UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

A strengthening of Halin's grid theorem

Kurkofka, Jan; Melcher, Ruben; Pitz, Max

DOI:
10.1112/mtk. 12135

License:

Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
Kurkofka, J, Melcher, R \& Pitz, M 2022, 'A strengthening of Halin's grid theorem', Mathematika, vol. 68, no. 4, pp. 1009-1013. https://doi.org/10.1112/mtk. 12135

Link to publication on Research at Birmingham portal

[^0]
A strengthening of Halin's grid theorem

Jan Kurkofka | Ruben Melcher | Max Pitz

Department of Mathematics, Universität Hamburg, Hamburg, Germany

Correspondence

Ruben Melcher, Universität Hamburg, Department of Mathematics, Bundesstrasse 55 (Geomatikum), 20146 Hamburg, Germany.
Email: ruben.melcher@uni-hamburg.de

Abstract

We show that for every infinite collection \mathcal{R} of disjoint equivalent rays in a graph G there is a subdivision of the hexagonal half-grid in G such that all its vertical rays belong to \mathcal{R}. This result strengthens Halin's grid theorem by giving control over which specific set of rays is used, while its proof is significantly shorter.

MSC 2020
05C63 (primary), 05C40 (secondary)

1 | INTRODUCTION

An end of a graph G is an equivalence class of rays, where two rays of G are equivalent if there are infinitely many vertex-disjoint paths between them in G. The degree $\operatorname{deg}(\omega) \in \mathbb{N} \cup\{\infty\}$ of an end ω of G is the maximum size of a collection of pairwise disjoint rays in ω, see Halin [5]. Ends of infinite degree are also called thick. The half-grid, the graph on \mathbb{N}^{2} in which two vertices (n, m) and $\left(n^{\prime}, m^{\prime}\right)$ are adjacent if and only if $\left|n-n^{\prime}\right|+\left|m-m^{\prime}\right|=1$, and its sibling the hexagonal halfgrid, where one deletes every other rung from the half-grid as shown in Figure 1, are examples of graphs which have only one end, which is thick.

One of the cornerstones of infinite graph theory, Halin's grid theorem [5], says that grid-like graphs are the prototypes for ends of infinite degree. Recall that a subdivision of a graph G is any graph obtained from G by replacing some edges of G with new paths between their endvertices, so that none of these paths has an inner vertex in $V(G)$ or on another new path [3, §1.7].

Halin's grid theorem. Every graph with an end of infinite degree contains a subdivision of the hexagonal half-grid whose rays belong to that end.

Halin's theorem is a precursor of the work by Robertson et al. on excluding infinite grid or clique minors [8] and has further influenced research in [1, 4, 6, 7]. It is curious, however, that

[^1]

FIGURE 1 The hexagonal half-grid with vertical rays R_{i}

Halin's theorem does not mention any specific ray families, that is if one chooses a specific infinite collection \mathcal{R} of disjoint rays witnessing that the end is thick, then neither the assertion of Halin's theorem nor its available proofs by Halin [5, Satz 4] and by Diestel [2, 3] make any assertion on how the resulting subdivided hexagonal half-grid relates to the collection of rays \mathcal{R} one started with. Furthermore, in recent work of ours on an extension of Halin's grid theorem to higher cardinals [4], it became quite important to achieve more control of specific uncountable ray families, and the question arose whether this can be done also in the countable case. And indeed, the main result of this note is that this is in fact possible:

Theorem 1. For every infinite collection \mathcal{R} of disjoint equivalent rays in a graph G, there is a subdivision of the hexagonal half-grid in G such that all its vertical rays belong to \mathcal{R}.

The known proofs of Halin's grid theorem are rather involved and require an elaborate recursive construction that runs close to five pages in Diestel's textbook. Our stronger result in Theorem 1 requires a different approach - which coincidentally provides a much shorter proof of Halin's original grid theorem.

2 | THE PROOF

Suppose we are handed a countably infinite collection \mathcal{R} of disjoint equivalent rays in a graph G. The following routine argument shows that there is a ray S in G that meets each ray in \mathcal{R} infinitely often: First choose an enumeration $\left(R_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{R} that lists each ray in \mathcal{R} infinitely often. Recursively, build a sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ of longer and longer finite paths all starting in the same vertex and all extending each other such that each S_{n} intersects all R_{i} for all $i \leqslant n$ and has its last vertex v_{n} on R_{n} such that no vertex of R_{n} which comes after v_{n} belongs to S_{n}. Given S_{n}, since all rays in \mathcal{R} are equivalent, there is an $R_{n}-R_{n+1}$ path P_{n} disjoint from S_{n} whose endvertices w_{n} and v_{n+1} on R_{n} and R_{n+1} come later than all vertices of S_{n} on these rays. To obtain S_{n+1}, extend S_{n} along R_{n} from v_{n} to w_{n}, and then append P_{n} in order to reach v_{n+1}. Once the recursion is complete, $S:=\bigcup_{n \in \mathbb{N}} S_{n}$ is a ray as desired.

FIGURE 2 A configuration of rays in the half-grid with edge-less $M_{\infty}(\mathcal{R})$

Hence we may fix, for the remainder of this paper, a ray S in G that meets each ray in \mathcal{R} infinitely often. Recall that a path P is internally disjoint from a vertex set X if P has no inner vertex in X, that is, only the endvertices of P may lie in X. An \mathcal{R}-segment (of S) is any maximal subpath of S which is internally disjoint from $V[\mathcal{R}]:=\bigcup_{R \in \mathcal{R}} V(R)$. We say that an \mathcal{R}-segment is between two rays $R_{1}, R_{2} \in \mathcal{R}$ if it has its endpoints on R_{1} and R_{2}, respectively. Let $M(\mathcal{R})$ denote the auxiliary multigraph with vertex set \mathcal{R} where the multiplicity of an edge $R_{1} R_{2}$ is equal to the number of \mathcal{R} segments between R_{1} and R_{2}. Finally, let $M_{\infty}(\mathcal{R})$ denote the spanning subgraph of $M(\mathcal{R})$ obtained by removing all edges of finite multiplicity.

Recall that a multigraph is infinitely edge-connected if it has at least two vertices and the deletion of finitely many edges does not disconnect it. Since S meets every ray in \mathcal{R} infinitely often, it follows that $M(\mathcal{R})$ is infinitely edge-connected. As every infinite connected graph has a vertex of infinite degree or contains a ray [3, Proposition 8.2.1], we get the assertion of Theorem 1 immediately when $M_{\infty}(\mathcal{R})$ has a component with infinitely many vertices: In this case, $M_{\infty}(\mathcal{R})$ either contains a ray R_{1}, R_{2}, \ldots or an infinite star with centre R and leaves R_{1}, R_{2}, \ldots. In the ray case, one recursively selects sufficiently late \mathcal{R}-segments to represent subdivided edges $e_{1}, e_{2}, e_{3}, \ldots$ of the hexagonal half-grid in the order indicated in Figure 1; in the star case, edges between R_{i} and R_{j} are represented by two sufficiently late \mathcal{R}-segments between R_{i}, R_{j} and R together with the subpath on R connecting the endpoints of those segments.

However, $M_{\infty}(\mathcal{R})$ might have no edges at all: Consider, for example, a collection of radial rays in the half-grid such that between any two rays there lies a third, see Figure 2. Still, by moving to an infinite subcollection $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ and considering auxiliary multigraphs $M\left(\mathcal{R}^{\prime}\right)$ and $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ instead, the connectivity properties of $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ might improve. Indeed, the auxiliary multigraphs for \mathcal{R}^{\prime} remain well defined as the same S still meets every ray in \mathcal{R}^{\prime} infinitely often. Note, however, that \mathcal{R}-segments of S may now be properly contained in \mathcal{R}^{\prime}-segments of S. Our preceding discussion can be summarized as:
(1) the auxiliary multigraph $M\left(\mathcal{R}^{\prime}\right)$ is infinitely edge-connected for any infinite $\mathcal{R}^{\prime} \subseteq \mathcal{R}$;
(2) if for some $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ the auxiliary multigraph $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ has an infinite component, there is a subdivision of the hexagonal half-grid in G such that all its vertical rays belong to \mathcal{R}^{\prime}.

Our next observation provides a sufficient condition for $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ to have an infinite component. Recall that the degree of a vertex in a multigraph denotes the number of its neighbours.
(3) If $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ is infinite such that $M\left(\mathcal{R}^{\prime}\right)$ has only finitely many vertices of infinite degree, then $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ has an infinite component.

Indeed, suppose for a contradiction that all components of $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ are finite. Then there is also a finite component C of $M_{\infty}\left(\mathcal{R}^{\prime}\right)$ that contains none of the finitely many vertices that have infinite degree in $M\left(\mathcal{R}^{\prime}\right)$. Since $M\left(\mathcal{R}^{\prime}\right)$ is infinitely edge-connected by (1), there are infinitely many edges in $M\left(\mathcal{R}^{\prime}\right)$ from C to its complement. And since C consists of vertices of finite degree only, the neighbourhood of C in $M\left(\mathcal{R}^{\prime}\right)$ is finite. Thus, there is a vertex in C that sends infinitely many edges to some vertex outside of C, contradicting the choice of C. This establishes (3).

The idea of the proof of Theorem 1 is now as follows: If all vertices of $M(\mathcal{R})$ have finite degree, then $M_{\infty}(\mathcal{R})$ has an infinite component by (3) and we are done by (2). Otherwise, there is a ray $R_{1} \in \mathcal{R}$ that has infinitely many neighbours $N\left(R_{1}\right)$ in $M(\mathcal{R})$, and we may restrict our collection of rays to $\mathcal{R}_{1}:=\left\{R_{1}\right\} \cup N\left(R_{1}\right)$. Next, if all but finitely many rays of \mathcal{R}_{1} have finite degree in $M\left(\mathcal{R}_{1}\right)$, then $M_{\infty}\left(\mathcal{R}_{1}\right)$ has an infinite component by (3) and we are again done by (2). Thus, we may pick a second ray R_{2} in \mathcal{R}_{1} distinct from R_{1} such that $N\left(R_{2}\right)$ is infinite in $M\left(\mathcal{R}_{1}\right)$, and restrict our collection of rays to $\mathcal{R}_{2}:=\left\{R_{1}, R_{2}\right\} \cup N\left(R_{2}\right)$. Repeating this step as often as possible gives rise to a sequence of rays $R_{1}, R_{2}, R_{3}, \ldots$. If this procedure ever stops because there are no more vertices of infinite degree to choose, then we are done by (3) and (2). Thus, the question becomes what to do when this procedure does not terminate.

Informally, the solution is to modify our construction so that besides the first n rays R_{1}, \ldots, R_{n} we will also have chosen suitable paths P_{1}, \ldots, P_{n-2} between them representing the subdivided edges e_{1}, \ldots, e_{n-2} in the copy of the hexagonal half-grid from Figure $1 .{ }^{\dagger}$ Then, in the case where our procedure never stops, the chosen rays R_{1}, R_{2}, \ldots become the vertical rays of a hexagonal halfgrid where the subdivided paths corresponding to an edge e_{i} are given by the path P_{i}.

Formally, suppose that at step n we have chosen n distinct rays R_{1}, \ldots, R_{n} from \mathcal{R} and an infinite subcollection $\mathcal{R}_{n} \subseteq \mathcal{R}$ containing all chosen R_{i} such that in $M\left(\mathcal{R}_{n}\right)$ every R_{i} for $i=1, \ldots, n$ is adjacent to all rays in \mathcal{R}_{n}. Further, suppose that we have chosen $n-2$ disjoint paths P_{1}, \ldots, P_{n-2} internally disjoint from $V\left[\mathcal{R}_{n}\right]$, such that each P_{i} connects the same two rays from $\left\{R_{1}, \ldots, R_{n}\right\}$ as e_{i} in Figure 1, in a way such that whenever two paths P_{i}, P_{j} with $i<j$ have endvertices on the same ray R_{k}, then the endvertex of P_{i} comes before the endvertex of P_{j} on R_{k}.

Now if all but finitely many rays in \mathcal{R}_{n} have finite degree in $M\left(\mathcal{R}_{n}\right)$, then we are done by (3) and (2). Hence, we may assume that there is a ray R_{n+1} in $\mathcal{R}_{n} \backslash\left\{R_{1}, \ldots, R_{n}\right\}$ that has infinitely many neighbours $N\left(R_{n+1}\right)$ in $M\left(\mathcal{R}_{n}\right)$. Let $\mathcal{R}_{n+1}^{\prime}:=\left\{R_{1}, \ldots, R_{n+1}\right\} \cup N\left(R_{n+1}\right)$, and note that in $M\left(\mathcal{R}_{n+1}^{\prime}\right)$, every R_{i} for $i=1, \ldots, n+1$ is adjacent to all other rays in $\mathcal{R}_{n+1}^{\prime}$. Now let i and j denote the indices of the rays in Figure 1 containing the endvertices of the edge e_{n-1}. Note that $i, j \leqslant n+1$. Since R_{i} and R_{j} are adjacent to all rays Q in $M\left(\mathcal{R}_{n+1}^{\prime}\right) \backslash\left\{R_{1}, \ldots, R_{n+1}\right\}$, we also find such a common neighbour Q_{n-1} such that the corresponding $\mathcal{R}_{n+1}^{\prime}$-segments of S between R_{i}, R_{j} and Q_{n-1} are disjoint from all earlier paths P_{1}, \ldots, P_{n-2} and also have their endvertices on R_{i}, R_{j} later than the endvertices of any previous path P_{1}, \ldots, P_{n-2}. Then we may pick a new path P_{n-1} consisting of both these $\mathcal{R}_{n+1}^{\prime}$-segments of S between R_{i}, R_{j} and Q_{n-1} together with a suitable subpath of Q_{n-1}. Finally, set $\mathcal{R}_{n+1}:=\mathcal{R}_{n+1}^{\prime} \backslash\left\{Q_{n-1}\right\}$. This completes the induction step, and the proof is complete.

[^2]We remark that only in the case where our procedure stops and (2) yields a ray one can just build a grid, in all other cases one can build a clique of rays, that is, one finds an infinite $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ and a family of internally disjoint \mathcal{R}^{\prime}-paths witnessing that any two rays in \mathcal{R}^{\prime} are equivalent.

JOURNAL INFORMATION

Mathematika is owned by University College London and published by the London Mathematical Society. All surplus income from the publication of Mathematika is returned to mathematicians and mathematics research via the Society's research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES

1. N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen, Ubiquity in graphs II: Ubiquity of graphs with non-linear end structure, arXiv:1809.00602, 2018.
2. R. Diestel, A short proof of Halin's grid theorem, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 74 (2004), no. 1, 237-242.
3. R. Diestel, Graph theory. 5th edn, Springer, Berlin, 2015.
4. S. Geschke, J. Kurkofka, R. Melcher, and M. Pitz, Halin's end degree conjecture, Israel J. Math., to appear.
5. R. Halin, Über die Maximalzahl fremder unendlicher Wege in Graphen, Mathematische Nachrichten 30 (1965), no. (1-2), 63-85.
6. R. Halin, A problem in infinite graph-theory. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 43, Springer, Berlin, 1975, pp. 79-84.
7. K. Heuer, Excluding a full grid minor. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 87, Springer, Berlin, 2017, pp. 265-274.
8. N. Robertson, P. D. Seymour, and R. Thomas, Excluding infinite clique minors, vol. 566, Amer. Math. Soc., Providence, R.I., 1995.

[^0]: General rights
 Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

 - Users may freely distribute the URL that is used to identify this publication.
 - Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
 - User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
 - Users may not further distribute the material nor use it for the purposes of commercial gain.

 Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
 When citing, please reference the published version.

 ## Take down policy

 While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
 If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

[^1]: © 2022 The Authors. Mathematika is copyright © University College London and published by the London Mathematical Society on behalf of University College London. This is an open access article under the terms of the Creative Commons Attribution-NonCommercialNoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

[^2]: ${ }^{\dagger}$ The index shift just has the purpose that when choosing a path for e_{2} we have already selected R_{3} and R_{4}.

