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A novel one-vs-rest consensus learning method for crash severity prediction 
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A B S T R A C T   

Research in crash severity prediction is necessary to allow safety planners to take precautionary measures and 
enable first aiders to remain prepared for assisting the injured. Existing literature in the field of crash severity 
prediction is mostly focused on generating the attributes for predicting the severity. However, in reality, not all 
features are discriminating, and certain classes are challenging to detect even employing the entire feature set. 
Although to tackle these problems several techniques are developed in the Machine Learning (ML) literature. But 
their application to crash severity prediction and an optimal strategy for the best combination of features or 
classifiers for achieving high accuracy is a less studied area. To address these problems, this work first provides a 
comparison of widely used classifiers for predicting crash severity; and secondly, by combining class-wise ma-
jority voting with One-vs-Rest (OvR) approach, a novel classification framework named, OvR consensus learning 
(OvRCL) is proposed. The proposed method avail a feature selection technique, Mutual information (MI), to 
acquire the most relevant feature set regarding the output class (i.e. severity). Moreover, to differentiate each 
class in the multi-class data, OvRCL iteratively runs ML algorithms as binary classifiers in an ensemble frame-
work to significantly ameliorate classification performance. In our experiments, we use four classifiers, namely, 
the k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), Random Forest (RF), and Bagging classifier, to 
get the consensus. Analysis was done using a real crash dataset obtained from an open data source of Leeds city 
council. A four-year crash data (2015–2018) is used for training and the OvRCL is tested on the 2019 data. 
Moreover, to validate the performance of OvRCL, this study also utilizes two more datasets with high-class 
imbalance. In contrast to conventional ML algorithms, our experiments depict that the OvRCL is a potent 
method for forecasting crash severity levels on the data under test.   

1. Introduction 

Roadways play an important role in the development of a nation’s 
economy and bring many cultural and social benefits to the community. 
The road infrastructure of a country is vital to its growth as it provides 
access to employment, social, health, and education services making it 
among the most significant of all public assets. However, the burden on 
roads also increases with the increase in the population and economic 
activities. This can lead to a surge in the number of road accidents which 
causes huge losses both in terms of life and property in the case of severe 
crashes (we use the terms accident and crash interchangeably and prefer 
the former when denoting the generic term and the later when talking 
about its severity). For instance, according to (Pakistan Statistical Year 
Book, 2020), around 10,000 road crashes were reported in 2019–20 

involving roughly 13,000 vehicles, and approximately 5,500 lives were 
lost. Many more suffer injuries or are paralyzed for life. If we could 
predict how severe the collision would be and, consequently, the likely 
injuries, lives might be saved and better healthcare could be given. 

With the increase in the number of road crashes in the past few de-
cades, researchers have increasingly focused on developing various 
models for predicting the severity of injuries in road traffic crashes. 
Traditionally, these models depended on mathematical and statistical 
analysis, but more recently, Artificial Intelligence (AI), in particular 
Machine Learning (ML) algorithms, are being applied to anticipate 
various crash-causing factors and to predict the severity of the crashes. 
Conventional ML and Deep Learning (DL) algorithms, such as Support 
Vector Machines (SVM), Deep Neural Networks (DNN), etc. have 
resulted in relatively low performance when it comes to predicting the 
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severity of vehicular crashes (Iranitalab & Khattak, 2017; Rahim & 
Hassan, 2021; Z. Yang et al., 2022). This could be because some of the 
classes are not easily distinguishable, such as between severe and fatal 
injuries, when considering a multi-class problem as is usually the case. In 
literature, feature selection, One-vs-One (OvO), One-vs-Rest (OvR), and 
ensemble techniques, are some of the methods that are used in classi-
fying difficult-to-separate classes where the accuracy scores are low 
(Dong et al., 2020; Hussain et al., 2020; Hussain, Khan, et al., 2022; Q. Li 
et al., 2020; Ramírez et al., 2018). 

A range of ML models was employed in the literature on accident 
severity prediction to examine the severity of single and two-car crashes 
as well as collisions involving pedestrians. In (Abdel-Aty & Abdelwahab, 
2004), the authors adopted ANN and Adaptive Resonance Theory to 
study driver injury using crash data from Central Florida. Another study 
(Delen et al., 2006) also leveraged ANN and determined that the rela-
tionship between the severity level and the factors determining the 
severity level is nonlinear. Later, more sophisticated models such as 
regression and multinomial Logit (MNL) have been employed (Çelik & 
Oktay, 2014; Z. Li et al., 2012). Moreover, some studies presented the 
use of feature selection and ensemble learning for crash severity pre-
diction (Chandra et al., 2019). Random Forest (RF) and Mixed Logit 
Models were utilized by (Haleem et al., 2015) to analyze different fac-
tors affecting crash severity whereas (Kabeer, 2016) studied Decision 
Trees (DTs) and Ensemble techniques to achieve higher accuracy scores. 
Recently, (Iranitalab & Khattak, 2017) employ clustering in conjunction 
with classification to further improve accuracy, while (Katanalp & Eren, 
2020) examine features that are well suited for severity prediction. 
However, these studies have relatively low performance in predicting 
the severity on an imbalanced dataset. Furthermore, to the best of our 
knowledge, there exists no literature where the combination of multiple 
techniques, particularly those suited for identifying hard-to-detect 
multiple classes has been studied for crash severity prediction. 

Motivated by the above discussion, this paper presents a new 
approach for predicting the crash severity level by combining multiple 
ideas from feature selection, multi-class classification, and ensemble 
learning. These concepts are merged uniquely in the proposed model to 
elevate the classification performance on an unbalanced dataset. The 
proposed algorithm is used to predict the severity level of a crash that 
may happen under a particular set of conditions, for example, the road 
type, road condition, weather and light conditions, etc. The main 
objective of this research is to allow road safety planners to develop 
accurate countermeasures to prevent crashes in such conditions as well 
as to assist emergency responders to judge the potential medical assis-
tance that might be needed for the injured. Our results show that the 
proposed approach is better able to classify the data with the added 
advantage of reducing the data size (hence, the time to predict severity). 

1.1. Contributions 

The specific contributions of this work are as follows:  

- We utilize a feature selection algorithm, Mutual Information (MI), to 
extract the most discriminating features,  

- To improve accuracy and reduce the bias from any single algorithm, 
an ensemble technique is employed,  

- The novel One-vs-Rest Consensus Learning (OvRCL) technique is 
proposed for identifying hard-to-classify classes. 

We begin by employing features taken from different existing liter-
ature related to crash severity prediction. Instead of using the complete 
feature set, we use MI to select only the most discriminating features. An 
ensemble of four classifiers, namely Support Vector Machines (SVM), k- 
Nearest Neighbors (k-NN), Random Forests (RF), and Bagging classifier 
(BG) is used to improve the accuracy and reduce the bias. These models 
were selected as they have been widely used in the literature on crash 
severity prediction and show good results on a variety of datasets 

(Haleem et al., 2015; Iranitalab & Khattak, 2017; Kabeer, 2016; Kan-
nojiya et al., 2020; Yan et al., 2021; Z. Yang et al., 2022). However, 
OvRCL is a framework in which the chosen classifiers are not determi-
nant of the results. OvRCL allows for the unique and iterative identifi-
cation of classes while each classifier employs an OvR method for every 
individual class. Fig. 1 illustrates the abstract view of the main contri-
bution of this study. 

The rest of the paper is organized as follows: Section 2 presents the 
literature review and gives a summary of the related work. In Section 3, 
we briefly describe the various classifiers used in our ensemble approach 
and detail the proposed OvR consensus learning model. Section 4 pro-
vides the dataset description and evaluation techniques used in this 
study. The results are presented and analyzed in Section 5, and we 
conclude the discussion and provide future directions in Section 6. 

2. Literature review 

This literature review focuses on learning the crash severity model 
and predicting the injuries/fatality of casualties from road accidents. 
Significant literature on crash severity modeling uses statistical tech-
niques where the severity is taken as a dependent model while other 
features form the independent variable. These features usually consist of 
the type of vehicle, the gender or age of the driver, the condition of the 
roadway, and/or the weather conditions. Some studies implemented 
statistical and probabilistic models for crash severity analysis, (Fan 
et al., 2016) for a binary class problem, (Ye & Lord, 2014) for multi-class 
prediction, and (Yasmin & Eluru, 2013) to address the correlation of the 
unobserved fraction of utility of crash severity levels. The focus of these 
models is more on the modeling and crash severity prediction is simply 
used as a validation technique (Iranitalab & Khattak, 2017). However, 
many recent works choose to classify the accident severity using ML 
approaches. The rest of this section also focuses on these machine 
learning models. 

Amongst the earlier studies, the work of (Abdel-Aty & Abdelwahab, 
2004) compares two different Artificial Neural Networks (ANN) para-
digms – the Multilayer Perceptron (MLP), and the fuzzy Adaptive 
Resonance Theory (ART), to predict the severity level of a crash. The 
results were compared with the calibrated ordered probit model, and 
their work showed that ANN performs better in predicting the severity 
level of a crash. Similarly, (Delen et al., 2006) also made use of ANN to 
model the non-linear relationship between severity level and factors 
causing the crash. Their work showed the existence of a non-linear 
relationship between the intensity of the features and the crash 
severity. They also suggested the characteristics that are influential in 
making any difference in the severity level. Moreover, (Xie et al., 2009) 
compared the performance of traditional Ordered Probit and Bayesian 
inference Ordered Probit (BOP) models in driver’s injury severity, and it 
was shown that the BOP model works better when the size of the dataset 
is small. However, when the dataset size increases, BOP’s performance 
decreases. To model and categorize the data, k-NN and C-means clus-
tering were respectively adopted (Lv et al., 2009). This work shows that 
using a clustering technique in combination with classifiers can help 
increase performance – an idea also used by later authors. The study 
analyzes traffic data and suggests crash-causing conditions. (Kim et al., 
2010) presented the probabilistic analysis of the severity of pedestrians 
in pedestrian-vehicle crashes by using the Mixed Logit model. It was 
found that numerous factors like darkness, freeway, over-speed vehicles, 
or if the vehicles were trucks, double the probability of fatal injury to 
pedestrians. Following in the footsteps of (Lv et al., 2009), a comparison 
of SVM with order probit is shown by (Z. Li et al., 2012). Their findings 
also imply that SVM, a ML model, outperforms other methods in 
determining the severity level. 

The comparison of regression models and the Bayesian network by 
using the traffic police data from Jilin province in China is given by 
(Zong et al., 2013). The authors demonstrated that the application of 
Bayesian networks for severity level prediction outperformed regression 
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models. (Çelik & Oktay, 2014) presents another case study that exam-
ines the risk factors controlling the road traffic crash severity in the 
Erzurum and Kars provinces of Turkey. This study makes use of the Multi 
Nomial Logit (MNL) to classify three severity categories: fatal, injury, 
and no injury. In addition to this, factors affecting the severity of 
pedestrian accidents were discussed by (Haleem et al., 2015). Authors in 
this study utilized RF to rank the important parameters and a mixed logit 
model for the severity prediction. In the recent past, advanced tech-
niques developed in ML have also been employed. For instance, (Kabeer, 
2016) proposes the use of an ensemble technique using Naïve Bayes and 
DT classifiers. It is shown that ensemble techniques can increase the 
prediction accuracy to 78.03% while the accuracy of Naïve Bayes and 
DTs was 58.76% and 51.22%, respectively. A combination of clustering 
and classification is used by (Iranitalab & Khattak, 2017) to improve 
classification accuracy. (Chandra et al., 2019) compares RF and logistic 
regression and shows that, RF has high performance in predicting crash 
severity. (Kannojiya et al., 2020) presented the comparison of two 
models using different soft computing methods. (Katanalp & Eren, 2020) 
proposed a new classification technique (i.e., DT-based revised fuzzy 
logic (DT-RFL) and DT-based converted fuzzy logic (DT-CFL) using C4.5 
DTs) to predict the cyclist crash severity. Results show that the DT-RFL 
has higher accuracy compared to conventional C4.5 DTs and DT-CFL 
algorithms. Other methods were also employed; for example, (Lee 
et al., 2018) explored structural equation modeling, and (Fountas et al., 
2020) investigated a zero-inflated hierarchical ordered probit model. 

More recently, tree-based approaches have also been employed by 
various researchers for crash severity prediction and to determine the 
factors affecting crashes. For instance, (Ijaz et al., 2021) presented a 
comparative study of DT, Decision jungle, and RF for severity prediction 
involving crashes of three-wheeled motorized rickshaws. According to 
the results from a stratified 10-fold cross-validation, the decision jungle 
surpassed the DT and RF with an overall accuracy of 83.7%. The authors 
also used Spearman correlation analysis to determine that lightning 
conditions, crashes involving young drivers (between 20 and 30 years), 
crashes on highways with high-speed limits, and shiny weather condi-
tions result in more severe crashes. In addition to this, a comparative 
study of tree-based and non-parametric models for the prediction of 
severity in single-vehicle crashes was given by (Yan et al., 2021). This 
study uses five crash severity sub-datasets and found that in each 
dataset, urban freeways are a decisive factor that causes crashes, 
whereas rural freeways are more closely associated with more serious 
crashes. Furthermore, DT, RF, and Gradient Boosted Trees were utilized 
by (Amini et al., 2022) for the development of a hybrid framework 
incorporating explainable AI, predictive analytics, and heuristic opti-
mization methods. The proposed methodology aims to examine and 
explain the risk variables for injury severity in automobile accidents. 

Apart from tree-based approaches, (Hou et al., 2022) investigates 
random parameters logit models for out-of-sample prediction, quanti-
fying marginal effects, and analyzing temporal instability for crash 
severity. 

Besides classical ML models, (Rahim & Hassan, 2021) applied Con-
volutional Neural Network (CNN) with customized loss function for the 
prediction of crash severity. In this study, the dataset is first transformed 
into images using t-SNE and the convex hull algorithm. Afterward, 
instead of a fully connected layer for classification, the authors use batch 
normalization, dropout, and ReLU activation functions in a two-layer 
neural network at the end of pre-trained EfficientNet-B7. Moreover, 
Deep Learning based approaches have also been implemented by (Ma 
et al., 2021; Sattar et al., 2022) for traffic crash severity prediction. (Ma 
et al., 2021) employed stacked sparse autoencoder (SSAE) for severity 
prediction in addition to the Catboost algorithm for analyzing the 
importance of contributing factors. Whereas, (Sattar et al., 2022) pre-
sented the comparative study of Vanilla-MLP along with MLP with 
embedded layers and TabNet for feature importance analysis. Authors in 
this study addressed the binary class problem by merging the severe and 
fatal classes, hence two classes are formed (i.e. severe and non-severe). 
Moreover, (Z. Yang et al., 2022) presented a case study of Chinese traffic 
accident data by proposing a Deep Neural Network (DNN) architecture 
for injury, death, and property loss prediction. Table 1 below provides a 
summary of the significant accident analysis-related literature in the 
past decade (Table 2). 

In terms of SVM, both the OvO and OvR strategy has been widely 
used in the literature for multi-class classification. For instance, (Xu, 
2011) extend the one-vs-rest SVM by introducing an approximate 
ranking loss as its empirical loss term with improved results. The one-vs- 
rest scheme is not confined to SVMs but rather it had been used with 
other ML models. Such as, (Ramírez et al., 2018) presented an ensemble 
of RF using one-vs-rest for the classification of Alzheimer’s Disease and 
Mild Cognitive Impairment. The proposed model also shows higher 
precision compared to other state-of-the-art models. Moreover, the 
consensus learning technique has also been used by (Liu et al., 2021; 
Tang et al., 2018) for clustering problems, and shows good results. 
Additionally, (Hussain & Qaisar, 2022) have demonstrated that using 
OvR ensemble learning can significantly enhance the results. The au-
thors employed the scheme on epileptic seizure classification and 
showed boosted classification accuracy, particularly for the multi-class 
classification problem. This forms the basis of our work to implement 
feature selection, and consensus learning for individual-class identifi-
cation from difficult-to-detect classes in an imbalanced dataset for crash 
severity prediction. 

Fig. 1. Outline of the main contributions.  
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3. Methodology 

In this study, an ensemble of four classical classifiers is used to find a 
consensus of classification labels. Moreover, we also compute the 
discriminatory power of each feature in the crash prediction dataset. 
This enables the classifiers to use a subset of the feature that helps in the 
classification process with the added advantage of reducing the size of 
the data, thereby improving its efficiency. This section describes the 
feature selection strategy, the classifiers used in our approach, and the 
proposed approach of using OvRCL for achieving consensus-based class 
prediction. 

3.1. Notations 

Let X denote the data matrix which is divided into Xtrainand Xtest to 
represent the train and test data, respectively. N is the number of in-
stances in X and F is the set of features. Let fi be a single feature from F, 
and S be the set of selected features whereas S′ be the set of non-selected 
features, (i.e., S′

= F − S). We denote XS
train to represent the training 

dataset with only the selected features while the corresponding test 
dataset is represented by XS

test . C is the set of labels containing all the 

Table 1 
Summary of reviewed literature of the past 10 years in chronological order.  

Reference Algorithms Dataset Analysis 

(Zong et al., 
2013) 

Bayesian networks, 
Binary logit model, 
Ordered probit 
model 

Police reported 
traffic 
accident records, 
Jilin province, 
China. 

Examined the crash 
severity based on 
the number of 
fatalities, the 
number of injuries, 
and property 
damage. 

(Celik & 
Oktay, 
2014) 

Multinomial Logit 
(MNL). 

Traffic accident 
data, Erzurum and 
Kars provinces, 
Turkey. 

Investigates the risk 
factor affecting the 
traffic crash 
severity. 

(Haleem 
et al., 
2015) 

Random Forest, 
Mixed Logit models.  

Crash data from the 
Florida Department 
of Transportation 
(FDOT). 

Compares different 
factors influencing 
pedestrian crash 
severity levels at 
signalized and un- 
signalized 
intersections. 

(Kabeer, 
2016) 

Naïve Bayes, 
Decision trees, 
Ensemble 
technique. 

Road traffic crash 
datasets from Leeds 
city council, UK. 

Determines the 
crash severity level.  

(Iranitalab 
& 
Khattak, 
2017) 

Random Forest, 
SVM, k-NN, 
Multinomial Logit, 
k-Means, latent 
class clustering. 

Crash datasets from 
Nebraska, United 
States. 

Predicts crash 
severity level and 
proposed cost- 
based approach for 
accidents. 

(Lee et al., 
2018) 

Structural Equation 
Modeling (SEM).  

Traffic accident data 
from Traffic 
Accident Analysis 
System (TAAS), 
Seoul, Korea. 

Examine the 
influence of water 
level and rainfall on 
the crash severity. 

(Chandra 
et al., 
2019) 

Random Forest, 
Logistic regression. 

Data of traffic 
accidents and 
vehicles, UK. 

Examine crash 
severity prediction 
with and without 
feature extraction. 

(Kannojiya 
et al., 
2020) 

SVM, k-NN, RF, 
Logistic Regression, 
Naïve Bayes. 

Road traffic accident 
datasets from Leeds 
city council, UK. 

Analogize weather 
conditions that may 
cause accidents. 

(Katanalp & 
Eren, 
2020) 

C4.5 algorithm, 
Decision Tree-based 
converted fuzzy 
logic (DT-CFL), 
Decision Tree-based 
revised fuzzy logic 
(DT-RFL). 

Cycle-vehicle 
crashes, Adana City, 
Turkey. 

Examine the effects 
of different factors 
responsible for 
injury severity in 
cyclists. DT-RFL has 
comparatively high 
accuracy. 

(Fountas 
et al., 
2020) 

Zero-inflated 
hierarchical ordered 
probit model. 

Single vehicle 
accidents, Scotland, 
UK. 

Inspects the effect 
of various accident- 
causing features on 
severity level under 
different light and 
weather conditions. 

(Ma et al., 
2021) 

Stacked sparse 
autoencoder 
(SSAE), Catboost, K- 
means clustering. 

Data of traffic 
accident, UK. 

Analytic framework 
to determine the 
importance of 
various factors, 
clustering co- 
related data, and 
binary class 
prediction (i.e. 
serious or non- 
serious). 

(Rahim & 
Hassan, 
2021) 

t-SNE, Convex hull 
algorithm, 
EfficientNet-B7, 
SMOTE, CART, 
MARS 

Louisiana 
Department of 
Transportation and 
Development 
(LDOTD). 

Comparison of Deep 
learning model with 
SVM on the feature 
selected and 
balanced dataset. 

(Yan et al., 
2021) 

DT, RF, Adaboost, 
Gradient Boosting 
Decision Tree, 
Extreme Gradient 
Boosting, Quadratic 
Discriminant 
Analysis, SVM, k- 

Dataset of the single 
vehicle crashed by 
University of North 
Carolina Highway 
Safety Research 
Center, US. 

Comparison of ML 
algorithms for crash 
severity prediction 
and analysis of 
factors responsible 
for crashes.  

Table 1 (continued ) 

Reference Algorithms Dataset Analysis 

NN, Bernoulli Naive 
Bayes, MLP. 

(Ijaz et al., 
2021) 

DT, RF, Decision 
Jungle 

Dataset of three- 
wheeled motorized 
rickshaw by 
provisional 
emergency response 
service, RESCUE 
1122, Rawalpindi, 
Pakistan. 

Analysis of 
severe crash- 
causing factors and 
comparison of ML 
models for 
predicting crash 
severity. 

(Amini 
et al., 
2022) 

DT, RF Gradient 
Boosted Trees 
(GBT), Leave-one- 
covariate-out 
(LOCO), 
TreeExplainer, 
Variable 
neighborhood 
search (VNS). 

Crash Report 
Sampling System 
(CRSS) by National 
Highway Traffic 
Safety 
Administration 
(NHTSA), US. 

Analysis of the 
factors responsible 
for more severe 
accidents. 

(Z. Yang 
et al., 
2022) 

DNN, SVM, RF, 
Logistic Regression 

Chinese accident 
dataset by Key 
Laboratory for 
Urban 
Transportation 
Complex Systems, 
Theory, and 
Technology of 
Ministry of 
Education, China. 

Investigation of the 
DNN model for 
prediction and 
analysis of factors 
affecting injury 
severity, death 
severity, and 
property loss 
severity. 

(Hou et al., 
2022) 

Fixed parameter 
multinomial logit 
model, random 
parameters logic 
model, random 
parameters logic 
model with 
heterogeneity in 
means, random 
parameters logic 
model with 
heterogeneity in 
means and 
variances. 

Police-reported 
crash dataset from 
Heilongjiang 
Province, China. 

Predicts out-of- 
sample injury 
severities, along 
with the 
investigation of 
marginal effects 
and temporal 
instability of crash 
severity. 

(Sattar 
et al., 
2022) 

Vanilla-MLP, MLP 
with embedded 
layers, TabNet 

Data of traffic 
accident, UK. 

Predicts the severity 
of crashes along 
with the 
determination of 
factors responsible 
for severe crashes.  
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classes {c1,⋯, cK}, where cj denotes the single class and K is the total 
number of classes (not to be confused with k used for nearest neighbors 
in k-NN). We denote the ith classifier as CLi(i = 1⋯P) where P is the 
number of classifiers in the ensemble, and the function CLi(XS

train) returns 
the labels predicted by the classifier using the data XS

train. Let y be the 
class labels such that yi∊ {1⋯K} belonging to the instance i. 

3.2. Feature selection strategy 

3.2.1. Mutual information (MI) 
Feature selection is important to remove redundancy among features 

of the data and keep only the discriminating features that help classifiers 
to differentiate between instances of different classes. Most feature se-
lection methods associate a score with each feature that signifies how 
“discriminatory” the feature is in differentiating instances of different 
classes. One such popular and widely used method to compute the fea-
ture’s score is its MI with the class. MI is the measure of the amount of 
information or relevance, on average, that one attribute contains about 
the other. A high MI score means that using that feature can help in 
discriminating instances of different classes. The MI score is computed 
between a feature and each of the classes. 

Let Prdenote the probability than the mutual information 
I
(
fi; cj

)
between fi and cj is given by: 

I
(
fi; cj

)
= Pr

(
fi, cj

)
[

log2
Pr
(
fi, cj

)

Pr(fi)Pr
(
cj
)

]

+Pr
(
f i, cj

)
[

log2
Pr
(
f i, cj

)

Pr(f i)Pr
(
cj
)

]

(1)  

where f i means that the feature fi does not occur. The value of I(fi; cj) is 
zero if fi and cj are independent. The above equation shows the relation 
between one feature fi and one given class cj. To compute the overall 
feature score, we can use the sum, average, or maximum values with all 
classes as demonstrated by (Hussain, et al., 2022; Yang & Pedersen, 
1997). Here, we use the sum given by: 

Iavg(fi;C) =
∑n

j=1
I
(
fi, cj

)
(2)  

3.2.2. MI-based feature selection 
For feature selection, (Hussain et al., 2020) exploited a derivative of 

the MI, called Discriminative Mutual Information (DMI). Features are 
scored in a way such that the ratio of the MI score with one class against 
the rest is maximized. Mathematically, DMI is computed as: 

DMI(fi) =
Ni

∑n
j=1,j∕=iNj

×

Pr
(
fi, cj

)
[

log2
Pr(fi ,cj)

Pr (fi)Pr(cj)

]

+ Pr
(
f i, cj

)
[

log2
Pr(f i ,cj)

Pr(f i)Pr(cj)

]

∑n
j=1,j∕=iPr

(
fi, cj

)
[

log2
Pr(fi ,cj)

Pr(fi)Pr(cj)

]

+ Pr
(
f i, cj

)
[

log2
Pr(f i ,cj)

Pr (f i)Pr(cj)

]

(3)  

where Ni is the number of elements in class i. Afterward, the first feature 
is selected having the maximum DMI and the remaining features are 
selected if they maximize: 

DMI(fi;C) − β
∑

fs∊S
Iavg(fs; fi) (4)  

where β is a user-defined parameter to manage the relative importance 
of redundancy between a particular feature and already selected fea-
tures. In Eq. (4), the first part estimates the mutual information between 
a particular feature and the class, whereas the second part gives the 
redundancy of ith feature fi and already selected set of features, S. 
Therefore, in addition to choosing the most discriminating features, we 
also ensure that any chosen features bring new information that was not 
catered to using the existing set of selected features. 

3.3. Proposed One-vs-Rest consensus learning (OvRCL) methodology 

Ensemble learning is a machine learning technique that merges the 
predictions of multiple classifiers to make a strong predictive model 
(Bauer & Kohavi, 1999). Several algorithms are run independently on 
the multi-class problem and the final result is acquired by voting or 
averaging the prediction from each algorithm. If the constituent algo-
rithms struggle on the multi-class problem, for instance, if a class or set 
of classes is difficult to separate, consensus voting may also struggle. 

This paper integrates binary classification with consensus voting to 
propose a new OvRCL framework. The OvRCL is a heuristic approach for 

Table 2 
Pseudocode for the OvRCL algorithm.  

ALGORITHM: OvR Consensus Learning (OvRCL) 

Inputs: Classifiers CLi i = 1..P, train and test data (i.e., Xtrain ,Xtest), class labels y. 
Outputs: Consensus output label, ŷ. 
Initialization: Set of selected features S = {ɸ}, 

Set of non-selected features S’ = {ɸ}, 
Initialize ŷi = 0 ∀ i = 1..Ntest. 

Begin 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
End  

for each fi in F 
for each cj in C 

compute I(fi,cj) 
endfor 
compute DMI(fi) using Eq. (3) 

endfor 
select top |S| features using Eq. (4) 
select the dataset XS

train and XS
test 

for each classifier i = 1..P 
train CLi where i∈{RF, SVM, k-NN, BG} 

endfor 
for each i = 1..Ntest 

ŷRF
i CLRF

(
XS

train,XS
test

)
ŷSVM

i CLSVM
(
XS

train,X
S
test

)
ŷk− NN

i CLk− NN
(
XS

train,X
S
test

)
ŷBG

i CLBG
(
XS

train ,X
S
test

)
compute ŷiusing Eq. (6) 

end for 
returnŷ   
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multi-class classification by repeatedly exploiting binary classification 
as it divides the multi-class data into multiple binary classification 
models. A binary classifier (CL) is then trained on each model and the 
final prediction is made based on the highest score. Instead of executing 
OvR for complete classification and then obtaining the majority vote, 
OvRCL performs consensus voting individually at the class level. The 
classifiers are better able to perform for difficult-to-detect classes since 
the objective is to distinguish only one class from the others in an OvR 
scenario. For a dataset with K classes, an algorithm is iterated for j = 1⋯ 
K times, such that cj = 1 if CL(xi) = j, and 2 otherwise ∀ i = 1⋯N, where 
xi is an instance of X having N number of instances. Furthermore, during 
the testing phase, each model determines whether the sample belongs to 
class 1 or contrarily to j = 2⋯K. At the end of the jth iteration, every 
instance has i predictions belonging to class j where i is the number of 
classifiers in the ensemble setting. The final class is predicted by taking a 
majority vote of jthclass from the prediction of all the classifiers. This is 
given by the following Eq. (6): 

ŷxtest
= argmaxCLi

(
xS

test

)
(6)  

where ŷxtest 
denotes the predicted class and xS

test denotes an instance of 
the test data with the selected feature set. 

The process is repeated for j = 1⋯K times until all instances are 
labeled by the OvR consensus-based classifier. Note that there may arise 
a case where an instance previously classified as belonging to class j may 
be predicted as belonging to class k, 1 ≤ j, k ≤ K. The label for this 
instance will only be updated if the number of classifiers predicting the 
label to be k is greater than the number of classifiers predicting the label 
to be j. Let the total number of classifiers used in the ensemble learning 
be P and the number of classifiers predicting the label as j be denoted as 
pj, then the label of an instances xi may only be updated if pk

P >
pj
P. The 

overall algorithm is shown in Fig. 2. 
The MI score for feature selection is computed on the training dataset 

and the same selected feature set is then used for the test data. There-
after, each classifier is trained on the training dataset using the one-vs- 
rest strategy and the OvRCL algorithm is used for the final prediction. 
The following shows the algorithm of the proposed OvRCL algorithm. 

3.4. Prediction methods 

A variety of classification techniques can be used to predict the label 

(Ashraf et al., 2022; Bano & Hussain, 2021; Hameed et al., 2020; Si et al., 
2022; Zelenkov & Volodarskiy, 2021). These models are trained on the 
training data and predict the labels on the test data. This research im-
plements consensus-based learning by employing k-NN, SVM, RF, and 
Bagging classifiers because they have been extensively employed in the 
literature on crash severity prediction on a variety of datasets and show 
comparatively good results (Haleem et al., 2015; Iranitalab & Khattak, 
2017; Kabeer, 2016; Kannojiya et al., 2020; Yan et al., 2021; Yang et al., 
2022). We briefly describe these classifiers below. 

3.4.1. Random Forest (RF) 
Random Forest (RF) is a technique that leverages DTs and was first 

proposed as a classifier by (Breiman, 2001). It comprises a multitude of 
tree-structured predictors in such a way that each tree depends on the 
value of independent and same random vectors, while they would cast 
an individual vote for the most popular class. In RF, each node is split 
using the best features, from a subset of indicators arbitrarily picked at 
that node. This method is robust and performs well in comparison with 
other commonly used classifiers (Qaisar & Hussain, 2020, 2021). Its 
implementation requires the identification of the number of trees to 
grow and the number of candidates randomly sampled at each stage. To 
train the RF model, in this study we fix the number of trees at 60. 
Usually, the number of trees in the forest is a user-defined parameter and 
can be set by starting with a lower value and gradually increasing it. This 
can be done using a training-validation split strategy. 

3.4.2. Support Vector Machines (SVM) 
Primarily SVM is a binary classification algorithm first proposed by 

(Cortes & Vapnik, 1995) and can be used for both regression and clas-
sification problems. SVM works by finding an optimal hyperplane to 
separate instances of different classes and is based on statistical learning 
theory and structural minimization. In cases where a linear separation 
between classes is not possible, a “kernel trick” is used to find distances 
between instances in a transformed higher dimensional space defined by 
the kernel function in which the data is linearly separable. Popular 
kernel methods include the Radial Basis Function (RBF), Perceptron 
(MLP), and polynomial functions (Hussain, 2019). The choice of kernel 
method is both problem and data-dependent and multiple kernels can be 
tried to select the one with the best performance using a validation set. 
In this paper, we use the third-order polynomial kernel function to 
achieve separability as the data is not linearly separable. This was 
selected after trying multiple kernel methods and varying the C 

Fig. 2. The proposed OvRCL framework using N classifiers (CL1, …, CLN).  
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parameter using cross-validation. 

3.4.3. k-Nearest Neighbors (k-NN) 
The k-Nearest Neighbor is a simple classifier proposed by (Cover & 

Hart, 1967). It is a prediction method that predicts the unclassified test 
data by looking at the closest set of classified points. Two things must be 
kept in mind while implementing the k-NN: the value of k or the number 
of neighbors that should be considered to classify the test point, and the 
distance function to be used to measure the distance between the test 
point and the set of closest points in the training data. In this paper, we 
set the value of k to be 3 but similar results are achieved for k = 5 or 7. 
The City-block (also called Manhattan) distance is used as the distance 
function which calculates the absolute difference between two points or 
coordinates. If dij denotes the distance between observations i and j and 
xil and xjlrepresent the values of the lth variable for observations i and j, 
respectively, then the city-block distance can be computed as: 

dij =
∑|F|

l=1

⃒
⃒xil − xjl

⃒
⃒ (5)  

3.4.4. Bagging classifier (BG) 
In (Breiman, 1996), bagging predictors as an algorithm for gener-

ating various predictors and using them to make an aggregated predictor 
was first introduced. It is an ensemble technique designed to improve 
the stability and accuracy of ML algorithms. It aggregates the averages 
over the variants while foreseeing a numerical outcome and the final 
class is predicted by a majority vote. The basic idea of BG is that it 
creates many “weak learners” and uses them to build a “strong learner”. 
Generally, it makes many DTs that are weak learners and combines them 
to create a strong classifier. Each tree gives a vote to a class and the final 
prediction of the new class is gained by the class that has the most votes. 

4. Experimental setup 

4.1. Dataset description 

The experimental setup used in this paper is divided into two parts:  

1. The first part is a detailed case study used to evaluate the important 
features that impact crash severity prediction and well as a qualita-
tive analysis for policy decision making. That dataset used for this 
study was obtained from the open data source of Leeds city council2. 
We refer to this as the Leeds accidents dataset. It comprises infor-
mation on accidents from different years across Leeds. In our study, 
the crash data from 2015− 2018 is used as training data while the 
data from 2019 is used as the test dataset. In total, the dataset con-
tains roughly 11,300 instances divided as follows – 9400 instances 
are used in the training data, whereas the test data contains 
approximately 1900 instances. The data records multiple features for 
each crash including the Reference Number, Grid Ref: Easting, Grid 
Ref: Northing, Number of Vehicles, crash Date, Time of the crash, 1st 
Road Class, Road Surface, Lighting Conditions, Weather Conditions, 
Type of Vehicle, Casualty Class, Casualty Severity, Sex of Casualty 
(referred to as Gender of casualty) and Age of Casualty. 

2. The second part of the analysis is done to substantiate the perfor-
mance of the OvRCL framework proposed in this study and its suit-
ability for such as analysis. To do this, we leverage two more publicly 
available datasets with variations for crash severity prediction. The 
first is a cycling casualty in Leeds3 data from 2009 to 2015 (referred 
to as bicycle crashes). This is a relatively small dataset with 

approximately two thousand instances and 16 features in total. The 
second relates to road casualty accidents from 2010 to 2021 in the 
city of Manchester4 (referred to as Manchester accidents), having 
over 45 thousand records with 27 attributes. The two datasets are 
chosen to observe the performance on a small and medium sized 
dataset. 

Preprocessing is the important step to remove features that may not 
be helpful in determining the information of interest. Therefore, all the 
datasets are cleaned by removing the spatial and temporal features as 
they are not relevant for crash severity prediction. 

Summary of the Leeds accidents, which is used for a detailed case 
study, is given below. We remove features such as Reference Number, 
Grid Ref: Easting, Grid Ref: Northing, crash Date, Time, and Age of 
Casualty. The remaining data contains 8 features in Leeds accidents, 9 
features in bicycle crashes, and 15 features in Manchester accidents. The 
classification problem tackled in this study is a multi-class problem with 
three classes. Regarding the casualty severity from all the datasets used, 
1 denotes a fatal crash; 2 represents if the crash caused any serious injury 
to the driver, passenger(s), or any bystander; and 3 implies slight in-
juries to any of these subjects. Table 3 shows the summary of the attri-
butes in the training and test dataset with exploratory data analysis. In 
terms of temporal distribution, the monthly and yearly distribution of 
the crashes with their severity count is given in Fig. 3. It can be seen that 
the data is highly imbalanced between the three classes. 

4.2. Evaluation metrics 

Many metrics can be used for measuring the performance of classi-
fiers. One frequently used metric is the accuracy metric which measures 
the ratio of the correctly classified instances to the total number of in-
stances. The benefit of using the accuracy measure is that it is readily 
interpretable. The accuracy score is computed as: 

Accuracy =
1
N

∑N

i=1
δ(yi, ŷi) (7)  

where δ(yi, ŷi) is 1 if both the actual and predicted labels belong to the 
same class and 0 otherwise. 

A second evaluation metric used in this study is the Normalized 
Mutual Information (NMI) metric which is based on the informetric 
relationship between two variables. It depends on the entropy (H) be-
tween the actual labels y and the predicted labels, ŷ. Mathematically, 
this is given by: 

NMI(y, ŷ) =
H(y) + H(ŷ)

H(y, ŷ)
(8) 

NMI is usually a preferred score when comparing multiple algo-
rithms since it takes size and biased assignment into consideration. For 
instance, if 95 instances belong to class 1 and 5 belong to class 2, but a 
classifier assigns a single label to all elements, it will still result in an 
accuracy value of 95%. In such a case, the NMI score will be quite low 
even though accuracy is rather high indicating that the classifier did a 
poor job in the classification task. 

In addition, this study also employs specificity and sensitivity to 
evaluate the performance of ML models. Specificity is the ability of a 
model to detect the True Negative (TN) of each output class whereas 
sensitivity is the detection of the True Positive (TP) by the classifier. 
Consequently, specificity is called the true Negative Rate (TNR), and 
sensitivity is referred to as True Positive Rate (TPR). If FP is the number 
of samples that were negative but predicted as positive, FN denotes the 

2 Leeds City Council dataset (https://www.data.gov.uk/dataset/6efe5505-9 
41f-45bf-b576-4c1e09b579a1/road-traffic-accidents).  

3 The cycling casualty dataset in Leeds (https://datamillnorth.org/dataset 
/cycling-casualties-in-leeds). 

4 The Manchester road casualty accidents dataset (https://www.data.gov. 
uk/dataset/25170a92-0736–4090-baea-bf6add82d118/gm-road-casualty-a 
ccidents-full-stats19-data). 
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number of samples that were positive but forecasted as negative, TP 
denotes the number of samples that were positive and predicted as 
negative and TN represents the number of instances that were negative 
and are also predicted as negative and j represents the respective labels. 
Then sensitivity and specificity for jth class is given by: 

Sensitivityj =
TPj

TPj + FNj
(9)  

Specificityj =
TNj

TNj + FPj
(10)  

5. Results and discussion 

The experimental setup for this study is designed to validate the 

intuition behind the proposed algorithm and compare its efficacy to 
existing state-of-the-art recent algorithms. To do this, we tested the 
proposed algorithm in a stepwise fashion by incorporating only a single 
step while keeping other factors constant. The results are compared in 
terms of accuracy since it has a straightforward interpretation and is one 
of the desirable properties to see how well an algorithm can classify 
compared to the ground truth. The NMI score is also used when 
analyzing the results of the algorithm in comparison with the individual 
classifiers used in the ensemble method. 

5.1. Selecting the features 

The first contribution of this study is to use an automated feature 
selection technique to select only the distinguishing features rather than 

Table 3 
Exploratory descriptive analysis of the Leeds council dataset.    

Features   Description 

Summary 

Train dataset 
(2015–2018) 

Test 
(2019) 

Occurrence 
(n) 

Frequency 
(%) 

Occurrence 
(n) 

Frequency 
(%) 

1st Road Class Motorway 736  0.0782 180 0.0943 
A(M) 210  0.0223 72 0.0377 
A 3133  0.3329 567 0.2973 
B 422  0.0448 80 0.0419 
C 19  0.0020 3 0.0015 
Unclassified 4891  0.5197 1005 0.5270 

Road Surface Dry 6989  0.7426 1359 0.7126 
Wet / Damp 2276  0.2418 521 0.2732 
Snow 53  0.0056 3 0.0015 
Frost / Ice 81  0.0086 17 0.0089 
Flood (surface water over 3 cm deep) 12  0.0012 5 0.0026 

Light Conditions Daylight: streetlights present 6498  0.6904 1389 0.7283 
Darkness: streetlights present and lit 2177  0.2313 436 0.2286 
Darkness: streetlights present but unlit 26  0.0027 9 0.0047 
Darkness: no street lighting 201  0.0213 43 0.0225 
Darkness: street lighting unknown 509  0.0540 30 0.0157 

Weather Conditions Fine without high winds 7949  0.8446 1633 0.8563 
Raining without high winds 826  0.0877 215 0.1127 
Snowing without high winds 41  0.0043 3 0.0015 
Fine with high winds 109  0.0115 19 0.0099 
Raining with high winds 135  0.0143 25 0.0131 
Snowing with high winds 20  0.0021 1 0.0005 
Fog or mist – if the hazard 29  0.0030 1 0.0005 
Other 50  0.0053 8 0.0041 
Unknown 252  0.02677 2 0.0010 

Casualty Class Driver or rider 5615  0.5966 1152 0.6040 
Vehicle or pillion passenger 2388  0.2537 428 0.2244 
Pedestrian 1408  0.1496 327 0.1714 

Gender of Casualty Male 5404  0.5742 1149 0.6025 
Female 4007  0.4257 758 0.3974 

Type of Vehicle Pedal cycle 1257  0.1335 236 0.1237 
M/cycle 50 cc and under 80  0.0085 16 0.0083 
Motorcycle over 50 cc and up to 125 cc 332  0.0352 77 0.0403  
Motorcycle over 125 cc and up to 500 cc 98  0.0104 17 0.0089 
Motorcycle over 500 cc 212  0.0225 39 0.0204 
Taxi/Private hire car 372  0.0395 60 0.0314 
Car 6082  0.6462 1295 0.6790 
Minibus (8 – 16 passenger seats) 30  0.0031 4 0.0020 
Bus or coach (17 or more passenger seats) 528  0.0561 65 0.0340 
Ridden horse 1  0.0001 2 0.0010 
Agricultural vehicle (including diggers etc.) 3  0.0003 1 0.0005 
Tram / Light rail 3  0.0003 0 0 
Goods vehicle 3.5 tons mgw and under 274  0.0291 73 0.0382 
Goods vehicle over 3.5 tons and under 7.5 tons mgw 46  0.0048 6 0.0031 
Goods vehicle 7.5 tons mgw and over 40  0.0042 8 0.0041 
Mobility Scooter 15  0.0015 3 0.0015 
Other Vehicle 33  0.0035 2 0.0010 
Motorcycle - Unknown CC 4  0.0004 3 0.0015 

Casualty Severity Fatal 66  0.0070 – – 
Serious 1264  0.1343 – – 
Slight 8081  0.8586 – –  
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the entire feature set. The DMI has the added effect of selecting features 
that only help to distinguish instances of one class from all other features 
as opposed to the standard MI technique which may select features that 
have a higher average or total MI score. To see which features are the 
most helpful, and to determine how many features should be selected, 
we compute the DMI score of each feature. The test dataset must not be 
used in any computation where prior knowledge of the class labels is 
necessary, hence we only compute these scores from the training data-
set. The result is shown in Fig. 4. 

Not all features in the dataset have equal importance in the classi-
fication process. Usually, the question of how many features to select is a 
balance between the size of the data (to reduce) and the information 
content to be retained. In our case, the type of vehicle, the casualty class 
(i.e., whether a pedestrian, driver, or passenger), the number of vehicles 
involved, the gender of the casualty, and the road class show the highest 
scores. Together, these five (05) features retain over 91% of the infor-
mation content. Therefore, we select these five features when using 
feature selection. The rest of the features are left out in both the training 
and test dataset. The distribution of the selected features concerning the 
crash severity is given in Fig. 5, where crash count denotes the occurrence 
values in Table 3. 

As observed in Fig. 4, the type of vehicle had the highest information 
score. Looking at the distribution, we see that in several cases simply 
knowing the type of vehicle is enough to predict the crash severity or 
eliminate certain types of severity. For instance, if a vehicle is less than 

50 cc, a minibus, a coach, a horse, an agricultural vehicle, a tram, a 
goods vehicle with 3.5 to 7 tons of weight, a mobility scooter, or a 
motorcycle, there are fewer chances of a fatal crash. Similar information 
from other selected features also helps in the overall prediction of crash 
severity. 

5.2. Effect of feature selection 

We use the full version of the dataset Xtrain and Xtest that employ the 
complete feature set and the reduced version of the dataset XS

train and 
XS

test with only the selected features. Each of the classifiers discussed in 
Section 3 is used to classify the two datasets along with the proposed 
OvRCL algorithm. Additionally, commonly used ML models like Ada-
Boost and ANN have also been compared with the OvRCL framework. As 
the data is linearly non-separable so the ANN with three hidden layers 
was implemented. This number was selected by trying a few other 
models with different layers and the model with the better result is 
selected. Furthermore, an Adaboost with 30 learners is used to predict 
the crash severity. The accuracy of the ML models is shown in Fig. 6 
whereas the results for NMI are compared in Table 4. 

From Fig. 6, we can see some interesting observations. Firstly, almost 
all the classical classification techniques result in very similar perfor-
mance. In particular, Bagging is an ensemble classification technique, 
but its accuracy value is no better than using the standard k-NN or SVM. 
Therefore, using an ensemble technique in itself does not necessarily 

Fig. 3. Distribution of crash severity by month and by year. (a) Counts of crashes by year. (b) Count of crashes by month.  

Fig. 4. Influence of each feature (using MI score) on crash severity in Leeds accidents.  
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boost the performance in all cases. Secondly, it is also clear that feature 
selection helps in improving the accuracy score though in most cases the 
increase is only marginal. However, for the proposed approach, the 
jump in accuracy value is significant when using feature selection. In our 
view, this is because the features are selected according to their ability to 
distinguish a particular class and its effect is most useful when using the 
OvRCL approach. 

5.3. Effect of OvR approach on accuracy 

The OvR approach is traditionally used in such algorithms as SVM 
since it is much faster than the OvO approach which requires making 
binary combinations of all classes. SVM, however, is a single classifier so 
if the method is biased against any class or unable to handle imbalanced 
data, the classes may be confused which leads to lower accuracy. Table 5 
shows the confusion matrix when using SVM with the OvR strategy for 

Fig. 5. Distribution of the selected features according to crash severity in Leeds accidents. (a) Distribution of severity across 1st road class. (b) Distribution of severity 
across casualty class. (c) Distribution of severity across the number of vehicles. (d) Distribution of severity across the gender of casualty. (e) Distribution of severity 
across the type of vehicle. 
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predicting the crash severity. We see that all fatal and serious crashes 
were classified as slight injuries which is by far the class with the largest 
number of instances. This is the reason we had a moderate accuracy 
value when using SVM (Fig. 6), but a very low NMI score (Table 4) 
because the classes are imbalanced. 

On the other hand, ensemble methods perform better since they are 
less biased due to a single classifier. However, most ensemble classifiers 
predict the final class from the overall prediction of the individual 
classifier rather than one class at a time as in the OvRCL strategy. 
Bagging is an ensemble method that uses multiple DTs to predict the 
labels. Table 6 shows the confusion matrix when using the Bagging al-
gorithm. Compared to the SVM results, Bagging does a better job in 
predicting fatal and serious injuries, but it too confuses a significant 
amount of fatal and serious injuries with slight injuries, resulting in an 
overall low NMI score. 

When using an ensemble method with the OvR strategy and aggre-
gating after each class prediction rather than after the entire label 

prediction, the overall confusion between classes is significantly 
reduced, particularly where the instances were low (i.e., smallest class in 
unbalanced data). This is shown in the confusion matrix in Table 7, 
whereas Table 8 and Table 9 present the comparison using sensitivity 
and specificity between the proposed model and other machine learning 
algorithms respectively. It can be seen that the proposed OvRCL also has 
a higher true positive rate (sensitivity) and true negative rate (speci-
ficity) as compared to the conventional machine learning model. 

5.4. Validation of OvRCL algorithm 

To acquire the most relevant features for crash severity prediction 
MI-based feature selection (Eq. (4) is applied to all the datasets. Fig. 7 
and Fig. 8 illustrate the MI score of features and the selected subset in the 
dataset of cycling casualties in Leeds, and roads accident in Manchester 
and the UK, respectively. Feature subset is selected as they are more 
relevant and contain 90% of the information regarding the accident 
severity (as specified in section 5.1). 

Furthermore, OvRCL is better able to detect the hard-to-detect clas-
ses irrespective of the size of the data as illustrated in Fig. 9 and Fig. 10. 
The proposed scheme also surpassed the conventional ML models in 
terms of NMI score as shown in Table 10 and Table 11, for sensitivity and 
specificity in Table 12 and Table 13 for the bicycle crashes and Man-
chester accidents data, respectively. 

5.5. Comparison with other state-of-the-art methods 

Finally, we compare the proposed method with several other state- 
of-the-art algorithms used in the literature on the Leeds and other 
datasets. The results are shown in Table 14 using the accuracy measure 
and different datasets. Since we do not have the code for the other 
methods, we simply cite the results as mentioned and explain the dif-
ference in the datasets used. 

For the k-NN, SVM, Bagging, and Random Forest, the datasets are the 
same as the OvRCL algorithm. In which k-NN represents the baseline 
algorithm, SVM is a binary classifier and utilizes the OvR strategy for 
multi-class problems, while BG and RF represent ensemble techniques. 
Hence, these methods provide a good comparison to see the effect of 
using existing techniques of OvR and Ensemble in the existing literature. 

Fig. 6. Comparison of different classifiers and proposed model in Leeds accidents (a) Selected features (b) Complete features.  

Table 4 
Comparison of different classifiers and proposed method using NMI scores.  

Models Selected Features Complete Features 

k-NN  0.024  0.060 
SVM  0.032  0.015 
BG  0.043  0.040 
RF  0.040  0.010 
AdaBoost  0.011  0.015 
ANN  0.026  0.016 
OvRCL  0.931  0.852  

Table 5 
Confusion matrix for crash severity prediction using SVM with OvR strategy in 
Leeds accidents.  

Actual Values Predicted Values   

Fatal Serious Slight 
Fatal 0 0 22 
Serious 0 0 334 
Slight 0 4 1547  

Table 6 
Sample confusion matrix of Bagging ensemble classifier in Leeds accidents.  

Actual Values  

Predicted Values   

Fatal Serious Slight 
Fatal 1 2 19 
Serious 0 14 320 
Slight 2 10 1539  

Table 7 
Sample confusion matrix using the proposed OvRCL algorithm in Leeds 
accidents.   

Predicted Values 

Actual Values  Fatal Serious Slight 
Fatal 20 2 0 
Serious 9 295 30 
Slight 1 10 1540  
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For (Kabeer, 2016) and (Kannojiya et al., 2020) the dataset is the same 
but differs in the years used. Whereas (Chandra et al., 2019; Ma et al., 
2021), and (Sattar et al., 2022) make use of a different but comparable 

dataset for UK road traffic accidents. The results are evident from 
Table 8 in the previous section. On the same dataset, the existing ma-
chine learning classifiers of k-NN, SVM, Bagging and RF have compa-
rable results of around 81–82% accuracy. From (Kannojiya et al., 2020) 
and (Chandra et al., 2019), Logistic regression and RF are more suitable 
for predicting crash severity. This may be because the crash data is 
usually highly imbalanced with distinctive features showing correla-
tions with multiple classes under different conditions. 

In the literature, many authors have tried to overcome this in two 
ways: firstly, by combining severity levels and transforming the problem 
into a binary classification problem and predicting only severe and non- 
severe crashes irrespective of whether the severe crashes were fatal or 
not (Sattar et al., 2022). Secondly, some techniques employ machine 
learning techniques to cluster the data using spatial dimensions (Ira-
nitalab & Khattak, 2017; Ma et al., 2021). This can be done using a 
clustering method, such as the k-means or other clustering techniques 
(Hussain, 2011), to group accidents geographically. Their results show 
that it is easier to predict the severity of the crash after grouping them 
and predicting the severity of each group separately. However, in all the 
cases and using all the methods, the crash severity prediction remains 
below 90% on all the datasets. 

6. Discussion 

In this paper, we present a new machine learning approach for the 
classification of crash severity prediction by using a combination of 
feature selection and One-vs-Rest Consensus Learning (OvRCL). The 
previous sections show the performance of the proposed strategy on the 
Leeds accident dataset in comparison to established state-of-the-art 
techniques. In this section, we further analyze the features concerning 
the crash severity along with the advantages and limitations of the 
proposed model, and policy implications from this study. 

6.1. Effect of classifiers on OvRCL 

In discussed previously and shown in Fig. 2, any choice of classifiers 
could be used for the consensus learning. In the previous section, we 
chose SVM, K-NN, RF, and BG as classifiers because they have been 
extensively used in the literature for crash severity prediction on a va-
riety of datasets and show comparatively good results (Haleem et al., 
2015; Iranitalab & Khattak, 2017; Kabeer, 2016; Kannojiya et al., 2020; 
Yan et al., 2021; Yang et al., 2022). 

Here we show that OvRCL improves on the classification accuracy for 
all the accident datasets compared to the individual classifiers and 
traditional ensemble approaches. To show this, we replace SVM and RF 
with Artificial Neural Network (ANN) and AdaBoost (AB) in the pro-
posed OvRCL framework. It can be seen from Table 15 that both versions 
of OvRCL outperforms the individual models, including traditional 
ensemble methods like AdaBoost or Bagging. The two OvRCL differ in 
accuracy depending on the classifiers chosen. The choice of the 

Table 8 
Sensitivity values on the different models in feature-selected Leeds accidents.  

Classes k-NN SVM RF BG AdaBoost ANN OvRCL 

Fatal 0 0 0  0.3333  0.0606  0.0606  0.9090 
Serious 0.1796 0 0.0149  0.0419  0.0008  0.0467  0.8832 
Slight 0.9368 0.9974 0.9909  0.9922  0.9989  0.9844  0.9929  

Table 9 
Specificity values on the different models in feature-selected Leeds accidents.  

Classes k-NN SVM RF BG AdaBoost ANN OvRCL 

Fatal  0.9989 1  0.9994  0.9989  0.9999  0.9994  0.9946 
Serious  0.9357 0.9974  0.9904  0.9923  0.9990  0.9845  0.9923 
Slight  0.1825 0  0.0196  0.0477  0.0038  0.0519  0.9157  

Fig. 7. Mutual Information Score of all the features and selected subset in bi-
cycle crashes. 

Fig. 8. Mutual Information Score of all the features and selected subset in 
Manchester accidents. 
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classifiers were done based on previous literature where these methods 
have been shown to perform well when considering a single classifier. 
Hence, we see that OvRCL is a better approach than simply using a single 
classifier for all accident datasets used in this study. 

6.2. Feature analysis 

In this section, we analyze the selected features by using Shapley 
values (SHAP). (Lundberg & Lee, 2017) proposed to use the Shapley 
value to interpret the output of the model. Fig. 11 illustrates a SHAP 
summary plot that represents the range and distribution of the selected 
features to injury severity level. SHAP plot is an agnostic framework that 
orders features based on their influence to detect crashes since it quali-
tatively represents the relation of attributes to the output class (i.e., 
crash severity). The scatter here represents the different Shapley values 
of the features, and each point is colored by the value of the feature from 
low (blue) to high (red). The density of points demonstrates the distri-
bution in the dataset. For instance, the type of vehicle has a greater 
negative value which means that changing the type of vehicle would 
have a greater influence on crashes with slight injuries. On the other 
hand, 1st road class has the highest influence on the seriousness of the 
crash. These findings are reasonable because the type of road increases 
the probability of serious crashes. 

The SHAP feature dependency plot is primarily utilized to indicate 
the distribution and variation of Shapley values with features. Shap 
dependence plots are used to quantify how some variables might affect 
the output of the ML model. To better interpret the data, we analyze the 
SHAP feature dependency plot by employing the top 3 features with 
relatively great importance. Fig. 12(a) shows the effect of two contrib-
uting factors, the number of vehicles and Vehicle type. It can be seen that 
the number of crashes involving cars are higher as compared to other 
vehicle types. Fig. 12(b) illustrates the effect of two more contributing 
factors – the casualty class, and type of vehicle. It can be seen that the 
SHAP values of the driver/rider are positive. This shows that drivers or 
riders are more likely to suffer severe injuries. In other words, when 

Fig. 9. Comparison of different classifiers and proposed model in bicycle crashes using (a) selected features (b) complete features.  

Fig. 10. Comparison of different classifiers and proposed model in Manchester accidents using (a) selected features (b) complete features.  

Table 10 
Comparison of different classifiers and proposed method in bicycle crashes using 
NMI scores.  

Models Selected Features Complete Features 

k-NN  0.0161  0.0268 
SVM  0.0224  0.0089 
BG  0.0046  0.0120 
RF  0.0072  0.0046 
AdaBoost  0.0163  0.0527 
ANN  0.0028  0.0058 
OvRCL  0.9288  0.8690  

Table 11 
Comparison of different classifiers and proposed method in Manchester acci-
dents using NMI scores.  

Models Selected Features Complete Features 

k-NN 0.0019 0.0058 
SVM 0.0002 0.0011 
BG 0.0007 0.0057 
RF 0.0006 0.0042 
AdaBoost 0 0 
ANN 0.0002 0.0020 
OvRCL 0.9948 0.7122  
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crashes occur, there would be a high severity of the driver as compared 
to the other casualty classes. However, negative SHAP values are seen 
when the casualty class is pedestrian which means that the injuries to the 
pedestrian are less severe. 

6.3. Advantages and limitations of the proposed model 

The key advantage of the proposed model is its ability to identify 

crash severity in a multi-class problem even in the presence of highly 
imbalanced data. While several machine learning algorithms have been 
used in the past, they are not able to differentiate between hard-to- 
classify classes, such as between slight and serious severity and be-
tween fatal and serious severity. The proposed model employs a feature 
selection technique that reduces the feature set, only retaining the 
discriminatory features. This has the added advantage of giving feature 
importance ranking which can be used to select pertinent features for 
the crash severity modeling. The proposed framework predicted indis-
tinguishable classes in the imbalanced dataset by implementing class- 
wise OvR along with the ensemble of binary learning models for 
classification. 

The proposed method also comes with some overhead in that mul-
tiple models need to be trained on each class prediction. Therefore, the 
model will be similar to the OvR model and the overall complexity will 
be similar to the algorithm requiring the highest complexity among the 
ensemble models. The good thing is that the models can be executed in 
parallel as each prediction is independent of the previous class (section 
3.4), thereby, requiring little overhead time as the consensus building is 
a simple voting scheme. 

6.4. Policy implications 

The proposed algorithm developed in this paper has been evaluated 
on a real dataset. Firstly, using the proposed method provides better 
performance, in terms of evaluation metrics, than existing models in the 
literature. Secondly, the analysis of the features used, and their rankings 
can also provide helpful insight to safety planners and policymakers. 

Table 12 
Sensitivity and Specificity values on the different models in feature-selected bicycle crashes.   

Classes k-NN SVM RF BG AdaBoost ANN OvRCL  

Sensitivity 
Fatal 0 0 0 0 0 0 0 
Serious 0.0896 0.0448 0 0 0.0079 0.0119 1 
Slight 0.9364 0.9939 1 1 0.9925 0.9835 0.9939  

Specificity 
Fatal 0.9824 1 1 1 0.9981 0.9987 1 
Serious 0.9577 0.9940 1 1 0.9925 0.9828 0.9909 
Slight 0.0882 0.0441 0 0 0.0195 0.0234 1  

Table 13 
Sensitivity and Specificity values on the different models in feature-selected Manchester accidents.   

Classes k-NN SVM RF BG AdaBoost ANN OvRCL  

Sensitivity 
Fatal  0.0082  0.0328 0 0 0 0 0.9918 
Serious  0.0590  0.1616 0.0035 0.0028 0.0003 0.0078 1 
Slight  0.9424  0.7837 0.9976 0.9992 0.9999 0.9957 0.9997  

Specificity 
Fatal  0.9913  0.9497 0.9998 0.9998 1 0.9999 1 
Serious  0.9491  0.8332 0.9978 0.9982 0.9999 0.9955 0.9996 
Slight  0.0764  0.2149 0.0039 0.0039 0.0003 0.0086 1  

Table 14 
Comparison of previous works with the OvRCL algorithm.  

Method dataset Accuracy Comments 

k-Nearest 
Neighbors ( 
Cover & Hart, 
1967) 

Leeds 
dataset  

82.01% The best result using k-NN (k =
3,5,7,9) with and without feature 
selection. 

SVM (Cortes & 
Vapnik, 1995) 

Leeds 
dataset  

81.43% The best result using SVM (RBF, 
Poly, Gaussian kernels), OvR, and 
OvO, with and without feature 
selection. 

BG (Breiman, 
1996) 

Leeds 
dataset  

81.54% The best result using Bagging (10, 
15, …, 50) with and without 
feature selection. 

RF (Breiman, 
2001) 

Leeds 
dataset  

81.59% The best result using RF (10, 15, 
…, 50) with and without feature 
selection. 

(Kabeer, 2016) Leeds 
dataset  

78.03% Implemented naïve Bayes, 
decision trees, and ensemble 
technique. 

(Kannojiya et al., 
2020) 

Leeds 
dataset  

87.88% Compared various ML models in 
which logistic regression has the 
highest accuracy. 

(Chandra et al., 
2019) 

UK 
dataset  

86–86.5% RF shows better performance with 
and without feature selection in 
comparison with the logistic 
regression. 

(Ma et al., 2021) UK 
dataset   

75–80% Computed on 4 spatial classes with 
only injury classes, i.e., serious and 
non-serious, using Auto-encoders 
and Deep Neural Networks. 

(Sattar et al., 
2022) 

UK 
dataset 

73–75% Compared various DL models in 
which Vanilla-MLP has the fastest 
training time whereas MLP with 
embedded layers has the highest 
accuracy while predicting binary 
classes (i.e. serious and non- 
serious). 

OvRCL (proposed) Leeds 
dataset  

97.64% Applying discriminative feature 
selection along with class-wise 
OvR with ensemble classifier.  

Table 15 
Comparison of OvRCL using different classifiers with ensemble and individual 
models.   

Models 
Feature selected 
Leeds dataset 

Feature selected 
bicycle crashes 

Feature selected 
Manchester 
accidents 

Acc. NMI Acc. NMI Acc. NMI 

ANN  81.54  0.026  82.16  0.0028  82.91 0.0002 
AdaBoost  81.27  0.011  82.91  0.0163  83.07 0 
KNN  80.85  0.024  79.15  0.0161  79.21 0.0019 
Bagging  81.59  0.043  83.91  0.0046  82.96 0.0007 
OvRCL(ANN,BG,AB, 

KNN)  

97.54  0.8453  94.47  0.6702  93.87 0.6636 

OvRCL(SVM,KNN,RF, 

BG)  

97.64  0.931  99.25  0.9288  99.97 0.9948  
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Fig. 11. SHAP summary plot.  

Fig. 12. SHAP Dependence plot.  
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SHAPley values are also utilized for the analysis of selected features 
regarding the crash severity. 

Based on the above analysis, the severity of a casualty in an accident 
involving a single vehicle would be minimal, and as the number of ve-
hicles involved increased, the severity level also increased. This is in line 
with earlier research (Ma et al., 2021) that found that the number of 
vehicles increases the likelihood of accidents and the severity of injuries. 
Similarly, the chances of a pedestrian getting hit by a car are more when 
compared to the other casualty class. This is consistent with the previous 
study that pedestrians are hit more by automobiles than by any other 
vehicle (Ding et al., 2018). 

Although the work in this paper follows previously reported expe-
riential and statistical analysis, it also goes further to provide new in-
sights. For instance, it might be conceivable to convey such data to 
emergency services and medical facilities using feature ranking and a 
reduced set as a result of feature selection. This will make it easier for 
hospitals to assess the crash’s severity swiftly and set up the appropriate 
medical care for the injured person. Such information can easily be 
gathered and transferred using sensors embedded in vehicles or smart 
apps on mobile phones (for pedestrians). Already, such apps are being 
developed by insurance companies for accident detection and response, 
and by manufacturers of medical devices for fall detection. 

The results from the model can also be helpful for policymakers. 
Safety planners may use this study to assess the severity of a crash given 
its circumstantial parameters. As an example, since the model predicts 
that a high number of pedestrians are involved in crashes (Fig. 12b), one 
can suggest making adequate facilities for pedestrians. To avoid an ac-
cident involving pedestrians, planners can recommend installing safety 
guardrails and pedestrian crossovers near driveways with high private 
car ownership. Moreover, it can also be seen (Fig. 12a) that the crashes 
of Buses or coaches with 17 or more seats and the crashes of cars are 
more frequent, among which the crashes of single vehicles are more 
common. Overall, cars have the highest frequency of crashes regardless 
of the severity type. Therefore, private car owners should be the subject 
of focus for reducing severe and fatal accidents, particularly when it 
comes to pedestrian safety. However, more information is needed to 
assess the causes that lead to this considerable number of single-vehicle 
crashes. 

7. Conclusion 

This research investigates the performance of different classification 
methods for crash severity prediction. A new method for crash severity 
prediction is proposed which uses a combination of selecting discrimi-
natory features, class-wise OvR, and ensemble-based consensus 
learning. In the past, traditional machine learning algorithms have been 
employed for predicting crash severity but with limited success. 
Contrarily, our proposed method can produce better results for crash 
severity prediction. We attribute this result to selecting only those fea-
tures that help in discriminating among the different types of severity 
rather than those having a simple correlation with the crash severity. 
Moreover, to help distinguish between the close and imbalanced classes, 
the ensemble technique embedded with OvR classification helps to 
predict severity levels with fewer instances. The binary classification in 
the OvR strategy helps in predicting instances of a single class particu-
larly when the features have been selected to help identify one class 
from the others. The overall result is the higher performance with low 
complexity since we do not employ any deep networks or any extra steps 
of data clustering. 

This study also analyzes the features that are mostly correlated to the 
severity of the crash. This can also help in further focused research to 
help avoid crashes that may lead to severe injuries or fatalities. In the 
future, we plan to extend this work and test the proposed method on 
other detailed datasets to analyze the cause of crashes, for instance by 
associating the selected features to the time and location of the accident 
so that the number of crashes resulting in severe injuries can be reduced. 
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Ramírez, J., Górriz, J. M., Ortiz, A., Martínez-Murcia, F. J., Segovia, F., Salas- 
Gonzalez, D., … Puntonet, C. G. (2018). Ensemble of random forests One vs. Rest 
classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature 
selection and partial least squares. Journal of Neuroscience Methods, 302, 47–57. 
https://doi.org/10.1016/j.jneumeth.2017.12.005 

Sattar, K., Chikh Oughali, F., Assi, K., Ratrout, N., Jamal, A., & Masiur Rahman, S. 
(2022). Transparent deep machine learning framework for predicting traffic crash 
severity. Neural Computing and Applications, 2. https://doi.org/10.1007/s00521-022- 
07769-2 

Si, T., Bagchi, J., & Miranda, P. B. C. (2022). Artificial Neural Network training using 
metaheuristics for medical data classification: An experimental study. Expert Systems 
with Applications, 193, 116423. https://doi.org/10.1016/J.ESWA.2021.116423 

Tang, C., Chen, J., Liu, X., Li, M., Wang, P., Wang, M., & Lu, P. (2018). Consensus 
learning guided multi-view unsupervised feature selection. Knowledge-Based Systems, 
160(December 2017), 49–60. https://doi.org/10.1016/j.knosys.2018.06.016. 

Xie, Y., Zhang, Y., & Liang, F. (2009). Crash injury severity analysis using Bayesian 
ordered probit models. Journal of Transportation Engineering, 135(1), 18–25. https:// 
doi.org/10.1061/(ASCE)0733-947X(2009)135:1(18) 

Xu, J. (2011). An extended one-versus-rest support vector machine for multi-label 
classification. Neurocomputing, 74(17), 3114–3124. https://doi.org/10.1016/j. 
neucom.2011.04.024 

Yan, X., He, J., Zhang, C., Liu, Z., Qiao, B., & Zhang, H. (2021). Single-vehicle crash 
severity outcome prediction and determinant extraction using tree-based and other 
non-parametric models. Accident Analysis and Prevention, 153(January), 106034. 
https://doi.org/10.1016/j.aap.2021.106034 

Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text 
Categorization. Int. Conf. Mach. Learn. (ICML), 412–420. 

Yang, Z., Zhang, W., & Feng, J. (2022). Predicting multiple types of traffic accident 
severity with explanations: A multi-task deep learning framework. Safety Science, 
146(September 2021), 105522. https://doi.org/10.1016/j.ssci.2021.105522. 

Yasmin, S., & Eluru, N. (2013). Evaluating alternate discrete outcome frameworks for 
modeling crash injury severity. Accident Analysis and Prevention, 59, 506–521. 
https://doi.org/10.1016/j.aap.2013.06.040 

Ye, F., & Lord, D. (2014). Comparing three commonly used crash severity models on 
sample size requirements: Multinomial logit, ordered probit and mixed logit models. 
Analytic Methods in Accident Research, 1, 72–85. https://doi.org/10.1016/J. 
AMAR.2013.03.001 

Zelenkov, Y., & Volodarskiy, N. (2021). Bankruptcy prediction on the base of the 
unbalanced data using multi-objective selection of classifiers. Expert Systems with 
Applications, 185, 115559. https://doi.org/10.1016/J.ESWA.2021.115559 

Zong, F., Xu, H., & Zhang, H. (2013). Prediction for traffic accident severity: Comparing 
the bayesian network and regression models1. Mathematical Problems in Engineering, 
2013. https://doi.org/10.1155/2013/475194 

S.F. Hussain and M.M. Ashraf                                                                                                                                                                                                               

https://doi.org/10.1016/j.amar.2020.100124
https://doi.org/10.1016/j.aap.2015.04.025
https://doi.org/10.1016/J.ESWA.2019.112961
https://doi.org/10.1016/J.ESWA.2019.112961
https://doi.org/10.1016/j.amar.2021.100191
https://doi.org/10.1016/j.amar.2021.100191
https://doi.org/10.1016/J.ESWA.2019.04.037
https://doi.org/10.1016/J.ESWA.2019.04.037
https://doi.org/10.1007/978-3-642-25853-4_15/COVER
https://doi.org/10.1109/access.2020.3028469
https://doi.org/10.1007/S10489-021-02405-3/TABLES/3
https://doi.org/10.1007/S10489-021-02405-3/TABLES/3
https://doi.org/10.1016/J.ESWA.2021.116356
https://doi.org/10.1007/S13042-022-01589-5/METRICS
https://doi.org/10.1016/j.aap.2017.08.008
http://refhub.elsevier.com/S0957-4174(23)00945-4/h0140
https://doi.org/10.1007/978-3-030-30465-2_65
https://doi.org/10.1016/j.aap.2020.105590
https://doi.org/10.1016/j.aap.2010.04.016
https://doi.org/10.1016/j.aap.2010.04.016
http://refhub.elsevier.com/S0957-4174(23)00945-4/optlZE5HoKOpr
http://refhub.elsevier.com/S0957-4174(23)00945-4/optlZE5HoKOpr
http://refhub.elsevier.com/S0957-4174(23)00945-4/optlZE5HoKOpr
https://doi.org/10.1016/J.ESWA.2019.113152
https://doi.org/10.1016/j.aap.2011.08.016
https://doi.org/10.1016/j.aap.2011.08.016
https://doi.org/10.1016/j.patcog.2021.107890
https://doi.org/10.1016/j.aap.2021.106322
https://doi.org/10.1016/j.aap.2021.106322
https://doi.org/10.1016/J.CMPB.2021.106034
https://doi.org/10.1016/J.CMPB.2021.106034
https://doi.org/10.1016/j.aap.2021.106090
https://doi.org/10.1016/j.jneumeth.2017.12.005
https://doi.org/10.1007/s00521-022-07769-2
https://doi.org/10.1007/s00521-022-07769-2
https://doi.org/10.1016/J.ESWA.2021.116423
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:1(18)
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:1(18)
https://doi.org/10.1016/j.neucom.2011.04.024
https://doi.org/10.1016/j.neucom.2011.04.024
https://doi.org/10.1016/j.aap.2021.106034
http://refhub.elsevier.com/S0957-4174(23)00945-4/h0245
http://refhub.elsevier.com/S0957-4174(23)00945-4/h0245
https://doi.org/10.1016/j.aap.2013.06.040
https://doi.org/10.1016/J.AMAR.2013.03.001
https://doi.org/10.1016/J.AMAR.2013.03.001
https://doi.org/10.1016/J.ESWA.2021.115559
https://doi.org/10.1155/2013/475194

	A novel one-vs-rest consensus learning method for crash severity prediction
	1 Introduction
	1.1 Contributions

	2 Literature review
	3 Methodology
	3.1 Notations
	3.2 Feature selection strategy
	3.2.1 Mutual information (MI)
	3.2.2 MI-based feature selection

	3.3 Proposed One-vs-Rest consensus learning (OvRCL) methodology
	3.4 Prediction methods
	3.4.1 Random Forest (RF)
	3.4.2 Support Vector Machines (SVM)
	3.4.3 k-Nearest Neighbors (k-NN)
	3.4.4 Bagging classifier (BG)


	4 Experimental setup
	4.1 Dataset description
	4.2 Evaluation metrics

	5 Results and discussion
	5.1 Selecting the features
	5.2 Effect of feature selection
	5.3 Effect of OvR approach on accuracy
	5.4 Validation of OvRCL algorithm
	5.5 Comparison with other state-of-the-art methods

	6 Discussion
	6.1 Effect of classifiers on OvRCL
	6.2 Feature analysis
	6.3 Advantages and limitations of the proposed model
	6.4 Policy implications

	7 Conclusion
	8 Declaration
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


