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Abstract

Deep learning based medical volumetric segmentation
methods either train the model from scratch or follow the
standard “pre-training then finetuning” paradigm. Al-
though finetuning a well pre-trained model on downstream
tasks can harness its representation power, the standard
full finetuning is costly in terms of computation and mem-
ory footprint. In this paper, we present the first study on
parameter-efficient transfer learning for medical volumetric
segmentation and propose a novel framework named Med-
Tuning based on intra-stage feature enhancement and inter-
stage feature interaction. Given a large-scale pre-trained
model on 2D natural images, our method can exploit both
the multi-scale spatial feature representations and temporal
correlations along image slices, which are crucial for ac-
curate medical volumetric segmentation. Extensive experi-
ments on three benchmark datasets (including CT and MRI)
show that our method can achieve better results than pre-
vious state-of-the-art parameter-efficient transfer learning
methods and full finetuning for the segmentation task, with
much less tuned parameter costs. Compared to full finetun-
ing, our method reduces the finetuned model parameters by
up to 4×, with even better segmentation performance.

1. Introduction

Medical image segmentation, which aims to delineate tu-
mors and sub-regions of organs from biomedical images, is
capable of assisting doctors to make accurate clinical di-
agnoses and treatment planning. It is vital to improve the
accuracy and efficiency of medical volumetric segmenta-
tion, since the widely adopted medical modalities, includ-

*Equal Contribution.†Corresponding author.
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Figure 1. The illustration of the two-fold gaps between source and
target domain when exploring pre-trained model on large-scale 2D
natural image datasets for medical volumetric segmentation.

ing computed tomography (CT) [33] and magnetic reso-
nance imaging (MRI) [24], are all composed of 3D vol-
umes, and plenty of practical applications (e.g. tumor seg-
mentation and anomaly detection) are based on the corre-
sponding segmentation of these modalities. Deep neural
networks have become a popular tool for this task, includ-
ing architectures based on convolutional neural networks
(CNNs) [40, 31, 51, 32, 12, 53, 35, 22, 25] and Transform-
ers [6, 42, 23, 46, 5, 43, 27]. With the continuous improve-
ment of model performance, the number of model parame-
ters and corresponding training cost have increased greatly,
especially the Transformer-based models. Besides, due to
the challenges in model training these methods benefit from
finetuning the models pre-trained on larger-scale datasets
(e.g. ImageNet [14]), but still tune all the model parameters,
which results in further training costs. Therefore, we are in-
terested in the question: Is there a way to pursue a balance
between the model performance and finetuning parameter
efficiency?

In the community of natural image processing, “pre-
training then finetuning” paradigm has become standard
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practice to boost the model performance on downstream
tasks. Conventional finetuning schemes include full fine-
tuning and head finetuning, which optimize either the en-
tire network or only the specific head (e.g. Linear [18]
and Partial [49]). Full finetuning usually achieves higher
accuracy but also a higher training cost. Recent stud-
ies [26, 34, 10, 36, 50] on parameter-efficient transfer learn-
ing (PETL) try to achieve a balance in between.

In this paper, we present, to the best of our knowledge,
the first attempt to explore the potential of PETL for medi-
cal volumetric segmentation. Unlike natural image datasets,
the scale of the acquired medical datasets is generally small
because of high annotation costs. As a result, there are
many strong pre-trained 2D models on large-scale natural
image datasets but such pre-trained models are lacking in
the medical domain. Therefore, the objective of this work is
to explore how to effectively and efficiently adapt strong pre-
trained models on 2D natural images to the medical volu-
metric segmentation task.

As shown in Fig. 1, there are two-fold gaps between
the pre-training source domain and the downstream target
domain that need to be considered to achieve successful
PETL: (1) the modality gap between 2D natural images
and 3D medical volumes; (2) the task gap between the pre-
training classification task and the downstream segmenta-
tion task. In order to narrow these gaps, we propose to
build a PETL framework for medical volumetric segmen-
tation based on pre-trained models on natural images with
an efficient plug-and-play block to exploit the crucial spatial
multi-scale features and temporal correlations.

Specifically, for the first gap brought by 3D medical data
itself, there is an essential temporal continuity between ad-
jacent medical image slices that need to be exploited. To
address this, we design an adapter block (i.e. Med-Adapter)
with high efficiency and flexibility while jointly conducting
spatial-temporal (slice) modeling. For the second gap of
taking semantic segmentation as the downstream task, pre-
vious studies [29, 41, 7, 8, 9, 44, 28, 16, 45] have shown
that such dense prediction requires crucial multi-scale in-
formation, As a vital aspect of the multi-scale features, the
global information counts a lot for the dense prediction
tasks, while the Fast Fourier Transform (FFT) and Inverse
Fast Fourier Transform (IFFT) naturally have a global vi-
sion due to their internal operation mechanism (more de-
tails can be found in Sec. 3.1), which is right on demand.
Thus, by leveraging the intrinsic global vision characteristic
of the FFT and IFFT , high-efficiency multi-scale branches
coupled with the FFT branch (i.e. global branch) are effec-
tively leveraged in our method for intra-stage feature en-
hancement and inter-stage feature interaction.

The main contributions can be summarized as follows:
• We present the first study on PETL for medical volu-

metric segmentation and propose a new framework Med-
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Figure 2. Comparison with previous PETL methods in terms of
trade-off between tuned parameters and segmentation accuracy.
The backbone ViT-B/16 is pre-trained on ImageNet-21k and fine-
tuned on BraTS2019 dataset. Our method achieves much better
segmentation performance than full finetuning and previous state-
of-the-art PETL methods with much less tuned parameters.

Tuning, achieving the trade-off between segmentation ac-
curacy and parameter efficiency.

• A new Medical Adapter (Med-Adapter) is proposed for
PETL, as a plug-and-play component to simultaneously
consider both multi-scale representations and inter-slice
correlations.

• Extensive experiments on three benchmark datasets (in-
cludes CT and MRI) validate the effectiveness (e.g. Fig.
2) of our Med-Tuning over full finetuning and previous
PETL methods for medical volumetric segmentation.

2. Related Work

2.1. Medical Volumetric Segmentation

Unlike natural images, medical images have particular
challenges, such as uneven distribution of foreground and
background, and sharp changes in shapes and scales of le-
sions. As proved by previous works [12, 31, 53, 5, 6, 35],
extracting multi-scale representations is crucial for desired
segmentation performance. For example, Ronneberger et
al. [40] concatenated the multi-scale features from the CNN
encoder and the up-sampled features together, comple-
menting the loss of spatial information caused by down-
samplings. Cao et al. [4] also used skip connections to grad-
ually fuse the low-level features and the high-level features
together in Transformer architecture.

In addition, the information between continuous slices
(i.e. temporal correlation) of medical volumetric images is
of critical importance. Various medical volumetric segmen-
tation methods [12, 31, 53, 35] have effectively taken advan-
tage of this vital continuity by typically utilizing 3D convo-
lutions [12, 31, 53] or introducing self-attention mechanism
among the 3D input patches [43].

Based on the above analysis, the proposed framework
Med-Tuning simultaneously takes both multi-scale feature
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representations and inter-slice correlation into considera-
tion, realizing the effective spatial feature and temporal re-
lationship modeling in a parameter-efficient manner by the
simple yet effective PETL architecture.

2.2. Parameter-Efficient Transfer Learning

Conventional finetuning methods can not achieve the
trade-off between accuracy and parameter efficiency.
Therefore, various PETL methods were born on demand re-
cently, which can be summarized into three categories: The
first one is Prompting [1], which modifies the input pixel
space of Transformer layers. VPT [26] prepended a series
of learnable prompts to the patch embeddings to facilitate
downstream visual tasks. But VPT is sensitive to the num-
ber of prompts and token length, which may have limited
potential in parameter efficiency for dense prediction tasks.
Pro-tuning [34] inserted multiple stage-wise prompt blocks
into different stages of the backbone.

The second type is Adapter that can be easily inserted
into backbones. Specifically, AdaptFormer [10] replaced
the original multi-layer perceptron (MLP) block in Trans-
former with the proposed AdaptMLP. Despite its promising
results, AdaptFormer does not take temporal information
into account, which may lead to the loss of connections be-
tween video clips. To tackle this problem, ST-Adapter [36]
injected Adapter-like blocks in each Transformer layer and
introduced the 3D depth-wise convolution [48] to capture
spatial-temporal features. However, it does not take the
modeling of multi-scale representation into consideration,
which is critical for the segmentation task.

The third category includes other PETL techniques. For
example, LoRA [21] inserted learnable low-rank matri-
ces into the self-attention block in Transformer, while V-
PETL [50] extended the parameters of prefix tuning [17]
from randomly initialized to input associated.

Nevertheless, the above previous researches mainly pay
attention to the 2D/3D classification tasks on natural im-
ages. Few of these works make targeted structural improve-
ments for downstream dense prediction tasks like segmen-
tation. Besides, as analyzed above, none of the previous
works have simultaneously considered multi-scale features
and temporal information modeling which are crucial for
segmentation. Different from previous works, our Med-
Tuning pioneeringly shifts the concentration from classi-
fication to dense prediction task (i.e. medical volumetric
segmentation) and makes tailored structural design for ex-
ploitation of spatial and temporal correlations, realizing the
promising PETL with greatly boosted model performance.

2.3. Fourier Transform in Deep Learning

Image analysis in the Fourier domain has been widely
explored in diverse computer vision tasks. Notably, the
Fourier transform utilizes frequency information to natu-

rally build global connectivity by operating domain map-
ping on original images in a parameter-free manner (i.e.
without any additional parameters). For instance, GFNet
[39] focused on model structure modification and substi-
tuted the vanilla self-attention blocks in the original Trans-
former with FFT operation, realizing efficient global feature
modeling on high-resolution images. [52] proposed to up-
sample in the frequency domain to avoid the inability of
exploiting global dependency as common up-sampling (i.e.
interpolation, transposed convolution, etc.) in the spatial
domain. Inspired by the above works, we present the first
study on exploiting the intrinsic global properties of FFT
for PETL and propose a novel adapter block namely Med-
Adapter with a well-designed FFT branch, with the aim of
effectively and efficiently modeling the crucial global con-
text for medical volumetric segmentation.

3. Methodology
3.1. Preliminaries

Vanilla Adapter. Adapters [20] are composed of
lightweight MLP modules with residual connections
and inserted between the feed-forward layer and layer
normalization in each Transformer layer. During training,
only Adapters are tuned while all the other layers stay
frozen. In this way, adapter-based finetuning requires much
fewer learnable parameters and less training cost than full
finetuning. Each vanilla adapter utilizes a down-projection
linear layer to project the original d-dimensional features
into a smaller m-dimension, which is followed by a
non-linear activation function and an up-projection linear
layer to project features back to d-dimensions. By setting
m� d, the vanilla adapter limits the number of introduced
module parameters. Specifically, for the input embedding
feature representation X ∈ RN×d from the i-th layer in
Transformer, the vanilla adapter can be represented as:

Adapter(X) = X + σ(XWdown)Wup, (1)

where Wdown ∈ Rd×m and Wup ∈ Rd×m indicate the
down-projection layer and up-projection layer, σ(·) is the
activation function.

Fourier Transform. Discrete Fourier Transform (DFT)
and Inverse Discrete Fourier Transform (IDFT) serve as in-
dispensable techniques for traditional signal analysis, which
plays a vital role in our Med-Adapter. Given a sequence
data F ∈ RN , a single dimensional DFT f(k) and IDFT
F (n) are given below:

f(k) =

N−1∑
n=0

F (n)e−j2π
kn
N , (k = 0, 1, 2, ..., N − 1) (2)

F (n) =
1

N

N−1∑
x=0

f(k)ej2π(
kn
N ), (n = 0, 1, 2, ..., N − 1) (3)
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Figure 3. Med-Tuning is a finetuning framework, which consists of 2D Transformer baselines for medical volumetric segmentation with
our proposed Med-Adapter modules gradually inserted in each stage. Note that we need to reshape and shuffle the 3D input medical
volumes from [B,D,H,W ] to [BD,H,W ] before feeding them to this pipeline, where B = Batch. During training, only Med-Adapters
and Decoder are tuned while all the other layers are frozen.

Furthermore, a 3-dimension DFT can be computed by
the composition of a sequence of one-dimensional DFTs
along each dimension [13]. Given a 3D data (one im-
age cube or feature cube) F ∈ RD×H×W , its 3D-DFT
f(x, y, z) and 3D-IDFT F (d, h, w) can be defined as:

f(x, y, z) =

W−1∑
w=0

H−1∑
h=0

D−1∑
d=0

F (d, h, w)e−j2π(
xd
D

+ yh
H

+ zw
W ), (4)

F (d, h, w) =
1

DHW

W−1∑
z=0

H−1∑
y=0

D−1∑
x=0

f(x, y, z)ej2π(
xd
D

+ yh
H

+ zw
W ),

(5)
Note that the accelerated version of DFT and IDFT are

employed in our implementation and referred as FFT and
IFFT. When processing 3D images or features with 3D-
FFT, the acquired representation is composed of the entire
3D spatial frequency component. Since the FFT operation
essentially discretizes spatial domain content into individ-
ual frequency components in the frequency domain, each
frequency component in the resulting Fourier spectrum has
the intrinsic global vision, which is fully exploited in the
global dependency modeling design of our Med-Adapter.

3.2. Medical Adapter

In this work, we propose a task-oriented and simple-
yet-effective module, namely Med-Adapter. The PETL
framework for vision Transformer integrated with our Med-
Adapters is referred to as Med-Tuning.

The inspiration of our Med-Adapter is to empower a 2D
Transformer model pre-trained on natural images to gain the
capability of spatial and temporal feature modeling among
medical volumes in a parameter-efficient manner. Sev-
eral important criteria of designing should be followed: (1)
Medical volumetric segmentation task oriented: The focus
of our study is efficiently and effectively narrowing the two-
fold gaps mentioned in Sec.1. (2) Light-weight: Structure
with a low amount of parameters is a typical standard for

PETL methods. (3) Plug-and-play: An easy-to-implement
module is friendly to the practical deployment.

Based on the above inspirations, our Med-Adapter is
shown in the right part of Fig. 3. While retaining the
overall bottleneck structure of the vanilla adapter (Eq. 1)
with a reduction ratio α, a few tailored designs for medi-
cal volumetric segmentation are introduced into the internal
structure. Formally, given the embedded feature represen-
tation X ∈ RBD×C×HW in Transformer (B,C,D,H,W
denote the number of batch size, channel, slice, height,
and width respectively), a down-projection layer is first
adopted to reduce the embedding dims of tokens, followed
by an activation function and a reshape operation to obtain
X ′ ∈ RB×Cα×D×H×W , which can be expressed as:

X′ = Reshape(σ(XWdown)), (6)

whereWdown denotes the down-projection layer, σ(·) is the
activation function.
Intra-stage Feature Enhancement (Intra-FE). Since
accurately accomplishing the segmentation task relies on
both fine-grained feature representations as well as coarse-
grained global semantics, 3D convolutions with diverse ker-
nel sizes are employed to capture the multi-scale represen-
tations. Simultaneously, the normal 3D convolution oper-
ations are replaced with 3D depth-wise convolutions [48]
to model the required temporal information in a parameter-
efficient manner. Moreover, for the purpose of pursuing an
extremely light-weight structure, we take advantage of the
combination of 1×K×K andK×1×1 3D convolutions as
an approximation of conventional K×K×K 3D convolu-
tion (whereK denotes the kernel size). As for the frequency
branch to realize global dependency modeling, the conven-
tional large-size convolutional kernel and attention mecha-
nism with large memory and computation costs are substi-
tuted by parameter-efficient 3D FFT and matrix calculation.
In this manner, channel-separable multi-scale features are
fully captured by the three parallel branches, followed by
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a 1 × 1 × 1 convolution to realize efficient channel mixing
and obtain the expected layer-wise enhanced feature rep-
resentation H with rich multi-scale information. Formally,
Intra-FE can be formulated as:

F = IFFT (WF � FFT (X′) + bF ), (7)

H = Conv1×1×1(DWConv3(X′)+DWConv5(X′)+F), (8)

where FFT and IFFT denote the Fast Fourier Transform
and Inverse Fast Fourier Transform, � is the Hadamard
product, WF , and bF are the introduced learnable param-
eters. DWConvK denotes two cascaded 3D depth-wise
convolutions with the kernel size of 1×K×K andK×1×1.

In this way, our Med-Adapter can effectively and effi-
ciently perform modeling of correlations among temporal
slices and capture abundant spatial multi-scale features for
the downstream dense prediction task, i.e. medical volumet-
ric segmentation.

Inter-stage Feature Interaction (Inter-FI). Besides, we
further consider the feature interaction between different
stages. As for the specific Med-Adapters located at the
end of each stage, to fully exploit the feature representa-
tions collected by our Med-Adapter at each stage, the intra-
stage enhanced feature representation H will be directly
fused with the previous HLastStage from the corresponding
Med-Adapter at the former stage. In this way, feature rep-
resentations extracted by multiple Med-Adapters in shallow
layers are gradually fed to adjacent higher layers, realizing
inter-stage feature interaction by explicit enhancement for
boosted model performance. Inter-FI is expressed as Eq. 9.

H =

{
Cat(A(H,HLastStage)), if last
H, if not last

(9)

where A denotes using convolutions to realize the align-
ment between H and HLastStage in terms of spatial resolu-
tion and channel dimension, Cat refers the concatenation.
last is a bool parameter and last = True when the current
Med-Adapter is the last one at stage n.

In summary, our Med-Adapter can be formulated as
Eq. 10. H and X′ are combined together by element addi-
tion, then the aggregated feature is symmetrically reshaped
back to the same shape as X, followed by the up-projection
layer Wup and the activation function.

Med-Adapter(X) = X + σ(Reshape(H + X′)Wup), (10)

3.3. Adapting 2D Transformers to Medilal Volumes

The overall architecture of our method, namely Med-
Tuning, consists of a commonly utilized decoder and a 2D
Transformer backbone G pre-trained on large-scale natural
images. As shown in Fig. 3, G has N stages and the n-
th stage (n = 1, 2, ..., N ) has mn + 1 Transformer blocks,
our proposed Med-Adapters are integrated right after each
Transformer block, which makes it friendly for practical de-
ployment as a plug-and-play component. Given a batch

of 3D medical volume as input XB ∈ RB×C×D×H×W ,
we first need to reshape them to X ′B ∈ R(B×D)×C×H×W

and then send them into the 2D pre-trained backbone. Sim-
ilarly, the output of decoder should be reshaped back to
the same size as XB to ensure the alignment of prediction
and ground truth. During training, the backbone network is
frozen, while only the parameters of our Med-Adapter and
the traditional decoder are updated on specific datasets.

Through layer-wise insertion and feature interaction be-
tween different stages, Med-Adapters can obtain and fuse
the feature representations with diverse levels. Besides,
since our proposed Med-Adapter is not restricted to any spe-
cific model structure, any Transformer-based architectures
can incorporate our framework to greatly reduce the train-
ing costs and simultaneously boost model performance.

4. Experiments and Results

4.1. Experimental Setup

Datasets and Evaluation Metrics.
Brain Tumor Segmentation 2019 (BraTS 2019): The BraTS
2019 [30, 2, 3] dataset contains 335 patient cases for train-
ing and 125 cases for validation. Each sample consists
of 3D brain MRI scans with four modalities, while each
modality has a volume of 240 × 240 × 155 that has al-
ready been aligned into the same space. The ground truth
contains 4 classes: background (label 0), necrotic and non-
enhancing tumor (label 1), peritumoral edema (label 2), and
GD-enhancing tumor (label 4).
Brain Tumor Segmentation 2020 (BraTS 2020): The BraTS
2020 [30, 2, 3] dataset’s information is identical to BraTS
2019 except for the number of total samples in the dataset. It
contains 369 cases for training and 125 cases for validation
respectively. On these above two datasets, the segmentation
accuracy is measured by Dice score and the Hausdorff dis-
tance (95%) metrics for enhancing tumor region (ET, label
4), regions of the tumor core (TC, labels 1 and 4), and the
whole tumor region (WT, labels 1,2 and 4).
Kidney Tumor Segmentation 2019 (KiTS 2019): The KiTS
2019 [19] dataset is composed of multi-phase 3D CTs,
including 300 patient cases with high-quality annotated
voxel-wise labels. It contains 210 patient cases as the train-
ing set and the remaining 90 patients as the testing set. Each
CT image/label has a spatial resolution of 512 × 512 with
roughly 50 annotated slices depicting the kidneys and tu-
mors for each case. The ground truth contains 3 classes:
background (label 0), kidney (label 1), and kidney tumor
(label 2). The same evaluation metrics as KiTS 2019 chal-
lenge are utilized: kidney dice considers both kidneys and
tumors as foreground, tumor dice considers everything ex-
cept the tumors as background, and composite dice is the
average of kidney dice and tumor dice.
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Full ST-Adapter VPT Ours GT

Figure 4. The visual comparison of segmentation results on BraTS
2019 dataset. The blue, red and green regions denote the enhanc-
ing tumors, non-enhancing tumors and peritumoral edema. Full,
GT denote full finetuning and ground truth.

Implementation Details. The proposed Med-Tuning
framework is implemented based on Pytorch [37] and
trained with NVIDIA GeForce RTX 3090 GPUs. As the
most representative Transformer-based baselines for med-
ical image segmentation, Swin-UNet [4] and ViT [15]
with UPerNet [47] are selected as the Transformer-based
baselines with the large-scale pre-trained weights from
ImageNet-1k and ImageNet-21k respectively. All methods
share the same settings with Adam optimizer during fine-
tuning, while the “scratch” version is trained with random
initialization (i.e. without any pre-trained weights).

4.2. Results and Analysis

BraTS 2019. We conduct experiments on the BraTS 2019
validation set and compare our method with previous state-
of-the-art (SOTA) approaches for PETL. With the combi-
nation of ViT [15] and UPerNet [47] as the baseline, the
comparisons with state-of-the-art methods are presented in
Table 1 (left), which shows that our method surpasses most
of the previous methods. Besides of the competitive seg-
mentation performance, our Med-Tuning also achieves high
parameter efficiency, with only 17.70% tuned parameters
of the full finetuning and inserted parameters that is only
2.82% of finetuning all parameters. Compared with other
PETL methods, Med-Tuning attains much better trade-off
between performance and efficiency, achieving comparable
or even better results with smaller parameter costs. Qualita-
tive results on brain tumor segmentation are shown in Fig. 4,
with comparison to full finetuning, ST-Adapter[36] and
VPT[26]. As the labels for the validation set are not avail-
able, five-fold cross-validation is conducted on the train-
ing set for visualization. It can be seen that our method
recognizes brain tumors about their enhancing and non-
enhancing regions more accurately and reduces missed or
false identification of the peritumoral edema in general.

Full ST-Adapter VPT Ours GT

Figure 5. The visual comparison of segmentation results on KiTS
2019 dataset. The red and green regions denote the kidneys and
kidney tumors. Full, GT denote full finetuning and ground truth.

BraTS 2020. We also evaluate our Med-Tuning on BraTS
2020 validation set. As shown in Table 1 (right), with the
combination of ViT [15] and UPerNet [47] as the base-
line, our method achieves performance gain on all the met-
rics compared to full fine-tuning. Compared with previ-
ous PETL methods that originated on natural images, Med-
Tuning shows better segmentation results while maintaining
high parameter efficiency.
KiTS 2019. To evaluate the generalization ability of our
method, we conduct experiments of kidney tumor segmen-
tation on CT scans from the KiTS 2019 dataset [19], as
shown in Table 2. We can see that the proposed method
boosts the performance of full finetuning significantly and
achieves much higher Dice scores than previous state-of-
the-art methods, with much fewer tuned model parameters.
In comparison with recently proposed PETL methods (e.g.
VPT[26], Pro-tuning[34] and ST-Adapter[36]), our Med-
Tuning achieves better performance-efficiency trade-off on
two baselines. Specifically, Med-Tuning improves model
performance by a large margin (i.e. ↑ 1.01% Kidney Dice,
↑ 8.02% Tumor Dice, ↑ 4.52% Composite Dice on Swin-
UNet [4] and ↑ 4.20% Kidney Dice, ↑ 17.13% Tumor
Dice, ↑ 10.67% Composite Dice on ViT [15]) with only
27.58% and 17.70% of tuned parameters respectively in
comparison with full finetuning. In addition, qualitative
comparison in Fig. 5 shows that our method segments the
organs and different kinds of tumors more accurately and
generates much better fine-grained segmentation masks of
corresponding tumors.

4.3. Ablation Studies

We conduct extensive ablation experiments to justify the
proposed design based on five-fold cross-validation evalua-
tions on the BraTS 2019 dataset.
Multi-scale Branch Design. We firstly probe into the
rationale of the proposed intra-stage feature enhancement
in our Med-Adapter. For the default setting, the reduc-
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ViT [15]+
UPerNet [47]

Tuned
Params

(M)

Inserted
Params

(M)

BraTS2019 BraTS2020
Dice (%) ↑ Hausdorff (mm) ↓ Dice (%) ↑ Hausdorff (mm) ↓

ET WT TC ET WT TC ET WT TC ET WT TC
Scratch 100.849 - 64.96 83.03 71.34 7.635 10.602 10.942 65.80 83.72 72.01 32.475 10.060 21.467
Full 100.849 - 68.49 85.56 75.12 6.672 7.878 10.525 69.12 85.90 75.29 34.428 7.315 17.093
Head 15.007 - 65.71 84.19 74.77 6.128 7.505 7.864 66.03 84.50 74.47 37.805 7.474 14.150
VPT-Shallow [26] 15.015 0.008 66.02 84.72 75.84 6.114 7.506 8.471 66.52 84.82 75.46 37.765 7.465 13.531
VPT-Deep [26] 15.100 0.092 67.01 85.14 76.80 6.064 7.717 7.648 67.69 85.28 76.59 31.772 7.737 10.621
Adapter [20] 18.567 3.560 68.30 85.37 77.05 5.501 7.636 7.986 68.58 85.77 77.00 32.626 8.172 16.183
AdaptFormer [10] 16.197 1.190 65.88 84.34 74.77 6.652 8.204 8.430 65.52 84.14 74.28 41.026 8.393 14.778
Pro-tuning [34] 19.812 4.805 67.18 85.32 76.51 5.805 7.073 7.564 67.28 85.57 76.58 40.434 7.000 12.865
ST-Adapter [36] 22.118 7.110 69.18 86.27 79.18 6.077 6.939 6.778 68.60 86.55 79.52 34.060 6.790 12.770

Ours 17.853
(17.70%)

2.846
(2.82%)

70.53
(+2.04)

86.58
(+1.02)

79.35
(+4.23)

5.862
(-0.810)

6.224
(-1.654)

6.947
(-3.578)

70.69
(+1.57)

86.69
(+0.79)

79.36
(+4.07)

28.643
(-5.785)

6.198
(-1.117)

15.045
(-2.048)

Table 1. Performance comparison on BraTS 2019 and BraTS 2020 with ViT-B/16 pre-trained on ImageNet-21k dataset. Red color denotes
performance improvement compared to Full (i.e. full finetuning) which has a grey background.

Swin-UNet [4] Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑ ViT [15]+
UPerNet [47]

Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
Kidney Tumor Composite Kidney Tumor Composite

Scratch 27.154 - 94.33 61.10 77.71 Scratch 100.849 - 88.01 46.53 67.27
Full 27.154 - 94.68 62.13 78.40 Full 100.849 - 87.32 47.34 67.33
Head 6.752 - 91.95 53.93 72.94 Head 15.007 - 87.35 42.85 65.10
VPT-Shallow [26] 6.753 0.001 91.72 54.86 73.29 VPT-Shallow [26] 15.015 0.008 86.91 41.67 64.29
VPT-Deep [26] 6.780 0.029 91.53 53.41 72.47 VPT-Deep [26] 15.100 0.092 88.01 46.45 67.23
Adapter [20] 7.541 0.790 93.02 57.15 75.08 Adapter [20] 18.567 3.560 89.75 49.03 69.39
AdaptFormer [10] 7.124 0.372 93.74 59.79 76.77 AdaptFormer [10] 16.197 1.190 87.62 44.46 66.0 4
Pro-tuning [34] 8.359 1.607 90.34 51.19 70.77 Pro-tuning [34] 19.812 4.805 89.44 48.32 68.88
ST-Adapter [36] 8.328 1.577 92.97 57.33 75.15 ST-Adapter [36] 22.118 7.110 90.33 61.29 75.81

Ours 7.489
(27.58%)

0.738
(2.72%)

95.69
(+1.01)

70.14
(+8.02)

82.92
(+4.52) Ours 17.853

(17.70%)
2.846

(2.82%)
91.52

(+4.20)
64.47

(+17.13)
78.00

(+10.67)

Table 2. Performance comparison on KiTS 2019 with Swin-T pre-trained on ImageNet-1k and ViT-B/16 pre-trained on ImageNet-21k
respectively. Red text denotes performance improvement compared to Full (i.e. full finetuning) which has a grey background.

Conv3 Conv5 FFT CM Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC Avg.

X 7.550 0.798 75.42 89.77 80.22 81.80
X X 7.574 0.823 75.19 89.44 80.89 81.84
X X X 7.577 0.825 75.30 89.93 81.93 82.39
X X X X 7.675 0.924 77.10 90.05 81.02 82.72

Table 3. Ablation study on intra-stage feature enhancement.
ConvK denotes two cascaded 3D depth-wise convolutions with
a kernel size of 1 ×K ×K and K × 1 × 1 separately, CM indi-
cates the channel mixing operation by a 1× 1× 1 convolution.

tion ratio α is set to 4 without inter-stage feature inter-
action. Swin-UNet with Swin-T was pre-trained on su-
pervised ImageNet-1k. As presented in Table 3, the in-
troduction of either Conv5 branch or FFT branch consis-
tently leads to a considerable performance increase. Specif-
ically, with only 0.002M additional tuned parameters, FFT
branch significantly improves the segmentation accuracy
(i.e. ↑ 1.04% and ↑ 0.55% on TC and average Dice respec-
tively), showing the effectiveness and parameter-efficiency
of our employed FFT branch. Additionally, channel mixing
further boosts the performance by a large margin, especially
on ET (↑ 1.80%) and the average Dice score (↑ 0.33%).

Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC Avg.

DWConv9 7.837 1.086 76.48 90.58 81.10 82.72
DWConv11 8.126 1.375 76.82 89.40 80.05 82.09
FFT 7.994 1.243 77.22 90.09 81.59 82.97

Table 4. Ablation study on different designs for global dependency
modeling. The baseline is Swin-UNet with Swin-T pre-trained on
supervised ImageNet-1k. DWConvK denotes depth-wise convo-
lution with a kernel size of K × K.

Design for Global Dependency Modeling. In order to
pursue the most effective and parameter-efficient architec-
ture of our proposed Med-Adapter, we also investigate dif-
ferent designs for the global branch in our Med-Adapter
block to achieve global dependency modeling. Since con-
volutional blocks with a large kernel size or self-attention
are usually adopted by previous works for global contex-
tual modeling and the baseline Swin-UNet itself consists of
plenty of self-attention operation in each local window, we
take the depth-wise convolution with kernel size of 9 and 11
separately to replace our originally employed Fast Fourier
Transform (i.e. FFT) branch for a comprehensive compari-
son. The comparison of the segmentation performance and
tuned model parameters is shown in Table 4. It can be ob-
viously noticed that by taking advantage of the parameter-
efficient FFT branch for effective long-range context mod-
eling, the architecture with FFT branch achieves the opti-
mal trade-off between model performance and tuned param-
eters, reaching the best segmentation accuracy with only
1.243M introduced model parameters. In contrast, too large
kernel size of the employed convolutions (i.e. DWConv11)
will result in burdensome model structure and large amount
of tuned parameter costs.
Inter-stage Feature Interaction. After investigating the
effect of the intra-stage feature enhancement, we further
verify the effectiveness of the inter-stage feature interaction,
as shown in Table 5. Compared with the intra-only structure
(i.e. without the feature connectivity between adjacent Med-
Adapters), the model with inter-stage achieves a consider-
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Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC Avg.

Intra-only 7.675 0.924 77.10 90.05 81.02 82.72
Add 7.896 1.144 75.79 88.99 79.00 81.26
Max 7.896 1.144 75.22 89.72 81.41 82.12
Concat 7.994 1.243 77.22 90.09 81.59 82.97

Table 5. Ablation study on inter-stage feature interaction. Swin-
UNet with Swin-T pre-trained on supervised ImageNet-1k.

Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC Avg.

α=2 10.064 3.313 76.89 90.14 81.92 82.99
α=4 7.994 1.243 77.22 90.09 81.59 82.97
α=6 7.489 0.738 77.06 90.28 82.71 83.35
α=8 7.271 0.520 76.94 89.62 80.74 82.44

Table 6. Ablation study on reduction ratio α. Swin-UNet with
Swin-T pre-trained on supervised ImageNet-1k.

Pre-trained
Weights Method Tuned

Params(M)
Inserted

Params(M)
Dice (%) ↑

ET WT TC Avg.

Supervised Full 100.849 - 66.19 84.72 73.92 74.94
Ours 17.853 2.846 68.27 87.22 81.63 79.04

CLIP Full 100.849 - 64.58 84.69 73.31 74.19
Ours 17.853 2.846 68.05 86.29 77.34 77.23

MAE Full 100.849 - 64.86 84.71 73.95 74.51
Ours 17.853 2.846 66.32 85.50 78.05 76.62

MoCo v3 Full 100.849 - 65.06 84.30 73.51 74.29
Ours 17.853 2.846 67.09 85.45 77.41 76.65

Table 7. Ablation study on different encoder pre-trained weights.

able performance gain with only 0.319M extra parameters
for feature alignment among adjacent stages, showing the
effectiveness of our inter-stage interaction. Unlike concate-
nation which maintains the feature representations of differ-
ent stages as much as possible, direct addition or taking the
maximum value (at each pixel) of neighboring feature maps
with diverse semantic levels would unintentionally degrade
the original feature representation, resulting in a sharp de-
crease in segmentation performance.

Reduction Ratio in Bottleneck Design. We analyze the
effect of different reduction ratios of the bottleneck struc-
ture in our Med-Adapter. Note that the reduction ratio α
here is a key factor that influences the tuned parameters in-
troduced by our Med-Adapter. Four diverse settings (i.e.
2, 4, 6, 8) of the reduction ratio α are selected. As shown
in Table 6, Med-Tuning achieves promising trade-off be-
tween segmentation accuracy and the tuned parameter costs
with α = 6. On this basis, higher α would cause inferior
model performance because of the deteriorated representa-
tion capability with limited tuned parameters, while lower
α would lead to a certain degree of information redundancy
and a sharp increase of tuned parameters, resulting in both
decreased segmentation accuracy and high training costs.
Encoder Pre-trained Weights. To explore the potential
of our Med-Tuning, we also investigate the effect of di-
verse encoder pre-trained weights taking ViT-B/16 as the
backbone. Since the pre-trained weights of ViT [15] are
relatively easy to acquire, supervised learning-based, multi-
modal learning based (i.e. CLIP [38]) and self-supervised
learning based (i.e. MAE [18], MoCo v3 [11]) pre-trained
weights are all utilized for a comprehensive comparison.

Method Tuned
Params(M)

Decoder
Params(M)

Dice (%) ↑
ET WT TC Avg.

UPerNet (Default) 19.562 15.095 68.27 87.22 81.63 79.04
U-Net 9.269 4.712 67.68 88.08 81.72 79.16
SETR-MLA 8.347 3.790 68.12 87.91 81.98 79.34
SETR-Naive 5.004 0.447 69.11 86.93 81.71 79.25
SETR-PUP 5.200 0.643 68.55 86.51 80.42 78.49

Table 8. Ablation study on decoder design. ViT-B/16 is pre-trained
on supervised ImageNet-1k.

As is presented in Table 7, given pre-trained weights ac-
quired by different approaches, our Med-Tuning boosts the
performance significantly with much fewer tuned parame-
ters compared with full finetuning. With only 17.70% of
the tuned parameters of full finetuning, our framework im-
proves the segmentation accuracy by a large margin (i.e.
Average Dice scores of 2% to 4%), suggesting the effec-
tiveness and the parameter-efficiency of our Med-Tuning.

Decoder Design. Here we explore the effect of different
decoder designs in our architecture. Although the backbone
is frozen and only the inserted Med-Adapters as well as the
decoder are updated during finetuning, the essentially tuned
model parameters introduced by the segmentation decoder
can not be reckoned as negligible. In other words, to pursue
an extremely PETL framework, the design of the employed
decoder should be sufficiently lightweight with strictly con-
trolled model parameters. Thus, various segmentation de-
coders with greatly varied model complexity are introduced
respectively for a thorough analysis. As shown in Table
8, ViT-B/16 with the SETR-MLA decoder reaches the best
trade-off between segmentation accuracy and tuned param-
eter costs, benefiting from the effective multi-scale feature
aggregation. Besides, taking the simplest SETR-Naive that
is composed of a convolution and an interpolation opera-
tion for upsampling as the decoder leads to the lowest tuned
parameters 5.004M while achieving promising segmenta-
tion performance with an average Dice score of 79.34%.
It can be seen from Table 8 that although the decoder size
dominantly decides the overall tuned parameters, it does not
show a direct impact on model performance.

5. Conclusion
We present to our knowledge the first study on explor-

ing the potential of PETL for medical volumetric segmenta-
tion task and propose a new framework named Med-Tuning
with high parameter efficiency. Taking advantage of both
spatial multi-scale feature and temporal correlations, our
framework achieves the trade-off between segmentation ac-
curacy and the number of tuned parameters. Extensive ex-
periments show that our method achieves promising per-
formance with greatly shrunk-tuned parameters on three
benchmark datasets compared to full finetuning and previ-
ous PETL SOTA methods.

Our approach provides a novel solution of PETL for the
practical application of medical volumetric segmentation,
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which inspires new research in this direction. To some ex-
tent, our framework can get rid of the dilemma that the
pre-trained weights on large-scale datasets cannot be ob-
tained in the area of medical image analysis and encourage
the community to consider shifting the research perspec-
tive from constructing large-scale medical image datasets
or pre-training methods to studying the PETL of pre-trained
models on relatively easily acquired natural images.
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