prefron-
tal cortex, which means it is sensitive to environmental
influences at this point. Hence, future interventions could
target adolescent populations at high risk of obesity to exam-
ine whether training could prevent weight gain [83],
especially as young people may be more vulnerable to effects
of diet and obesity on the brain [84].

8. Effects of weight loss on cognition

The causal pathway from obesity to cognitive function can
be tested by examining the effect of weight loss interventions
on cognitive function. Weight loss is associated with
improved verbal memory and executive function in adults
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[85]. A meta-analysis of both observational longitudinal and
randomized controlled trials of a range of weight loss inter-
ventions, including bariatric surgery, found that weight loss
was associated with improved attention and memory (work-
ing memory and hippocampal-dependent memory), at least
in the short term [86]. However, there is large variability
across studies and the underlying mechanisms are unclear.
Weight loss is associated with an improvement in metabolic
indicators related to cognitive function but there are also
changes in emotional functioning and mental health out-
comes that accompany weight loss that could also explain
improvements in cognition [87].

Studies of changes in brain structure following bariatric sur-
gery suggest that the improvements seen in cognitive function
may be owing to recovery of obesity-associated brain atrophy.
Increases in both grey and WM density have been observed
post-surgery [88-91]. Widespread recovery of WM and smaller
increases in GM have been noted, which could indicate that
longer-term assessment is required to see GM recovery, but
could also indicate that some obesity-associated reductions in
GM reflect differences in brain structure that predispose
towards obesity and are not recoverable by weight loss. These
data suggest that having obesity affects brain structure integrity,
which probably underlies the cognitive profile seen in people
with obesity, and that at least some of these effects are reversible.

Intervention studies in laboratory animals allow for tight con-
trol over parameters such as diet history, food access and
housing conditions as well as precise measurement of food
intake and body weight over lengthy periods, which is not
easy to achieve when studying humans. It has been estab-
lished that disruption to memory processes, via lesions or
temporary inactivation of the hippocampus, results in an
increase in food intake and subsequent weight gain [92-95].
Evidence from animal models also confirms the involvement
of brain structures important for higher cognitive functions in
the control of food intake (for review see [96]). Furthermore,
evidence from animal models shows that diet influences be-
haviour and brain structure and function [97,98]. Exposure
to high energy diet and/or obesity impairs hippocampal-
related memory performance in rodents [99,100] owing to
changes to neuronal signalling in the hippocampus [101]
and areas of the brain homologous to the prefrontal cortex
in humans [102]. Hence, the data from animal models sup-
ports a causal effect of cognition, particularly hippocampal-
related memory on the development of obesity as well as
the reverse effect [103,104]. It is notable that the effects of
diet on cognitive processes in non-human animal models
are much more profound than the more subtle cognitive
impairments associated with obesity in humans. Such differ-
ences in the magnitude of the effects in non-human relative to
human animal models may reflect differences in the sensi-
tivity of the measures of the processes, differences in the
types of cognitive processes that are being assessed in the
two species, and/or the magnitude of the exposure.

At present, the relative influence of genetic compared to
environmental factors as causes of the association between

higher cognitive functions and obesity is unclear. Genetic cor- [ 5 |

relations between cognitive test scores and brain morphometry
and BMI have been reported cross-sectionally [105], which
could suggest that inherited variability in cognitive function
underlies the association with obesity. However, a longitudinal
study found a significant impact of overweight, but not genetic
predisposition for obesity on altered brain structure [106].
The genetic analysis by Tiingler and colleagues was under-
powered and so fully powered longitudinal studies are
required to test the hypothesis that genetic risk for obesity is
expressed through alterations in cognitive function.

Environmental factors such as adversity and stress cause
disruption to cognitive processes which could then lead to
the development of obesity. Experiencing childhood poverty
and a range of other early adverse childhood experiences (e.g.
exposure to harsh, unpredictable environments) are related to
poorer cognitive function, altered trajectories of brain devel-
opment and poorer physical and mental health outcomes
[107-109]. Notably, moving into poverty has been linked to
worsening executive function in childhood and lower teacher
rated self-regulatory ability, whereas moving out of poverty
was associated with the opposite effects [110]. In addition,
exposure to stressors (including structural racism and
weight stigma) and depression are linked to poorer cognitive
function and health outcomes [35,36]. Hence, further work is
required to examine the mediating role that cognitive func-
tion might play in the effect that living in poverty, trauma
and mental health conditions have on obesity.

It is important to note that the differences in cognitive
function according to body weight status are small, meaning
that many people with obesity do not differ in cognitive func-
tion from people without obesity [37]. It is possible that a
subset of individuals who develop obesity do so because of
having a particular cognitive phenotype that promotes food
intake. It is also possible that the effect sizes detected in
studies reported to date are an underestimation of the true
effect size owing to the nature of the cognitive measures
employed. Most studies use measures that tap into general
cognitive ability that are far removed from how these cogni-
tive functions are deployed in real life decisions about eating.
Such decisions take place in the context of prior experience
with specific foods and in a context that is rich in information,
including knowledge about the nutritional content of
food, branding, and social cues. Moreover, decisions about
whether, what, when and how much to eat require the
interaction/integration of multiple cognitive processes. It is
possible that assessment of cognition in situations that are
more representative of how cognitive processes are usually
situated would uncover not only larger effect sizes but shed
light on the specific underlying cognitive processes involved
in food choices that predispose towards obesity.

The availability of large datasets for testing longitudinal
associations between cognition and obesity, especially in chil-
dren, is a step forward from cross-sectional research but
these datasets often lack measures related to eating (or phys-
ical activity). The inclusion of such measures in future
studies is required to link cognition mechanistically to obesity
through changes in health behaviours. As reduced higher cog-
nitive function has been found to predict both unhealthier
eating patterns and lower levels of physical activity [17,111],
separating out the relative contribution of both sides of the
energy balance equation to weight gain over time would be
a useful avenue for future research. In addition, it would



be informative to examine associations between higher cogni-
tive functions and specific eating patterns. A recent meta-
analysis found evidence for an association between executive
functioning (studies mainly focusing on inhibitory control)
and clinical binge eating, but not uncontrolled eating [112].
However, the analysis of uncontrolled eating was under-
powered owing to the low number of studies included.
Therefore, there is scope for assessing relationships between
higher cognitive processes and patterns of eating, including
uncontrolled eating, but also emotional eating and eating
triggered by external cues.

It is also important to note the paucity of studies on higher
cognitive functions outside of the classical executive functions
that are underpinned by prefrontal cortex activity. Further
research on the contribution of hippocampal-dependent
processes is warranted [113].

Intervention studies would provide more definitive
conclusions about causal association between cognition and
obesity in humans. For example, studies conducted in a con-
trolled laboratory environment could test whether cognitive
disruption to food-related decision making increases intake
in the longer term. Many studies have found that distractions,
e.g. watching TV or playing computer games are associated
with increased intake both in a meal with distractions and
at later snacking opportunities [114,115]. Such effects may
be explained by reduced cognitive capacity for decision
making as well as poorer meal memory encoding. However,
these studies have only assessed the effects of distraction on
short-term intake and so it is unknown whether there is com-
pensation in the longer term. Sustained effects of distraction
on intake would support a role for higher cognition in the
development of obesity in line with observational evidence
that daily distracted consumption patterns are positively
associated with obesity [116].

Education improves cognitive performance in specific
domains such as memory and reasoning [117] and so edu-
cation interventions can be used to manipulate cognitive
function and might prove to be a tool to reduce obesity risk.
Indeed, taking advantage of a natural experiment that
occurred in the UK in 1972 when the school leaving age was
raised by one year, Barcellos et al. [118] showed that this
policy change was associated with a reduction in levels of
obesity, with a larger effect for individuals with high genetic
predisposition to obesity. The positive effect of education on
obesity is also supported by a meta-analysis of studies of
changes to compulsory schooling laws [119]. These data
suggest that interventions which increase/improve edu-
cational attainment could reduce levels of obesity and that
one way in which this might occur is via improvement in cog-
nition. The effects of education interventions (e.g. meta-
cognition and self-regulation strategies/social-emotional edu-
cation) on both attainment, cognition and health outcomes
could be tested.

Cognitive function can be manipulated using pharmaco-
logical interventions. Lisdexamphetamine (LDX) has been
marketed for several years for the treatment of cognitive
symptoms of attention deficit hyperactivity disorder
(ADHD) and more recently in some countries as treatment
for binge eating disorder. LDX has been reported to improve
inhibitory control in women with binge eating symptoms
and, alongside this improvement in cognition, to reduce
food intake [120]. The effects of LDX and other cognitive
enhancers on weight loss/prevention of weight gain could
be examined in randomized controlled studies [121,122].
Interestingly, ADHD is associated with disinhibited eating
and obesity [123,124] and this relationship is related to defi-
cits in attention and cognitive control [124,125]. Moreover,
rates of obesity are lower in individuals who are pharmaco-
logically treated for ADHD compared with those who are
not treated [123]. Further investigation of the development
of obesity in ADHD and other psychiatric disorders associ-
ated with cognitive problems and obesity will shed further
light on the role of specific cognitive deficits in weight gain.

There is a plausible, theoretically grounded, mechanistic link
between cognition and obesity: disruption to higher cognitive
functions increases food intake which could result positive
energy balance in the longer term. Most research aimed at
testing whether disruption to higher cognitive processes
causes obesity has involved investigation of cross-sectional
associations between higher cognitive functions and obesity.
There is now ample evidence that high levels of adiposity
are associated with lower cognitive performance on tasks
assessing working memory and inhibitory control. Further
evidence on this point is unlikely to be informative. Data
from longitudinal and interventional studies and from non-
human animal models suggest that a reciprocal relationship
between obesity and cognitive function exists but have not
yet established cognition as a primary cause of obesity in
humans. Longitudinal studies that start from an early age
and include eating-related measures as well as a range of cog-
nitive tests and measures of adiposity will provide new
insights into the specific cognitive factors that might predis-
pose some people to develop obesity and/or exacerbate
weight gain. Other approaches, including genetically
informed studies and randomized interventions aimed
manipulating cognitive function could also prove fruitful.
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