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Abstract: In order to develop a better model for quantifying aquatic community using environmental
factors that are easy to get, we construct quantitative aquatic community models that utilize the dif-
ferent relationships between water environmental impact factors and aquatic biodiversity as follows:
a multi-factor linear-based (MLE) model and a black box-based ‘Genetic algorithm-BP artificial neural
networks’ (GA-BP) model. A comparison of the model efficiency and their outputs is conducted by
applying the models to real-life cases, referring to the 49 groups of seasonal data observed over seven
field sampling campaigns in Shaying River, China, and then performing model to reproduce the
seasonal and inter-annual variation of the water ecological characteristics in the Huaidian (HD) site
over 10 years. The results show that (1) the MLE and GA-BP models constructed in this paper are
effective in quantifying aquatic communities in dam-controlled rivers; and (2) the performance of
GA-BP models based on black-box relationships in predicting the aquatic community is better, more
stable, and reliable; (3) reproducing the seasonal and inter-annual aquatic biodiversity in the HD
site of Shaying River shows that the seasonal variation of species diversity for phytoplankton, zoo-
plankton, and zoobenthos are inconsistent, and the inter-annual levels of diversity are low due to the
negative impact of dam control. Our models can be used as a tool for aquatic community prediction
and can become a contribution to showing how quantitative models in other dam-controlled rivers to
assisting in dam management strategies.

Keywords: aquatic community simulation; water ecosystem; GA-BP; modeling comparison;
dam-controlled river

1. Introduction

Rivers represent some of the world’s most biodiverse ecosystems [1] and provide
critical ecosystem services to society and the environment [2]. Many rivers globally are
dammed, and their flow is regulated for energy, water storage, irrigation, and protection
against floods and are fragmented by artificial barriers to block free flow [3,4]. The number
of river dams in European exceeds one million [5], in the United States at least 90,000 are
over six-feet tall, and in China reaches 100,000 with a flow of more than 5 m3/s. While dams
are generally designed to control with the purpose of stabilizing low flows and reducing
peak flows for ensuring water security [6], human survival, and economic development,
they also have significant ecological impacts, e.g., by impeding the flow of essential nutri-
ents [7,8], altering thermal regimes [9,10], modifying sediment transport [11], disrupting
growth cycles of aquatic organisms [12], or affecting ecosystem structure [13,14] and func-
tions [15] along river networks, all of which cause the reduction of biodiversity of aquatic
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communities [16–18], and the more the deviation from the natural regime, the greater the
loss of those ecosystems [19]. Aquatic biodiversity refers to the groups of organisms that
determine the ecological status and functioning of rivers. The ecological status of a river
environment is strongly affected by the composition and condition of the populations of
organisms that inhabit it, known as aquatic communities, which include phytoplankton,
zooplankton, and benthos. Their composition and functional status provide useful informa-
tion and quantifiable indicators for the ecological health of freshwater systems [20]. Water
environmental factors, including hydrodynamics and water quality, are regarded as one
of the most essential determinants of the river ecosystem [21,22]. Therefore, modeling the
response relationship of aquatic communities to water environmental factors is an efficient
way to simulate water ecosystem features.

As awareness of aquatic community-related water eco-environment problems in-
creases, model quantification of the water ecosystem in rivers remains one of the most
serious challenges. Many studies have been conducted on the ecological models to quan-
tify aquatic communities [23,24], with a main focus on the uptake model [25,26], bioen-
ergetic model [27], evolution model of aquatic organisms [28–30], species interactions
model [31,32], and numerical models that quantify relations between aquatic densities
and diversity [33]. Those types of models are currently becoming more comprehensive,
allowing for the modeling and prediction of an increasing number of aquatic features
and processes [34]. However, as the complexity of the model increases, the number of
data samples required, the number of parameters, and the difficulty of fitting the model
all increase accordingly. In addition, ecology models generally have restricted access to
source code and limited model flexibility [23]. For dam-controlled rivers, many modeling
approaches are applied to evaluate the changes in hydrological regime [35], water tempera-
ture [36], or water quality [37] caused by dam building or operation. However, for water
ecosystems that are regularly disturbed by dams, many evaluations have been carried out
by typically using weighted bio-indicators or standard test species to analyze as evaluation
endpoints [38], while model techniques are mainly focused on the eco-impact of monomer
(unit) or group, e.g., fish [39], macroinvertebrates [40,41], algae [42] and vegetation [43],
instead of the diversity alteration of community in the biological realm.

Although these ecological models offer numerous advantages and benefits to practices
in a wide range of scales so far, they also have weaknesses, such as the model structure that
is overly complicated, constrained model flexibility, and contains a significant amount of
hard-to-get biotic response data (e.g., abundance, survival of aquatic organisms). Compu-
tation time may grow with the complexity of the modeling approach and implementation,
and specifically, highly over-parameterized models are intrinsically data-hungry and re-
quire substantial amounts of data and information that do not necessarily exist, creating
a need for parameter estimation without much background information to constrain pa-
rameter spaces. In general, obtaining biotic response data by field experiments is more
expensive and time-consuming than physical and chemical water environmental factors
(e.g., hydrodynamics and water quality). Therefore, new approaches and simple models
that are computationally less costly and produce outputs that are easier to interpret are
needed to improve predictions of how the existence and operation of dams will influence
aquatic communities, helping to frame a strategy to support healthy and sustainable water
ecosystem development.

An alternative to advancing this field could be through a model imputing easy-to-
get physical and chemical water environmental factors to simulate aquatic community
impact by the dam to overcome the limitations of previous studies. Our group previously
constructed a multivariate nonlinear regression model (MNLE model) to quantify the
interactive relationship between environmental factors and aquatic communities in a
dam-controlled river [44]. However, the accuracy of the model is not excellent because
the nonlinear regression functions cannot truthfully describe the complex interrelated
processes of aquatic communities driven by environmental factors.
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The black-box model, which does not require any assumptions about the system but
can frequently precisely capture all phenomena that are properly represented by data [45],
can improve model accuracy without capturing complex interrelated processes. Backprop-
agation (BP) neural network, which is a forward learning algorithm and an error BP neural
network, is one of the typical black box models successfully developed and widely used
for estimating and predicting, in particular, modeling non-linear water ecosystems and
the water science field. The BP neural network has substantial self-learning and nonlinear
mapping capabilities [46]. However, due to limitations such as slow convergence speed,
sensitivity to weight initialization, and tendency to slip into local extremes [47], using BP
neural networks directly in prediction may not achieve yield satisfactory outcomes. Genetic
algorithm (GA) is a stochastic search method that can be effective in optimizing the BP
neural networks to overcome its inherent limitations. GA mimics the process of natural
biological evolution by employing the principle of survival of the fittest to demonstrate
excellent generalization capacity and good performance with higher precision [48].

Prediction models that quantify the aquatic community’s response to water envi-
ronmental factors in dam-controlled rivers have shown to be helpful tools in identifying
the impact of the water ecosystem by the dam, as modeling aquatic communities simply,
efficiently, and economically can be a challenge. In order to develop a better model for
quantifying the water ecological environment using environmental factors that are easy to
get and readily available, in this study, we expanded on previous research in this field by
specifically focusing on (1) analyzing the linear and black-box response between aquatic
communities and water environmental factors to develop the linear regression model
(MLE model) and GA-BP model, respectively; (2) comparing the models in order to find
the optimal model with the best performance; (3) applying the model to reproduce the
inter-annual and seasonal variations of the aquatic community of the Huaidian (HD) site in
the Shaying River (SYR), China, from 2005 to 2014. This study can become a contribution
to showing how quantitative models in other dam-controlled rivers can be applied to the
aquatic community to help determine management actions in the dam-controlled river to
better fulfill the water eco-environment preservation goal.

2. Materials and Methods
2.1. Study Area and Data Collection

The Shaying River (SYR) is the largest and perhaps most polluted tributary of the
Huaihe River Basin [49], which is regulated by more than 115 dams, reservoirs, and sluices.
The river flow regulation through those dams and sluices has a significant impact on
the flow regime of the SYR [50], causing ecological changes [51,52]. The SYR is located
between 32◦31′~34◦59′ of north latitude and 111◦56′~116◦31′ of east longitude, which
belongs to the warm temperate semi-humid continental monsoon climate zone. The annual
average temperature ranges from 14 ◦C to 16 ◦C, and the annual precipitation is 753.43 mm,
with four distinct seasons [53]. Rainfall varies sharply during the year; the main flood
season is June to August, with peak flows usually occurring in July. Forest coverage in the
headwaters exceeds 80%, and cultivated land is mainly planted with wheat in the middle
stream and downstream. The SYR flows through more than 40 cities and counties, which
are characterized by frequent water pollution accidents and prominent contradictions in
flood control and pollution prevention. Figure 1 shows the geographical location of the
research area, the topographic gradients from its sources to the outlet, and the distribution
of sampling points.
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Figure 1. The geographical location of the research area, the topographic gradients from its sources
to the outlet, and the distribution of sampling points.

We divide the whole year into the dry season and the wet season. The wet season
lasts from June to October, and its runoff accounts for more than 70% of the total annual
runoff, while the dry season is from November to May. The SYR was selected to carry
out monitoring experiments on the river ecology and environment during the dry season
and the wet season to obtain seasonal data on the species and density of phytoplankton,
zooplankton, and benthos. Seven sampling points (see Figure 1) were set up, and from
upstream to downstream of the SYR were Zhaopingtai (ZPT), Baiguishan (BGS), Luohe
(LH), Zhoukou (ZK), Huaidian (HD), Fuyang (FY), and Yingshang (YS). We carried out
one field investigation in the SYR every six months to obtain the river’s ecological and
environmental samples. Since December 2012, seven field sampling campaigns have
been carried out, and 49 groups of seasonal data have been obtained. Both datasets of
hydrodynamic and water quality are provided by the Huaihe River Commission of the
Ministry of Water Resources, P.R.C., and China National Environmental Monitoring Centre
(CNEMC). The seasonal water quality datasets include dissolved oxygen (DO), pH, total
dissolved solids (TDS), ammonia nitrogen (NH3-N), five-day biochemical oxygen demand
(BOD5), and permanganate index (CODMn), total nitrogen (TN), total phosphorus (TP). The
seasonal hydrodynamic factor includes water flow (Q) and temperature (T). In addition,
habitat quality assessments were conducted for each monitoring section to determine the
spatial variability of habitats in the river ecosystem [54].

2.2. Methodology
2.2.1. Output Variables

Aquatic biodiversity was selected as the output variable of the model. Changes in
the river environment have the potential to directly cause changes to the community com-
position and diversity of aquatic plants and animals. In general, the more complex the
community structure, the higher the biodiversity formed. The Shannon-Wiener diversity
indexes based on biological data can be used to quantify the diversity of aquatic communi-
ties. The species diversity of phytoplankton (P-SWI), zooplankton (Z-SWI), and zoobenthos
(B-SWI) were used to present the aquatic community in this research; thus, the output
variables of the model are denoted as fP-SWI, fZ-SWI, and fB-SWI, respectively. The species and
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density of phytoplankton, zooplankton, and benthos need to be transformed into species
diversity through the Shannon-Wiener index [55], and the larger the index, the higher the
complexity of the community and the greater the aquatic biodiversity. The Shannon-Wiener
index was calculated here as follows:

fSWI = −
m

∑
i=1

pi log2 pi (1)

pi =
ni
N

(2)

where fSWI was the Shannon-Wiener index; i was the number of species, i = 1, 2, 3· · ·m; ni
was the density of the i-th species; N was the sum of the densities of all species; and pi was
the proportion of the i-th species [56].

2.2.2. Input Variables

The key factors that affect the aquatic community from the water quality and hydrody-
namic factors were the input variables of the model. We obtained the key factors from our
previous research, which identified the key influencing factors using Redundancy Analysis
and Monte Carlo tests based on 49 groups of the seasonal water quality and hydrodynamic
factors collected from the seven field sampling campaigns on the SYR, and found that Q,
DO, TP, and TN were key impact factors for fP-SWI; DO, Q, and TN for fZ-SWI; DO, Q, and
CODMn for fB-SWI [44]. The input and output variables required for model calculation are
shown in Table 1.

Table 1. The input and output variables of the model.

Input Variables Output Variables

Q, DO, TP, and TN fP-SWI
DO, Q, and TN fZ-SWI

DO, Q, and CODMn fB-SWI

2.2.3. MLE Model Construction

The building process of the MLE model was shown in Figure 2a, which includes
significance tests of the parameters for optimal correlation between output and input
variables, the estimation of goodness-of-fit, residual analysis, and elimination of outliers
when the residuals fall outside the range (−2, 2), etc. The specific operation flow can refer
to a similar description by Zuo et al. (2019) [44]. In this paper, based on the 49 groups of
data obtained from the seven monitoring experiments carried out in the SYR, 40 groups
of the data (80% of total data) were randomly generated as the calibration samples, and
9 groups of the data (20% of the total data) were generated as the validation samples. The
structures of the MLE models are as follows:

fP−SWI = aP + βP1xDO + βP2xQ + βP3xTP + βP4xTN (3)

fZ−SWI = αZ + βZ1xDO + βZ2xQ + βZ3xTN (4)

fB−SWI = αB + βB1xDO + βB2xQ + βB3xCODMn (5)

where f is the Shannon-Wiener index/output variable; β is the coefficients; α0 is a constant;
x is the key impact factor/input variable.
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2.2.4. GA-BP Model Construction

BP artificial neural networks as a member of the machine learning model, is a kind of
multi-layer feedforward network trained according to an error backpropagation algorithm.
One of its great advantages is that it can learn and store the mapping relationship between
the input and output patterns of the network without clearly describing the mathematical
relationship equation in advance. Generally, the BP neural network with a single hidden
layer including enough neurons can approach any nonlinear function by adjusting its
connection weight and transfer function. GA is a pseudo-biological optimization algorithm,
and nature is searching for the optimal solution by simulating the evolutionary process of
“survival of the fittest” for the population composed of the feasible solutions to the problem
and combining natural selection and genetic phenomena. The feasible solutions are first
encoded as chromosomes or individuals, and then excellent individuals with high fitness
are selected for genetic operation. Genetic operation mainly includes three kinds of genetic
operators: selection, crossover, and mutation. Among them, the selection and crossover
operators realize the search function, and the mutation operator improves the optimization
ability of the algorithm. The combination of the above two makes the model have global
searchability, improves the efficiency and convergence speed, and then further improves
the accuracy of the model [48]. The building process of the BP optimized by GA was shown
in Figure 2b.

In this machine learning model, we constructed the BP with a three-layer network
topology composed of the input layer, hidden layer, and output layer for this study. The
number of neurons in the input layer was determined by the number of key impact factors,
and the number of neurons in the output layer was determined by the number of the
characteristic factors of the aquatic community (output variable). For the hidden layer,
the determination of the number of neurons is relatively complex, and there is no mature
theory at present. If the number of neurons is too small, the convergence speed and the
training accuracy of the network will be low; if the number is too large, the network
structure and the amount of iterative calculation will be huge and even overfitting. We
used the trial-and-error method to train the network several times to determine the number
of hidden layer neurons and finally obtained the best topological structure of the BP, and
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MATLAB was used to write the optimized BP algorithm to obtain the best solution. The
initial values of neurons in the hidden layer can be obtained by the empirical formula
as follows:

K = 2m + 1 (6)

where K was the number of the hidden layer neurons; m was the number of the input
layer neurons.

A Tan-Sigmoid function was chosen as the excitation function to activate neurons. To
meet the range requirements of the activation function and avoid the network paralysis
caused by too-large data series, the sample data should be normalized to be [−1, 1]. The
normalization equation was as follows:

y = 2 ( x − xmin ) / (xmax − xmin ) − 1 (7)

where x was the original data; y was the normalized data; xmin was the minimum of the
original data series; xmax was the maximum of the original data series.

2.2.5. Statistical Analyses

A total of 49 groups of data were obtained from the seven field sampling campaigns
in SYH. The mean absolute error (MAE) and mean relative error (MRE) allowed the
identification of outliers and estimation of the accuracy of the prediction models. The
coefficient of determination (R-squared or R2) was used for correlations between predicted
and observed outcomes. SPSS 22.0 was the statistical calculation software.

MAE =
1
n

n

∑
i=1
|yi − fi| (8)

MRE =
1
n

n

∑
i=1

|yi − fi|
yi

× 100% (9)

R2 = 1−

n
∑

i=1
(yi − fi)

2

n
∑

i=1
(yi − y)2

(10)

where yi is the true value, fi is the predictive value, and n is the number of predictive values.
The smaller the error is and the closer R2 is to 1.0, the higher the simulation accuracy of the
model is.

The t-test (two-tailed) was used to compare the means of the simulation and the
observation groups to test whether there was a significant difference. The null hypothesis
(H0) is that the true difference between the two-group means is zero, and the alternate
hypothesis (Ha) is that the true difference is different from zero. Z-score value was confirmed
by the following formula:

Z− score =
−
x1 −

−
x2√(

S2
(

1
n1

+ 1
n2

)) (11)

where x1 and x2 are the mean values of the simulation group and observation group
respectively. S2 is pooled standard error of the two groups. n1 and n2 are the sample
numbers. The null hypothesis is accepted if |Z-score| ≤ 1.96.
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3. Results
3.1. Model Structure and Parameter Setting
3.1.1. MLE Model

After deleting the sets of standardized residual exception data that fall outside the
region (−2, 2), the “ENTER algorithm” was used to create the ideal fitting model from
the randomly screened out 40 groups of sample data. According to the quantization
procedure of the MLE model (Figure 2a) and the “ENTER algorithm” based on SPSS 22.0,
Equations (3)~(5) can be rewritten as follows:

fP−SWI = 2.1809 + 0.1228xDO + 0.0043xQ − 0.7810xTP − 0.0598xTN (12)

fZ−SWI = −0.0553 + 0.1894xDO + 0.0062xQ − 0.0048xTN (13)

fB−SWI = 0.5772 + 0.1275xDO + 0.0138xQ − 0.2294xCODMn (14)

Table 2 displays the results of the goodness-of-fit and F tests for the MLE models. The
R2 for P-SWI, Z-SWI, and B-SWI is 0.561, 0.678, and 0.621, respectively, and the F tests for
all of the models are significant at the p < 0.05 level, indicating that the MLE models for
P-SWI, Z-SWI, and B-SWI have passed the 95% level of a significance test. The results of the
t-test used to find the optimal parameters in the MLE models are shown in Table 3. Except
for B-SWI, the majority of other models’ parameters and constant coefficients failed the
95% level of a significance test, implying that while MLE models are significant, not all key
impact factors have a significant linear relationship with aquatic communities.

Table 2. Goodness-of-fit and F tests of the MLE models.

Model R2
Significance Test

F p

fP-SWI 0.561 10.538 0.000 *
fZ-SWI 0.678 23.903 0.000 *
fB-SWI 0.621 19.155 0.000 *

*: significance at 0.05 level.

Table 3. Structure and parameter settings of MEL models.

Model Function Item
Parameter Significance Test

Name Value t p

fP-SWI

constant αp 2.1809 4.725 0.000 *
xDO βp1 0.1228 3.317 0.002 *
xQ βp2 0.0043 1.421 0.165
xTP βp3 −0.7810 −0.927 0.361
xTN βp4 −0.0598 −1.293 0.205

fZ-SWI

constant αz −0.0553 −0.1650 0.870
xDO βz1 0.1894 7.0842 0.000 *
xQ βz2 0.0062 2.6388 0.013
xTP βz3 −0.0048 −0.1433 0.887

fB-SWI

constant αb 0.5772 1.0376 0.307
xDO βb1 0.1275 3.2575 0.003 *
xQ βb2 0.0138 4.3158 0.000 *

xCODMn βb3 −0.2294 −2.8501 0.007 *
*: significance at 0.05 level.

3.1.2. GA-BP Model

The key impact factors are used as input variables of the models. The model parame-
ters include transfer function, training function, learning rate (v), training times (epochs),
population (Mp), iteration times (Ts), crossover probability (pc), and mutation probability
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(pm). After several model tests based on the trial-and-error method, the best number of
hidden layer neurons for P-SWI, Z-SWI, and B-SWI is 9, 3, and 4, respectively. The model
structures and parameters were shown in Table 4.

Table 4. Structure and parameter settings of GA-BP models.

Model
GA-BP

P-SWI Z-SWI B-SWI

variables
input DO, Q, TN, TP Q, DO, TN Q, DO, CODMn

output f P-SWI f Z-SWI fB-SWI

layer nodes

input layer
neurons, m1

4 3 3

hidden layer
neurons, m2

9 3 4

output layer
neurons, m3

1 1 1

parameters

transfer function tansig and purelin
training function trainlm
learning rate, v 0.1 0.1 0.1
training times,

epochs 100 100 50

population, Mp 30 20 20
iteration times, Ts 80 100 50

crossover
probability, pc 0.3 0.3 0.3

mutation
probability, pm 0.1 0.1 0.1

3.2. Model Calibration and Validation
3.2.1. MLE Model

After the optimal parameters of the MLE models were obtained, the performance of
the MLE models at the calibration and validation stage is presented in Figure 3. At the
calibration stage, the mean absolute error (MAE) of the MLE models for P-SWI, Z-SWI,
and B-SWI were 0.432, 0.355, and 0.525, respectively, and the R2 are 0.561, 0.678, and 0.621,
respectively. At the validation stage, the MAE of the MLE models for P-SWI, Z-SWI, and
B-SWI were 0.498, 0.539, and 0.599, respectively, and the R2 was 0.072, 0.260, and 0.351,
respectively. It can be seen in Figure 3 that the performance of the MLE models is reasonable
in the calibration stage but not ideal in the validation stage, particularly for P-SWI, where
the fitting accuracy is the worst.

3.2.2. GA-BP Model

GA-BP models were established to predict the characteristics of the aquatic community.
A total of 49 groups of data are selected to model the prediction model, and the numbers
of calibration samples and validation samples are the same as in the MLE models. For
the model of P-SWI, each group of sample data in the data set contains four related
parameters and one original parameter, so the input matrix and output matrix of the model
training sample set are 40 × 4 dimensions and 40 × 1 dimensions, respectively, and the
input matrix and output matrix of the model test sample set are 9 × 4 dimensions and
9 × 1 dimension, respectively. For the models of Z-SWI and B-SWI, each group of sample
data in the data set contains three related parameters and one original parameter, so the
input matrix and output matrix of the model training sample set are 40 × 3 dimensions
and 40 × 1 dimensions, respectively, and the input matrix and output matrix of the model
test sample set are 9 × 3 dimensions and 9 × 1 dimension, respectively. Figure 4 shows
the performance of the GA-BP models. At the calibration stage, the MAE of the GA-BP
models for P-SWI, Z-SWI, and B-SWI were 0.051, 0.296, and 0.286, respectively, and the R2

was 0.990, 0.834, and 0.801, respectively. At the validation stage, The MAE of the GA-BP
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models for P-SWI, Z-SWI, and B-SWI were 0.486, 0.426, and 0.427, respectively, and the R2

was 0.332, 0.320, and 0.479, respectively.
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We performed t-tests on the means of simulated and observed outputs to further verify
the reliability and rationality of the models, and the results are shown in Table 5. Both
the MLE and GA-BP models for P-SWI, Z-SWI, and B-SWI were not statistically different
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between simulation and observation at the 0.05 level, showing that the models constructed
herein of P-SWI, Z-SWI, and B-SWI are valid.

Table 5. The results of the t-test on the means of simulated and observed outputs.

Model
The Mean Value

of Outputs
Calibration Stage Validation Stage

f P-SWI f Z-SWI fB-SWI f P-SWI f Z-SWI fB-SWI

MLE

Simulation 3.144 1.923 1.442 3.241 2.151 1.377

Observation 3.055 1.916 1.440 2.880 1.881 1.586

t-test
(2-tailed)

H0 mean simulation = mean observation
Z-score 0.55 0.10 −0.22 1.59 0.99 −0.19
results no significant difference at the 0.05 level

GA-BP

Simulation 3.082 1.908 1.442 2.971 2.195 1.377
Observation 3.055 1.916 1.440 2.880 1.881 1.586

t-test
(2-tailed)

H0 mean simulation = mean observation
Z-score 0.14 −0.05 0.01 0.29 1.26 −0.58
results no significant difference at the 0.05 level

3.3. Model Comparison

The performance of the tested models is demonstrated in Table 6 by a comparison of
the MLE models, MNLE models completed by our team previously [44], and GA-BP models.
At the calibration stage, the performance order of the models is GA-BP model > MNLE
model > MLE model. The R2 of the GA-BP models is the highest, and the MAE is the lowest,
revealing that the GA-BP models have the best accuracy. At the validation stage, although
the R2 of the GA-BP model for P-SWI is slightly lower than that of the MNLE model, MAE
is better. For B-SWI and Z-SWI, both R2 and MAE of the GA-BP models are better than that
of the MLE and MNLE models.

Table 6. Comparison of the MLE, MNLE, and GA-BP models.

Model Model Equation/Structure
Calibration Validation

MRE MAE R2 MRE MAE R2

GA-BP

fP−SWI : m1 = 4, m2 = 9, m3 = 1,
epochs = 100, Mp = 30, Ts = 80 1.6% 0.0338 0.990 20% 0.4833 0.332

fZ−SWI : m1 = 3, m2 = 3, m3 = 1,
epochs = 100, Mp = 20, Ts = 100 13% 0.3075 0.834 28.2% 0.4217 0.320

fB−SWI : m1 = 3, m2 = 4, m3 = 1,
epochs = 50, Mp = 20, Ts = 50 18.5% 0.2862 0.801 28.1% 0.4523 0.479

MLE

fP−SWI = 2.1809 + 0.1228xDO + 0.0043xQ
− 0.7810xTP − 0.0598xTN

20.7% 0.4323 0.561 22.5% 0.4979 0.072

fZ−SWI = −0.0553 + 0.1894xDO
+ 0.0062xQ − 0.0048xTN

17% 0.3551 0.678 33.7% 0.5394 0.260

fB−SWI = 0.5772 + 0.1275xDO
+ 0.0138xQ − 0.2294xCODMn

41.5% 0.5246 0.621 37.5% 0.5985 0.356

MNLE

fP−SWI = −0.2371− 0.0219x2
DO − 0.0491x2

TN
+ 0.5080xDO + 0.0136xQ + 0.4750xTN
− 0.0045xQxTN − 0.1014xTN xTP

9.1% 0.2309 0.811 22% 0.5136 0.357

fZ−SWI = −1.6626 + 0.0013xQxTN + 1.5803 ln xDO 15.1% 0.3443 0.723 34.5% 0.4587 0.305
fB−SWI = 0.5450− 0.0262xQ + 0.0044xDOxQ

+ 0.7714/xCODMn

42% 0.4262 0.657 29.5% 0.5179 0.407

In addition, at the calibration stage, the MRE of GA-BP models for P-SWI, Z-SWI,
and B-SWI were 1.6%, 13%, and 18.5%, respectively, which was much lower than that
of MLE and MNLE models. At the validation stage, the MRE of GA-BP models for P-
SWI, Z-SWI, and B-SWI increased to 20%, 28.2%, and 28.1%, respectively, but it remained
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the lowest when compared to the MLE and MNLE models. As a result, the simulation
performance of the GA-BP models is better than that of the MLE and MNLE models and
is more stable and reliable in reproducing the river ecological environment. It can be
concluded that the relationship between water environment factors and aquatic community
in the dam-controlled river is exceedingly complicated and cannot be explained just by
linear correlations.

4. Discussion
4.1. Variability of Habitat Quality

The adaptability of the constructed model to all sampling sites in the study area is a
major concern that cannot be ignored. Given the variability of habitats, directly quantifying
the aquatic communities under different habitat qualities will not result in the same values
each time or for each sampling site. Thus, it is important to assess the variability in habitat
quality that can cause heterogeneity in aquatic communities. In this study, the habitat
assessment index (HQI) from Wei et al. (2009) [54] was used to identify the variability
of habitat quality, which included ten parameters (substrate, habitat complexity, velocity-
depth combination, bank stability, bank conservation, vegetation cover, vegetation diversity,
the intensity of human activities, water cognition, and riverside land use).

Figure 5 shows the habitat quality assessment results for each site of the SYR from
2012. The average HQIs of the SYR range between 110 and 130 (the threshold range for
habitat quality is 10–200), indicating that there is little spatial variability in habitat quality.
Therefore, the constructed model can be applied to all sampling sites in SYR.
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4.2. Aquatic Community Characteristics

The GA-BP models were applied to reproduce the aquatic community characteristics
of the HD site in the SYR in the wet season and the dry season from 2005 to 2014. Figure 6a
shows the ten-year average seasonal values of the P-SWI, Z-SWI, and B-SWI. Both in the
dry season and the wet season, P-SWI is at the maximum, and B-SWI is at the minimum.
For P-SWI, the value in the wet season is higher than that in the dry season, but for Z-SWI
and B-SWI, the result is the opposite, indicating that the seasonal variation of the P-SWI,
Z-SWI, and B-SWI are inconsistent. In natural rivers, seasonal changes of P-SWI, Z-SWI,
and B-SWI should be consistent because the interaction of the bottom-up effect (i.e., the
density, biomass, and species richness of the lower trophic class determine the population
structure of the higher trophic class) and the top-down effect (i.e., the higher trophic class
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control and affect the community structure of the lower trophic class through predation)
balances the evolution of biological community in the river ecosystem [57]. The inconsistent
seasonal variation of the P-SWI, Z-SWI, and B-SWI in the HD site of the SYR indicates
that the disturbance of dam control has a negative impact on the aquatic community of
the SYR [50,52].
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Figure 6b shows the inter-annual variation of the P-SWI, Z-SWI, and B-SWI. From
2005 to 2014, P-SWI showed a significant growth trend, Z-SWI changed smoothly, B-
SWI fluctuated, but the overall trend was increasing. Generally, the growth period of
phytoplankton is shorter and faster than that of zooplankton and zoobenthos, and that of
zoobenthos is the slowest and the longest. Therefore, it can be inferred that the aquatic
community in the HD site of the SYR has improved from 2005 to 2014. However, in addition
to the values of P-SWI of more than 3.0, Z-SWI and B-SWI are still at a low level, especially
B-SWI, which did not exceed 2.0 from 2005 to 2014, revealing that the ecological diversity
level is still low, and the aquatic community still needs to be further repaired and protected.
Perhaps dam operation based on environmental flows will be one of the effective ways to
protect the disturbed-river ecosystems [58,59].

4.3. Model Constraints

Even while the GA-BP aquatic community model performs better than the other two
models, it inevitably still has certain flaws: (1) The accuracy of the model is affected by the
number of the sample database. Specifically, the more monitoring samples there are, the
better the simulation accuracy of the GA-BP model. (2) The GA-BP model is a “black box”
model that does not account for the physical, chemical, and biological interactions between
the aquatic community and its influencing factors. (3) The model parameters cannot be
directly applied to other rivers; they can only be used as a reference for modeling aquatic
communities in other rivers. (4) The contribution of dam effects on the aquatic community
model has yet to be quantified in the current model.

5. Conclusions

We provide different models of considering the actual demand to simulate the aquatic
community and already present useful information about the pros and cons of the different
types and structures of the models. The models are compared to real-life cases in SRY,
China. The main findings of this study are as follows.

(1) MLE and GA-BP models, which we established respectively based on the linear
and black-box relationships between aquatic biodiversity and water environmental factors,
were effective in the simulating aquatic community in the dam-controlled river.
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(2) Comparison of the MLE, MNLE, and GA-BP models, the GA-BP model performed
the best in the context of this study. GA-BP model is more efficient and accurate for
predicting aquatic communities by just inputting key impact factors such as water quality
and hydrodynamics, which are easy to get.

(3) Applying the GA-BP model to reproduce the aquatic community characteristics of
the HD site in the SYR from 2005 to 2014 revealed that the seasonal variation of the P-SWI,
Z-SWI, and B-SWI in the HD site of the SYR was inconsistent, and the inter-annual levels
of diversity were low. Dam control has a negative impact on the aquatic community, and
the operation based on environmental flows will be one of the effective ways to protect the
SYR’s ecosystems.

Our models can be used as a tool for aquatic community simulation and prediction; as
an economical, efficient, and referential approach in other dam-controlled rivers; and as
part of water eco-environment preservation by assisting in dam planning and management
strategies. The next phase of our work will focus on collecting more detailed sample
data in the study area to further improve the accuracy of the model and develop physical
mechanism-based models.
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