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1. Introduction
Measurements of Earth's surface air temperatures covering the last 150 years show a pronounced warming (I. Harris 
et al., 2014) that is largely the result of human influence (Bindoff et al., 2013; Hegerl et al., 2019). Longer records 
of surface temperature are invaluable for placing the recent anthropogenically perturbed period in the broader 
context of Earth's pre-industrial climate variability (Neukom et al., 2019). The instrumental surface air tempera-
ture record is limited in the years before CE 1850 (Benestad et al., 2019; I. Harris et al., 2014; Morice et al., 2012) 
and only a few longer instrumental records are available from historical records (Brönnimann et al., 2019). For 
this reason temperature sensitive proxies such as tree and coral growth rings, ice-cores and lake sediments are 
used to reconstruct earlier climate variations (e.g., Jacoby & D’Arrigo, 1989; Mann et al., 1998, 1999, 2008; 
PAGES 2k Consortium, 2013, 2019) showing the unprecedented nature of globally synchronous warming since 
CE 1850 (e.g., Mann et al., 1998, 1999; Neukom et al., 2019).

An alternative method for reconstructing climate makes use of geothermal temperature measurements (e.g., 
Beltrami & Mareschal, 1992; Beltrami et al., 2005; Chouinard & Mareschal, 2009; R. Harris & Chapman, 2005; 
Jaume-Santero et al., 2016; Lachenbruch & Marshall, 1986; Mareschal & Beltrami, 1992; Pickler et al., 2018; 
Pollack & Huang, 2000; Pollack et al., 1998). This relies on changes at the surface being conducted into the ground, 
causing measurable perturbations in the temperature-depth profile (Beltrami et al., 2015; Pollack et al., 1998). 
Globally averaged results from geothermal data consistently show a continuous warming since around CE 1500 of 
around 1°C up to the late 20th Century (Beltrami & Bourlon, 2004; Cuesta-Valero et al., 2021; Huang et al., 2000; 

Abstract Geothermal temperature-depth measurements can be used to reconstruct past climate without the 
need for calibration against meteorological data. The global geothermal database is one of opportunity and is 
therefore subject to variations in measurement protocol, quality control and potential non-climatic influences. 
As the climatic history recovery is sensitive to these factors, we developed a Bayesian hierarchical model that 
allows us to treat errors and uncertainty formally. This way we may better isolate the climate signal. For the 
Northern Hemisphere extra-tropics our reconstruction shows a warming beginning in CE 1750 and it captures 
the observed two-phase warming over the past century. We clearly identify the northern tropics as a region of 
greatest ground warming and hypothesize that this reflects land-use change. For the Southern Hemisphere, 
the inclusion of newer data leads to a modest cooling until CE 1750. Outside the tropics, agreement with 
multi-proxy reconstructions has improved relative to earlier studies.

Plain Language Summary Understanding past climate is invaluable for evaluating the natural 
context of man-made warming. Long term surface-air temperature records only exist at a few locations. To 
reconstruct global trends further back in time proxies must then be used. Measurements from such systems are 
then calibrated against observed climate variations. Temperatures measured in the ground can provide more 
direct information on past variations because sustained trends at the surface drive thermal perturbations that 
penetrate into the subsurface and which can be measured today. These geothermal data have the advantage that 
they do not require calibration and so are independent of meteorological observations. However, recovering the 
climate signal is not trivial. For this reason we developed a new statistical approach to infer past temperature 
variations from a database of 1012 temperature-depth profiles distributed near-globally. The results show 
excellent agreement with observed temperatures and also demonstrate improved agreement with proxy-based 
records. One exception is noted over equatorial regions in the northern hemisphere where a potential influence 
of historical land-use may be significant.
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Pollack & Smerdon, 2004). In contrast, proxy-based methods mostly indicate a long-term cooling from CE 1000 
to around CE 1700–1800 (Klippel et al., 2020; Mann, 2021; PAGES 2k Consortium, 2013, 2019).

The global geothermal climate database was originally compiled with the International Heatflow Commission 
(IHFC) (Huang & Pollack, 1998; Huang et al., 2000). It is a database of opportunity that has been compiled from 
measurements taken over several decades with different instrumentation, in varied settings and with no commonly 
adopted protocol or quality control. It is also relatively clustered spatially. Around half of sites (471 out of 1012) 
were logged before CE 1985, with profile tops mostly 20 m or deeper (see Figure 1), meaning the observed 
post CE 1970 surface air temperature rise may not be recorded. There are also potentially non-climatic influ-
ences which have been investigated with modeling, direct observations and comparisons with instrumental data 
(Bartlett et al., 2006; Beltrami et al., 2005; Cermak et al., 2017; Gonzàlez-Rouco et al., 2006, 2009; Majorowicz 
& Skinner, 1997; Melo-Aguilar et al., 2018, 2020; Skinner & Majorowicz, 1999). This means that the global 
database is potentially subject to variable and unquantified levels of measurement error and non-climatic influ-
ence, termed as noise hereafter (see also Text S1 in Supporting Information S1). Partly for this reason but also 

Figure 1. Sampling density of the 1012 borehole temperature profiles on the 5° × 5° grid and a comparison of the profile top depth against measurement date across 
six sub-regions.
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because the ill-posed nature of the inverse problem (Menke, 1989), a smoothing operator is required to prevent 
over-fitting. Without this, a reconstruction with unrealistically large swings in temperature could result. Although 
there are empirical approaches to choose this smoothing, there is no single value that can apply equally well in 
the range of situations encountered.

We identify four main reasons for studying this data set here: (a) spatial variability in the geothermal recon-
struction has not been evaluated or attributed in detail (e.g., Beltrami & Bourlon, 2004; Huang et al., 2000); (b) 
it remains unclear why proxy-based reconstruction show cooling until Industrialization (e.g., Esper et al., 2012; 
Klippel et al., 2020; Mann, 2021; Neukom et al., 2019) whereas geothermal reconstruction show the opposite 
(e.g., Cuesta-Valero et  al.,  2021; Masson-Delmotte et  al.,  2013; Pollack & Smerdon,  2004); (c) it is unclear 
whether the heterogeneity in the geothermal database has been fully accounted for and for example, whether 
noisier data have caused reconstructions to be smoother than necessary (Clow, 1992; Hopcroft et al., 2007); and 
(d) 91 profiles have been added to the IHFC database since CE 2000, with recent additions in Australia which 
was otherwise dominated by much older measurements (Figure 1).

For these reasons we have developed a Bayesian hierarchical model to infer past surface temperature histories 
from the global geothermal database (Huang & Pollack, 1998). This approach allows uncertainties to be robustly 
treated in a probabilistic framework (Denison et al., 2002). Both the observational noise level at each site and 
the required smoothing of the climatic history are inferred directly from the data. A key advantage of this is that 
noisier data are given less weight in the final result and data which can support more detailed climate histories are 
not subject to excessive smoothing. We applied this method to the available global IHFC database and evaluate 
spatial variability and uncertainty in the resultant reconstructions.

2. Methods: Bayesian Inference of Past Climate From Geothermal Data
Extracting climate from geothermal data is an ill-posed and non-linear inverse problem (Menke, 1989). As such, a 
Bayesian approach is a natural choice (Tarantola, 2005) and the hierarchical aspect also allows us to treat some neces-
sary, but not directly relevant, parameters, such as data errors, as unknowns. We expanded on the model described 
by Hopcroft et al. (2007, 2009) to infer the surface temperature history at each location from down-hole geothermal 
data. The posterior distribution from Bayes' law is reconstructed using a Markov chain Monte Carlo (MCMC) algo-
rithm (Denison et al., 2002; Geyer, 2011; Gilks et al., 1995). We use a trans-dimensional or reversible jump MCMC 
(Denison et al., 2002; Fan & Sisson, 2011; Green, 1995) which is widely used in Earth Science problems (e.g., 
Charvin et al., 2009; Gallagher et al., 2009; Jeong et al., 2012; Malinverno, 2002; Sambridge et al., 2006, 2013).

2.1. Model Setup

We use 1012 profiles in the University of Michigan/International Heatflow commission database (Huang & 
Pollack,  1998), see http://heatflow.world/project (IHFC henceforth). Our global analysis is performed on a 
5° × 5° latitude/longitude grid shown in Figure 1. Given the heterogeneous distribution of sites, this results in 
172 occupied grid cells. A one-dimensional finite element heat conduction model (Lewis et al., 1996) is used 
to calculate the temperature-depth profile at all 1012 sites over time (Hopcroft et al., 2007). The model starts at 
1400 CE and runs forward in time with a 5-year timestep up to the timestep that is closest to the latest date of 
logging among the profiles that are contained within each grid cell. The spatial discretization uses the depths of 
the site measurements, with five padding layers above the shallowest measurement and a total of 480 elements 
vertically. We use IHFC estimated site thermal conductivity data and follow previous work (Hopcroft et al., 2007) 
by prescribing fixed values for density and heat capacity at each site.

The upper and lower boundary conditions are the surface temperature and basal heat flux respectively. For the 
inverse problem, the past surface temperature history is parameterized separately in each of the 5° × 5° gridcells 
as a series of k time-temperature (t-T) points interpolated onto the 5-year timestep (Hopcroft et al., 2007). The 
temperature is assumed to vary linearly between each adjacent pair of t-T points (Hopcroft et al., 2007). Together 
with the sampled values of the parameters, basal heat flux q0 and pre-reconstruction mean surface temperature 
Tpre defining the initial condition for the model, the sampled temperature history is used to predict the temperature 
depth profile at the date of measurement for a given borehole data set. The surface temperature history model is 
allowed between 2 and 30 points over 600 years, which is consistent with the temporal resolution of geothermal 
climate reconstruction method (Pollack & Huang, 2000). The model parameters are listed in Table S1 of Support-

http://heatflow.world/project
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ing Information S1. All borehole temperature depth profiles that lie in a particular grid cell (see Figure 1) are 
used jointly when sampling the values of the time and surface temperature, q0 and Tpre. The accepted samples are 
then collated to produce a posterior probability density function for each parameter. This model setup is shown 
schematically in Figure 2.

The trans-dimensional (rjMCMC Green,  1995; Hopcroft et  al.,  2007) formulation means that the number of 
timepoints in the reconstruction (k, the resolution or model complexity) adapts to the information in the data at 
each site and is sampled as an additional model parameter (see Figure 2). Although the model can increase the 
number of parameters to better fit the data, such over-fitting is avoided because models with more parameters or 
with wider a priori probability distributions will integrate over a larger region of model state-space and hence 
give a lower marginal likelihood (Denison et al., 2002; MacKay, 2003). In practice, this allows the complexity 
of the model (surface temperature history) to self-adapt to the information contained in the borehole temperature 
data. The hierarchical approach means that several important parameters are assigned prior probability distri-
butions rather than using fixed values for all locations—this is key difference with our earlier work (Hopcroft 
et al., 2007). A potential advantage of this is that we do not need to specify one value for either the measurement 
noise or the expected variance in the past climate at a given site. This is potentially important because some 
profiles are likely to be less noisy than others. This allows the algorithm to treat different data sets accordingly.

We treat the following key parameters in this way:

1.  σl—the uncertainty on the borehole temperature observations at each site.
2.  σp—the width of the prior distribution for past temperature variations in each gridcell.
3.  λS—the a priori favored value of k, the number of time-temperature nodes in the reconstruction in a given gridcell.

The variance of these prior distributions is inferred together with the other model parameters, using hyper-priors 
(e.g., Denison et al., 2002), see Figure 2. We use hyper-prior parameters as listed in Table S1 of Supporting 
Information S1 that encompass a realistic range of values in each case. Full details of the prior, hyperprior and 
likelihood distributions and the methods for sampling with the hierarchical rjMCMC algorithm are given in the 
Supporting Information S1 together with an evaluation using two global test cases that mimic the real database 
with 1012 synthetic temperature-depth profiles.

2.2. Initial Conditions and Parallel Sampling

Under suitable conditions a MCMC algorithm will give an excellent approximation of the underlying posterior 
probability distribution. However, inefficient sampling can lead to biases. This is analogous to being trapped 

Figure 2. Schematic of the hierarchical model. The key model parameters in each gridcell are the basal heat flux and pre-reconstruction surface temperature (Tpre), the 
surface temperature history (T), the prior information width (σp) and the observational noise (σl), all of which are jointly estimated from the data.
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in a local minima in a multi-dimensional optimization problem. A widely adopted method to deal with this 
involves evaluating convergence through comparison of several parallel MCMC algorithms (Gelman,  1995; 
Gelman & Rubin, 1992; Gelman & Shirley, 2011). After an initial period of the sampling is discarded, the ratio 
of the variance within and between parallel changes should be less than around 1.2 (Gelman, 1995; Gelman & 
Rubin, 1992; Gelman & Shirley, 2011) indicating that different initialized MCMC chains are covering a similar 
range in state-space and have therefore converged on a similar solution.

We follow this approach and initialized parallel rjMCMC algorithms with randomly chosen values of the heat 
flow at each site (q0), the pre-reconstruction temperature (Tpre) and the temperature values of the reconstruction 
(T). The model is initialized with 5 equally spaced time-temperature nodes, that is, k = 5 (see Table S1 in Support-
ing Information S1) and with randomly selected values for the temperatures at these times. Ten parallel chains 
are configured and each is run for half a million rj-MCMC iterations with the first half of these discarded. The 
model parameters are saved every 50 iterations to reduce the computational storage requirements. The conver-
gence diagnostic is calculated for the reconstructed surface temperature anomaly between years CE 1705–1850 
and CE 1855–2000 as such, evaluating the pre- to post-industrial change. Only gridcells that have converged are 
considered in the following discussion.

2.3. Summarizing the Posterior

For each grid cell, the inferred CE 1955–1990 mean of the temperature reconstruction is subtracted and the 
resultant temperature anomaly timeseries is area-weighted to produce regional averages. The reconstruction runs 
to the year CE 2015, but the inferred temperatures are only included in hemispheric averages up to the latest date 
of measurement of any profile within that grid cell minus the effective time of the shallowest measurement (z0). 
The characteristic time for a 5% perturbation is given by Turcotte and Schubert (2002) (their equations 4–115):

𝑡𝑡𝑑𝑑0 = 𝑧𝑧
2
0
∕
(

2.322𝜅𝜅
)

. (1)

For z0 of 50 m and κ = 1 × 10 −6, this is around 15 years. Thus, the end date (t*) is given by:

𝑡𝑡∗ = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑑𝑑0 (2)

where tmeas is the date of measurement of the profile, and td0 is the effective response time of the shallowest meas-
urement given above. Thus a profile measured in CE 1985 with a shallowest measurement at 50 m is averaged 
up to the year CE 1970.

3. Results
3.1. Sampling and Convergence

For the real data case the rj-MCMC algorithm converges in 94% of the gridcells (162 of the 172). An example 
of the convergence across parallel chains is shown for one gridcell in Figure S3 of Supporting Information S1. 
When the temperature history proposals were adapted slightly (as described in Text S2 of Supporting Informa-
tion S1), this increased to 98% (6 more cells) convergence. The remaining four gridcells all contain multiple 
profiles and the lack of convergence is most likely caused by a combination of noisier/inconsistent data with 
possibly relatively limited constraints on climate and/or inefficiency of the rj-MCMC algorithm when faced with 
many profiles in one gridcell. Using adaptive proposal distributions (e.g., Rosenthal, 2011) or a more advanced 
Bayesian sampling approaches such as partition modeling (Denison et al., 2002) may help to resolve this, but this 
is beyond the scope of the present study. Thus in the following only results from the 168 converged gridcells are 
analyzed.

3.2. Hemispheric Mean Temperature Trends

The results of the global inversion are shown for the two hemispheres in Figure 3, plotted using only gridcells in 
which the rjMCMC sampling converged (as described above). Two results are shown, one in which the prior on 
the temperature history is constant through time and a second in which 1°C of warming is assumed for all loca-
tions over the 20th Century since this is known to have occurred and it thereby better approximates our knowledge 
of more recent climate change. The posterior results from both are compared with the meteorological record from 
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Figure 3. Observed and reconstructed temperature variations for (a) the Northern hemisphere (0°–70°N) and (b) the Southern hemisphere (0°–45°S) relative to the 
late twentieth century mean. The geothermal posterior mean (thick blue) and 95% confidence intervals (thin blue) and a second case where the a priori model includes 
a global historical era warming of 1°C. Observed land station temperature (I. Harris et al., 2014) filtered with a 20-year moving window (CRU: black). Multi-proxy 
terrestrial temperature reconstructions (Neukom et al., 2019; PAGES2k Consortium, 2017), mean: thin gray lines, green shading: 10%–90% uncertainty limits. 
Hemispheric-mean geothermal reconstruction digitized from Huang et al. (2000) (dashed gray). (c and d) The latitudinally averaged warming signal (1955–1980 minus 
1500–1550) inferred from the geothermal data. (e) Posterior mean temperature change CE 1950–1980 minus 1500–1550. (f) Posterior 1σ uncertainty on the temperature 
change CE 1950–1980 minus 1500–1550.
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land stations (against which it has not been calibrated), the terrestrial signal 
derived from PAGES2k reconstructions (v2.0.0) (Neukom et  al.,  2019) 
and previous geothermal reconstructions for the two hemispheres (Huang 
et al., 2000). We calculated the regional temperature reconstruction from the 
PAGES2k version 2.0.0 multi-method global temperature field reconstruc-
tions (Neukom et al., 2019; PAGES2k Consortium, 2017) masked here to the 
same gridcell coverage as the geothermal data (as shown in Figure 1).

The northern hemisphere reconstruction shows a continuous warming since 
around CE 1500 which has accelerated in the last 150 years in good agreement 
with the station-based observed temperature history between CE 1860 and 2000. 
The new results confirm that the very rapid warming in the past two decades is 
evident in geothermal data (Cuesta-Valero et al., 2021), although this part of the 
reconstruction is more uncertain because it is conditioned on fewer gridcells as 
most of the geothermal data predate CE 2000 (see Figure 1). Differences caused 
by the prior specification are relatively modest. The overall amplitude of warm-
ing for the Northern hemisphere is 1.0°C up to the late 20th Century mean. This 

is within the uncertainties of the work by Huang et al. (2000), Beltrami and Bourlon (2004), and the more recent work 
by Cuesta-Valero et al. (2021) who use a similar data set. Spatially, Figure 3c shows that the warming signal is much 
greater in the northern hemisphere tropics than elsewhere, a feature that we discuss further below.

Excluding the signal over 0°–30°N (shown in Figure 4) alters the geothermal result significantly. In this region we find 
that the continuous warming started later, at around CE 1750 with a cooling preceding this. This transition at around 
CE 1750 from cooling to warming is different from previous results from the northern extra-tropics (e.g., Beltrami & 
Bourlon, 2004) and highlights where use of the Bayesian hierarchical model has diverged from earlier studies. Over 
this region (>30°N) the result is in very good agreement with the observed meteorological temperature record, and in 
this case resolves the observed slowdown in warming during the mid-20th Century. The differences between the two 
cases in terms of the prior information used indicates that the data may not translate to a unique posterior reconstruc-
tion, namely that the influence of noise versus the prior information is important (e.g., Li et al., 2010).

In the Southern hemisphere the reconstruction is also different from previous studies. Figure 3 shows a different 
trend to the Northern Hemisphere with a cooling until CE 1750–1800. The amplitude of warming is smaller than 
in earlier geothermal studies (Huang et al., 2000). This contrasts with the results for the Northern Hemisphere and 
is most likely because of the inclusion of a large number of new profiles in the IHFC database in recent years as 
shown in Figure 1. The last 35 years of the SH reconstruction shows a trend that does not agree with the preceding 
decades or observations. This is because the number of sites included in the average is very low and is therefore 
biased toward the results in few gridcells. The alternative prior makes very little difference to the results for the 
Southern Hemisphere. In contrast with the North, over the Southern Hemisphere there is no two-phase warming 
over the 20th Century, in agreement with the observed temperature record.

We performed three additional tests to isolate the impact of the developments made in this study. We tested the impacts 
of (a) of fixing the parameter σl, the estimated noise on the temperature observations to a globally constant value of 
0.05°C, (b) keeping σp, the prior width on the temperature histories constant at 1.0°C and (c) fixing both of these param-
eters (σl and σp) and keeping the dimensionality of the temperature history (k) constant at one temperature-point per 
100 years. The noise value is chosen as an approximately intermediate value (Beardsmore & Cull, 2001; Wang, 1992) 
that is similar to previous studies (see also Text S1 in Supporting Information S1). For example, Huang et al. (2000) 
used 0.03°C (Shen et al., 1995) and Cuesta-Valero et al. (2021) used a fixed number of eigenvalues in their inversion, 
which is equivalent to a fixed noise level. By keeping σl fixed globally, we are assigning an equal weighting to all 
observational data sets in the posterior distributions. Fixing σp globally means that a priori we expect similar scale 
climate variations in all locations. In the third test, we only allow the heatflow, pre-reconstruction mean temperature 
and the temperature history at fixed 100-year intervals to vary. The results of the sensitivity tests are compared with the 
standard result in Figures S4–S6 of Supporting Information S1. The first two cases show relatively limited impacts on 
the hemispheric means although differences do emerge. Holding all three parameters constant (k, σl, and σp) leads to 
a very similar result at the global scale, though the fixed noise case does result in larger warming polewards of 60°N. 
Thus we conclude that the noise parameter estimation and adapting the time-resolution are not critical for this problem, 
especially for earlier centuries where the data's resolving power in time is very limited.

Figure 4. As in Figure 3 but for areas between 30° and 70°N only. The peak 
temperature anomaly in the posterior mean is 1.9 K.
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4. Discussion
Focusing on spatial trends reveals a significant difference in the northern hemisphere between the tropics 
(0°–30°N) and extra-tropics (>30°N) in all cases we analyzed. A review of past work (Beltrami & Bourlon, 2004; 
Beltrami et al., 2015; Cuesta-Valero et al., 2021; Huang et al., 2000; Pollack & Smerdon, 2004) reveals that, to 
our knowledge, this has not been clearly discussed before. The significantly higher amplitude of warming in 
the tropics may be caused by localized effects of land use which have been shown to be important in both Cuba 
(Cermak & Bodri, 2001; Cermak et al., 1992) and to some extent in India (Roy & Chapman, 2012), two regions of 
the most intense warming (Figure 3e). Geothermal data are likely more sensitive to land-cover change than other 
proxy-based methods. Unlike tree-rings they are not implicitly biased toward areas of time-continuous forest 
presence. Also changes in the sensible versus latent heating at the ground-air interface can be very large follow-
ing clearance and these tend to dominate the increase in albedo (MacDougall & Beltrami, 2017). Anthropogenic 
land-use may also have impacted other regions. For example, Majorowicz and Skinner (1997) and Skinner and 
Majorowicz (1999) found that geothermal data overestimated recent warming in the North America Great Plains 
in comparison with meteorological data which they attributed to historical land clearance. Therefore, future work 
should address this potential source of bias and aim to clarify why the geothermal results show more warming 
in this region and at the same time display good agreement with the instrumental records which have protocols 
around setting and are screened for changes in surroundings (e.g., Trewin, 2010).

Our geothermal results show a similar level of cooling in the late 19th Century (CE 1850–1900) relative to the CE 
2000 as the instrumental record (Figures 3 and 4). This is potentially significant because the multiproxy records 
diverge with the instrumental record at this time and it is unclear which is correct (Frank et al., 2007). It is possi-
ble that the instrumental records are biased because of limited coverage outside of Europe, North America and 
Asia or because of changes in meteorological protocols and equipment. It has also been suggested that both the 
geothermal (Mann & Schmidt, 2003) and multiproxy records (R. Harris & Chapman, 2005) are seasonally biased. 
Thus, a focus on records from similar areas across this early instrumental time-interval may help to improve 
understanding of the relative merits of sparse instrumental observations (Hegerl et al., 2018) in comparison with 
geothermal and multiproxy records.

The agreement with the PAGES2k composite is better for the northern extra-tropics particularly when the prior 
includes the known warming (labeled as prior 1°C warming in Figure 4). Both the geothermal and the PAGES2k 
multi-proxy reconstruction show similar levels of warming from the pre-industrial to the present-day and approx-
imately similar timing of minimum temperatures around CE 1750. In the full northern hemisphere the geother-
mal result shows more warming overall, and similar to previous geothermal studies shows continuous warming, 
whereas the multi-proxy results do not (Mann, 2021). In the Southern Hemisphere the overall trend is in good 
agreement with proxy-based PAGES2k result and, up to around CE 1980 is in good agreement with observational 
temperature record. However, the PAGES2k southern hemisphere result is based on a much smaller collection of 
sites than the northern hemisphere and so should be interpreted with caution.

The improved agreement with the multi-proxy reconstruction can be attributed to the addition of newer geother-
mal data in the Southern Hemisphere which has altered the reconstruction in comparison with older results (e.g., 
Huang et al., 2000; Pollack et al., 2006) and because our method gives different results over the northern extra-tropics 
(Beltrami & Bourlon, 2004), most likely because of the adaptive nature of the method, since the fixed noise case shown 
in Figure S4 of Supporting Information S1 shows a larger amplitude of warming north of 60°N.

The differing trends in the two hemispheres is evident in the instrumental record and in multi-proxy reconstruc-
tions (Abram et al., 2016; Neukom et al., 2019). It is therefore plausible that changes in ocean circulation or other 
modes of atmospheric variability contributed to differences between the hemispheres (Goosse, 2017). However, 
this is not clearly seen in forced climate model simulations and data assimilation methods have not been able to 
unambiguously identify missing factors that could explain these trends (e.g., Goosse, 2017). Geothermal data do 
not allow us to pinpoint the underlying mechanism, but the fact that this feature arises in this independent data 
set adds to the evidence for distinct long-term variations in the two hemispheres and perhaps can motivate further 
data acquisition in the Southern Hemisphere (e.g., Pickler et al., 2018).

A critical consideration for Bayesian methods is the specification of prior information. We have considered two 
choices. The first assumes no temperature variation through time and the second accounting for known warming 
(I. Harris et al., 2014). The ’flat’ prior is not a good reflection of our a priori knowledge but the uncertainty 
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on this prior information is not fixed and is jointly inferred alongside other model parameters. This means that 
prior does not rule out larger climate variations in particular locations where they can be supported by the data. 
In future work the prior could be adapted so that its spatial variability is based on meteorological observations 
and the prior width on the temperature history could be scaled using the observed spatial footprint of long-term 
variability from meteorological records.

The uncertainties on the hemispheric reconstructions are derived from the rj-MCMC statistical sampling which 
captures the full uncertainty involved in the inverse problem as posed. A notable feature here is the agreement 
between different geothermal approaches (at least for the Northern Hemisphere) but also the relatively narrow 
uncertainties when the results are aggregated to the hemispheric scale. These uncertainties are substantially 
smaller than those associated with the multi-proxy reconstructions (e.g., Neukom et al., 2019). It may be the case 
that the true uncertainty in the geothermal method is larger than indicated because of factors not directly consid-
ered directly. This question of relative uncertainties could be studied in future work.

Future work could aim for a multi-method approach from geothermal data following that recommended for cali-
brated multi-proxy reconstructions (Neukom et al., 2019; PAGES 2k Consortium, 2019). The geothermal data 
could also be merged with the non-geothermal reconstructions which would improve spatial coverage and poten-
tially reduce uncertainties. Alternatively, the Bayesian method here could be extended to exploit the observed 
spatial coherence in the meteorological surface temperature record in order to generate a complete global field 
from the geothermal data through time.

5. Conclusions
We applied a new statistical method to extract the climatic signal from a global data set of 1012 temperature-depth 
profiles. This approach is more flexible than typical inverse methods because it is able to tailor the model to the 
data in each location, potentially improving the information retrieved through natural down-weighting of noisier 
data sources. Our results show good agreement with much shorter station-based observational records in resolv-
ing both the warming slow-down in the mid-20th century and subsequent acceleration. The hemispheric means 
do show potentially major divergences with the reconstructions from multi-proxies in the Northern hemisphere 
which is driven by greater inferred ground warming in the northern tropics. This difference may be related to the 
effects of land use. Outside of the tropics the geothermal and multi-proxy data show good agreement. Overall the 
geothermal data are consistent with the finding (e.g., Mann et al., 1998; Neukom et al., 2019; PAGES 2k consor-
tium, 2019) that long-term temperature variations in the 500 years before Industrialization were relatively small 
and that 20th century warming was unprecedented in this context.

Data Availability Statement
Code developed for this study is available from https://dx.doi.org/10.5281/zenodo.7108225. This comprises shell 
scripts for downloading the IHFC database and processing the files and the Bayesian hierarchical model writ-
ten in C++. NetCDF files containing the posterior mean and credible intervals of the reconstructed ground 
surface temperatures on the 5° × 5° grid are available from https://doi.org/10.5281/zenodo.7761459 for all cases 
discussed in this work. The IHFC borehole database is available from https://geothermal.earth.lsa.umich.edu 
or from the US National Oceanographic and Atmospheric Administration https://www.ncei.noaa.gov/products/
paleoclimatology/borehole. The PAGES2k v2.0.0 global temperature field reconstructions are available from 
https://doi.org/10.25921/fbzb-1n14. CRU observational data is available from https://crudata.uea.ac.uk/cru/data/
temperature.
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