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Abstract

Schmidt characterised the class of rayless graphs by an

ordinal rank function, which makes it possible to prove

statements about rayless graphs by transfinite induc-

tion. Halin asked whether Schmidt's rank function can

be generalised to characterise other important classes

of graphs. In this paper, we address Halin's question:

we characterise an important class of graphs by an

ordinal function. Another largely open problem raised

by Halin asks for a characterisation of the class of

graphs with an end‐faithful spanning tree. A well‐
studied subclass is formed by the graphs with a normal

spanning tree. We determine a larger subclass, the

class of normally traceable graphs, which consists of

the connected graphs with a rayless tree‐decomposition

into normally spanned parts. Investigating the class of

normally traceable graphs further we prove that, for

every normally traceable graph, having a rayless

spanning tree is equivalent to all its ends being domi-

nated. Our proofs rely on a characterisation of the class

of normally traceable graphs by an ordinal rank func-

tion that we provide.
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1 | INTRODUCTION

Schmidt [6,13] characterised the class of rayless graphs by an ordinal rank function, which makes
it possible to prove statements about rayless graphs by transfinite induction. For example, Bruhn,
Diestel, Georgakopoulos and Sprüssel [1,6] proved the unfriendly partition conjecture for the class
of rayless graphs in this way. At the turn of the millennium, Halin [9] asked in his legacy
collection of problems whether Schmidt's rank can be generalised to characterise other important
classes of graphs besides the class of rayless graphs. In this paper, we address Halin's question: we
characterise an important class of graphs by an ordinal rank function.

Our first main result addresses another largely open problem raised by Halin. Call a
spanning tree T of a graph G end‐faithful if the natural map φ T G: Ω( ) Ω( )→ satisfying
ω φ ω( )⊆ is bijective. Here, TΩ( ) and GΩ( ) denote the set of ends of T and of G, respectively.
Halin [8] conjectured that every connected graph has an end‐faithful spanning tree. However,
Seymour and Thomas [14] and Thomassen [16] constructed uncountable counterexamples; for
instance, there exists a connected graph that has precisely one end but all whose spanning trees
must contain a subdivision of Tℵ1

(recall that Tκ denotes the κ‐branching tree, for a cardinal κ).
Ever since, it has been an open problem to characterise the class of graphs that admit an
end‐faithful spanning tree.

Normal spanning trees are important examples of end‐faithful spanning trees. Given a graphG,
a rooted treeT G⊆ is normal inG if the endvertices of everyT–T path inG are comparable in the
tree‐order ofT , cf. [6]. Call a setU of vertices of a graphG normally spanned inG ifU is contained
in a treeT G⊆ that is normal inG. The graphG is normally spanned ifV G( ) is normally spanned
in G, that is, if G has a normal spanning tree. Thus, being normally spanned is a first sufficient
condition for the existence of an end‐faithful spanning tree, and the normally spanned graphs are
well understood: they are characterised by Jung's Theorem 2.4, for example.

A second existence result for end‐faithful spanning trees is due to Polat [12] and directly
addresses the counterexamples by Seymour and Thomas and by Thomassen: every connected
graph that does not contain a subdivision of Tℵ1

has an end‐faithful spanning tree.
As our first main result, we determine a new subclass of the class of graphs with an

end‐faithful spanning tree. Call a connected graph G normally traceable if it has a rayless
tree‐decomposition into parts that are normally spanned in G. For the definition of
tree‐decompositions see [6].

Theorem 1. Every normally traceable graph has an end‐faithful spanning tree.

Our theorem easily extends the two known results regarding sufficient conditions for the
existence of end‐faithful spanning trees: On the one hand, every normally spanned graph has a
trivial tree‐decomposition into one normally spanned part. On the other hand, every connected
graph without a subdivision of Tℵ1

has a rayless tree‐decomposition into countable parts by a
result of Seymour and Thomas [15], Theorem 3.2, and countable vertex sets are normally
spanned by Jung's Theorem 2.4.

In both cases, the extension is proper: The ℵ1‐branching trees with tops are the graphs
obtained from the rooted Tℵ1

by selecting uncountably many rooted rays and adding for every
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selected ray R a new vertex, its top, and joining it to infinitely many vertices of R [7]. Every Tℵ1

with tops has a star‐decomposition into normally spanned parts where Tℵ1
forms the central

part and each top plus its neighbours forms a leaf's part. However, not everyTℵ1
with tops has a

normal spanning tree [7,11], and every Tℵ1
with tops contains Tℵ1

as a subgraph.
As our second main result, we extend two results on rayless spanning trees. Recall that a

vertex v of a graph G dominates a ray R G⊆ if there is an infinite v–R fan in G. An end of G is
dominated if one (equivalently: each) of its rays is dominated, see [6]. For a connected graphG,
having a rayless spanning tree is equivalent to all the ends of G being dominated if G is
normally spanned [4] or ifG does not contain a subdivision of Tℵ1

[12]. Our second main result
extends these results, and any Tℵ1

with all tops witnesses that this extension is proper.

Theorem 2. For every normally traceable graph G, having a rayless spanning tree is
equivalent to all the ends of G being dominated.

Finally, as our third main result we characterise the class of normally traceable graphs by an
ordinal rank function that we call the normal rank:

Theorem 3. For every graph G the following assertions are equivalent:

(i) G is normally traceable;
(ii) G has a normal rank.

We use this in the proofs of all our results on normally traceable graphs.
This paper is organised as follows. Section 2 provides the tools and terminology that we use

throughout this paper. In Section 3 we show how ideals can be used to define ordinal rank
functions, and we structurally characterise the arising classes of graphs. Then, in Section 4 we
introduce the normal rank and prove Theorem 3. We prove Theorem 1 in Section 5 and
we prove Theorem 2 in Section 6.

2 | TOOLS AND TERMINOLOGY

Any graph‐theoretic notation not explained here can be found in Diestel's textbook [6].
Recall that a comb is the union of a ray R (the comb's spine) with infinitely many disjoint

finite paths, possibly trivial, that have precisely their first vertex on R. The last vertices of those
paths are the teeth of this comb. Given a vertex setU , a comb attached toU is a comb with all its
teeth in U , and a star attached to U is a subdivided infinite star with all its leaves in U .

Lemma 2.1 (Star‐Comb Lemma [6, 8.2.2]). Let G be any connected graph and let
U V G( )⊆ be infinite. ThenG contains either a comb attached toU or a star attached toU .

A ray is a one‐way infinite path. An end of a graph G, as defined by Halin [8], is an
equivalence class of rays of G. Here, two rays of G are said to be equivalent if for every finite
vertex set X V G( )⊆ both have a subray (also called tail) in the same component of G X− . So
in particular every end ω of G chooses, for every finite vertex set X V G( )⊆ , a unique com-
ponent C X ω( , ) of G X− in which every ray of ω has a tail. In this situation, the end ω is said
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to live in C X ω( , ) . The set of ends of a graphG is denoted by GΩ( ) . We use the convention that
Ω always denotes the set of ends GΩ( ) of the graph named G.

Let us say that an end ω of a graph G is contained in the closure of M , where M is either a
subgraph of G or a set of vertices of G, if for every finite vertex set X V G( )⊆ the component
C X ω( , ) meets M . Equivalently, ω lies in the closure of M if and only if G contains a comb
attached to M with its spine in ω. We write MΩ∂ for the subset ofΩ that consists of the ends of
G lying in the closure of M .

A subset X of the ground set of a poset P( , )≤ is cofinal in P, and≤, if for every p P∈ there
is an x X∈ with x p≥ . We say that a rooted tree T G⊆ contains a setU cofinally ifU V T( )⊆

andU is cofinal in the tree‐order of T . We remark that the original statement of the following
lemma also takes critical vertex sets in the closure of T or U into account.

Lemma 2.2 ([2, Lemma 2.13]). LetG be any graph. If T G⊆ is a rooted tree that contains
a vertex set U cofinally, then T U=Ω Ω∂ ∂ .

Suppose that H is any subgraph of G and φ H G: Ω( ) Ω( )→ is the natural map satisfying
η φ η( )⊆ for every end η of H . Furthermore, suppose that a set GΨ Ω( )⊆ of ends ofG is given.
We say that H is end‐faithful for Ψ if φ φ (Ψ)−1↾ is injective and φim( ) Ψ⊇ . And H reflects Ψ if
φ is injective with φim( ) = Ψ. A spanning tree of G that is end‐faithful for all the ends of G is
end‐faithful.

Lemma 2.3 ([2, Lemma 2.11]). If G is any graph and T G⊆ is any normal tree, then T
reflects the ends of G in the closure of T .

Given any graph G, a set U V G( )⊆ of vertices is dispersed in G if there is no end in the
closure ofU inG. Equivalently,U is dispersed if and only ifG contains no comb attached toU .
In [10], Jung proved that normally spanned sets of vertices can be characterised in terms of
dispersed vertex sets:

Theorem 2.4 (Jung [10, Satz 6]; [2, Theorem 3.5]). Let G be any graph. A vertex set
U V G( )⊆ is normally spanned in G if and only if it is a countable union of dispersed sets.
In particular, G is normally spanned if and only if V G( ) is a countable union of dispersed
sets.

3 | IDEAL RANK

There is more than one rank function that generalises Schmidt's rank. Before we focus on the
normal rank in the next sections, here we present a scheme that captures the essential idea
behind Schmidt's rank, and we show how this scheme translates to structural characterisations
of the classes of graphs defined by the rank functions which follow this scheme.

Recall that an ideal is a class that contains the empty set, is closed under finite unions and is
closed under taking subsets of its elements. Thus, it is the dual notion of a filter. We remark
that usually, ideals are required to be sets, but in this paper we allow them to be classes.

Suppose that  is any ideal. Let us assign  ‐rank 0 to all the graphs whose vertex sets are
contained in  . Given an ordinal α > 0, we assign  ‐rank α to every graphG that does not already
have an  ‐rank less than α and which has a set X of vertices with X ∈ such that every component
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of G X− has some  ‐rank less than α. If  is the class of all finite sets, for example, then the
 ‐rank coincides with Schmidt's rank [6,13]. From now on, we refer to Schmidt's rank as ℵ0 ‐rank.

The structure of the graphs with an  ‐rank for some prespecified ideal  can be described
in terms of tree‐decompositions and  , as follows. Let us say that a graph G is  ‐traceable if it
has a rayless tree‐decomposition with all parts in  .

Theorem 3.1. For every graph G and every ideal  the following assertions are
equivalent:

(i) G has an  ‐rank;
(ii) G is  ‐traceable.

Moreover, if (i) and (ii) hold, then

G T T G‐rank of = min{ℵ ‐rank of ( , ) is a rayless tree‐decomposition of

with all parts in }.

0 





Proof. Let G be any graph. To show the equivalence (i)↔(ii) together with the
‘moreover’ part of the theorem, it suffices to show the following two assertions:

(1) IfG has a tree‐decomposition witnessing thatG is  ‐traceable, thenG has an  ‐rank
which is at most the ℵ0 ‐rank of the decomposition tree.

(2) If G has an  ‐rank, then G is  ‐traceable and this is witnessed by a tree‐
decomposition whose decomposition tree has ℵ0 ‐rank at most the  ‐rank of G.

(1) Let T( , ) be any rayless tree‐decomposition of G with all parts in  . We show by
induction on theℵ0 ‐rank α ofT thatG has  ‐rank at most α. If α = 0, thenG has  ‐rank
0. Otherwise α > 0. LetW V T( )⊆ be any finite vertex set such that every component of
T W− has ℵ0 ‐rank less than α. Then the finite union X Vt W t≔ ∈ is contained in  .
Every component ofG X− is contained in G V[ ]t T t′∈ for some componentT′ ofT W− ,
so by the induction hypothesis every component of G X− has  ‐rank less than α. Thus,
G has  ‐rank at most α.

(2) We prove the statement by induction on the  ‐rank α of G. If α = 0, then
V G( ) ∈ and the trivial tree‐decomposition ofG into the single part V G( ) is as desired.
Otherwise α > 0. Then there exists a vertex set X V G( )⊆ with X ∈ such that every
component of G X− has  ‐rank less than α. By the induction hypothesis, every
component C of G X− has a rayless tree‐decomposition T( , )C C with V t T= ( )C C

t
C ∈

such that every part is contained in  and theℵ0 ‐rank ofTC is less than α. Without loss of
generality the trees TC are pairwise disjoint. We choose from every tree TC an arbitrary
node t TC C∈ . Then we let the treeT be obtained from the disjoint union TC C by adding
a new vertex t* that we join to all the chosen nodes tC . We define the family

V t T= ( )t ∈ by letting V V Xt
C
t≔ ∪ for all t TC∈ and V Xt

* ≔ . Then T( , ) is a

rayless tree‐decomposition of G with all parts in  , and the ℵ0 ‐rank of T is at most α
because every component of T t− * has ℵ0 ‐rank less than α. □
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As an application of Theorem 3.1, we extend the following theorem by Seymour and
Thomas:

Theorem 3.2 ([15, Theorem 1.3]). For every graph G and every uncountable cardinal κ
the following assertions are equivalent:

(i) G contains no Tκ minor;
(ii) G has a rayless tree‐decomposition into parts of size less than κ.

Indeed, applying Theorem 3.1 to the ideal of all sets of size less than κ and calling the
arising rank function the κ‐rank, we may add:

(iii) G has a κ‐rank.

We remark that, for regular uncountable cardinals κ, Seymour and Thomas also showed
that a graph contains a Tκ minor if and only if it contains a subdivision of Tκ .

4 | NORMALLY TRACEABLE GRAPHS

Let G be any connected graph. By Jung's Theorem 2.4, the vertex sets X V G( )⊆ that are
normally spanned in G form an ideal which we denote by G( ) . We call the G( ) ‐rank of a
subgraph H G⊆ the normal rank of H inG. The graphG has normal rank α for an ordinal α if
G has normal rank α in G.

Since we have defined the normal rank using ideals, Theorem 3.1 implies Theorem 3.
Below, we point out a few properties of the normal rank.

Lemma 4.1. Let G be any connected graph.

(i) If G has ℵ1‐rank α, then G has normal rank at most α.
(ii) There are graphs that have a normal rank but that have neither an ℵ1‐rank nor a

normal spanning tree.

Proof.

(i) We show that every subgraph H G⊆ of ℵ1‐rank α has normal rank at most α in G, by
induction on α; for H G= this establishes (i). The vertex set of any countable subgraph
of G is normally spanned in G by Jung's Theorem 2.4, so the base case holds. For the
induction step suppose that α > 0. We find a countable vertex set X V H( )⊆ so that
every component of H X− has some ℵ1‐rank less than α. As X is countable it is also
normally spanned in G. By the induction hypothesis every component of H X− has
normal rank less than α inG. Hence X witnesses that H has normal rank at most α inG.

(ii) Let G be any Tℵ1
with all tops and all edges between each top and its corresponding

ray. Then G has normal rank 1 because G T− ℵ1
consists only of isolated vertices.

However, G has no ℵ1‐rank by Theorem 3.2, and G has no normal spanning tree as
pointed out in [7,11]. □
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Lemma 4.2. Let H H G′⊆ ⊆ be any three graphs with G connected.

(i) If H′ has normal rank α in G, then H has normal rank at most α in G.

For the second item, H′ is required to be connected as well.

(ii) If H has normal rank α inG, then H has normal rank at most α in H′. In particular, if
H has normal rank α in G and H is connected, then H has normal rank at most α.

Proof. We prove (i) by induction on α. If α = 0, then the vertex set of H′ is normally
spanned in G; in particular, the vertex set of H H′⊆ is normally spanned in G.

Otherwise α > 0. Then there exists a vertex set X V H( ′)⊆ that is normally spanned
in G such that every component of H X′ − has normal rank less than α in G. Every
component of H X− is contained in a component of H X′ − and hence has normal rank
less than α in G by the induction hypothesis. Thus, H has normal rank at most α in G.

We prove (ii) by induction on α as well. If α = 0, then the vertex set of H is normally
spanned in G. In particular, by Jung's Theorem 2.4, the vertex set of H is normally
spanned in H G′ ⊆ , so H has normal rank 0 in H′ as desired.

Otherwise α > 0. Then there exists a vertex set X V H( )⊆ that is normally spanned in
G such that every component of H X− has normal rank less than α in G. Note that X is
also normally spanned in H G′ ⊆ by Jung's Theorem 2.4. By the induction hypothesis,
every component of H X− has normal rank less than α in H′. Thus, H has normal rank
at most α in H′. □

5 | END ‐FAITHFUL SPANNING TREES

In this section, we prove that every normally traceable graph has an end‐faithful spanning tree.
Our proof requires some preparation.

Lemma 5.1. LetG be any graph and let GΨ Ω( )⊆ be any set of ends ofG. Furthermore,
let H G⊆ be any spanning forest that reflects Ψ and let C be any component of H . If a
spanning tree T ofG arises from H by adding one D–C edge for every component D C≠ of
H , then T reflects Ψ. □
Lemma 5.2. LetG be any graph with a spanning treeT that reflects a set GΨ Ω( )⊆ and
let R G⊆ be a ray from some end in Ψ. Then there exists a spanning tree T G′ ⊆ that
reflects Ψ and contains R.

Moreover,T′ can be chosen such that no end other than the end of R lies in the closure of
the symmetric difference E T E T( ) ( ′)△ (viewed as a subgraph of G).

The ‘moreover’ part of the lemma says that T andT′ differ only locally. Note that there may
also be no end in the closure of E T E T( ) ( ′)△ .

Proof. GivenT G, Ψ⊆ and R as in the statement of the lemma, we rootT arbitrarily and
write ω for the end of R in G. Furthermore, we write RT for the unique rooted ray in T
that is equivalent to R, and we pick a sequence P P, , …0 1 of pairwise disjoint R–RT paths in
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G. We write C for the comb C R Pn n≔ ∪  , and we write U for the vertex set of the
subtree C T  of T induced by the down‐closure of V C( ) in T . Note that R CT T⊆  
because the paths P P, , …0 1 meet RT infinitely often. By standard arguments we have
C ω= { }Ω∂ , and so U ω= { }Ω∂ follows by Lemma 2.2. SinceT reflects Ψ and C T  contains

only rays from ω, we deduce that C T  is either rayless or one‐ended. As C T  contains
the ray RT , it is one‐ended.

Next, we define an edge set F E C( )T⊆   , as follows. If R has a tail in RT , then we set
F = ∅. Otherwise R has no tail in RT . Then we select infinitely many pairwise edge‐disjointC‐
pathsQ Q, , …0 1 in the ray RT (these exist because R has no tail in RT ). We choose one edge of
every path Qn and we let F consist of all the chosen edges, completing the definition of F .

The graph C C F( ) −T ∪  is a connected subgraph of G and inside it, we extend C
arbitrarily to a spanning tree TR . ThenTR has vertex setU , andTR reflects ω{ } : Every ray R′
in TR that is disjoint from R meets at most one component of C R− because C and R′ are
contained in the tree TR , and hence R′ must have a tail in C C−T  . But C T  contains just
one rooted ray, namely the ray RT , and either RT contains a tail of R or F consists of
infinitely many edges of RT , contradicting the existence of R′ in T C C F( ) −R T⊆ ∪  . It
remains to extend TR to a spanning tree of G reflecting Ψ. For this, we consider the
collection T i I{ }i ∈ of all the components of T U− . By the choice ofU , every end ω′ of G
other than ω is still represented by an end of one of the treesTi : Indeed, if ω′ is an end ofG
other thanω, then it does not lie in the closure ofU , and hence every ray inω′ has a tail that
avoidsU . In particular, every ray inT that lies in ω′ has some tail that avoidsU . Therefore,
the union of TR and all the trees Ti is a spanning forest of G reflecting Ψ.

We extend this spanning forest to a spanning treeT′ by adding all theTi –TR edges ofT
for every i I∈ (note that T contains precisely one Ti –TR edge for every i I∈ as
T G U C[ ] = T∩   is connected). Then T′ reflects Ψ again by Lemma 5.1. To see

E T E T ω( ( ) ( ′)) { }Ω∂ △ ⊆ recall G U ω[ ] = { }Ω∂ and note that the symmetric difference is
contained in G U[ ] entirely. □

Lemma 5.3. Let G be any graph and let X V G( )⊆ be any vertex set.

(i) Every end ofG is contained in the closure of X inG or in the closure of some component
of G X− in G.

(ii) Every end ofG that is contained in the closure of two distinct components ofG X− inG
is also contained in the closure of X in G.

Proof.

(i) Let ω be any end of G and let R ω∈ be any ray. Then either the vertex set of R
intersects X infinitely often, or R has a tail that is contained in some componentC of
G X− . In the first case, ω is contained in the closure of X , and in the second case it
is contained in the closure of C in G.

(ii) LetC andC′ be two distinct components ofG X− and suppose that ω is any end ofG
that is contained in the closure of bothC andC′ inG. If S V G( )⊆ is any finite vertex
set, then the component C S ω( , ) meets both C and C′. As X separates C and C′ in G
it follows that C S ω( , ) meets X as well. We conclude that ω is contained in the
closure of X in G. □
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Lemma 5.4. LetG be any connected graph, let X V G( )⊆ be normally spanned inG and
let C be any component ofG X− so thatG C X[ ]∪ is connected. If C has normal rank ξ in
G, then G C X[ ]∪ has normal rank at most ξ .

Proof. Suppose that C is a component of G X− that has normal rank ξ in G. If ξ = 0,
thenV C( ) is normally spanned inG andG C X[ ]∪ has a normal spanning tree by Jung's
Theorem 2.4, so G C X[ ]∪ has normal rank 0 as desired. Otherwise there is a vertex set
Y V C( )⊆ that is normally spanned inG and satisfies that every component ofC Y− has
normal rank less than ξ in G. Note that X Y∪ is normally spanned in G by Jung's
Theorem 2.4. Therefore X Y∪ witnesses that G C X[ ]∪ has normal rank at most ξ inG.
Finally, Lemma 4.2 (ii) implies that G C X[ ]∪ has normal rank at most ξ . □

Theorem 1. Every normally traceable graph has an end‐faithful spanning tree.

Proof. By Theorem 3 we may prove the statement via induction on the normal rank of
G. IfG has normal rank 0, then it has a normal spanning tree, and normal spanning trees
are end‐faithful. For the induction step suppose that G has normal rank α > 0, and let
X V G( )⊆ be any vertex set that is normally spanned in G and satisfies that every
component ofG X− has normal rank less than α inG. By replacing X with the vertex set
of any normal tree in G that contains X , we may assume that X is the vertex set of a
normal treeT GNT ⊆ ; indeed, every component ofG X− still has normal rank less than α
inG by Lemma 4.2 (i). Note that, by Lemma 2.3, the treeTNT reflects the ends ofG in the
closure of X .

By Lemma 5.3 (i), every end ofG is contained in the closure of X inG or in the closure
of some component ofG X− . And by Lemma 5.3 (ii), every end ofG that is contained in
the closure of two distinct components ofG X− inG is also contained in the closure of X
in G. Thus, by Lemma 5.1 it suffices to find in each component C of G X− a spanning
forest HC so that every component of HC sends an edge in G to TNT and so that HC

reflects C XΩ Ω∂ ⧹∂ .
For this, consider any component C ofG X− . Let P be the (possibly one‐way infinite)

path in TNT that is formed by the down‐closure of N C( ) in TNT . Then by Lemma 5.4 the
graph G C P[ ]∪ has normal rank less than α, and therefore satisfies the induction
hypothesis. Hence we find an end‐faithful spanning tree TC of G C P[ ]∪ . By Lemma 5.2
we may assume that the path P is a subgraph of TC if this path is a ray. It is
straightforward to check that H T X−C C≔ is as desired. □

6 | RAYLESS SPANNING TREES

In this section, we prove that for every normally traceable graph G, having a rayless
spanning tree is equivalent to all the ends of G being dominated. Our proof builds on the
following theorem from the third paper of the star‐comb series [2–5] that hides a six page
argument:

Theorem 6.1 ([4, Theorem 1]). Let G be any graph and let U V G( )⊆ be normally
spanned. Then there is a rayless treeT G⊆ that includesU if and only if all the ends ofG in
the closure of U are dominated in G.

BÜRGER AND KURKOFKA | 103

 10970118, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22813 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [10/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Theorem 2. For every normally traceable graph G, having a rayless spanning tree is
equivalent to all the ends of G being dominated.

Proof. Let G be any normally traceable graph. The forward implication is clear. By
Theorem 3 we may prove the backward implication via induction on the normal rank of
G. For this, we suppose that every end of G is dominated. IfG has normal rank 0, then it
is normally spanned. Thus, by Theorem 6.1, the graph G has a rayless spanning tree. For
the induction step suppose that G has normal rank α > 0, and let X V G( )⊆ be any
vertex set that is normally spanned inG and satisfies that every component ofG X− has
normal rank less than α inG. By replacing X with any normal tree inG that contains X ,
we may assume that X is the vertex set of a normal tree T GNT ⊆ ; indeed, every
component of G X− still has normal rank less than α in G by Lemma 4.2 (i).

We claim that it suffices to find in every component C of G X− a rayless spanning
forest HC such that every component of HC sends an edge inG to X . This can be seen as
follows. Suppose that we find such a rayless spanning forest HC in every component C of
G X− . By Theorem 6.1 we find a rayless tree T GRL ⊆ that contains X V T= ( )NT . Then
we set H H D′D C≔ ∩ for every component D of G T− RL and the component C of G X−

containing it. Now consider the spanning forest H ofG that is the union of all forests H′D
with the tree TRL . Then a rayless spanning tree of G arises from H by Lemma 5.1.

To complete the proof, we show that every component C of G X− has a rayless
spanning forest HC . So let C be any component of G X− . If the neighbourhood
N C T( ) NT⊆ is finite, then we let P be the path in TNT formed by the down‐closure of
N C( ) in TNT . Otherwise, we let P be the union of the ray R formed by the down‐closure
of N C( ) in TNT with a star in G attached to R. We claim that every end of the graph
G C P[ ]∪ is dominated. This is clear if N C( ) is finite, hence we may assume that P is the
union of R with a star attached to R. Now let S be any ray in G C P[ ]∪ . By the choice of
P, we may assume that S is inequivalent to R inG C P[ ]∪ . Hence there exists a finite set
Y of vertices of G C P[ ]∪ that separates S and R. Since R contains the entire
neighbourhood ofC inG, the two rays S and R are also separated by Y inG. In particular,
the component K of G Y− that contains a tail of S is included in C. The ray S is
dominated inG by some vertex d, hence d is the centre vertex of a star inG attached to S.
Without loss of generality, the paths that form this star have no inner vertices in the finite
vertex set Y . Then this star is contained in G K Y G C P[ ] [ ]∪ ⊆ ∪ as desired. Thus, by
Lemma 5.4, each G C P[ ]∪ satisfies the induction hypothesis. Hence we find a rayless
spanning tree TC of G C P[ ]∪ , and H T X−C C≔ is as desired. □

7 | OUTLOOK

Every complete graph has both an end‐faithful spanning tree and a rayless spanning tree. All
the countable complete graphs are normally traceable, but we claim that no uncountable
complete graph is normally traceable. Otherwise it would have a normal rank α by Theorem 3.
A set of vertices in a complete graph is normally spanned if and only if it is countable. Hence
deleting any normal rank reducing normally spanned set of vertices from an uncountable
complete graph leaves precisely one component that is a copy of the original uncountable
complete graph. But this component has normal rank α as well, a contradiction.
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Problem 6.2. Can the normal rank be generalised so that every connected graph has
an end‐faithful spanning tree if and only if it has a generalised normal rank?

Problem 6.3. Can the normal rank be generalised so that every connected graph has a
rayless spanning tree if and only if all its ends are dominated and it has a generalised
normal rank?
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