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Rn×n
+ denotes the set of n ×n non-negative matrices. For A ∈

Rn×n
+ let Ω(A) be the set of all matrices that can be formed 

by permuting the elements within each row of A. Formally:

Ω(A) = {B ∈ Rn×n
+ : ∀i ∃ a permutation

φi s.t. bi,j = ai,φi(j) ∀j}.

For B ∈ Ω(A) let ρ(B) denote the spectral radius or largest 
non-negative eigenvalue of B. We show that the arithmetic 
mean of the row sums of A is bounded by the maximum and 
minimum spectral radius of the matrices in Ω(A). Formally, 
we show that

min
B∈Ω(A)

ρ(B) ≤ 1
n

n∑
i=1

n∑
j=1

ai,j ≤ max
B∈Ω(A)

ρ(B).

For positive A we obtain necessary and sufficient conditions 
for these inequalities to become an equality. We also give 
criteria which an irreducible matrix C should satisfy so that 
ρ(C) = minB∈Ω(A) ρ(B) or ρ(C) = maxB∈Ω(A) ρ(B). These 

* Corresponding author.
E-mail addresses: engel@transversalnetworks.net (G.M. Engel), s.sergeev@bham.ac.uk (S. Sergeev).
https://doi.org/10.1016/j.laa.2023.05.014
0024-3795/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.laa.2023.05.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2023.05.014&domain=pdf
mailto:engel@transversalnetworks.net
mailto:s.sergeev@bham.ac.uk
https://doi.org/10.1016/j.laa.2023.05.014
http://creativecommons.org/licenses/by/4.0/


G.M. Engel, S. Sergeev / Linear Algebra and its Applications 673 (2023) 220–232 221
criteria are used to derive algorithms for finding such C when 
all the entries of A are positive.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

In what follows, Rn
+ denotes the set of non-negative vectors with length n and Rn×n

+
denotes the set of non-negative n × n matrices. For x ∈ Rn

+ or, respectively, A ∈ Rn×n
+

we write x > 0 or, respectively, A > 0, if all entries of vector x or matrix A are positive. 
We will work with the following matrix set, which can be defined for any matrix A.

Definition 1.1. For A ∈ Rn×n
+ , the matrix set Ω(A) consists of the row-permuted matrices, 

whose entries in each row are a permutation of entries in the corresponding row of A. 
Formally:

Ω(A) = {B ∈ Rn×n
+ : ∀i ∃a permutation φi s.t. bi,j = ai,φi(j) ∀j}. (1)

We will use the following standard notation for the Perron roots of matrices.

Definition 1.2. The Perron root (i.e. the largest non negative eigenvalue, or spectral 
radius) of a matrix B ∈ Ω(A) will be denoted by ρ(B).

For A ∈ Rn×n
+ the following row sum inequality

min n
i=1

n∑
j=1

ai,j ≤ ρ(A) ≤ max n
i=1

n∑
j=1

ai,j

was first observed by Frobenius. The geometric means of the row sums as bounds for ρ(A)
were explored by Al’pin [1] and Elsner and van Driessche [2], and further generalized
by Engel et al. [5]. In this paper we are interested in establishing a different connection 
between Perron roots and row sums. Namely, we show that the arithmetic mean of the 
row sums satisfies

min
B∈Ω(A)

ρ(B) ≤ 1
n

n∑
i=1

n∑
j=1

ai,j ≤ max
B∈Ω(A)

ρ(B). (2)

For A > 0 we obtain necessary and sufficient conditions for any of these inequalities to 
turn into equalities. For A ∈ Rn×n

+ we also give necessary and sufficient criteria for an ir-
reducible matrix C ∈ Ω(A) to have ρ(C) = minB∈Ω(A) ρ(B) or ρ(C) = maxB∈Ω(A) ρ(B).

To obtain these results we make use, in particular, of the following well-known facts. 
These facts, which we are going to use throughout the paper, are closely related to the 
famous Collatz-Wielandt inequality and are summarized in the following proposition:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition 1.3 (e.g., [3], Theorem 1.11). For A ∈ Rn×n
+ and constants α > 0, β > 0

and nonzero vector x ∈ Rn
+ we have:

(i) αx ≤ Ax implies α ≤ ρ(A),
(ii) Ax ≤ βx with x > 0 implies ρ(A) ≤ β.

In addition, if A is irreducible then the following implications hold:

(iii) if αx ≤ Ax and ∃i such that αxi <
∑n

j=1 ai,jxj then ρ(A) > α,
(iv) if Ax ≤ βx and ∃i such that 

∑n
j=1 ai,jxj < βxi then ρ(A) < β.

The next result, which we will use to derive the criteria for ρ(C) = maxB∈Ω(A) ρ(B)
and ρ(C) = minB∈Ω(A) ρ(B), is known as the rearrangement inequality.

Proposition 1.4 (e.g., [6], page 261). Let x, y ∈ Rn
+ be such that x1 ≤ x2 ≤ . . . ≤ xn

and y1 ≤ y2 ≤ . . . ≤ yn, and let φ : {1, . . . , n} → {1, . . . , n} be an arbitrary permutation. 
Then the following inequalities hold:

n∑
i=1

xiyn+1−i ≤
n∑

i=1
xiyφ(i) ≤

n∑
i=1

xiyi.

2. Preliminary lemmas

The following lemma, related to the rearrangement inequality, establishes that the 
maximum Perron root is achieved on a matrix with all positive entries for which the 
correlation between the order of the components of its Perron eigenvector and each of its 
row vectors is maximized. The minimum Perron root is achieved when the correlation 
between the order of the components of its Perron eigenvector and each of its row vectors 
is minimized.

Lemma 2.1. Let A ∈ Rn×n
+ be irreducible. Then the following implications hold:

(i) if ρ(A) = maxB∈Ω(A) ρ(B) and x is a Perron eigenvector of A then for 1 ≤ i, j, k ≤ n:

xk < xj implies ai,k ≤ ai,j ,

(ii) if ρ(A) = minB∈Ω(A) ρ(B) and x is a Perron eigenvector of A then for 1 ≤ i, j, k ≤ n:

xk < xj implies ai,k ≥ ai,j .

Proof. (i): Assume that A ∈ Rn×n
+ is irreducible and ρ(A) = maxB∈Ω(A) ρ(B). Then 

∃x > 0 such that Ax = ρ(A)x. By contradiction, assume that there exist i, j, k such 
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that xj > xk but ai,j < ai,k. Let B be the matrix formed by swapping the two entries 
ai,j and ai,k so that bi,j = ai,k and bi,k = ai,j , with all other entries of B equal to the 
entries of A. Then B is in Ω(A). We have ρ(A)xi =

∑n
j=1 ai,jxj <

∑n
j=1 bi,jxj and ∑n

j=1 as,jxj =
∑n

j=1 bs,jxj for s �= i. Thus by Proposition 1.3 part (iii), ρ(B) > ρ(A). 
Since this contradicts that ρ(A) = maxB∈Ω(A) ρ(B) it follows that for 1 ≤ i, j, k ≤ n xk <

xj implies ai,k ≤ ai,j and (i) is established.
(ii): The proof is similar to the previous part, with the difference that here we assume 

that ρ(A) = minB∈Ω(A) ρ(B). Upon assuming by contradiction that there exist i, j, k
such that xj > xk but ai,j > ai,k we define matrix B by swapping the entries ai,j and 
ai,k so that bi,j = ai,k and bi,k = ai,j , with all other entries of B equal to the entries of 
A. Observing that ρ(A)xi =

∑n
j=1 ai,jxj >

∑n
j=1 bi,jxj and 

∑n
j=1 as,jxj =

∑n
j=1 bs,jxj

for s �= i, we use Proposition 1.3 part (iv) to obtain ρ(B) < ρ(A), a contradiction 
establishing part (ii). �

Proof of the next lemma follows the reasoning used in the proof of Tchebychef’s 
inequality [6] page 43.

Lemma 2.2. Let A ∈ Rn×n
+ have a Perron eigenvector x ∈ Rn

+ satisfying 
∑n

i=1 xi = 1. 
Then the following properties hold:

(i) if ∀i, j, k xk < xj implies ai,k ≤ ai,j then

∀i
∑n

j=1 ai,j

n
≤

n∑
j=1

ai,jxj = ρ(A)xi,

(ii) if ∀i, j, k xk < xj implies ai,k ≥ ai,j then

∀i
∑n

j=1 ai,j

n
≥

n∑
j=1

ai,jxj = ρ(A)xi,

(iii) if ∀i, j, k xk < xj implies ai,k ≤ ai,j or ∀i, j, k xk < xj implies ai,k ≥ ai,j, then the 
following are equivalent:
(a)

∑n
j=1 ai,j

n =
∑n

j=1 ai,jxj = ρ(A)xi for all i;
(b) either xi = 1

n for all i, or for each i there is ci such that ci = ai,j for all j.

Proof. (i): The property that ∀1 ≤ i, j, k ≤ n xk < xj implies ai,k ≤ ai,j is equivalent to 
(ai,j − ai,k)(xj − xk) ≥ 0. From this we obtain
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∀i 2nxiρ(A) =
n∑

j=1

n∑
k=1

(ai,jxj + ai,kxk) ≥
n∑

j=1

n∑
k=1

(ai,jxk + ai,kxj)

≥ 2

⎛
⎝ n∑

j=1
ai,j

⎞
⎠

⎛
⎝ n∑

j=1
xj

⎞
⎠ = 2

n∑
j=1

ai,j .

This implies

∀i
∑n

i=1 ai,j
n

≤
n∑

i=1
ai,jxj = ρ(A)xi

establishing part (i).
(ii): The proof of this part is similar to the proof of part (i). Here we first observe 
that the property that ∀1 ≤ i, j, k ≤ n xk < xj implies ai,k ≥ ai,j is equivalent to 
(ai,j − ai,k)(xj − xk) ≤ 0. Using this inequality in the same way as in the proof of part 
(i) the opposite inequality is used, we obtain

∀i
∑n

i=1 ai,j
n

≥
n∑

i=1
ai,jxj = ρ(A),

establishing part (ii).
(iii): To establish (3) (a) implies (b) assume 

∑n
i=1 ai,j

n =
∑n

i=1 ai,jxj = ρ(A)xi and that 
either ∀1 ≤ i, j, k ≤ n xk < xj implies ai,k ≤ ai,j or ∀1 ≤ i, j, k ≤ n xk < xj implies 
ai,k ≥ ai,j .
In the first case for any i, j, k we have that (ai,j − ai,k)(xj − xk) ≥ 0 and in the second 
case we have that (ai,j − ai,k)(xj − xk) ≤ 0. In the first case, if there exists i such 

that (ai,j − ai,k)(xj − xk) > 0 for some j and k then 
∑n

i=1 ai,j

n <
∑n

i=1 ai,jxj = ρ(A)xi. 
Similarly in the second case if there exists i such that (ai,j − ai,k)(xj − xk) < 0, then ∑n

i=1 ai,j

n >
∑n

i=1 ai,jxj = ρ(A)xi. Since none of these strict inequalities holds, we have

∀i, j, k (ai,j − ai,k)(xj − xk) = 0. (3)

For any i = 1, . . . , n let t(i) and d(i) be defined (non-uniquely) by

ai,t(i) = min
j

ai,j , ai,d(i) = max
j

ai,j (4)

and suppose that xi = xk does not hold for all i �= k. Our aim is to show that then the 
coefficients in every row of A are equal to each other. Since either ∀i, j, k xk < xj implies 
ai,k ≤ ai,j or ∀i, j, k xk < xj implies ai,k ≥ ai,j , we can let t(i) and d(i) be defined in 
such a way that not only equalities (4) hold but also in the first case xt(i) = minj xj

and xd(i) = maxj xj and in the second case xt(i) = maxj xj and xd(i) = minj xj . In both 
cases (3) entails that (ai,t(i) − ai,d(i))(xt(i) − xd(i)) = 0 and hence ai,t(i) = ai,d(i). By (4)
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we obtain that all entries in the ith row of A are equal to each other, establishing the 
implication (a)⇒(b).

To prove that (b) implies (a), first observe that obviously if xj = 1
n then 

∑n
i=1 ai,j

n =∑n
i=1 ai,jxj = ρ(A)xi. If instead for each i there is ci such that ai,j = ci for all j, then 

the unique Perron eigenvector x with 
∑n

j=1 xj = 1 has coordinates xi = ci/ 
∑

j=1 cj for 
all i and the Perron root is ρ(A) =

∑n
j=1 cj . Indeed, we have

n∑
j=1

ai,jxj = ci

n∑
i=1

xj = ci =
n∑

j=1
cj ·

ci∑n
j=1 cj

= ρ(A)xi.

In this case 
∑n

i=1 ai,j

n = ci =
∑n

j=1 ai,jxj , establishing (a). �
3. Main results

We begin this section by establishing the inequality between the arithmetic mean of 
the rows and the largest and smallest Perron roots of matrices in Ω(A).

Theorem 3.1. For any A ∈ Rn×n
+

min
B∈Ω(A)

ρ(B) ≤ 1
n

n∑
i=1

n∑
j=1

ai,j ≤ max
B∈Ω(A)

ρ(B). (5)

Proof. We first assume that A > 0 and establish 1
n

∑n
i=1

∑n
j=1 ai,j ≤ maxB∈Ω(A) ρ(B)

for such A. Select C ∈ Ω(A) such that ρ(C) = maxB∈Ω(A) ρ(B). Let x > 0 be a Per-
ron eigenvector of C such that 

∑n
i=1 xi = 1. By Lemma 2.1 part (i) we have that for 

1 ≤ i, j, k ≤ n xk < xj implies ci,k ≤ ci,j . Then by Lemma 2.2 part (i) we have 
∀i 1

nxi

∑n
j=1 ci,j ≤

∑n
j=1 ci,j

xj

xi
= maxB∈Ω(A) ρ(B) and since 

∑n
j=1 ci,j =

∑n
j=1 aij for 

all i, we obtain

1
n

n∑
i=1

n∑
j=1

ai,j ≤
n∑

i=1
max

B∈Ω(A)
ρ(B)xi = max

B∈Ω(A)
ρ(B).

Still assuming A > 0, we can establish 1
n

∑n
i=1

∑n
j=1 ai,j ≥ minB∈Ω(A) ρ(B) in a similar 

way. For this we select C ∈ Ω(A) such that ρ(C) = minB∈Ω(A) ρ(B) and let x > 0 be 
a Perron eigenvector of C such that 

∑n
i=1 xi = 1. Combining Lemma 2.1 part (ii) with 

Lemma 2.2 part (ii) we obtain ∀i 1
nxi

∑n
j=1 ci,j ≥

∑n
j=1 ci,j

xj

xi
and hence

1
n

n∑
i=1

n∑
j=1

ai,j ≥
n∑

i=1
min

B∈Ω(A)
ρ(B)xi = min

B∈Ω(A)
ρ(B).

Now for arbitrary A ∈ Rn×n
+ and ε > 0 we define Aε = (aεi,j) = (ai,j + ε). Then since 

0 < Aε we have that minB∈Ω(Aε) ρ(B) ≤ 1 ∑n
i=1

∑n
j=1(ai,j + ε) ≤ maxB∈Ω(Aε) ρ(B). 
n
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Thus by continuity of the Perron root and letting ε go to zero we obtain the desired 
inequality for A. �

We now establish the conditions when any of the inequalities in Theorem 3.1 becomes 
an equality.

Theorem 3.2. For 0 < A ∈ Rn×n
+ the following are equivalent:

(i) 1
n

∑n
i=1

∑n
j=1 ai,j = maxB∈Ω(A) ρ(B).

(ii) Either the flat vector x = (xi) where ∀i xi = 1 is a Perron eigenvector of A or there 
exists a non singular diagonal matrix ∃ D ≥ 0 such that DA is a flat matrix (i.e. 
∀i, j diai,j = 1).

(iii) 1
n

∑n
i=1

∑n
j=1 ai,j = minB∈Ω(A) ρ(B).

Proof. We first establish (i)⇒(ii). By (i), 1
n

∑n
i=1

∑n
j=1 ai,j = maxB∈Ω(A) ρ(B). Since 

the set Ω(A) is finite, there exist C ∈ Ω(A) and y ∈ Rn×n
+ with 

∑n
i=1 yi = 1 such that 

Cy = (maxB∈Ω(A) ρ(B))y. Thus

n∑
i=1

n∑
j=1

ci,jyj =
(

max
B∈Ω(A)

ρ(B)
)(

n∑
i=1

yi

)
= max

B∈Ω(A)
ρ(B) =

n∑
i=1

n∑
j=1

ai,j
1
n
.

By Lemma 2.1 part (i) ∀i, j, k : 1 ≤ i, j, k ≤ n we have that yk < yj implies ci,k ≤ ci,j . 
Then by Lemma 2.2 part (i)

∀i 1
n

n∑
j=1

ci,j ≤
n∑

j=1
ci,jyj = max

B∈Ω(A)
ρ(B)yi.

Since ∀i 1
n

∑n
j=1 ai,j = 1

n

∑n
j=1 ci,j we can rewrite this as

∀i 1
n

n∑
j=1

ai,j ≤ max
B∈Ω(A)

ρ(B)yi.

As by (i) we have

1
n

n∑
i=1

n∑
j=1

ai,j = max
B∈Ω(A)

ρ(B) = max
B∈Ω(A)

ρ(B)
n∑

i=1
yi,

if there exists i such that 1
n

∑n
j=1 ai,j < maxB∈Ω(A) ρ(B)yi then there would have to 

exist k such that 1
n

∑n
j=1 ak,j > maxB∈Ω(A) ρ(B)yk, which is a contradiction, hence

∀i max
B∈Ω(A)

ρ(B)yi = 1
n

n∑
ai,j =

n∑
ci,jyj = 1

n

n∑
ci,j .
j=1 j=1 j=1
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Applying Lemma 2.2 part (iii), we obtain that either ∀i yi = 1/n or ∀i, j, k ci,j = ci,k. 
If ∀i yi = 1/n then ∀i 1

n

∑n
j=1 ai,j = maxB∈Ω(A) ρ(B) 1

n , from which it follows that flat 
vector x = (xi) where ∀i xi = 1 is a Perron eigenvector of A. If ∀i, j, k ci,j = ci,k then 
∀i, j, k ai,j = ci,j = ci,k = ai,k. Let D be the diagonal matrix where ∀i di,i = 1

ai,i
and 

the rest of the entries of D are 0. Thus DA is the flat matrix such that ∀i, j diai,j = 1.
We now show (ii)⇒(i), (iii). Assume first that the flat vector x = (xi) where ∀i xi = 1

is a Perron eigenvector of A. This is equivalent to all row sums of A being equal to each 
other. If this property holds for A then it also holds for all B ∈ Ω(A), so the flat vector 
is a Perron eigenvector of any such B with the same Perron root (equal to any of the 
row sums). Thus we have both (i) and (iii), i.e.,

max
B∈Ω(A)

ρ(B) = min
B∈Ω(A)

ρ(B) = 1
n

n∑
i=1

n∑
j=1

ai,j . (6)

Now assume that there exists a non-singular diagonal matrix D ≥ 0 such that DA is a 
flat matrix. In this case the entries in each row of A are equal to each other, implying 
that Ω(A) = {A}. As the left hand side and the right hand side of (5) are equal to each 
other, we obtain (6).

Finally, the proof of (iii)⇒ (ii) is similar to the proof of (i)⇒(ii) and will be 
described more briefly. By (ii), 1

n

∑n
i=1

∑n
j=1 ai,j = minB∈Ω(A) ρ(B). Since the set 

Ω(A) is finite, there exist C ∈ Ω(A) and y ∈ Rn×n
+ with 

∑n
i=1 yi = 1 such that 

Cy = (minB∈Ω(A) ρ(B))y. Thus

n∑
i=1

n∑
j=1

ci,jyj =
(

min
B∈Ω(A)

ρ(B)
)(

n∑
i=1

yi

)
= min

B∈Ω(A)
ρ(B) =

n∑
i=1

n∑
j=1

ai,j
1
n
.

Next, combining Lemma 2.1 part (ii) and Lemma 2.2 part (ii) and using that for each i
the sum of the ith row of A equals the sum of the ith row of C, we obtain

∀i 1
n

n∑
j=1

ai,j ≥ min
B∈Ω(A)

ρ(B)yi.

Using condition (iii), however, we see that the strict inequality cannot hold for any i and 
therefore we have

∀i min
B∈Ω(A)

ρ(B)yi = 1
n

n∑
j=1

ai,j =
n∑

j=1
ci,jyj = 1

n

n∑
j=1

ci,j .

Condition (ii) then follows by applying Lemma 2.2 part (iii) (see the end of the proof of 
(i)⇒(ii) written above.) �
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The following result applies the rearrangement inequality (Proposition 1.4) to yield 
a sufficient condition for establishing when ρ(A) = maxB∈Ω(A) ρ(B) and ρ(A) =
minB∈Ω(A) ρ(B).

Theorem 3.3. Let A ∈ Rn×n
+ and 0 ≤ x ∈ Rn

+ be a Perron eigenvector of A. Then

(∀ i, j, k 1 ≤ i, j, k ≤ n : xk < xj ⇒ ai,k ≤ ai,j) =⇒ ρ(A) = max
B∈Ω(A)

ρ(B) (7)

(∀ i, j, k 1 ≤ i, j, k ≤ n : xk < xj ⇒ ai,k ≥ ai,j) =⇒ ρ(A) = min
B∈Ω(A)

ρ(B) (8)

Proof. Consider the condition on the left hand side of (7). Observe that we can assume 
without loss of generality that ai,k ≤ ai,j ⇔ al,k ≤ al,j for any two rows i and l of A. 
Indeed, if xk < xj then this is the case (by the condition), and if xk = xj then the 
entries ai,k and ai,j or al,k and al,j can be swapped without changing Ax, so that the 
modified matrix belongs to Ω(A) and has the same Perron eigenvector x and the same 
Perron root ρ(A). Then we can also assume without loss of generality that simultaneously 
x1 ≤ x2 ≤ . . . ≤ xn and ai,1 ≤ ai,2 ≤ . . . ≤ ai,n for all i. If we consider any matrix 
B ∈ Ω(A), then the rearrangement inequality implies that Bx ≤ Ax = ρ(A)x and hence 
ρ(B) ≤ ρ(A).

Similarly, to prove the sufficiency of the condition on the right hand side of (10), 
we can assume without loss of generality that ai,k ≥ ai,j ⇔ al,k ≥ al,j for any two 
rows i and l of A. Indeed, if xk < xj then this is the case (by the condition), and if 
xk = xj then the corresponding non-aligning entries in any row can be swapped to obtain 
the alignment. Then we can also assume without loss of generality that simultaneously 
x1 ≤ x2 ≤ . . . ≤ xn and ai,1 ≥ ai,2 ≥ . . . ≥ ai,n for all i. If we consider any matrix 
B ∈ Ω(A), then the rearrangement inequality implies that Bx ≥ Ax = ρ(A)x and hence 
ρ(B) ≥ ρ(A). �

The following result applies Lemma 2.1 to show that for irreducible matrices condi-
tions (7) and (8) of Theorem 3.3 are necessary and sufficient for ρ(A) = maxB∈Ω(A) ρ(B)
or ρ(A) = minB∈Ω(A) ρ(B).

Theorem 3.4. Let A ∈ Rn×n
+ be irreducible and 0 < x ∈ Rn

+ be a Perron eigenvector of 
A. Then

ρ(A) = max
B∈Ω(A)

ρ(B) ⇐⇒ (∀ i, j, k 1 ≤ i, j, k ≤ n : xk < xj ⇒ ai,k ≤ ai,j) (9)

ρ(A) = min
B∈Ω(A)

ρ(B) ⇐⇒ (∀ i, j, k 1 ≤ i, j, k ≤ n : xk < xj ⇒ ai,k ≥ ai,j) (10)

Proof. By Lemma 2.1, the conditions on the right hand sides of (9) and (10) are neces-
sary. The fact that they are sufficient follows immediately from Theorem 3.3. �
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4. Solving maxB∈Ω(A) ρ(B) and minB∈Ω(A) ρ(B)

Below we give two simple iterative procedures for solving maxB∈Ω(A) ρ(B) and 
minB∈Ω(A) ρ(B). Note that the computation of the minimum and maximum spectral 
radius over sets more general than Ω(A) was investigated by Protasov [7] where similar 
iterative procedures were suggested.

Before presenting the iterative procedures we first establish the following lemmas.

Lemma 4.1. Let A ∈ Rn×n
+ and P be a permutation matrix. Then ρ(PA) = ρ(AP ).

Proof. It is easy to see that any eigenvalue of PA is an eigenvalue of AP and the other 
way around:

PAx = αx ⇒ AP (P−1x) = α(P−1x),

APy = βy ⇒ PA(Py) = β(Py). �
Lemma 4.2. For A ∈ Rn×n

+ and all permutation matrices P

max
B∈Ω(A)

ρ(B) = max
B∈Ω(PA)

ρ(B)

and

min
B∈Ω(A)

ρ(B) = min
B∈Ω(PA)

ρ(B).

Proof. Take arbitrary B ∈ Ω(PA). Then B = PC, where C ∈ Ω(A), and by Lemma 4.1
ρ(B) = ρ(CP ), where CP ∈ Ω(A). This observation implies that

max
B∈Ω(A)

ρ(B) ≥ max
B∈Ω(PA)

ρ(B), min
B∈Ω(A)

ρ(B) ≤ min
B∈Ω(PA)

ρ(B).

The reverse inequalities follow from a similar argument where we start with B = Ω(A)
and represent B = P−1C with C ∈ Ω(PA). �
Definition 4.3. A n ×n matrix A is said to be fully indecomposable if PAQ is irreducible 
for all permutation matrices P and Q.

We now argue that Algorithm 1 (see below) is valid. Observe that if in step 6 vector x is 
not in ascending order and hence P is not the identity matrix, then C(Px) ≥ Cx = ρ(C)x
with at least one strict inequality, since all rows of C as well as Px are aligned together 
in ascending order, but this is not true about all rows of C and vector x. Then we 
obtain (PC)Px ≥ ρ(C)Px with at least one strict inequality, and by Proposition 1.3
part (iii) ρ(C) < ρ(PC). If P is the identity matrix then ∀ i, j, k 1 ≤ i, j, k ≤ n : xk <

xj ⇒ ci,k ≤ ci,j and by Theorem 3.4 ρ(C) = maxB∈Ω(C) ρ(B). By Lemma 4.2 it 



230 G.M. Engel, S. Sergeev / Linear Algebra and its Applications 673 (2023) 220–232
Algorithm 1 Solving maxB∈Ω(A) ρ(B).
Input: A ∈ Rn×n

+ with A fully indecomposable.
1: Define matrix C0 ∈ Ω(A) by placing the entries in each row of A in ascending order.
2: Find a permutation matrix Q ∈ Rn×n

+ such that the Euclidean norms of the rows of QC are in ascending 
order.

3: P ∈ Rn×n
+ is the zero matrix, C := QC0.

4: while P is not the identity matrix do
5: Find a Perron eigenvector x ∈ Rn

+ of C
6: if the entries of x are not in ascending order then
7: Find a permutation matrix P ∈ Rn×n

+ so that entries of Px are in ascending order.
8: else
9: Set P to be the identity matrix.

10: end if
11: C := PC, Q := PQ.
12: end while
Output: C0Q, ρ(C0Q) = maxB∈Ω(A) ρ(B)

Algorithm 2 Solving minB∈Ω(A) ρ(B).
Input: A ∈ Rn×n

+ with A fully indecomposable.
1: Define matrix C0 ∈ Ω(A) by placing the entries in each row of A in descending order.
2: Find a permutation matrix Q ∈ Rn×n

+ such that the Euclidean norms of the row sums of QC are in 
descending order.

3: P ∈ Rn×n
+ is the zero matrix, C := QC0.

4: while P is not the identity matrix do
5: Find a Perron eigenvector x ∈ Rn

+ of C
6: if the entries of x are not in descending order then
7: Find a permutation matrix P ∈ Rn×n

+ so that entries of Px are in descending order.
8: else
9: Set P to be the identity matrix.

10: end if
11: C := PC, Q := PQ.
12: end while
Output: C0Q, ρ(C0Q) = minB∈Ω(A) ρ(B)

follows that ρ(C) = maxB∈Ω(A) ρ(B). The algorithm terminates in a finite number of 
iterations since ρ(C) is strictly increasing so matrices C do not repeat, and since the 
number of permutations is finite. Lemma 4.1 also implies that for the final matrix C we 
have ρ(C) = ρ(C0Q), implying that C0Q solves the problem of maximizing ρ(B) over 
Ω(A) (while belonging to Ω(A)).

Algorithm 2 is valid for the reasons similar to those explained above for Algorithm 1. 
We now demonstrate the work of Algorithm 1 on the following small example.

Example 4.4. Consider matrix

A =

⎛
⎜⎜⎜⎝

2 5 2 2 5
6 6 2 3 1
7 3 5 5 3
3 3 4 6 8
2 4 2 5 5

⎞
⎟⎟⎟⎠

First we align all rows of this matrix in ascending order thus obtaining C0. The Euclidian 
norms of the row sums if C are 11, 12, 18, 27 and 31. Thus initially Q = I and C =
QC0 = C0 with its Perron vector x:
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C = QC0 =

⎛
⎜⎜⎜⎝

2 2 2 5 5
1 2 3 6 6
3 3 5 5 7
3 3 4 6 8
2 2 4 5 5

⎞
⎟⎟⎟⎠ , x ≈

⎛
⎜⎜⎜⎝

0.3561
0.4098
0.5091
0.5301
0.4063

⎞
⎟⎟⎟⎠

The components of x are not ascending and we have:

P =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎠

The next while loop proceeds, since P �= I. We compute the next matrix C and its 
Perron eigenvector x:

C := PQC0 =

⎛
⎜⎜⎜⎝

2 2 2 5 5
2 2 4 5 5
1 2 3 6 6
3 3 5 5 7
3 3 4 6 8

⎞
⎟⎟⎟⎠ , x ≈

⎛
⎜⎜⎜⎝

0.3595
0.3987
0.4116
0.5055
0.5355

⎞
⎟⎟⎟⎠

Here, x is in the ascending order. The algorithm ends and returns

C0PQ =

⎛
⎜⎜⎜⎝

2 2 5 5 2
1 3 6 6 2
3 5 5 7 3
3 4 6 8 3
2 4 5 5 2

⎞
⎟⎟⎟⎠ , ρ(C0PQ) ≈ 20.9863.

Remark 4.5. We conducted a number of numerical experiments, in which we increased the 
matrix dimension from 5 to 200. For each dimension we generated 50 random instances 
of A and counted the number of while loops that Algorithms 1 and 2 require before 
convergence. For the whole dimension range, the average number of while loops stayed 
with the maximum number of loops not exceeding 3. Finding a reasonable upper bound 
on the number of loops before convergence is an open problem. Note that Cvetković and 
Protasov [4] establish that a similar algorithm has local quadratic convergence (see [4], 
page 19).
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