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Tiling problems in edge-ordered graphs

(Extended abstract)

Igor Araujo∗ Simón Piga† Andrew Treglown‡ Zimu Xiang§

Abstract

Given graphs F and G, a perfect F -tiling in G is a collection of vertex-disjoint
copies of F in G that together cover all the vertices in G. The study of the min-
imum degree threshold forcing a perfect F -tiling in a graph G has a long history,
culminating in the Kühn–Osthus theorem [Combinatorica 2009] which resolves this
problem, up to an additive constant, for all graphs F . We initiate the study of the
analogous question for edge-ordered graphs. In particular, we characterize for which
edge-ordered graphs F this problem is well-defined. We also apply the absorbing
method to asymptotically determine the minimum degree threshold for forcing a per-
fect P -tiling in an edge-ordered graph, where P is any fixed monotone path.
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1 Introduction

1.1 Monotone paths in edge-ordered graphs

An edge-ordered graph G is a graph equipped with a total order ≤ of its edge set E(G).
Usually we think of a total order of E(G) as a labeling of the edges with labels from R,
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where the labels inherit the total order of R and where edges are assigned distinct labels.
A path P in G is monotone if the consecutive edges of P form a monotone sequence with
respect to ≤. We write P 6

k for the monotone path of length k (i.e., on k edges).
The study of monotone paths in edge-ordered graphs dates back to the 1970s. Chvátal

and Komlós [7] raised the following question: what is the largest integer f(Kn) such that
every edge-ordering of Kn contains a copy of the monotone path P 6

f(Kn)
of length f(Kn)?

Over the years there have been several papers on this topic [4, 5, 6, 11, 17, 19]. In a
recent breakthrough, Bucić, Kwan, Pokrovskiy, Sudakov, Tran, and Wagner [4] proved
that f(Kn) ≥ n1−o(1). The best known upper bound on f(Kn) is due to Calderbank,
Chung, and Sturtevant [6] who proved that f(Kn) ≤ (1/2 + o(1))n. There have also
been numerous papers on the wider question of the largest integer f(G) such that every
edge-ordering of a graph G contains a copy of a monotone path of length f(G). See the
introduction of [4] for a detailed overview of the related literature.

A classical result of Rödl [19] yields a Turán-type result for monotone paths: every
edge-ordered graph with n vertices and with at least k(k + 1)n/2 edges contains a copy of
P 6

k . More recently, Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, and Vizer [10] initiated
the systematic study of the Turán problem for edge-ordered graphs.

It is also natural to seek conditions that force an edge-ordered graph G to contain a
collection of vertex-disjoint monotone paths P 6

k that cover all the vertices in G, that is,
a perfect P 6

k -tiling in G. Our first result asymptotically determines the minimum degree
threshold that forces a perfect P 6

k -tiling.

Theorem 1.1. Given any k ∈ N and η > 0, there exists an n0 ∈ N such that if n ≥ n0

where (k + 1)|n then the following holds: if G is an n-vertex edge-ordered graph with
minimum degree

δ(G) ≥ (1/2 + η)n

then G contains a perfect P 6

k -tiling. Moreover, for all n ∈ N with (k + 1)|n, there is an
n-vertex edge-ordered graph G0 with δ(G0) ≥ bn/2c − 2 that does not contain a perfect
P 6

k -tiling.

For the edge-ordered graph G0 in Theorem 1.1, one can take any edge-ordering of the n-
vertex graph consisting of two disjoint cliques whose sizes are as equal as possible under the
constraint that neither has size divisible by k+1. Our proof of Theorem 1.1 in [2] provides
the first application of the so-called absorbing method in the setting of edge-ordered graphs.

1.2 The general problem

Let F and G be edge-ordered graphs. We say that G contains F if F is isomorphic to a
subgraph F ′ of G; here, crucially, the total order of E(F ) must be the same as the total
order of E(F ′) that is inherited from the total order of E(G). In this case we say F ′ is a
copy of F in G. For example, if G contains a path F ′ of length 3 with consecutive edges
labeled 5, 17 and 4 then F ′ is a copy of the path F of length 3 with consecutive edges
labeled 2, 3 and 1.
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Given edge-ordered graphs F and G, an F -tiling in G is a collection of vertex-disjoint
copies of F in G; an F -tiling in G is perfect if it covers all the vertices in G. In light of
Theorem 1.1 we raise the following general question.

Question 1.2. Let F be a fixed edge-ordered graph on f ∈ N vertices and let n ∈ N be
divisible by f . What is the smallest integer f(n, F ) such that every edge-ordered graph on
n vertices and of minimum degree at least f(n, F ) contains a perfect F -tiling?

Theorem 1.1 implies that f(n, P 6

k ) = (1/2+o(1))n for all k ∈ N. Note that the unordered
version of Question 1.2 had been well-studied since the 1960s (see, e.g., [1, 8, 12, 14, 15])
and forty-five years later a complete solution, up to an additive constant term, was obtained
via a theorem of Kühn and Osthus [15]. Very recently, the vertex-ordered graph version of
this problem has been asymptotically resolved [3, 9].

Question 1.2 has a rather different flavor to its graph and vertex-ordered graph coun-
terparts. In particular, there are edge-ordered graphs F for which, given any n ∈ N, there
exists an edge-ordering ≤ of the complete graph Kn that does not contain a single copy
of F . Thus, for such F , Question 1.2 is trivial in the sense that clearly there is no mini-
mum degree threshold f(n, F ) for forcing a perfect F -tiling. This motivates Definitions 1.3
and 1.4 below.

Definition 1.3 (Turánable). An edge-ordered graph F is Turánable if there exists a t ∈ N
such every edge-ordering of the graph Kt contains a copy of F .

Definition 1.4 (Tileable). An edge-ordered graph F on f vertices is tileable if there exists
a t ∈ N divisible by f such that every edge-ordering of the graph Kt contains a perfect
F -tiling.

The following Ramsey-type result, attributed to Leeb (see [10, 18]), says that in ev-
ery sufficiently large edge-ordered complete graph we must always find a subgraph which
is canonically ordered. For n ≥ 5 there are four non-isomorphic canonical edge-orderings
of Kn. We omit the definitions of the canonical edge-orderings in this extended abstract,
but they can be found in [10, Section 2.1].

Proposition 1.5. For every k ∈ N there is an m ∈ N such that every edge-ordered complete
graph Km contains a copy of Kk that is canonically edge-ordered.

In [10] it was observed that Proposition 1.5 yields the following full characterization of
Turánable graphs.

Theorem 1.6 (Turánable characterization). An edge-ordered graph F on n vertices is
Turánable if and only if all four canonical edge-orderings of Kn contain a copy of F .

In [2], we prove a result analogous to Theorem 1.6 for tileable graphs. More precisely,
we provide a full characterization of all n-vertex tileable graphs with respect to twenty fixed
edge-orderings of the complete graph Kn. We call those orderings ?-canonical orderings
of Kn. The full definition of the ?-canonical orderings is a little involved and we omit the
details here, but the precise description can be found in [2].
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Theorem 1.7 (Tileable characterization). An edge-ordered graph F on n vertices is tileable
if and only if all twenty ?-canonical orderings of Kn contain a copy of F .

In [2] we study several consequences of Theorems 1.6 and 1.7. In particular, we prove
that the notions of Turánable and tileable are genuinely different. More precisely, we show
that there are (infinitely many) edge-ordered graphs that are Turánable but not tileable.

In [10] it is proven that no edge-ordering of K4 is Turánable and consequently, any
edge-ordered graph containing a copy of K4 is not Turánable and therefore not tileable.
Thus, for an edge-ordered graph to be tileable it cannot be too ‘dense’. We show in [2]
that no edge-ordering of K−4 is tileable.1

A graph H is universally tileable if for any given ordering of E(H), the resulting
edge-ordered graph is tileable. Similarly, we say that H is universally Turánable if given
any edge-ordering of H, the resulting edge-ordered graph is Turánable. Using [10, Theo-
rem 2.18], in [2] we characterize all those graphs H that are universally tileable.

Theorem 1.8. Let H be a graph. The following are equivalent:
(a ) H is universally tileable;
(b ) H is universally Turánable;
(c ) (i ) H is a star forest (possibly with isolated vertices),2 or

(ii ) H is a path on three edges together with a set (possibly empty) of isolated ver-
tices, or

(iii ) H is a copy of K3 together with a (possibly empty) collection of isolated vertices.

Moreover, in [2] we determine the asymptotic value of f(n, F ) in Question 1.2 for all
connected universally tileable edge-ordered graphs F .

The characterization of tileable edge-ordered graphs given in Theorem 1.7 lays the
ground for the systematic study of Question 1.2. The second and third authors will inves-
tigate this problem further in a forthcoming paper. Already though we can say something
about this question. Indeed, an almost immediate consequence of the Hajnal–Szemerédi
theorem [12] is the following result.

Theorem 1.9. Let F be a tileable edge-ordered graph and let T (F ) be the smallest possible
choice of t ∈ N in Definition 1.4 for F . Given any integer n ≥ T (F ) divisible by |F |,

f(n, F ) ≤
(
1− 1

T (F )

)
n.

The proofs of Theorems 1.1, 1.7, 1.8, and 1.9 can be found in [2]. In the next section
we outline the main ideas in the proof of Theorem 1.1.

1Recall that K−t denotes the graph obtained from Kt by removing an edge.
2A star forest is a graph whose components are all stars.
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2 Outline of the proof of Theorem 1.1
As mentioned above, the proof of Theorem 1.1 applies the absorbing method. This ap-
proach reduces the problem of finding a perfect P 6

k -tiling into two sub-tasks: (i) obtain an
‘absorbing structure’ A in the host graph G, and (ii) find a P 6

k -tiling covering almost all of
the vertices in G \ A.

This latter task is achieved via a relatively straightforward application of a result of
Komlós [13]. The main task is therefore constructing the absorbing structure.

Roughly speaking, for an edge-ordered graph G, we say that a set of vertices A ⊆ V (G)
is a P 6

k -absorber if, for every sufficiently small set of vertices W ⊆ V (G) \ A whose size is
divisible by k + 1, we have that G[W ∪ A] contains a perfect P 6

k -tiling.
We apply (an edge-ordered version of) a lemma by Lo and Markström [16, Lemma 1.1]

which implies that in order to construct such a P 6

k -absorber we only need to find many
so-called ‘local absorbers’ for every pair of vertices x, y ∈ V (G). More precisely, a local
absorber for x and y is a small set L ⊆ V (G) with the property that both G[L ∪ {x}] and
G[L ∪ {y}] contain perfect P 6

k -tilings.
To build up such local absorbers L for x and y, we prove a supersaturated version of

the aforementioned result of Rödl: every edge-ordered graph with linear average degree
contains ‘many’ copies of P 6

k . In particular, as our edge-ordered graph G has δ(G) ≥
(1/2+ o(1))n this allows us to find many copies of P 6

k−1 in the neighborhood NG(v) of any
vertex v ∈ V (G). In fact, with some care, one can show the following stronger property:
for every two different vertices x, y ∈ V (G) there are many vertices w ∈ V (G) so that
(a) G contains many copies Pxw of P 6

k−1 for which x (resp. w) can be added to the start
or end of Pxw to form a copy of P 6

k in G, and (b) G contains many copies Pyw of P 6

k−1 for
which y (resp. w) can be added to the start or end of Pyw to form a copy of P 6

k in G.
This now gives us the structure we need to construct the local absorbers L for x and

y. Indeed, for every choice of w, Pxw and Pyw above, we define a local absorber L :=
V (Pxw) ∪ V (Pyw) ∪ {w}. Properties (a) and (b) ensure each such L is indeed a local
absorber for x and y, as desired.

Note that from the outline above it may not seem clear why our proof is specific to
monotone paths, rather than other edge-orderings of paths. However, the details of the
proof very much rely on our paths being monotone. For example, one crucial property
we exploit is that if P = u1 · · ·uk+1 is a monotone path, then u1 · · ·uk is isomorphic to
u2 · · ·uk+1. In other words, the path obtained by dropping the last vertex is isomorphic
to the one obtained by dropping the first one. It is not hard to see that this property is
satisfied only by monotone paths.

3 Almost perfect tilings and open problems
As part of the proof of Theorem 1.1 in [2], we establish the minimum degree threshold that
forces an ‘almost perfect’ P 6

k -tiling in an edge-ordered graph. It is also natural to consider
this problem more generally. This motivates the following definition.
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Definition 3.1 (Almost tileable). An edge-ordered graph F is almost tileable if for every
0 < ε < 1 there exists a t ∈ N such every edge-ordering of the graph Kt contains an F -tiling
covering all but at most εt vertices of Kt.

It is easy to see that this notion is equivalent to being Turánable.

Proposition 3.2. An edge-ordered graph F is almost tileable if and only if F is Turánable.

Proof. The forward direction is immediate. For the reverse direction, consider any F that
is Turánable. Given any 0 < ε < 1 define t := dT (F )/εe. (Recall T (F ) is defined in the
statement of Theorem 1.9.) Then given any edge-ordering of Kt, by definition of T (F ) we
may repeatedly find vertex-disjoint copies of F in Kt until we have covered all but fewer
than T (F ) vertices in Kt. That is, we have an F -tiling covering all but at most εt vertices
of Kt, as desired.

In light of Proposition 3.2 we propose the following question.

Question 3.3. Let F be a fixed Turánable edge-ordered graph. What is the minimum degree
threshold for forcing an almost perfect F -tiling in an edge-ordered graph on n vertices?
More precisely, given any ε > 0, what is the minimum degree required in an n-vertex
edge-ordered graph G to force an F -tiling in G covering all but at most εn vertices?

Finally, we know that every Turánable (and therefore tileable) edge-ordered graph F
does not contain a copy of K4. However, we are unaware of any result that forbids F from
having large chromatic number.

Question 3.4. Is it true that for every k ∈ N there is a Turánable edge-ordered graph F
whose underlying graph has chromatic number at least k?
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