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Abstract

Metal-organic magnets (MOMs), modular magnetic materials where metal atoms

are connected by organic linkers, are promising candidates for next-generation quantum

technologies. MOMs readily form low-dimensional structures, and so are ideal systems

to realise physical examples of key quantum models, including the Haldane phase, where

a topological excitation gap occurs in integer-spin antiferromagnetic (AFM) chains.
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Thus far the Haldane phase has only been identified for S = 1, with S ≥ 2 still un-

realised because the larger spin imposes more stringent requirements on the magnetic

interactions. Here, we report the structure and magnetic properties of CrCl2(pym)

(pym=pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using X-ray and neu-

tron diffraction, bulk property measurements, density-functional theory calculations

and inelastic neutron spectroscopy (INS) that CrCl2(pym) consists of AFM CrCl2 spin

chains (J1 = −1.13(4) meV) which are weakly ferromagnetically coupled through bridg-

ing pym (J2 = 0.10(2) meV), with easy-axis anisotropy (D = −0.15(3) meV). We find

that although small compared to J1, these additional interactions are sufficient to pre-

vent observation of the Haldane phase in this material. Nevertheless, the proximity to

the Haldane phase together with the modularity of MOMs suggests that layered Cr(II)

MOMs are a promising family to search for the elusive S = 2 Haldane phase.

Introduction

Figure 1: Crystal structure of CrCl2(pym) viewed along the (a) c, (b) a and (c) b axes.
Cr–Cl bond lengths are labelled and H atoms are omitted for clarity. (d) ORTEP diagram
showing the coordination environment.

Metal-organic magnets (MOM) are assembled from metal nodes bridged by organic molec-

ular linkers into extended networks.1 This gives them a number of advantages over conven-

2



tional inorganic magnets: there is a much wider diversity of organic than atomic ligands;2

the modularity of their construction allows for tuning of interactions while retaining the

topology3 and their longer lengths facilitate magnetic low-dimensionality,4,5 and thus en-

hanced quantum fluctuations.6 Perhaps most excitingly, it has recently been demonstrated

that redox-active radical ligands can introduce into MOFs both high electronic conductiv-

ity (0.45 Scm−1)7 and strong magnetic interactions,8,9 despite the long-distances between

metal centres. This suggests that MOMs could form the basis for practical new quantum

technology.10–14

MOM spin chains are now well established as host materials for distinctively quantum

behaviour, from spin fractionalisation in Cu(C6H5COO)2 · 3H2O15 to the quantum sine-

Gordon physics of Cu(pym)(NO3)(H2O)2
16 and [Cu(pym)(H2O)4]SiF6 ·H2O.17 One of the

most striking quantum discoveries in MOMs was the measurement of the topological Haldane

gap in the antiferromagnetic S = 1 spin chain MOM Ni(C2H8N2) · 2NO2(ClO4)18–20 and

subsequent efforts have uncovered a number of other high-quality model systems.21–24 The

Haldane phase is yet to be experimentally realised for spins S > 1.

The difficulty of reaching the Haldane phase for S ≥ 2 is largely because the size of

the Haldane gap relative to the intrachain exchange, ∆/J1, decreases significantly from

∆/J1 = 0.41 for S = 1 to ∆/J1 = 0.087 for S = 2, making the gap both more sensitive to

the presence of single-ion anisotropy and non-Heisenberg exchange interactions, and harder

to detect when present.25 These challenges have meant that although AFM S = 2 spin chains

which could be candidates to host the Haldane phase have been identified, the S = 2 gap has

not yet been observed.26–30 The combination of modularity and low-dimensionality of MOMs

means they are an ideal platform to search for the S = 2 Haldane phases. However, the most

synthetically accessible S = 2 transition metal ion is Fe2+, which typically possesses large

single ion anisotropy due to its partially quenched 5T2g ground state, and other S = 2 ions,

Mn3+ and Cr2+, are usually sensitive to reduction or oxidation in ambient conditions. As

a result, the chemistry of MOMs which could host S = 2 Haldane phases is comparatively
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underexplored, and their quantum states thus unrealised.

Here we report CrCl2(pym), a new 2D layered magnetic coordination polymer consisting

of CrCl2 chains bridged by pym ligands with a structure analogous to that of the other tran-

sition metal monopyrimidine chlorides (MCl2(pym), M = Mn, Fe, Co, Ni, Cu),31 the Mn,

Co and Cu analogues of which are reported to possess antiferromagnetic coupling without

order down to 1.8 K.32 We first describe its synthesis and structural characterisation using

X-ray diffraction, where the presence of a pronounced Jahn-Teller (JT) distortion confirms

the presence of Cr2+. We then go on to show using comprehensive magnetic characterisa-

tion, including bulk magnetisation, heat capacity measurements, powder neutron diffraction

(PND) and powder inelastic neutron scattering (INS) measurements of fully protonated

samples, that CrCl2(pym) orders into a Néel ground state at TN = 20.0(3) K, with AFM

ordering along the CrCl2 chain, FM coupling of the chains through pym and interlayer FM

correlations. Through detailed analysis of the neutron scattering data, in combination with

density-functional theory (DFT) calculations, we quantitatively determine the size of the

key magnetic interactions, which suggest that CrCl2(pym) is a well separated S = 2 AFM

with near isotropic single ion properties. We therefore suggest that through careful ligand

choice this family of MOMs offers a potential route to realise the Haldane phase for S = 2.

Results

Synthesis and structure

We synthesised CrCl2(pym) by reacting CrCl2 with pyrimidine. We found that the monopy-

rimidine CrCl2(pym) forms in a wide variety of solvents and stoichiometries, and even via

neat combination and with excess ligand, although bispyrimidine analogues are known for

other transition metals.33–35 Single crystals suitable for X-ray diffraction measurements were

grown through vapour diffusion. We solved the structure from single-crystal X-ray diffrac-

tion (SCXRD) data and found that CrCl2(pym) crystallises in the monoclinic space group
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P21/m with two formula units in the unit cell (Tab. S1). The Cr2+ are coordinated by

four Cl– ligands and two N atoms from the pyrimidine ligands, which forms a distorted

CrCl4N2 octahedron (Fig. 1c & d). The chromium octahedra edge-share through the Cl–

ligands along the crystallographic a direction, and these chains are connected by pyrimi-

dine ligands along the crystallographic b direction with an alternating orientation to form

corrugated layers (Fig. 1a). These layers stack in the crystallographic c direction through

van der Waals interactions (Fig. 1b). The Cr2+ ion has a large JT distortion, with a long

Cr−Cl bond length of dCr−Cl = 2.761(5) Å, comparable to the complex Cr2+Cl2(pyridine)4

dCr−Cl = 2.803(1) Å,36 confirming the Cr2+ oxidation state. Powder X-ray diffraction per-

formed after exposure to air for one month show the lattice distortion resulting from this

JT distortion is retained, demonstrating that the bulk of the sample maintains the Cr2+

oxidation state after exposure to air (Fig. S4).

Magnetic susceptibility
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Figure 2: Magnetic susceptibility, χ, measurements of CrCl2(pym). (a) χ(T ) measured
in zero-field cooled (ZFC) and field cooled (FC) conditions from 2–300 K. (b) χ(T ) data
highlighted for 2–30 K. (c) χT (T ) in ZFC and FC conditions 2–300 K, with Curie-Weiss fit
carried out over 300 > T > 150 K. Dashed line shows the S = 2 spin-only limit. (d) ZFC
dχ
dT

(T ) over 2–300 K. Inset: ZFC dχ
dT

(T ) over 2–35 K.
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As we expected CrCl2(pym) to be an S = 2 2D magnet, we measured its temperature

dependent magnetic susceptibility, χ(T ). The sample was measured under field cooled (FC)

and zero-field cooled (ZFC) conditions in a 0.01 T dc field from 2 K to 300 K. These data

show a broad peak at 20-25 K characteristic of short-range ordering and low-dimensional

magnetism (Fig. 2a). The dχ
dT

(T ) data show a discontinuity at 20 K, indicating a phase

transition from a disordered magnetic state to a long-range ordered AFM state (Fig. 2d).

Fitting χ−1(T ) data to the Curie-Weiss law gave a Curie constant, C = 3.08(1) emu K mol−1,

in good agreement with the presence of high-spin Cr2+ (C = 3 emu K mol−1) (Fig. 2c &

d). The Curie-Weiss temperature is significant and negative, θ = −54.1(5) K, indicating

net antiferromagnetic interactions (Fig. 2d), and isothermal magnetisation measurements

carried out at 2 K show that saturation is not reached at fields of 5 T (Fig. S7). While

M(H) is linear in µ0H > 1 T, there is a small sigmoid feature at µ0H < 1 T consistent with

minor paramagnetic impurities.

The rise in χ(T ) below T = 10 K indicates the presence of small quantities of param-

agnetic spins, which we determined to be 1.1(1) spin % from fitting of the Curie-like tail

(Fig. S13).37 This Curie-like tail may be caused free-spins at chain-ends or Cr3+ formed

due to surface oxidation (Fig. 2b). Indeed, measurement of the magnetic susceptibility of

CrCl2(pym) after air exposure showed a large increase in the paramagnetic contribution,

15.0(2) spin % (Fig. S6), and X-ray photoelectron spectroscopy (XPS) of this air-exposed

sample primarily detected oxidised Cr (Fig. S8), with Cr3+, Cr6+ and metallic Cr present,

as well as O 1s peaks consistent with the formation of Cr(OH)3.38

Heat capacity

The molar heat capacity, Cp(T ), of CrCl2(pym) was measured from 2–60 K. We found a peak

in Cp(T ) occurred at 20.0(3) K (Fig. 3a), consistent with the magnetic phase transition

observed in the magnetic susceptibility data (Fig. 2a). We obtained an estimate of the

entropy of magnetic ordering by integrating CP/T (T ) after subtraction of a linear background
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Figure 3: (a) Heat capacity as a function of temperature, Cp(T ), with the non-magnetic
background approximated by a linear fit over the region 10 to 30 K (dashed). (b) Cp/T (T ),
with non-magnetic background (dashed). Inset: entropy near TN.

(10− 15 K and 27− 30 K)(Fig. 3b), to account for phononic contributions. We found that

the measured value of magnetic entropy (Sexp. = 12.7(4) Jmol−1K−1) is slightly reduced

from the expected value (Scalc. = 13.4 Jmol−1K−1). The small features present in the data

between 30–40 K are due to instrumental error.

Neutron Diffraction

Our bulk measurements thus strongly suggested the presence of long-range magnetic order.

To determine the nature of this magnetic ground state we carried out PND using instrument

D1B at the ILL on a 5 g non-deuterated sample of CrCl2(pym). We measured the neutron

diffraction pattern at two temperatures: T = 1.5 K below TN, and T = 30 K above. We

isolated the magnetic scattering from instrumental background and nuclear scattering con-

tributions by subtracting the high temperature dataset from the low temperature dataset

(Fig. 4c), which allowed us to identify the magnetic Bragg peaks. We were able to index

these reflections with a propagation vector k = 1
2
00 and using symmetry-mode analysis in

the ISODISTORT software suite39 we identified there were two possible irreducible repre-

sentations (irreps), mY −1 and mY −2 in Miller and Love’s notation.40 After calibration of the

nuclear scale factor through Rietveld refinement of nuclear structure against the high tem-

perature dataset, we carried out Rietveld refinement of the magnetic structure using each

irrep against the temperature subtracted dataset. We found for both nuclear and magnetic
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Figure 4: (a) The crystal structure of CrCl2(pym), nuclear axes shown. (b) The magnetic
structure, highlighting the three most important exchange interactions, Jn, magnetic axes
shown. (c) Rietveld refinement of temperature subtracted neutron scattering data. Data
between Q = 1.9 Å−1 and 2.1 Å−1 were excluded from the refinement due to incomplete
subtraction of nuclear Bragg peaks due to thermal expansion.

refinement that a hkl-dependent peak broadening term was necessary to account for the

variation in measured peak widths. This showed that only the mY −1 irrep was consistent

with experimental data (Fig. 4c). The mY −1 irrep lowers the symmetry of the structure

to Pc21/c with the magnetic unit cell relating to the nuclear cell as follows: amag. = cnuc.,

bmag. = bnuc. and cmag. = 2anuc. (Fig. 4a & b).

The magnetic structure derived from this refinement is a collinear structure consisting

of antiferromagnetically correlated CrCl2 spin chains ferromagnetically correlated through

the pym ligands, with interlayer ferromagnetic correlations (Fig. 4b). The refined magnetic

moment was Cr was determined to be M0 = 2.61(7)µB, significantly less than the spin-only

value of M = gS = 4µB.
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The magnetic moments in our model lie within the ac-plane, however components along

the b-direction would be permitted by symmetry. The presence of a component along b

would result in intensity at the 011mag. peak position (Q = 1.00 Å−1) which is not seen

in our data and so any non-collinearity must be small, θ < 8◦. The background of this

subtracted I1.5K − I30K dataset contains a broad negative feature characteristic of magnetic

diffuse scattering, which could be modelled by a broad Lorentzian peak centred at the 101mag.

peak position, with an isotropic correlation length at 30 K λ = 2.8(2) Å.

Inelastic neutron scattering

Figure 5: Time-of-flight powder INS spectra of CrCl2(pym) with Ei = 12.14 meV measured
at (a) 1.7 K and (c) 25 K. (b) LSWT calculated scattering intensity fitted to the 1.7 K
data, with parameters J1 = −1.13(4), J2 = 0.10(2), J3 = 0.01(1) and D = −0.11(1) meV.
Hamiltonian described in Eqn. 1.

To measure the parameters of the magnetic Hamiltonian and search for signatures of low-

dimensional magnetism, we collected INS spectra on the same powder sample of CrCl2(pym)

at 1.7 and 25 K using the LET spectrometer at ISIS, using rep-rate multiplication to measure

at multiple Ei simultaneously (Ei = 12.14, 3.70, 1.77 meV). The spectra collected at 1.7 K

show a clear excitation centred at ∆E = 4.1(2) meV with an energy gap of 2.2(1) meV (Fig.

5a) despite the presence of an elevated background due to the incoherent 1H scattering.

The intensity of this feature rapidly falls with increasing Q, until it is masked by phonons,
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indicating this excitation is magnetic in origin. We were able to quantitatively fit these data

using linear spin wave theory (LSWT) (Fig. 5b) as implemented by the SpinW software

package,41 using the following magnetic Hamiltonian,

H =
∑
〈ij〉

−JijSi · Sj +
∑
i

D(Szi )2, (1)

comprising Heisenberg exchange, Jij, for the three nearest neighbours (i.e. along the

CrCl2 through the pym ligand and between layers) and a single ion anisotropy, D (Fig.

4b). We began by estimating the approximate values for each of J1, J2, J3 and D using

our bulk magnetic measurements and extrapolating from analogous compounds.26 These

initial parameters were then optimised using least square requirements of the calculated

spectrum, including a refined multiplicative scale factor and a background linear in both

Q and ∆E, against the experiment data which gave J1 = −1.13(4) meV, J2 = 0.10(2)

meV, 0 < J3 < 0.01(1) meV and D = −0.15(3) meV. The value of D was corrected for

kinematical consistency42, as by default SpinW uses the inconsistent D′ = D[1− 1
2S

] = 3
4
D.

A grid search was undertaken to confirm this as a unique solution. Our experimental spectra

were consistent with a negligible value for J3, however the ground state determined by

PND indicates that J3 must be ferromagnetic. The ratio of J1/J2 = 11(2) indicates that

the magnetic interactions in this materials are primarily one-dimensional. We therefore

decided to investigate the spectrum of CrCl2(pym) in the short-range ordered regime to

search for coherent excitations (Fig. 5c). Energy cuts, integrated over momentum transfer,

0.76 < Q < 1.84 Å−1, showed no clear evidence of a gap in the paramagnetic regime, for

both Ei = 12.14 meV and Ei = 3.70 meV, suggesting this material is not within the Haldane

phase (Fig. S3b), although the comparatively high temperature compared to the expected

gap size, T/∆ = 25 will make this challenging.

10



Figure 6: Electronic band structure and projected density of states of the 2× 2× 1 supercell
using CASTEP and the PBE+U+MBD* (Ueff = 3 eV) functional. The energy zero has been
set at the Fermi energy and is shown by the dashed line. The projected density of states has
been decomposed by element.

Density-functional theory

To understand the origin of the observed low-dimensional interactions we carried out collinear

spin-polarized plane-wave density-functional theory (DFT) calculations, by exploring the

electronic structure of the DFT ground-state spin configuration and calculating the exchange

energies using the broken symmetry approach.43 We first optimised the geometry of the ex-

perimental structure using the PBE functional along with a many-body semi-empirical dis-

persion correction (MBD*)44 to describe the weak van der Waals forces between the layers.45

We found that this structure was both too dense, with a unit-cell volume of 297.68 Å3, 4.8%

smaller than experimental value of 312.75 Å3, and lacked the JT distortion characteristic of

Cr(II). We therefore included an effective Coulomb on-site energy, Ueff = U − J where U

is the on-site repulsion and J the exchange energy, to account for the overly delocalised Cr

d-states. A range of values for Ueff have been previously explored for Cr, from Ueff = 2.1 eV

to Ueff = 3.5 eV.46,47 We found that Ueff = 3 eV was able to accurately capture the physics of

this system, and produced a structure with both a JT distortion and, as a bonus, a volume
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within +0.2% of experiment.

Exchange interactions were calculated using a 2× 2× 1 supercell of the optimised struc-

ture (i.e. containing eight distinct Cr atoms) decorated with eight distinct magnetic or-

derings. Single point energy calculations were then carried out on each configurations,

and these DFT+U total energies were then fitted to the Hamiltonian described in Eqn.

1 with D = 0, i.e. the Heisenberg limit. We carried out these calculations using a se-

ries of values of Ueff to ensure consistency of behaviour (Fig. S10). For our optimised

value of Ueff = 3 eV, we obtained a self-consistent set of superexchange interactions of

J1 = −2.53(5) meV, J2 = 0.30(5) meV, J3 = −0.09(5) meV. To test the robustness of

our DFT+U calculations, we performed hybrid calculations using fraction of Fock exchange

as implemented in the HSE functional48–50 while maintaining a Ueff = 3 eV. HSE calcula-

tions are computationally expensive due to the calculation of Fock exchange and require

the use of norm-conserving pseudopotentials within CASTEP, which limited the sampling

of the Brillouin zone and our ability to explore geometry optimisations. Nevertheless, we

found that using the HSE functional comparable exchange interactions J1 = −2.39(1) meV,

J2 = 0.46(1) meV, J3 = −0.15(1) meV. These energies are comparable in magnitude to those

found experimentally for CrCl2(pym), but are notably larger, likely due to the unphysically

large degree of delocalisation.

Our calculations not only allow us to predict the interaction energies, but also to explore

the electronic structure of this material (Fig. 6). The predicted thermal band gap is ap-

proximately 1.2 eV, and the projection of the DOS onto local orbitals shows that the top of

the valence band is broadly Cr and Cl based, whilst the organic linker pym states are the

bottom of the conduction band. This can also be observed in the frontier orbitals, where

the HOMO resembles the Cr dz2 orbital antibonding with Cl p orbitals and the LUMO is

an antibonding π molecular orbital with a single additional node, suggesting that the lowest

lying excitations will be of MLCT character. The spin density is predominantly around the

Cr, however, there is significant density on both Cl and pym ligands (Fig. 7). Notably, the
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spin density on pym appears to be primarily of π character, and alternates in sign round the

ring (Fig. 7b).

Figure 7: Spin density isosurfaces (0.015 e Å−3) highlighting the (a) the Cr–Cl chain and
(b) the Cr–pym chain, derived from our CASTEP PBE+U+MBD* (Ueff = 3 eV) and c2x
calculations.51

Discussion

Metal N-heterocycle dihalides are a diverse family of MOMs and our study of CrCl2(pym)

provides one of the most in-depth investigations of the magnetic properties of these materials.

There are two common compositions: MX2L2 and MX2L. The monoligand analogues usually

contain linear MX2 chains, and therefore tend to show primarily 1D magnetic behaviour,

e.g. NiCl2(pyrazine) consists of ferromagnetic NiCl2 chains antiferromagnetically coupled

with TN = 10.2 K,3 CuCl2(pyrazine) is also a very good example of a 1D magnet with no

order reported down to 1.8 K, but the strongest interaction in fact occurs through Cu—

pyrazine—Cu bridges (J = −28 K), due to the JT distortion suppressing exchange in the

CuCl2 chain.52 Preliminary studies of the magnetism of pyrimidine analogues, MCl2(pym)

M = Mn, Co, Cu, also detect no magnetic order down to 1.8 K although there are weak

AFM interactions present.32 The strong interactions, particularly occurring through the
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CrCl2 chain, and magnetic order found in CrCl2(pym) are therefore in striking contrast.

Additionally, the ferromagnetic exchange we observe occuring through the pym ligand is

relatively uncommon for molecular ligands, for example, antiferromagnetic interactions are

the norm for pyrazine-bridged MOMs.53–59 This ferromagnetic exchange has been previously

observed in pym-bridged MOMs, e.g. M(NCS)2(pym)2 (M =Ni and Co),60–62 and has been

rationalised by a three-atom π-pathway. Our DFT calculations give further credence to the

importance of this pathway.

The bispyrimidine metal chlorides, MCl2(pym)2 M = Fe, Co, Ni and MBr2(pym)2 M

= Co, unlike most materials in this family adopt 3D chiral diamondoid structures.33–35

MCl2(pym) all magnetically order with canted AFM structures, TN = 7.4 K, 4.7 K and 16.3

K for M = Fe, Co and Ni respectively, likely arising from the interplay between the superex-

change interactions and the significant single-ion anisotropy, the principal axes of which

are non-collinear.33 Bulk susceptibility studies have shown enhancement of TN at moderate

pressure (∆TN/TN = 15% at 0.7 GPa),35 which suggests that high pressure investigations of

Cr-based MOMs may also uncover pressure-switchable magnetic functionality.63

The presence of a JT distortion is strong evidence of Cr2+, which stands in contrast to

the related CrCl2(pyrazine)2, in which Cr2+ spontaneously reduces the ligated pyrazine to

a radical anion, and thereby dramatically enhancing its conductivity and magnetic superex-

change.8 The sensitivity of this metal-ligand redox to the coordination sphere is shown by

Cr(OSO2CH3)2(pyrazine)2, in which Cr remains as Cr2+ with a JT distortion.56 Studies of

molecular complexes have shown this non-innocent behaviour is favoured by a strong ligand-

field environment and a low energy ligand LUMO,64 and is consistent with the observed

innocence of CrCl2(pym), which has both weaker ligand field than CrCl2(pyz)2 and a higher

energy ligand LUMO (pyrazine, Ered = +1.10 V and pym Ered = +0.84 V vs. Li/Li+).65

Our data clearly show that CrCl2(pym) has a conventional Néel AFM ground state,

TN = 20.0(3) K, but also that there is significant magnetic low-dimensionality above TN.

The frustration parameter, f = |θCW|
TN

= 2.7, derived from bulk property measurements
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hints at suppression of magnetic order. As the magnetic lattice does not show an obvi-

ous mechanism for geometric frustration, this is likely due to a combination of single-ion

anisotropy and low-dimensionality arising from the large differences in strength of superex-

change in different crystallographic directions.

Additionally, the presence of magnetic diffuse scattering at 30 K not present at 1.5 K,

indicates the presence of short-range magnetic correlations retained above TN. Finally, our

analysis of the INS spectra show that the AFM superexchange through the Cr–Cl–Cr bridge

is an order of magnitude larger than all other superexchange interactions, |J1
J2
| = 11(2).

The importance of low-dimensionality can also been seen in the reduction in the apparent

size of the Cr2+ ordered moment determined via neutron diffraction. The low-dimensionality

of the structure can reduce the refined moment through disorder, both static short-chain de-

fects and stacking faults66,67 and dynamic zero-point fluctuations68. Additionally, as is com-

mon in many metal organic magnets,69 there is appreciable delocalisation of the spin-density

onto the ligands, which Mulliken analysis of the DFT-derived electron density suggests is

approximately 10%. These factors in combination explain the substantial reduction in the

ordered moment (approximately one-third) from that expected moment size, though it is

challenging to evaluate their relative contributions.

Despite this low-dimensionality, our data indicate that like other S = 2 candidate AFM

chains, CrCl2(pym) does not show clear Haldane physics. The presence of long range order

at TN/J1 = 1.5 hinders observations at low temperatures and the non-negligible single ion

anisotropy (D = −0.15(3) meV, D/J1 = 0.13(2)) is sufficient to suppress the Haldane phase,

for which the critical value is predicted to be D/J1 = 0.04.25 CrCl2(pym) is therefore com-

parable to the other identified candidate S = 2 spin chains in both of these parameters,28–30

including CrCl2,26 MnCl3(bipy)27,70 and CsCrCl3,71 but none have shown clear evidence of

a gapped inelastic neutron spectrum in the disordered phase.

The compound CrCl2(pym) is most similar to, both structurally and magnetically, is

CrCl2,26 which also has quasi-1D antiferromagnetic CrCl2 chains formed from edge-sharing
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octahedra (J1 = −1.13(13) meV, D′ = −0.11(2) meV). However, closer examination reveals

significant structural differences that make these magnetic similarities quite surprising. In

CrCl2(pym) the JT distortion means every superexchange pathway within the CrCl2 spin

chain passes through a significantly lengthened bond, whereas in CrCl2 the equivalent JT

distortion lies out of the spin-chain plane and so all Cr−Cl bonds in the chain are short.

Superexchange through a JT-lengthened pathway is ordinarily weak, as is indeed found for

the direction perpendicular to the CrCl2 spin chain in inorganic CrCl2, with an order of

magntiude weaker exchange J2 = −0.12(7) meV.

A second distinction between these two compounds is the potential for tuning the in-

teractions through substitution of the ligands. Replacing pyrimidine by a larger bridging

ligand may reduce inter-chain exchange, suppressing long-range order and allowing access

to the paramagnetic S = 2 quasi-1D AFM at lower temperatures. For example, in NiCl2L

substituting pyrazine for 1,2-bis(4-pyridyl)ethane reduces TN from 10.2 K to 5.6 K.3 Equally,

optimisation of the octahedral coordination environment can minimise D, for example in a

family of closely related Ni2+ compounds, matching of the ligand field strengths reduces

the size of the easy-plane anisotropy by a factor of 4.72 Our measurements of the INS data

already suggest that the interlayer interactions are not significant, but delamination of these

van der Waals sheets, as demonstrated for other magnetic metal-organic nanosheets,73 may

provide an alternative route to better magnetic isolation. These results suggest therefore that

bridging CrCl2 spin chains with organic ligands may provide promising future candidates for

S = 2 Haldane chains.

Conclusion

We have reported the crystal structure, bulk magnetic properties, magnetic ground state

and magnetic excitations of a new coordination polymer, CrCl2(pym). We have shown that

the oxidation state of chromium in this compound is Cr2+, remaining S = 2, unlike related
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CrCl2 derived MOMs which undergo redox to form triplet Cr3+-radical ligand pairs.8,64

CrCl2(pym) is found to be a S = 2 quasi-one-dimensional antiferromagnet, with an order

of magnitude separation in energy scales of superexchange, |J1
J2
| = 11(2). However we did

not find clear evidence of the Haldane gap in the disordered phase, suggesting the small

J2 and D are sufficient in this compound to either suppress the S = 2 Haldane phase or

mask it through the stabilisation of long range order. The proximity of CrCl2(pym) to the

Haldane region of the phase diagram, and the modularity inherent to MOMs suggest that

optimising the magnetic properties of these systems, including both superexchange3 and

single-ion-anisotropy,72 is a new and promising route to the S = 2 Haldane phase.

Experimental

Synthesis

Synthesis and handling of CrCl2(pym) was performed in a dry Ar or N2 atmosphere using

a MBraun LABstar glovebox or Schlenk line. The reaction of CrCl2 (200 mg, 1.63 mmol;

Fisher Scientific, 99.9%) and pyrimidine (500 mg, 6.24 mmol; Sigma-Aldrich, ≥ 98.0%) in 50

mL methanol (MeOH) rapidly precipitates an orange-brown microcrystalline powder. The

CrCl2(pym) product was then dried in vacuo giving a ca. 90% total yield. The measured

(calculated) elemental composition was: C, 23.45% (23.67%); H, 1.99% (2.40%); N, 12.94%

(13.80%). This procedure, with quantities scaled up (CrCl2, 3.0 g; pyrimidine, 4.0 g; MeOH,

300 mL), was used to synthesise the sample used for neutron-scattering measurements. Crys-

tals of sufficient size for X-ray diffraction studies (127× 46× 26 µm) were grown by vapour

diffusion of pyrimidine (100 mg, 1.25 mmol) into a concentrated solution of CrCl2 in 1 mL

MeOH (10 mg, 0.08 mmol).
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Powder X-ray diffraction

PXRD data were collected using a PANalytical X’Pert Pro diffractometer equipped with

monochromated Cu Kα1 radiation (λ = 1.5406 Å). The tube voltage and current were 40

kV and 40 mA, respectively. Scans were performed from 2◦ to 60◦ on a zero background

silicon crystal plate. Peak fitting, Pawley and Rietveld refinement were performed using

Topas Academic v6.74

Single crystal X-ray diffraction

A diffraction-quality single crystal of CrCl2(pym) was mounted on a polymer-tipped MiTe-

Gen MicroMountTM using Fomblin (YR-1800 perfluoropolyether oil). The sample was

cooled rapidly to 120 K in a stream of cold N2 gas, using a Oxford Cryosystems open flow

cryostat. Diffraction data were collected on an Oxford Diffraction GV1000 (AtlasS2 CCD

area detector, mirror-monochromated Cu-Kα radiation source; λ = 1.54184 Å, ω scans).

Cell parameters were refined from the observed positions of all strong reflections and ab-

sorption corrections were applied using a Gaussian numerical method with beam profile

correction (CrysAlisPro). The structure was solved and refined in Olex275 using SHELXT76

and SHELXL77, respectively.

Magnetic susceptibility

Magnetic property measurements were carried out on a Quantum Design MPMS super-

conducting quantum interference device (SQUID). A polycrystalline sample of CrCl2(pym)

(26.6 mg) was immobilised in eicosane (44.5 mg) and sealed in a low-paramagnetic-impurity

borosilicate glass ampoule under vacuum. Magnetic susceptibility measurements were per-

formed under field cooled (FC) and zero-field cooled (ZFC) conditions in a 0.01 T dc field

from 2 K to 300 K. Isothermal magnetisation measurements were performed at 2 K from

0 T to 5 T to –5 T to 0 T. Data were corrected for the diamagnetism of the sample using
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Pascal’s constants.78

Heat capacity

Heat-capacity measurements were carried out on a 4.2 mg pellet of CrCl2(pym) and silver

powder (50 wt. %), using a Quantum Design Dynacool Physical Property Measurement

system (PPMS), between 2 and 60 K. Apiezon N grease was used to ensure good thermal

contact. Contributions to the heat capacity due to Apiezon N were measuerd separately and

subtracted, contributions due to silver were subtracted using tabulated values.79

Powder neutron diffraction

PND measurements were carried out on the D1B neutron diffractometer at Institut Laue-

Langevin, Grenoble, France. Measurements were collected at 1.5 K and 30 K with λ = 2.52

Å between 0.77◦ and 128.67◦ with steps of 0.1◦. The nuclear structure determined from single

crystal X-ray diffraction was Rietveld refined against neutron diffraction data to evaluate

phase purity. Due to the low intensity of magnetic reflections, the magnetic structure was

determined by refinement against data from which background and nuclear Bragg peaks were

removed by subtraction of data collected at 30 K from those collected at 1.5 K. The magnetic

Bragg peaks were indexed to determine the magnetic propagation vector and then the allowed

magnetic irreducible representations were determined using symmetry-mode analysis on the

ISODISTORT software.39 Using the scale factor determined from Rietveld refinement of

the nuclear structure against data at 30 K, and peak parameters determined from Pawley

refinement of the nuclear structure against data at 30 K, the direction and magnitude of the

ordered moment for the subtracted dataset were refined using TOPAS-ACADEMIC 6.0.74
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Inelastic neutron scattering

Inelastic neutron scattering (INS) measurements were performed on the LET time-of-flight

direct geometry spectrometer at ISIS.80 The sample (4 g) was contained in a thin aluminum

can of diameter 15 mm and height 45 mm and cooled in a helium cryostat. The data

were collected at 1.7 K and 25 K, for 10 h and 7 h respectively, with Ei = 12.14 meV

using the rep-rate multiplication method.81,82 The data were reduced using the Mantid-Plot

software package.83 The raw data were corrected for detector efficiency and time independent

background following standard procedures.84

Density-functional theory

Plane-wave density-functional theory calculations were performed using version 19.1 of the

CASTEP code.85 The Brillouin zone was integrated using a Monkhorst-Pack grid of k-points,

finer than 2π × 0.05 Å−1 spacing.86 A Gaussian smearing scheme with a smearing width of

0.20 eV was used during the electronic minimisation process. Vanderbilt ultrasoft pseudo-

potentials were used for computational efficiency (Tab. S3).87 The basis set included plane-

waves up to an associated kinetic energy of 1100 eV. Geometry optimisations converged until

resultant forces were less than 0.05 eV/Å. The OptaDOS post-processing code was used to

integrate individual Kohn-Sham eigenvalues into an electronic density of states,88 and the

Matador high-throughput environment was used to obtain electronic band structure and

density of states plots.89

Supporting Information

Information on single-crystal and powder X-ray diffraction, additional inelastic neutron scat-

tering data, powder X-ray and neutron diffraction data, isothermal magnetisation measure-

ments, magnetic susceptibility analysis, X-ray photoelectron spectroscopy, transmission elec-

tron micrographs and additional details of DFT calculations (PDF).
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Additional research data for this Article may be accessed at no charge and under CC-BY

license at the University of Nottingham Research Data Management Repository https://doi.org/10.17639/nott.7257.

Inelastic neutron scattering data measured at ISIS Neutron and Muon Source is available

at https://doi.org/10.5286/ISIS.E.RB2090119.

CCDC 2213061 contains the supplementary crystallographic data for this paper. These

data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by email-

ing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data

Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: + 44 1223 336033.
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