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Abstract

In a series of four papers we determine structures

whose existence is dual, in the sense of com-

plementary, to the existence of stars or combs. Here, in

the second paper of the series, we present duality

theorems for combinations of stars and combs: dom-

inating stars and dominated combs. As dominating

stars exist if and only if dominated combs do, the

structures complementary to them coincide. Like for

arbitrary stars and combs, our duality theorems for

dominated combs (and dominating stars) are phrased

in terms of normal trees or tree‐decompositions. The

complementary structures we provide for dominated

combs unify those for stars and combs and allow us to

derive our duality theorems for stars and combs from

those for dominated combs. This is surprising given

that our complementary structures for stars and combs

are quite different: Those for stars are locally finite

whereas those for combs are rayless.
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1 | INTRODUCTION

Two properties of infinite graphs are complementary in a class of infinite graphs if they partition
the class. In a series of four papers we determine structures whose existence is complementary
to the existence of two substructures that are particularly fundamental to the study of con-
nectedness in infinite graphs: stars and combs. See [3] for a comprehensive introduction, and a
brief overview of results, for the entire series of four papers ([3,1,2] and this paper).

In the first paper [3] of this series we found structures whose existence is complementary to
the existence of a star or a comb attached to a given setU of vertices. A comb is the union of a
ray R (the comb's spine) with infinitely many disjoint finite paths, possibly trivial, that have
precisely their first vertex on R. The last vertices of those paths are the teeth of this comb. Given
a vertex setU , a comb attached toU is a comb with all its teeth inU , and a star attached toU is a
subdivided infinite star with all its leaves inU . Then the set of teeth is the attachment set of the
comb, and the set of leaves is the attachment set of the star.

As stars and combs can interact with each other, this is not the end of the story. For
example, a given vertex setU might be connected in a graphG by both a star and a comb, even
with infinitely intersecting sets of leaves and teeth. To formalise this, let us say that a
subdivided star S dominates a comb C if infinitely many of the leaves of S are also teeth of C. A
dominating star in a graphG then is a subdivided star S G⊆ that dominates some combC G⊆ ;
and a dominated comb inG is a comb C G⊆ that is dominated by some subdivided star S G⊆ .
In this second paper of our series we determine structures whose existence is complementary to
the existence of dominating stars and dominated combs. Note that duality theorems for
dominated combs are by nature also duality theorems for dominating stars, because for a graph
G and a vertex setU V G( )⊆ the existence of a dominated comb attached toU is equivalent to
the existence of a dominating star attached toU . For the sake of readability, we will state our
duality theorems only for dominated combs.

Our first duality theorem for dominated combs is phrased in terms of normal trees. A rooted
tree T G⊆ is normal in G if the endvertices of every T ‐path in G are comparable in the tree‐
order of T . A vertex v of G dominates a ray R G⊆ if there is an infinite v– R v( − ) fan in G. For
example, a comb is dominated in G if and only if its spine is dominated in G. Rays not
dominated by any vertex are undominated. An end of G is dominated and undominated if one
(equivalently: each) of its rays is dominated and undominated, respectively. A rooted tree T
contains a setU of vertices cofinally ifU V T( )⊆ andU is cofinal in the tree‐order of T in that
above every node of T there lies a vertex of U . (See Diestel's textbook [5].)

Theorem 1. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) there is a normal treeT G⊆ that containsU and all whose rays are undominated inG.

Moreover, the normal treeT in (ii) can be chosen such that it containsU cofinally and every
component of G T− has finite neighbourhood.

When a graph contains no star or no comb attached toU , then in particular it contains no
dominated comb attached to U . Hence, by our theorem, the graph contains a certain normal
tree. If there is no star, then this normal tree will be locally finite; and if there is no comb, then

556 | BÜRGER AND KURKOFKA

 10970118, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22757 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [10/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



it will be rayless. Therefore, our duality theorem for dominated combs in terms of normal trees
will imply our duality theorems for arbitrary stars and combs in terms of normal trees from [3],
which we restate as Theorems 2.1 and 2.2. This is surprising given that infinite trees cannot be
locally finite and rayless at the same time.

As an application, we will generalise Diestel's structural characterisation [6] of the graphs
for which the topological spaces obtained by adding their ends are metrisable. Depending on
the topology chosen, Diestel characterised these graphs in terms of normal spanning trees,
dominated combs, and infinite stars. Applying Theorem 1, we can now provide, for any given
set U of vertices, characterisations and simple existence criteria for connected metrisable
(standard) subspaces containing U in the various topologies. Our results will be in terms of
normal trees containing U , dominated combs attached to U , and stars attached to U .

Theorem 1 is significantly strengthened by its ‘moreover’ part. It will be needed in the proof of
our second duality theorem for dominated combs which is phrased in terms of tree‐decompositions.
For the definition of tree‐decompositions see [5]. ‘Essentially disjoint’ and ‘displaying’ are defined in
Section 3. An end ω of a graph G is contained in the closure of a vertex set U V G( )⊆ in G if G
contains a comb attached to U whose spine lies in ω.

Theorem 2. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a rooted tree‐decomposition T( , )V such that:

– each part contains at most finitely many vertices from U ;
– all parts at nonleaves of T are finite;
– T( , )V has essentially disjoint connected adhesion sets;
– T( , )V displays the ends of G in the closure of U in G.

Similar to Theorem 1, our duality theorem for dominated combs in terms of tree‐decompositions
will imply our duality theorems for arbitrary stars and combs in terms of tree‐decompositions from
[3], which we restate as Theorems 3.1 and 3.2.

In our proof of Theorem 2 we employ a profound theorem of Carmesin [4], which states
that every graph has a tree‐decomposition displaying all its undominated ends. As it will be the
case in this paper, Carmesin's theorem might often be used for graphs with normal spanning
trees. For this particular case we provide a substantially shorter proof.

This paper is organised as follows. Section 2 establishes our duality theorem for dominated
combs in terms of normal trees. In Section 3 we prove our duality theorems for dominated
combs in terms of tree‐decompositions. Our short proof of Carmesin's theorem for graphs with
a normal spanning tree can be found there as well.

Throughout this paper,G V E= ( , ) is an arbitrary infinite graph. We use the graph theoretic
notation of Diestel's book [5], and we assume familiarity with the tools and terminology
described in the first paper of this series [3, Section 2].

2 | DOMINATED COMBS AND NORMAL TREES

In this section we obtain the following duality theorem for dominated combs in terms of
normal trees:
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Theorem 1. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) there is a normal treeT G⊆ that containsU and all whose rays are undominated inG.

Moreover, the normal treeT in (ii) can be chosen such that it containsU cofinally and every
component of G T− has finite neighbourhood.

The inconspicuous ‘moreover’ part will pave the way for our duality theorem for dominated
combs in terms of tree‐decompositions (Theorem 2).

Before we provide a proof of Theorem 1, we shall discuss some consequences and
applications. As a first consequence, Theorem 1 builds a bridge between the duality the-
orems for combs (Theorem 2.1) and stars (Theorem 2.2) in terms of normal trees, which we
recall here.

Theorem 2.1 ([3, Theorem 1]). Let G be any connected graph and let U V G( )⊆ be any
vertex set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T G⊆ that contains U .

Moreover, the normal tree T in (ii) can be chosen so that it contains U cofinally.

Theorem 2.2 ([3, Theorem 6]). Let G be any connected graph and let U V G( )⊆ be any
vertex set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T G⊆ that contains U and all whose rays are

undominated in G.

Moreover, the normal treeT in (ii) can be chosen such that it containsU cofinally and every
component of G T− has finite neighbourhood.

Our duality theorem for dominated combs in terms of normal trees implies the corre-
sponding duality theorems for combs and stars above. This becomes apparent by a close
look at Figure 1. The three columns of the diagram summarise the three duality theorems.
Arrows depict implications between the statements; the dashed arrows indicate that further
assumptions are needed to obtain their implications. On the left‐hand side, the extra as-
sumption is that there is no comb attached to U ; on the right‐hand side, the extra as-
sumption is that there is no star attached to U .

As a consequence of the two dashed arrows, we obtain the implications ¬(i)→(ii) of
Theorem 2.1 and of Theorem 2.2 from the corresponding implication of Theorem 1. Indeed,
if G does not contain a comb attached to U , then in particular it does not contain a
dominated comb attached to U . Hence Theorem 1 yields a normal tree, which additionally
must be rayless. Similarly, if G does not contain a star attached to U , then in particular it
does not contain a dominated comb attached to U . Hence Theorem 1 yields a normal tree,
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which additionally must be locally finite and satisfy that all its rays are undominated. Since
(i) and (ii) of Theorems 2.1 and 2.2 exclude each other almost immediately we have, so far,
derived these two duality theorems for combs and stars from our duality theorem for
dominated combs—except for the ‘moreover’ part of Theorem 2.2.

We proved Theorem 2.2 without its ‘moreover’ part in the first paper [3] of our series. There,
instead of proving the ‘moreover’ part as well, we announced that we would prove it in this
second paper of the series. And here we prove it, by deriving it from the identical ‘moreover’
part of Theorem 1:

Proof of Theorem 2.2, including its ‘moreover’ part. Employ Theorem 1 as above. □

Another consequence of Theorem 1 is a fact whose previous proof, [6, Lemma 2.3], relied on
the theorem of Halin [7] which states that every connected graph without a subdivided Kℵ0 has
a normal spanning tree:

Corollary 2.3. If G is a connected graph none of whose ends is dominated, then G is
normally spanned.

For the proof of Theorem 1, we shall need the following four lemmas and a result by
Jung (cf. [8, Satz 6] or [3, Theorem 3.5]). The first lemma is from the first paper of this series
and we remark that the original statement also takes critical vertex sets in the closure of T
or W into account.

Lemma 2.4 (see [3, Lemma 2.13]). Let G be any graph. If T G⊆ is a rooted tree that
contains a vertex setW cofinally, then T W=Ω Ω∂ ∂ .

Recall that for a graph G and a normal tree T G⊆ the generalised up‐closure  x of a vertex
x T∈ is the union of  x with the vertex set of  x( )C , where the set x( )C consists of those
components of G T− whose neighbourhoods meet  x .

Lemma 2.5 ([3, Lemma 2.10]). Let G be any graph and T G⊆ any normal tree.

FIGURE 1 The relations between the duality theorems for combs, stars and dominated combs in terms of
normal trees. Condition (*) says that the normal tree contains U cofinally and every component of the graph
minus the normal tree has finite neighbourhood
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(i) Any two vertices x y T, ∈ are separated in G by the vertex set    x y∩ .
(ii) LetW V T( )⊆ be down‐closed. Then the components of G W− come in two types: the

components that avoid T ; and the components that meet T , which are spanned by the
sets  x with x minimal in T W− .

Lemma 2.6 ([3, Lemma 2.11]). IfG is any graph andT G⊆ is any normal tree, then every
end of G in the closure of T contains exactly one normal ray of T . Moreover, sending these
ends to the normal rays they contain defines a bijection between TΩ∂ and the normal rays of
T .

Lemma 2.7. Let G be a connected graph, let D D, , …0 1 be the distance classes of G with
respect to an arbitrary vertex ofG, and let n 1≥ . Then for every infiniteU Dn⊆ the induced
subgraph G D D[ ]n0 ∪ ⋯ ∪ contains a star attached to U .

Proof. Consider any spanning tree T ofG D D[ ]n0 ∪ ⋯ ∪ whose kth level is equal to Dk

for all k n≤ . As T is rayless, it contains a star attached to U . □

Theorem 2.8 (Jung [8, Satz 6] and [3, Theorem 3.5]). Let G be any graph. A vertex set
W V G( )⊆ is normally spanned if and only if it is a countable union of dispersed sets. In
particular,G is normally spanned if and only ifV G( ) is a countable union of dispersed sets.

Now we are ready to prove our first duality theorem for dominated combs:

Proof of Theorem 1. First, we show that at most one of (i) and (ii) holds. Assume for a
contradiction that both hold, let R be the spine of a dominated comb attached to U
and let T be a normal tree as in (ii). Then the end of R lies in the closure ofU T⊆ , so
by Lemma 2.6 the normal tree T contains a normal ray from that end. But then the
vertices dominating R in G also dominate that normal ray, a contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii). For
this, let R be an inclusionwise maximal collection of pairwise disjoint rays all
belonging to ends in the closure of U , and define U U V R Rˆ { ( ) }R∪≔ ∪ ∈ . We
claim that U Uˆ =Ω Ω∂ ∂ . Clearly, U Uˆ ⊇ implies U Uˆ

Ω Ω∂ ⊇ ∂ . For the forward
inclusion, we show that every end ω that does not lie in the closure of U also does
not lie in the closure of Û . Indeed, consider any finite vertex set X V G( )⊆ such that
the component C X ω( , ) avoidsU . Since the rays inR are pairwise disjoint and belong
to ends in the closure of U , the intersection C X ω( , ) R∪∩ is finite. Hence we may
extend X to ensure that C X ω( , ) avoids Û , showing that ω does not lie in the closure
of Û as desired.

Note that every end in the closure of U is undominated since there is no dominated
comb attached to U , and hence every end in the closure of Û is undominated as well.

Next, we find a normal tree T G⊆ that contains Û , as follows. We pick an arbitrary
vertex v0 of G and write Dn for the nth distance class of G with respect to v0. If for some
distance class Dn there was a comb in G attached to D Ûn ∩ , then that comb would be
dominated by Lemma 2.7 contrary to our assumptions. Therefore, all the sets D Ûn ∩

with n ∈ are dispersed. Now, Jung's Theorem 2.8 yields a normal tree T Gˆ ⊆ that
contains Û , and by replacing T̂ with the down‐closure of Û we may assume that T̂
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contains Û cofinally. Note that the normal rays of T̂ cannot be dominated in G because
T U Uˆ = ˆ =Ω Ω Ω∂ ∂ ∂ by Lemma 2.4.
We claim that every component C of G T− ˆ has finite neighbourhood. For this,

assume for a contradiction that some componentC ofG T− ˆ has infinite neighbourhood.
Let R be the normal ray in T̂ given by the down‐closure of that neighbourhood in T̂ , and
write Z for the set of those vertices in C that send edges to T̂ . Since R is undominated in
G, every vertex in Z may send only finitely many edges to R, and in particular Z must be
infinite. Therefore, we find an infinite subset Z Z′ ⊆ for which G contains a matching of
Z′ and an infinite subset of V R( ). Applying the star–comb lemma in C to Z′ then, as R
was just noted to be undominated, must yield a comb in C attached to Z′. That comb's
spine R′ is equivalent in G to R and avoids Û , contradicting the choice of Û .

Finally, let T G⊆ be the normal tree given by the down‐closure of U in T̂ . Then T

containsU cofinally. We claim that every component of G T− has a finite neighbourhood.
Indeed, consider any component C of G T− . If C is also a component of G T− ˆ , then—as
we have already seen—it has a finite neighbourhood. Otherwise, by Lemma 2.5, the
component C is spanned by  x with respect to T̂ for the minimal node x in C T̂∩ . Now, as
T̂ is normal, C can only send edges to the finite set  x x{ }⧹ . Hence the component C has
finite neighbourhood as claimed. □

Let us discuss an application of our duality theorem for dominated combs in terms of normal
trees. In [6], Diestel proves the following theorem that relates the metrisability of  G to the existence
of normal spanning trees (we refer to [6, Section 2] for definitions concerning  G , MTOP, VTOP and TOP):

Theorem 2.9 (Diestel [6, Theorem 3.1]). Let G be any connected graph.

(i) In MTOP,  G is metrisable if and only if G has a normal spanning tree.
(ii) In VTOP,  G is metrisable if and only if no end of G is dominated.
(iii) In TOP,  G is metrisable if and only if G is locally finite.

Assertions (ii) and (iii) of this theorem can be reformulated so as to speak about normal
spanning trees: By Theorem 1 with U V G= ( ), the graph G having no dominated end is
equivalent toG having a normal spanning tree all of whose normal rays are undominated. And
by Theorem 2.2 with U V G= ( ), the graph G being locally finite is equivalent to G having a
locally finite normal spanning tree all of whose normal rays are undominated. That is why we
may hope that these theorems allow us to localise Theorem 2.9 to arbitrary vertex sets
U V G( )⊆ . We will show that this is possible.

Recall that a standard subspace of  G (with regard to MTOP, VTOP or TOP) is a subspace Y of
 G that is the closure H of a subgraph H of G (see Diestel's textbook [5, p. 246]).

Lemma 2.10. Let G be any graph, let T G⊆ be any normal tree and consider the spaces
 T and  G , both in the same choice of one of the three topologies MTOP, VTOP or TOP. Then  T
is homeomorphic to the standard subspace T of  G .

Proof. By Lemma 2.6, the identity on T extends to a bijection    T T G→ ⊆ that sends
every end ofT to the unique end ofG including it. Using Lemma 2.5 it is straightforward
to verify that the bijection is a homeomorphism, no matter which of the three topologies
we chose. □
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Lemma 2.11. LetG be any connected graph andU V G( )⊆ any vertex set. If the space  G
with one of the three topologies MTOP, VTOP or TOP has a connected metrisable standard
subspace containing U , then there is a normal tree T G⊆ that contains U .

Proof. We imitate Diestel's proof of the corresponding implication of his Theorem 2.9(i).
Recall from [6] that a set of vertices of G is dispersed inG if and only if it is closed in  G .
So by Jung's Theorem 2.8, it suffices to show thatU can be written as a countable union
of closed vertex sets. For this, the setsUn consisting of the vertices inU that have distance

n1≥ ∕ from every end can be taken: On the one hand, every Un is the intersection of
complements of open balls of radius n1∕ , and hence closed. On the other hand, every
vertex u U∈ is contained in Un for some n ∈ because G is open in  G . □

Theorem 2.12. Let G be any connected graph and U V G( )⊆ any vertex set.

(i) In MTOP or VTOP,  G has a connected metrisable standard subspace containingU if and only if
there is a normal tree T G⊆ that containsU . In particular, if there is no dominated comb
attached toU , then  G has a connected metrisable standard subspace containingU .

(ii) In TOP,  G has a connected metrisable standard subspace containingU if and only if there is
a locally finite normal treeT G⊆ that containsU . In particular, if there is no star attached
to U , then  G has a connected metrisable standard subspace containingU .

Proof.

(i) The forward implication is covered by Lemma 2.11. Now, suppose that there is a normal
tree T G⊆ containing U and consider the standard subspace T . By Lemma 2.10 the
spaces T and  T are homeomorphic. Then  T is metrisable by Theorem 2.9(i) respec-
tively (ii). The ‘in particular’ part is a consequence of Theorem 1.

(ii) For the forward implication we apply Lemma 2.11 to a given standard subspace H and
U H⊆ to obtain a normal treeT that containsU . By taking the down‐closure ofU inT
we may assume thatT containsU cofinally. We claim thatT is locally finite. Indeed, ifT
is not locally finite then there is a finite vertex set X of G such that infinitely many
components ofG X− meetU . Since H is connected, the subgraph H ofG must contain
an edge between each component and X . By the pigeonhole principle, some vertex of X
has infinite degree in H , contradicting the fact that H is metrisable.

For the backward implication, suppose that there is a locally finite normal treeT G⊆

containingU . By Lemma 2.10 we have that the standard subspace that arises from T is
homeomorphic to  T with TOP. Since T is locally finite, TOP coincides with MTOP on  T
which is metrisable by Theorem 2.9(i).

The ‘in particular’ part is a consequence of Theorem 2.2. □

3 | DOMINATED COMBS AND TREE ‐DECOMPOSITIONS

In the previous section, we have presented a duality theorem for dominated combs in terms of
normal trees. And we have deduced from this theorem the hard implications ¬(i)→(ii) of
Theorems 2.1 and 2.2 (the duality theorems for combs and stars in terms of normal trees).
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Therefore we may expect from a duality theorem for dominated combs in terms of
tree‐decompositions to reestablish the hard implications ¬(i)→(ii) of the duality theorems for
combs and stars in terms of tree‐decompositions (Theorems 3.1 and 3.2)—by following arrows
in Figure 2 like we did in Figure 1.

Theorem 3.1 ([3, Theorem 2]). Let G be any connected graph and let U V G( )⊆ be any
vertex set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree‐decomposition into parts each containing at most finitely many

vertices from U and whose parts at nonleaves of the decomposition tree are all finite.

Moreover, the tree‐decomposition in (ii) can be chosen with connected separators.

Recall from [3] that a tree‐decomposition T( , )V of a given graph G with finite separators
displays a set Ψ of ends ofG if τ restricts to a bijection τ TΨ : Ψ Ω( )↾ → between Ψ and the end
space of T and maps every end that is not contained in Ψ to some node of T , where

τ G T V T: Ω( ) Ω( ) ( )→ maps every end ofG to the end or node ofT which it corresponds to
or lives at, respectively.

Theorem 3.2 ([3, Theorem 7]). Let G be any connected graph and let U V G( )⊆ be any
vertex set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree‐decomposition with finite and pairwise disjoint separators

such that each part contains at most finitely many vertices of U .

Moreover, the tree‐decomposition in (ii) can be chosen with connected separators and so
that it displays UΩ∂ .

In Section 3.1, we will prove a duality theorem for dominated combs in terms of
tree‐decompositions, making the left but not the right dashed arrow in Figure 2 true. In

FIGURE 2 The desired relation between stars, combs, dominated combs and complementary tree‐
decompositions. The left and right dashed arrows describe an implication whenever there is no comb and no
star attached to U , respectively
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Section 3.2, the situation is reversed: We will prove a duality theorem making the right but not
the left dashed arrow in Figure 2 true. Here we also provide a short proof of Carmesin's result
[4], which states that every graph has a tree‐decomposition displaying all its undominated ends,
for normally spanned graphs. Finally, in Section 3.3, we will prove a duality theorem that
makes both the left and the right dashed arrow in Figure 2 true. This will be achieved by
combining our proof techniques from Sections 3.1 and 3.2.

3.1 | A duality theorem related to combs

Here we present a duality theorem for dominated combs in terms of tree‐decompositions
making the left but not the right dashed arrow of Figure 2 true:

Theorem 3.3. Let G be any connected graph and let U V G( )⊆ be any vertex set. Then
the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a tree‐decomposition T( , )V that satisfies:

(a) each part contains at most finitely many vertices from U ;
(b) all parts at nonleaves of T are finite;
(c) every dominated end of G lives in a part at a leaf of T .

Moreover, the tree‐decomposition in (ii) can be chosen with connected separators and so
that it displays UΩ∂ .

Before we provide a proof of this theorem, let us deduce the left dashed arrow of Figure 2
from it (also see Figure 3 which shows the first two columns of Figure 2 in greater detail and
with Theorem 3.3(ii) including the theorem's ‘moreover’ part inserted for ‘?’): If G does not
contain a comb attached toU , then in particular it does not contain a dominated comb attached
to U . Hence Theorem 3.3 returns a tree‐decomposition T( , )V of G which we may choose so
that it satisfies the theorem's ‘moreover’ part; in particular T( , )V displays UΩ∂ . Our as-
sumption that there is no comb attached toU implies that UΩ∂ is empty and henceT is rayless.
Using the corresponding conditions from Theorem 3.3(ii) including the theorem's ‘moreover’
part, we conclude that T( , )V is as in Theorem 3.1(ii) including the theorem's ‘moreover’ part.

FIGURE 3 The first two columns of Figure 2 with Theorem 3.3(ii) including the theorem's ‘moreover’ part
inserted for ‘?’. Condition (*) says that parts contain at most finitely many vertices from U , that parts at
nonleaves are finite and that the separators are connected

564 | BÜRGER AND KURKOFKA

 10970118, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22757 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [10/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Finally, we prove Theorem 3.3:

Proof of Theorem 3.3. First, we show that at most one of (i) and (ii) holds. Assume for
a contradiction that G contains a dominated comb attached to U and has, at the same
time, a tree‐decomposition T( , )V as in (ii). Let R be the comb's spine. Since every
dominated end of G lives in a part at a leaf of T , and since all parts at nonleaves are
finite, we find without loss of generality a leaf ℓ of T with R G V[ ]ℓ⊆ . But each part
contains at most finitely many vertices from U . In particular, Vℓ contains at most
finitely many vertices from U . Therefore, the comb must send some infinitely many
pairwise disjoint paths to vertices in U Vℓ⧹ . But the separator of G that is associated
with the edge t Tℓ ∈ at ℓ is contained in the intersection V V Vt tℓ ∩ ⊆ which is finite
since Vt is, a contradiction.

Now, to show that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By Theorem 1
we find a normal tree T GNT ⊆ containingU cofinally all whose rays are undominated in
G and such that every component ofG T− NT has finite neighbourhood. We construct the
desired tree‐decomposition from TNT.

Given a component C of G T− NT the neighbourhood of C is a finite chain in the tree‐
order of TNT, and hence has a maximal element t TC NT∈ . We obtain the tree T from TNT
by adding each component C of G T− NT as a new vertex and joining it precisely to tC.

Having defined the decomposition tree T it remains to define the parts of the desired
tree‐decomposition. For nodes t T TNT∈ ⊆ we letVt consist of the down‐closure  t TNT of t
in the normal treeTNT. And for newly added nodesC we letVC be the union ofVtC and the
vertex set of the component C, that is, we put  V t V C( )C C TNT≔ ∪ .

Since TNT is normal and contains U cofinally, it follows by standard arguments
employing Lemma 2.4 and Lemma 2.6 that T( , )V displays UΩ∂ . Conditions (a) and (b)
hold by construction. Combining (b) with T( , )V displaying UΩ∂ gives (c), which in turn
is—as the rest of the ‘moreover’ part—a direct consequence of how the parts are
defined. □

Example 3.4. The tree‐decomposition in Theorem 3.3(ii) cannot be chosen to
additionally have pairwise disjoint separators, which shows that the theorem does not
make the right dashed arrow in Figure 2 true. To see this suppose that G consists of the
first three levels of Tℵ0, the tree all whose vertices have countably infinite degree, and let
U V G= ( ). Then G contains no comb attached to U . Suppose for a contradiction that G
has a tree‐decomposition T( , )V as in Theorem 3.3(ii) which additionally has pairwise
disjoint separators. The graph G being rayless and U being the whole vertex set of G
together with our assumption that T( , )V has pairwise disjoint separators makes sure
that T( , )V also displays UΩ∂ . In particular, by our argumentation in the text in
Theorem 3.3, T( , )V is also a tree‐decomposition of G complementary to combs as
in Theorem 3.1. But then T( , )V cannot have pairwise disjoint separators, as pointed out
in [3, Example 3.7].

3.2 | A duality theorem related to stars

Here we present a duality theorem for dominated combs in terms of tree‐decompositions
making the right but not the left dashed arrow in Figure 2 true.
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Theorem 3.5. Let G be any connected graph and let U V G( )⊆ be any vertex set. Then
the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a rooted tree‐decomposition with upwards disjoint finite separators that

display UΩ∂ .

Moreover, the tree‐decomposition in (ii) can be chosen with connected separators and so
that it covers U cofinally.

Before we prepare the proof of our theorem, let us deduce the right dashed arrow of
Figure 2 from it (also see Figure 4 which shows the last two columns of Figure 2 in greater
detail and where Theorem 3.5(ii) including the theorem's ‘moreover’ part is inserted for ‘?’):
If G does not contain a star attached toU , then in particular it does not contain a dominated
comb attached to U . Hence Theorem 3.5 yields a rooted tree‐decomposition T( , )V of G
which we choose so that it also satisfies the theorem's ‘moreover’ part; in particular T( , )V

covers U cofinally. By assumption, the star–comb lemma yields a comb in G attached to U′
for every infinite subsetU′ ofU . Since T( , )V displays UΩ∂ this means that no part can meet
U infinitely.

We claim thatT must be locally finite. To see this, suppose for a contradiction that t T∈ is a
vertex of infinite degree. For every up‐neighbour t′ of t we choose a vertex from U that is
contained in a part V″t with t t″ ′≥ inT . As the partVt contains only finitely many vertices from
U , all but finitely many of the chosen vertices are not contained in Vt . Then applying the
star–comb lemma inG to the infinitely many chosen vertices fromU yields a comb. The end of
the comb's spine must then live at t because the separators of T( , )V are all finite. But this
contradicts the fact that T( , )V displays UΩ∂ which contains the end of the comb's spine.

Finally, it remains to show that the separators of T( , )V are pairwise disjoint, but they need
not be. However, we can define an equivalence relation ~ on the nodes of T by declaring t1 and
t2 to be equivalent if they have a common predecessor s such that the separators associated with
the edges st1 and st2 meet. Then all equivalence classes are finite because T is locally finite, and
we may let T( ′, ′)V be the tree‐decomposition where T′ is obtained from T by collapsing each
equivalence class to a single vertex, and V C V T′ = ( ( ) ~)CV ∈ ∕ with  V V t C{ }C t≔ ∈ .
Notably, the separators of T( ′, ′)V are pairwise disjoint and connected while T( ′, ′)V still
displays UΩ∂ and cofinally covers U , completing the argumentation.

FIGURE 4 The last two columns of Figure 2 with Theorem 3.5(ii) including the theorem's ‘moreover’ part
inserted for ‘?’. Condition (*) says that the tree‐decomposition displays UΩ∂ and has finite connected separators
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To prove Theorem 3.5, we will employ the following result by Carmesin. Recall that a
rooted Sℵ0‐tree T α( , ) has upwards disjoint separators if for every two edges e f<→ →

pointing
away from the root r of T the separators of α e( )→ and α f( )

→
are disjoint. And T α( , ) is upwards

connected if for every edge e→ pointing away from the root r the induced subgraph G B[ ]

stemming from A B α e( , ) = ( )→ is connected. A rooted tree‐decomposition has upwards disjoint
separators or is upwards connected if its corresponding Sℵ0‐tree is.

Theorem 3.6 (Carmesin [4], and [3, Theorem 2.17]). Every connected graph G has a
rooted tree‐decomposition with upwards disjoint finite connected separators that display the
undominated ends of G.

Carmesin's proof of this theorem in [4] is long and complex. However, in this paper we need
his theorem only for normally spanned graphs. This is why we will provide a substantially
shorter proof for this class of graphs (cf. Theorem 3.8).

Lemma 3.7 ([3, Lemma 2.16]). Let G be any graph. Every upwards connected rooted Sℵ0‐
tree T α( , ) with upwards disjoint separators displays the ends of G that correspond to the
ends of T .

Theorem 3.8. Let G be any connected graph. If T GNT ⊆ is a normal tree such that every
component of G T− NT has finite neighbourhood, then G has a rooted tree‐decomposition
T( , )V with the following three properties:

• the separators are upwards disjoint, finite and connected;
• T( , )V displays the undominated ends in the closure of TNT;
• T( , )V covers V T( )NT cofinally.

Proof. Let us write r for the root of TNT. Recall that every component of G T− NT has
finite neighbourhood by assumption. Hence every end ω TΩ Ω NT∈ ⧹∂ lives in a unique
component of G T− NT; we define the height of ω to be the height of the maximal
neighbour of this component in TNT.

Starting with T r=0 and α =0 ∅ we recursively construct an ascending sequence of
Sℵ0‐trees T α( , )n n all rooted in r and satisfying the following conditions. (Here, we mean
ascending in both entries with regard to inclusion, i.e., T Tn n+1⊆ and α αn n+1⊆ for
all n ∈ .)

(i) the separators of T α( , )n n are upwards disjoint and they are vertex sets of ascending
paths in TNT;

(ii) Tn arises from Tn−1 by adding edges to its n( − 1)th level;
(iii) undominated ends in the closure of TNT live at nodes of the nth level of Tn with

regard to T α( , )n n ;
(iv) if ω TΩ Ω NT∈ ⧹∂ has height n< , then ω lives at a node of Tn of height n< with regard

to T α( , )n n .

Before pointing out the details of our construction, let us see how to complete the proof
once the T α( , )n n are defined. Consider the Sℵ0‐tree T α( , ) defined by letting T Tn n≔ ∈

and α αn n≔ ∈ , and let T( , )V be the corresponding tree‐decomposition of G. By (i) we
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have that T( , )V is indeed a rooted tree‐decomposition with upwards disjoint finite
connected separators all of which meet V T( )NT . It remains to prove that T( , )V displays the
undominated ends in the closure of TNT.

By Lemma 3.7 it suffices to show that the undominated ends in the closure of TNT are
precisely the ends of G that corresponds to the ends of T . For the forward inclusion,
consider any undominated end ω in the closure of TNT. By (iii), it follows that ω lives at a
node tn of Tn (with regard to T α( , )n n ) at level n for every n ∈ , and these nodes form a
ray R t t= …0 1 of T . Then ω corresponds to the end of T containing R.

For an indirect proof of the backward inclusion, consider any end ω of G that is
either dominated or not contained in the closure of TNT. We show that ω does not
correspond to any end of T . If ω is dominated, then this follows from the fact that
T( , )V has upwards disjoint finite separators. Otherwise ω is not contained in the
closure of TNT. Let n ∈ be strictly larger than the height of ω. By (iv), it follows that ω
lives at a node tω of Tn of height n< with regard to T α( , )n n . And by (ii), the tree Tn
consists precisely of the first n levels of T . We conclude that ω lives in the part of
T( , )V corresponding to tω.
Now, we turn to the construction of the T α( , )n n , also see Figure 5. At step n + 1

suppose that T α( , )n n has already been defined and recall that the separators of T α( , )n n

are vertex sets of ascending paths in TNT by (i). Let L be the nth level of Tn. To obtain
T α( , )n n+1 +1 from T α( , )n n , we will add for each Lℓ ∈ new vertices (possibly none) to Tn
that we join exactly to ℓ and define the image of the so emerging edges under αn+1. So
fix Lℓ ∈ . Let X be the separator of the separation corresponding to the edge between ℓ
and its predecessor in Tn (if n = 0 put X = ∅). Recall that X is the vertex set of an
ascending path in TNT by (i). In TNT, let Y be the set of up‐neighbours of the maximal
vertex in X (for n = 0 let Y r{ }≔ ). For each y Y∈ let Zy be the set of those  z y TNT∈

that are minimal with the property that G contains no TNT‐path starting in  y TNT and
ending in  z TNT. (Note that a normal ray of TNT that contains y meets Zy if and only if it
is not dominated by any of the vertices in  y TNT; this fact together with (i) will
guarantee (iii) for n + 1.) Then the vertex set of yT zNT separates the connected sets

 A V z V yT z( \ ) ( )yz T NTNT
≔ ∪ and  B V yT z z( )yz TNT NT

≔ ∪ whenever y Y∈ and
z Zy∈ . Join a node tyz to ℓ for every pair y z( , ) with y Y∈ and z Zy∈ , and put

FIGURE 5 The construction of the T α( , )n n in the proof of Theorem 3.8. Here the vertex set Z consists of all
vertices that are contained in some Zy with y Y∈ . The depicted tree is TNT
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α t A B(ℓ ) ( , )n yz yz yz+1 ≔ . Then the Sℵ0‐tree T α( , )n n+1 +1 clearly satisfies (i) and (ii). That it
satisfies (iii) was already argued in the construction and (iv) follows from (i) and the
definition of α t(ℓ )n yz+1 . □

With Theorem 3.8 at hand, we are finally able to prove Theorem 3.5:

Proof of Theorem 3.5. First, we show that (i) and (ii) cannot hold at the same time.
For this, assume for a contradiction that G contains a dominated comb attached toU
and has a tree‐decomposition T( , )V with upwards disjoint finite separators that
displays UΩ∂ . We write ω for the end of G containing the comb's spine. Then ω lies in
the closure ofU , and since T( , )V displays UΩ∂ there is a unique end η of T to which
ω corresponds. But as the finite separators of T( , )V are upwards disjoint, it follows
that ω is undominated in G, contradicting that ω contains the spine of a dominated
comb.

Now, to show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii). Using
Theorem 1 we find a normal tree T GNT ⊆ that containsU cofinally and all whose rays
are undominated in G. Furthermore, by the ‘moreover’ part of Theorem 1 we may
assume that every component of G T− NT has finite neighbourhood, and by Lemma 2.4
we have U T=Ω Ω NT∂ ∂ . Then Theorem 3.8 yields a rooted tree‐decomposition T( ′, ′)V

of G as in (ii) that has connected separators and covers V T( )NT cofinally. It remains to
show that T( ′, ′)V can be chosen so as to cover U cofinally. For this, consider the
nodes of T′ whose parts meetU , and let T T′⊆ be induced by their down‐closure in T′.
Then let T α( ′, ′) be the Sℵ0‐tree of G that corresponds to T( ′, ′)V and consider the
rooted tree‐decomposition T( , )V of G that corresponds to T α E T( , ′ ( ) )↾

→
. Now T( , )V

is as in (ii) and satisfies the theorem's ‘moreover’ part. □

3.3 | A duality theorem related to stars and combs

Finally, we present a duality theorem for dominated combs in terms of tree‐decompositions
that makes both the left and the right dashed arrow in Figure 2 true. To state the theorem,
we need one more definition. A rooted tree‐decomposition T( , )V of a graphG has essentially
disjoint separators if there is an edge set F E T( )⊆ meeting every ray of T infinitely often
such that the separators of T( , )V associated with the edges in F are upwards disjoint.

Theorem 2. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a rooted tree‐decomposition T( , )V such that:

– each part contains at most finitely many vertices from U ;
– all parts at nonleaves of T are finite;
– T( , )V has essentially disjoint connected separators;
– T( , )V displays the ends in the closure of U .

Before we provide a proof of this theorem, let us see that it relates to the duality theorems
for stars and combs in terms of tree‐decompositions as desired (also see Figure 6, which shows
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Figure 2 in greater detail and where Theorem 2(ii) including the theorem's ‘moreover’ part is
inserted for ‘?’).

On the one hand, if G does not contain a comb attached toU , then in particular it does not
contain a dominated comb attached to U . Hence Theorem 2 returns a tree‐decomposition
T( , )V . By our assumption that there is no comb attached toU , and since T( , )V displays UΩ∂ ,
it follows that the decomposition‐tree T is rayless. We conclude that T( , )V is as in
Theorem 3.1(ii) including the theorem's ‘moreover’ part.

On the other hand, if G does not contain a star attached to U , then in particular it does
not contain a dominated comb attached to U . Hence Theorem 2 returns a rooted tree‐
decomposition T( , )V that, in particular, has essentially disjoint finite connected separators
and displays UΩ∂ . Write T α( , ) for the Sℵ0‐tree that corresponds to T( , )V . Let F E T( )⊆

witness that T( , )V has essentially disjoint separators. By possibly thinning out F , we may
assume that each edge in F meets a rooted ray ofT . Consider the tree T̃ that is obtained from
T by contracting all the edges of T that are not in F and let α̃ be the restriction of α to
F E T= ( ˜)
→ →

. Then T α( ˜, ˜) corresponds to a tree‐decomposition T( ˜, )W of G with upwards
disjoint finite connected separators that displays UΩ∂ . Thus, the tree‐decomposition T( ˜, )W

is one of the tree‐decompositions of G that are complementary to dominated combs as in
Theorem 3.5(ii) including the theorem's ‘moreover’ part (it covers U cofinally as F meets
every rooted ray of T while T( , )V displays UΩ∂ ). Then, as we have already argued in
Theorem 3.5, the tree‐decomposition T( ˜, )W can easily be turned into a tree‐decomposition
as in Theorem 3.2(ii) including the theorem's ‘moreover’ part.

Proof of Theorem 2. Since the tree‐decomposition from (ii) displays UΩ∂ and has
essentially disjoint finite separators, it follows by standard arguments that not both (i)
and (ii) can hold at the same time.

To show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii). For this, suppose that
G contains no dominated comb attached to U . Using Theorem 1 we find a normal tree
T GNT ⊆ that contains U cofinally and such that every component of G T− NT has finite
neighbourhood. Then we let T( ′, )W be a rooted tree‐decomposition obtained by and
constructed like in the proof of Theorem 3.8. Now T( ′, )W is almost as desired, and even

FIGURE 6 The relation between the duality theorems for combs, stars and the final duality theorem for the
dominated combs in terms of tree‐decompositions. Condition (*) says that parts contain at most finitely many
vertices from U , that the separators are finite and connected, and that the tree‐decomposition displays UΩ∂
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has upwards disjoint separators; however, its parts may be infinite. To solve this, we
define another tree‐decomposition T( , )V , as follows.

If C is a component of G T− NT, then we write tC for the maximal node t TNT∈ in its
neighbourhood. We letT be the rooted tree obtained fromTNT by adding each component
C of G T− NT as a new node that we join precisely to tC. For every node t T TNT∈ ⊆ we
let x t( ) be the least node of T′ with t Wx t( )∈ and define  V t Wt T x t( )NT

≔ ∩ . For every
component C T T− NT∈ we define V V C V( )C tC≔ ∪ . To see that T( , )V is a rooted tree‐
decomposition of G, note that for every vertex v of G the set t T v V{ }t∈ ∈ induces a
subtree of T .

We claim that T( , )V is as desired. The only property in (ii) that is not evident is that
T( , )V has essentially disjoint separators. For every edge e T′∈ we write Pe for the
ascending path in TNT ending in te whose vertex set is the separator associated with e in
the tree‐decomposition T( ′, )W . To see that the separators of T( , )V are essentially
disjoint, consider for every edge e T′∈ the set Fe of up‐edges f TNT∈ at te with separators
of T( ′, )W above them. Then every edge f F E T( )e∈ ⊆ is associated with the separator
V P( )e in T( , )V that is also the separator associated with e in T( ′, )W . So the separators of
T( , )V associated with the edges in F F e T{ ′}e∪≔ ∈ are upwards disjoint because the
separators of T( ′, )W are. Since TNT contains U cofinally and G contains no dominated
comb attached to U , every normal ray of TNT is undominated and therefore passes
through infinitely many edges of F . Hence every ray of T passes through infinitely many
edges of F as well. □

Example 3.9. The tree‐decomposition in Theorem 2(ii) cannot be chosen with pairwise
disjoint separators instead of essentially disjoint separators: Suppose that G consists of
the first three levels of Tℵ0 and letU V G( )≔ . ThenG contains no comb attached toU . In
particular, as we have already argued in the text below Theorem 2, every tree‐
decomposition T( , )V ofG complementary to dominated combs as in Theorem 2 is also a
tree‐decomposition of G complementary to combs as in Theorem 3.1. But then T( , )V

cannot be chosen with pairwise disjoint separators, as pointed out in [3, Example 3.7].
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