

University of Birmingham

SymBChainSim
Diamantopoulos, George; Bahsoon, Rami; Tziritas, Nikos

DOI:
10.1145/3573900.3591121

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Diamantopoulos, G, Bahsoon, R & Tziritas, N 2023, SymBChainSim: A Novel Simulation Tool for Dynamic and
Adaptive Blockchain Management and its Trilemma Tradeoff. in M Loper, D Jin & CD Carothers (eds), SIGSIM-
PADS '23: Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
PADS: Principles of Advanced and Distributed Simulation, Association for Computing Machinery (ACM), New
York, pp. 118–127, SIGSIM-PADS '23, Orlando, Florida, United States, 16/06/23.
https://doi.org/10.1145/3573900.3591121

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1145/3573900.3591121
https://doi.org/10.1145/3573900.3591121
https://birmingham.elsevierpure.com/en/publications/4ddc5bbc-fc34-4aa1-a920-2775d5fb0d48

SymBChainSim: A Novel Simulation Tool for Dynamic and
Adaptive Blockchain Management and its Trilemma Tradeoff

Georgios Diamantopoulos
School of Computer Science
University of Birmingham

Birmingham, United Kingdom
and

Department of Computer Science and Engineering
Southern University of Science and Technology

Shenzhen, China

Rami Bahsoon
School of Computer Science
University of Birmingham

Birmingham, United Kingdom

Nikos Tziritas
Department of Computer Science and Telecommunications

University of Thessaly
Lamia, Greece

Georgios Theodoropoulos∗
Department of Computer Science and Engineering and
Research Institute for Trustworthy Autonomous Systems
Southern University of Science and Technology (SUSTech)

Shenzhen, China

ABSTRACT
Despite the recent increase in the popularity of blockchain, the
technology suffers from the trilemma trade-off between security de-
centralisation and scalability prohibiting adoption, and limiting the
efficiency and effectiveness of the induced system. Addressing the
trilemma trade-off calls for dynamic management and configuration
of the blockchain system. In particular, choosing an effective and
efficient consensus protocol for balancing the trilemma trade-off
when inducing the blockchain-based system is acknowledged to be
a challenging problem given the dynamic and complex nature of the
blockchain environment. DDDAS approaches are particularly suit-
able for this challenge, and in previous work, the authors presented
a novel DDDAS-based blockchain architecture and demonstrated
that it offers a promising approach for dynamically adjusting the
parameters of a system and optimising for the trade-off. This paper
presents a novel simulation tool that can support and satisfy the
DDDAS requirements for a dynamically re-configurable blockchain
system. The tool supports the simulation and the dynamic switch-
ing of consensus protocols, analysing their trilemma trade-off. The
simulator design is modular and allows the implementation and
analysis of a wide range of consensus protocols and their imple-
mentation scenarios, along with the ability for parallelization. The
paper also presents a quantitative evaluation of the tool.

CCS CONCEPTS
• Computing methodologies→ Simulation tools; • Computer
systems organization→ Peer-to-peer architectures.

∗Corresponding Author

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0030-9/23/06.
https://doi.org/10.1145/3573900.3591121

KEYWORDS
Blockchain, Infosymbiotic Systems, DDDAS, Digital Twin, Simula-
tion, Optimisation

ACM Reference Format:
Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios
Theodoropoulos. 2023. SymBChainSim: A Novel Simulation Tool for Dy-
namic and Adaptive Blockchain Management and its Trilemma Tradeoff.
In ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(SIGSIM-PADS ’23), June 21–23, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3573900.3591121

1 INTRODUCTION
Blockchain has seen a huge leap in popularity since its inception
as an immutable, decentralized ledger used by Bitcoin [24] and
the plethora of other applications that soon followed. Blockchain
has been increasingly utilized in a wide range of applications in-
cluding IoT, supply chain systems, e-government systems, medical
databases and more recently metaverse type applications [2, 9, 15,
21, 23, 32, 33]. The potential of Blockchain technology to support
sustainable development is also increasingly being acknowledged,
while tokenization is viewed as the key technology to promote and
power ESG, impact investment, and sustainable finance [14, 30].

Despite the widely acknowledged potential of Blockchain, cur-
rent limitations are holding the technology from achieving a wider
spread adoption. Blockchain’s decentralised design, naturally, puts
the system at a performance disadvantage as compared to tradi-
tional centralised systems. Additionally, the so-called Trilemma
trade-off in Blockchain-based systems (coined by Ethereum’s Vita-
lik Buterin), states that in blockchain one cannot improve one of the
three attributes (namely decentralization, scalability, and security),
without affecting one or both of the others, further complicates the
optimisation process.

The consensus protocol is at the heart of every blockchain sys-
tem, dictating a strict procedure used by the nodes of the system
to agree upon and update a single, decentralised system state. Cur-
rently, as concluded by Bamakan in a recent review [5] studying

118

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3573900.3591121
https://doi.org/10.1145/3573900.3591121
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3573900.3591121&domain=pdf&date_stamp=2023-06-21

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodoropoulos

Physical Blockchain System

View: Scalability
View: Decentralisation

View: Security

Scenario
Generator

Digital Twin

Optimiser

Simulation Module

Simulation Instance:
Scenario 1

Simulation Instance:
Scenario N

Instance Manager

Update State

Simulation Instance:
Scenario 1

What-if-analysis

Simulation Instance:
Scenario N

What-if-analysis

Figure 1: DDDAS-based blockchainmanagement architecture
as proposed in [11].

the state-of-the-art consensus protocols, there is no one-size-fits-
all protocol. The above, combined major role of the consensus in
affecting system performance, can be used to paint a picture of
the trilemma trade-off. The challenge of creating general protocols
has led to an influx of specialised ones aiming to offer a specific
performance under specific system conditions to match the needs
of various application cases[8, 18, 19, 26].

The extremely challenging, if not impossible, task of creating
general consensus has created a need for alternative solutions [16].
The plethora of specific consensus protocols, in combination with
the fact that blockchain systems support and are influenced by
dynamic changes to the system parameters during runtime, hint
towards dynamic management systems for blockchain.

In [11] the authors introduced a Digital Twin system for the dy-
namic management of blockchain systems (Figure 1). Specifically,
the objective is to dynamically assist in managing and optimizing
the Trilemma tradeoff in Blockchain-based systems through the
utilisation of Digital Twins. A Digital Twin is a “combination of a
computational model and a real-world system, designed to mon-
itor, control and optimize its functionality" [6]. A Digital Twin is
therefore fundamentally a Dynamic Data-Driven Application Sys-
tem (DDDAS), wherein a real-time info-symbiotic feedback loop
between the model and the real system allows data from an ob-
served system to be absorbed into a simulation of the system to
continually adapt the model to the reality, and if necessary, making
changes to the assumptions on which it is based to gradually in-
crease the reliability of its forecasts. Additionally, the simulation’s
predictions can be fed back to the observed system to change or
optimize its behaviour in real-time and direct the data collection
and sampling [10].

At the core of the proposed Digital Twin architecture for block-
chain system (Figure 1) is a simulation component that explores
what-if scenarios for evaluating the effect of various systems pa-
rameters which act as the basis for optimisation. A fast and modular
simulation tool, capable of simulating a wide variety of blockchain
architectures, consensus protocols, and network environments,
while allowing for the dynamic switching of system parameters
is paramount for designing and testing dynamic blockchain man-
agement frameworks. For a DDDAS-based approach, a key feature
of such a simulation tool is a mechanism that would allow for

the change of system parameters during run-time. Modularity is
another important feature. Dynamic blockchain optimisation can
target many aspects, from consensus parameters, incentive algo-
rithms, and network parameters such as broadcast algorithms and
consensus groups (sharding), to malicious node voting strategies.
Due to the impracticality of creating a tool supporting all the possi-
ble optimisation options for all aspects, modularity is key, allowing
easy configuration of the desired system architecture while keep-
ing the base simulator less bloated. Finally, in order for real-time
optimisation to be effective, the timings of the decisions are crit-
ical. In order for the tool to be viable for use in systems such as
the one proposed in [11] fast and efficient simulation is required.
This paper presents an effort towards developing such a simulation
system. Specifically, the blockchain simulation tool SymBChainSim
is proposed, offering the following novel features:

• Support for dynamic updates of blockchain parameters and
consensus protocol during runtime

• A modular architecture allowing for easy integration of new
protocols support for simulation of various blockchain ar-
chitectures

• The ability to form a real-time connection with a physical
blockchain system

The rest of this paper is structured as follows: Section 2 pro-
vides an overview of the literature on blockchain simulation and
published simulation tools. Section 3 describes the high-level archi-
tecture and implementation specifics of SymBChainSim. Section
4 demonstrates a use case scenario of SymBChainSim along with
experimental results exploring the overhead of dynamic consen-
sus switching. Finally, section 5 summarises this paper and briefly
presents our plan to further expand SymBChainSim.

2 RELATEDWORK
With cryptocurrencies being the first and, as of now, the most wide-
spread application of blockchain, it is natural that the vast majority
of blockchain simulators focus on modelling the major applications
in this field. In [25] a survey was conducted studying the state-of-
the-art simulation tools which concluded "...there is no universal
simulator that could be applied to a wide range of scenarios." and
additionally that "The capabilities of existing simulators are limited
as they are designed to simulate a few critical aspects ... keeping
the rest simplified".

The simulation tool at the heart of a DDDAS systemmust support
the following (a) the ability to simulate a plethora of scenarios, (b)
offer a wide range of optimisation options and the ability to change
between them during run-time (c) the ability to simulate and offer
control over the 5 major aspects of a blockchain system (d) the
ability to simulate in faster than real-time. The rest of this section
provides a brief overview of a selection of the most influential
blockchain simulation tools, highlighting their scope and evaluating
their design from the point of view of integration with a DDDAS
system. For more information on blockchain simulators, the reader
is referred to [3, 25] which dive deeper into the literature and
present a more complete picture of the existing tools.

In [28] Faria proposes BlockSim, a blockchain simulation tool,
focused on modelling the Proof-of-Work consensus protocol and
the Bitcoin and Ethereum [7, 24] blockchain architecture. BlockSim

119

SymBChainSim: A Dynamic Blockchain Simulator for DDDAS SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA

Name Language Architecture Consensus Dynamic Node Behavior Parallelizable

BlockSim
(Faria) [28]

Python
(SimPy)

Bitcoin
Etherium PoW No No No

VIBES [29] Scala Generic
Permissionless PoW No Limited Yes

SimBlock [4] Java Bitcoin
Etherium PoW No No No

Talaria [31] Python
(SimPy)

Bitcoin, Etherium
Permissioned

PoW, PoA, Pos,
PoET, pBFT No Limited No

SymBChainSim Python Generic
Permissioned

PBFT
BigFooT

Yes
(Consensus + Parameters)

Benign + Byzantine
faults Yes

Table 1: Existing Blockchain Simulators Feature Comparison.

has been a very popular tool used to support research on cryp-
tocurrency and has functioned as a base for a plethora of other
simulation tools (Talaria, BlockPerf, CBlockSim, SegWit and more).
The tool is written in python, utilising python’s discrete-event sim-
ulation library SimPy [22]. BlockSim’s high-level modelling allows
for high scalability easily supporting tens of thousands of nodes.
To achieve the above, BlockSim sacrifices the ability to simulate
transaction generation, has a simple network model and does not
support node behaviour simulation. Additionally, in BlockSim’s
implementation, the node architecture is determined by the con-
sensus protocol, complicating the process of adding support for
new protocols and hurting modularity. Finally, BlockSim does not
support dynamic parameter changing, which is critical for use in
DDDAS or parallelization.

SimBlock [4] is a blockchain simulator written in Java focused on
modelling blockchain networks. SimBlock models a generic permis-
sionless blockchain using the Proof-of-Work consensus protocol.
SimBlock does not support a dynamic change of events and has
low modularity due to it not being a goal of the tool.

VIBES [29] is a cloud-based blockchain Simulation Tool, which
focuses on scalability and speed. It models a generic PoWblockchain
and allows for some limited malicious node behaviour simulation
(as a percentage of certain actions failing) but does not allow for
dynamic changes in the system parameters, support for additional
consensus protocols, and permissioned blockchain support.

Talaria [31] is, to the best of our knowledge, the only tool support-
ing the simulation of permissioned blockchain systems (supporting
both a pBFT and a PoA consensus protocol). It is based on the
BlockSim simulator and thus suffers from some of the same prob-
lems, i.e., requiring a different node architecture for each protocol
which hurts modularity and complicates the process of adding sup-
port for dynamic parameter changes (specifically for the consensus
protocols) a feature which is not naively supported.

Evidently, the existing blockchain simulation tools specialise
in modelling of single aspects of the blockchain (behaviour of a
specific protocol, network, incentives, security etc.) to explore and
understand their characteristics and effects on the blockchain sys-
tem. As a result, support for dynamic updates, and focus on the
extensibility and generality of the tool are of the scope and thus
not supported.

3 THE PROPOSED DYNAMIC DATA DRIVEN
BLOCKCHAIN SIMULATOR
(SYMBCHAINSIM)

SymBChainSim follows the approach used by most blockchain sim-
ulation tools, modelling the blockchain system in layers defined in
[13]. This layer-based modelling allows for a modular design, where
each layer can be easily replaced, extended or abstracted with little
to no change to the others. Specifically, these layers include Appli-
cation, Execution, Data, Consensus and Network with Application
referring to a model of the underlying application blockchain is
used in, Execution, a model of the execution of transactions and
smart contracts, Data, a model of the blockchain, Consensus, a
model of the consensus process and finally Network, a model of the
underlying Peer-to-Peer (P2P) network and the nodes participating
in it.

3.1 Layers of SymBChainSim
3.1.1 Application Layer. With the goal of SymBChainSim being to
model a generic permission blockchain, the application layer was
kept at a high level, modelled by a set of parameters shown in Table
2 Transactions in SymBChainSim are generated in intervals (𝑇𝐺𝐼),
based on the current values of the parameters (𝑇𝑃𝑆 and 𝑇𝑠) using
a "transaction factory" as opposed to individual nodes generating
transactions. Specifically, a "generate transactions" event invokes
the transaction factory to generate transactions for the next TGI.
The above parameters can either be used as static values, as the
mean to an exponential distribution which is a common way of
modelling random events (in the case where the application layer
is specified) or used as part of a more sophisticated distribution
modelling the transaction production trends of a specific application
allowing for the modelling of time-variability in workloads with
various resolutions and additionally the ability to form a real-time
connection with a physical blockchain through a feedback loop
dynamically updating the simulation according to incoming data.
In the future, the creation of transaction generation models using
existing datasets from IoT, Supply Chain, Smart Grid etc... will be
explored for the creation of application-specific scenarios. Finally,
the application layer also models the behaviour of nodes through
the behaviour module which is discussed in detail in section 3.2.6.

120

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodoropoulos

3.1.2 Execution Layer. The execution layer of SymBChainSimmod-
els the block creation and validation times as well as the message
validation times as parameters (Table 2). In the future, the execution
layer will be extended to include support for smart contracts.

3.1.3 Data Layer. The data layer of SymBChainSim models the
blocks and the block generation process by governing the block size
and the minimum interval between two successive blocks (block
time)

3.1.4 Consensus Layer. The consensus protocol is the "heart" of
the blockchain system and a major factor affecting the performance
of the blockchain [5]. While a common approach amongst other
simulation tools is to abstract the consensus protocol model, block-
chain management through DDDAS requires accurate information
about the consensus protocol for decision-making. SymBChainSim
takes the approach of simulating vote-based protocols at the "mes-
sage level", i.e., every message exchange is modelled as an event in
the system. The above approach is able to capture the complexity
that arises from messages arriving out-of-order, or dropped mes-
sages, as well as the effect of various P2P algorithms e.g gossip on
the performance of protocols which more abstract models fail to
capture.

Another key metric in the design of the consensus model was
modularity. As mentioned, a simulator focused on blockchain man-
agement should be designed to be extensible to allow for a wide
range of algorithms and protocols to be considered in the optimisa-
tion process and to apply to a wide range of systems. In SymBChain-
Sim the consensus protocols are standalone modules "agnostic" to
the rest of the system. Additionally, the nodes are designed to be
generic allowing for a set of nodes to freely switch between proto-
cols and even use many protocols at once.

To keep the consensus layer standalone, each consensus protocol
implemented protocol in SymBChainSim must also define a state
variable, an instance of which is given to each node participating
in the protocol (keeping the nodes generic), and the structure of
blocks created by the protocol (keeping the data layer generic).

3.1.5 Network Layer. In SymBChainSim the network layer models
the geographical location of nodes and the network graph and is
used to determine (partially or fully) the execution time of events
that model messages between nodes and the propagation of mes-
sages in P2P protocols such as gossip.

The parameters used to define the network can be seen in Table
2 with 𝐵−𝑀𝑆 denoting the base message (headers, signatures etc..),
𝑃2𝑃 − 𝑃 denoting the transmission protocol (broadcast, gossip), 𝐿𝐶 ,
a boolean value controlling the use of geographical location and
consequently latencies, since the geographical location of nodes
determines the latency between nodes and Processing Delay and
Queuing delay the processing and queuing delay of messages.

3.2 Architecture of SymBChainSim
SymBChainSim is composed of modules, modelling aspects of the
blockchain system or implementing simulation logic. Specifically,
the Simulation, Node, Block, Transaction, Transaction Factory, Net-
work, Consensus, Rounds, and HighLevelSync model the blockchain
following the 5 layers approach while Event, EventQueue, Scheduler,
Behaviour, Manager, and Parameters, contain simulation logic. The

Layer Parameters

Application

Transactions Per Second (TPS)
Transaction Size (Ts)

Transaction Generation Interval (TGI)
Behaviour Parameters

Execution
Block Creation Time (BCT)
Block Validation Time (BVT)

Message Validation Time (MVT

Data Block Size (BS)
Block Time (BT)

Consensus Protocol Specific Parameters
and Behaviour

Network

Base Message Size (B-MS)
P2P protocol (P2P-P)

Location (LC)
Processing Delay(P)
Queuing Delay(Q)

Table 2: SymBChainSim parameters per layer.

complete architecture can be seen in Figure 2. Python was used for
the implementation of the tool to allow for easy integration with a
DDDAS system (itself developed in Python). Furthermore, Python’s
excellent library of scientific programming packages also simplifies
analysis and optimisation using machine learning techniques. Fi-
nally, Python offers flexibility when connecting the simulator with
a physical system, simplifying the development of interfaces. 1

3.2.1 The Simulation, Node, Block and Transaction Modules. The
simulation module includes the Nodes taking part in the system and
the System Queue and is responsible for implementing the simula-
tion loop logic. Within SymBChainSim, each Node is equipped with
a range of components, including a local copy of the blockchain, a
transaction poll that holds unprocessed transactions, a data struc-
ture for storing state and behaviour information that is updated
in accordance with the current consensus protocol and behaviour
module, a scheduler that interfaces with the network module, and
a set of event queues (one for consensus and one for syncing mes-
sages), as well as a backlog queue that stores future messages to
be processed at an appropriate time. The block module models a
generic block structure containing a unique hash, a reference to the
hash of the previous block, a list of validated transactions as well
as an extra data field used by the consensus to add functionalities
to the block. Finally, the Transaction module models transactions
between nodes generated by the Transaction Factory based on the
workload generation parameters. The nodes, block and transaction
module were kept general, only containing core blockchain func-
tionalities. The above keeps the simulator general and simplifies
the process of adding additional logic for specialising the simulated
system.

3.2.2 The Network Module. The Network module models the un-
derlying P2P network using the parameters described in section

1An implementation of SymBChainSim can be found on GitHub (link) open-sourced
under the MIT license.

121

https://github.com/GiorgDiama/SymBChainSim

SymBChainSim: A Dynamic Blockchain Simulator for DDDAS SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA

Sync Rounds

Network Model

Message EventBlockchain Event

Transaction
Factory

Behaviour Model System Queue

Manager

System Event

Simulator
 Module

Node

Blockchain Event
Queue

TX
Pool

State
Variable

Event
Queues

TX
Pool

Node

Blockchain Event
Queue

TX
Pool

State
Variable

Event
Queues

TX
Pool

Event Creator Broadcast/Multicast

Local Event

Scheduler

Node Model

Blockchain Event
Queue

TX
Pool

Neighbours Message
Backlog

State
Variable

State
Update

Consensus Protocol
 Model

State
Update

Integrate
functionality

Event
Handler

Event Driven
Clock

Figure 2: The architecture of SymBChainSim. Blue for blockchain models, purple for simulation components and orange for
events.

3.1.5. Specifically, to calculate the network delay of a message𝑀𝑠→𝑟

where 𝑠 denotes the sender node and 𝑟 the receiver node, the fol-
lowing formula is used:

𝐷𝑒𝑙𝑎𝑦 (𝑀𝑠→𝑟) = 𝐿(𝑠 → 𝑟) +𝑇 (𝑀𝑠→𝑟) + 𝑃𝑟 (𝑀𝑠→𝑟) +𝑄𝑟 (𝑀𝑠→𝑟)

were 𝐿(𝑠 → 𝑟) denotes the latency between the sender (𝑠) and the
receiver (𝑟) obtained from [1] or calculated using distance through
the method described in [17]. Transmission delay, 𝑇 (𝑀𝑠→𝑟), is
defined as:

𝑇 (𝑀𝑠→𝑟) = 𝑠𝑖𝑧𝑒 (𝑀𝑠→𝑟)𝑀𝑏

𝑚𝑖𝑛(𝐵𝑊 𝑠
𝑀𝑏/𝑠 , 𝐵𝑊

𝑟
𝑀𝑏/𝑠)

(1)

where 𝐵𝑊 𝑠
𝑀𝑏/𝑠 and 𝐵𝑊 𝑟

𝑀𝑏/𝑠 denote the bandwidths of 𝑠 and 𝑟 re-
spectively. Finally, 𝑃𝑟 (𝑀𝑠→𝑟) and 𝑄𝑟 (𝑀𝑠→𝑟), denote the process-
ing and queuing delays of the message as defined by the receiving
node 𝑟 .

The current version of SymBChainSim assumes nodes have sym-
metrical upstream and downstream bandwidth but the logic to
support asymmetrical bandwidth is trivial, simply changing equa-
tion 1 to:

𝐴𝑠𝑦𝑚𝑇 (𝑀𝑠→𝑟) = 𝑠𝑖𝑧𝑒 (𝑀𝑠→𝑟)𝑀𝑏

𝑚𝑖𝑛(𝑈 _𝐵𝑊 𝑠
𝑀𝑏/𝑠 , 𝐷_𝐵𝑊

𝑟
𝑀𝑏/𝑠)

where 𝑈 _𝐵𝑊 𝑠
𝑀𝑏/𝑠 , denotes the upstream bandwidth of the sender

in Mb/s and 𝐷_𝐵𝑊 𝑟
𝑀𝑏/𝑠 , the downstream bandwidth of the receiver

in Mb/s. Through the available parameters the network module can
model a range of network environments with various broadcasting
protocols being able to be ’plugged-in’ increasing the modularity
of the simulator.

3.2.3 The Consensus Module. The consensus module models the
consensus process through which the nodes of the system propose
and vote for new blocks. The consensus protocol performance
characteristics play a major role in defining the performance of the
overall system and thus much effort has been put into ensuring
SymBChainSim can simulate protocols accurately at the lowest
level. In SymBChainSim consensus, protocols are simulated at the
message level and the module is highly decoupled from the rest.
The above, make implementing new protocols or porting existing
protocols to SymBChainSim very straightforward. Decoupling the
consensus from the node architecture is also critical for simplifying
the dynamic consensus updates. Tools such as [28], which couple
node architecture with consensus limit their support for dynamic
consensus updates with each new protocol requiring the definition
of a new node and the update algorithm requiring the creation of
new nodes whose state must be updated to match the current state
of the system.

In SymBChainSim, every consensus protocol is implemented as
a Python module and must contain the following (a) a "set_state"
and "init" method, which initialise the state variable of a node
with the required fields as defined by the consensus protocol and
begin the consensus process (b) a "create_block" method which
defines the structure of a block produced by the nodes following
this consensus protocol (c) a "resync" method which defines any
actions a node must take after receiving it’s missing blocks, in
order to start participating in the consensus process 2 (can be left
empty if no specific actions are required) and, (d) a "handle_event"
method capable to handle every type of event that is produced by
this module.

2only if HighLevelSync is used as the resync algorithm.

122

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodoropoulos

3.2.4 The Rounds and HighLevelSync Module. Since it is common
for vote-based consensus protocols used in permissioned blockchains
to work in consensus rounds SymBChainSim includes a rounds
module by default to be used in modelling consensus protocols that
require it. The rounds module supports both a "sticky proposer"
and a "rolling proposer", and both a "round-robin" and "hash-based"
proposer selection algorithm where the next proposer is selected
as:

proposer =

{
𝑅%𝑁 if round-robin
𝐻𝑎𝑠ℎ(𝐵𝑙𝑎𝑡𝑒𝑠𝑡)%𝑁 if hash-based

where 𝑅 denotes the current round, 𝑁 is the number of nodes,
and 𝐵𝑙𝑎𝑡𝑒𝑠𝑡 is the latest block in the blockchain. In order for a
consensus protocol to use the Rounds module the Rounds state
must be included in the consensus state variable. Additionally, the
consensus protocol should contain an init_round_change method
which defines any protocol-specific actions needed to be taken
before a node goes into the round change state. With the above
requirements satisfied, the methods defined in the Rounds module
can be called as required by the protocol.

De-synced nodes are a very common occurrence in blockchain
and thus a syncing algorithm is required. To increase efficiency,
SymBChainSim implements a high-level syncing algorithm which
can be used by any Consensus protocol and whose logic is defined
in HighLevelSync(HLS). To use HSL a CP needs to define the re-
sync method. When a node realises it has fallen out of sync, i.e.,
when receiving an accepted ’future’ block and as defined by the
CP it can invoke HLS to request the missing blocks from one of its
peers.

3.2.5 The Event, Event Queue, and Event Handler Modules. In Sym-
BChainSim every action is modelled as an event. The Event module
models the various events used throughout the simulator, namely,
SystemEvent, LocalEvent, and MessageEvent which will be dis-
cussed in depth in section 3.3. In general, every event in Sym-
BChainSim contains an execution timestamp (in simulation time),
a reference to its specific handler, a payload and a unique ID. The
Event Queue module contains a sorted list of upcoming events
and a hash table storing past messages. Since the creation time of
events does not necessarily match their execution time, a binary
insertion sort algorithm is used to keep the event list sorted, in-
creasing efficiency. Finally, the hash map stores the history of past
events in ID: Event pairs, used in P2P multi-cast algorithms such as
Gossip. In the SymBChainSim, any module that generates events
must also contain an associated handler that manages those events
and thus the general event handler module is only responsible for
performing preliminary checks, such as verifying that the node is
online, before invoking the specific handler if the current event.
Additionally, based on the response of the module-specific handler,
specifically, in the case where the processed event changed the state
of the node - the handler will try to execute messages stored in the
backlog (possible responses can be seen in Table 3).

3.2.6 The Scheduler and Behaviour Modules. In SymBChainSim
the scheduler module acts as the interface between the nodes of the
system, the network and the event queues. Each node contains a ref-
erence to the scheduler, through which modules such as consensus,

Return Value Description

handled Event was handled successfully

new state Event was handled and changed
state check backlog

invalid Invalid message (old, corrupted etc..)
backlog future message, add to the backlog

unhandled Could not handle (error message)

Table 3: Possible return values of event handlers.

rounds and sync, can access the "scheduler local event" and "sched-
ule message event" functionalities to model logic which requires
interaction with the other nodes. The behaviour module models the
behaviour of nodes in the simulation. SymBChainSim architecture
allows for easy parallelization, only requiring the modification of
the scheduler module into a distributed scheduler module. Specif-
ically, each process would contain an instance of the simulation
module with a subset of the nodes and an instance of the distributed
scheduler. The distributed scheduler will be in charge of forward-
ing local events to the schedulers of other processes and receiving
events from other processes with the rest of the modules being
’parallelization agnostic’ i.e., their functionality does not require
change based on whether the simulation is running in parallel or
not.

The behaviour of nodes plays a significant role in determining
the system’s performance. In blockchain, nodes can behave as hon-
est, faulty or byzantine. Honest nodes follow the protocol to the
best of their ability, processing all messages and responding ac-
cordingly and as fast as possible. Faulty nodes are honest nodes
which experience random faults and thus are not able to partic-
ipate in the consensus process until they recover from the fault.
Finally, byzantine or "malicious" nodes are nodes which deliber-
ately diverge from the protocol by deliberately delaying replies, not
replying at all, replying with intentionally false data, or sending
diverging information to different nodes. The behaviour charac-
teristics of nodes can drastically change the performance of the
system and this, node behaviour simulation is of high importance.
The Behaviour module is in charge of modelling the behaviour of
nodes through the behaviour state variable. In SymBChainSim, the
behaviour state of a node defines whether the node is faulty, byzan-
tine or both. Fault behaviour is modelled as random events using
an exponential distribution. Specifically, each faulty node contains
a "MeanTimeToFailure" and "MeanTimeForRecovery" governing
the mean time between failures and the mean time for recovery if
a failure occurs. The Byzantine behaviour model in the node only
describes the misbehaviour in the Sync process since consensus
protocols differ and thus consensus misbehaviour is better defined
individually per protocol 3.

3.2.7 The Manager and Parameters Modules. The manager module
contains a reference to the simulation module and is responsible
for managing the simulation. Through system events, the manager

3Only nodes who are marked as byzantine in their behaviour state can misbehave in
the consensus process

123

SymBChainSim: A Dynamic Blockchain Simulator for DDDAS SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA

modules can influence the parameters of each layer, add and re-
move nodes, change the consensus protocol, update the behaviour
of nodes and change the workload. The manager is a key compo-
nent of the simulator and allows for novel features such as dynamic
updates during runtime and can function as the link between the
simulator and a physical blockchain system, either directly or indi-
rectly through a DDDAS such as a Digital Twin.When the simulator
is running as "standalone", i.e., not interfacing with a physical sys-
tem, the manager begins the simulation by loading the parameters
from the configuration files and initiates the simulation module and
network module. Before beginning the main simulation loop the
manager initialises the System Queue, adding the first "generate
transactions", "apply behaviour" and "update behaviour" events. In
parallel execution, a single instance of the manager can forward
system events to all the simulation processes lowering the paral-
lelization complexity.

Finally, the Parameters module contains a list of all of the system
parameters. It is initialised by the manager at the start of the simula-
tion and can be updated in real-time through system events. Every
module in the system contains a reference to the parameters module
and thus changes in the parameters are reflected system-wide.

3.3 Events in SymBChainSim
3.3.1 Event Types. SymBChainSim takes an event-driven approach
for the simulation of the blockchain system and thus every action
in the simulation is modelled as an event. Specifically, two types
of events are defined, "System Events" 𝑆𝐸 and "Blockchain Events"
𝐵𝐸 with the latter being split into "Local Events" 𝐿𝐸 and "Message
Events"𝑀𝐸. A System Event is the simplest type of event in Sym-
BChainSim only consisting of a timestamp and a payload. SEs are
produced by the manager and are added to the System Queue. The
primary focus of SE is to model events that manage and update the
simulation with workload generation, behaviour updates (changing
byzantine nodes, faulty nodes and the specifics of their behaviour)
and application (random faults and recovery) updating the simula-
tion parameters and the consensus protocol. Blockchain events, on
the other hand, are designed to model blockchain-specific events.
The structure of LocalEvents and MessageEvents is similar, con-
sisting of a unique ID, a reference to a handler method capable of
executing the event, a timestamp (in simulation time), a payload
which contains the type of event and the necessary information
for its execution, a reference to the creator node and the receiving
node (only in MessageEvents) and an actor variable, which is a
reference to the node that this event refers to (creator for local
events/receiver for message events). The inclusion of the actor vari-
able reduces the complexity of handling BE events, by removing
the need to constantly check the type of the event in order to select
the appropriate node during handling.

3.3.2 Event Execution. Multiple queues exist in SymBChainSim,
each containing different types of events. Specifically, each node
contains 2 event queues, a consensus queue containing consensus-
related MEs and LEs and a Sync queue containing sync-related MEs
and LEs. Additionally, the simulator module contains the System
Queue which stores the various SEs produced by the Manager. The
vast majority of events in SymBChainSim are consensus-related due
to the low-level modelling of the algorithms. Additionally due to the

various delays added in simulation time (network, processing etc..)
generated events cannot be executed using a simple FIFO approach
and need to be sorted based on execution time (in simulated time).
To achieve the above the event queues were modelled as a list with
new events being inserted using the binary sort insertion algorithm
whose time complexity is𝑂 (𝑙𝑜𝑔2𝐸) where 𝐸 is the number of events
currently in the list. By maintaining a sorted list, the complexity
of retrieving the next event of a queue is O(1). From the above, it
is, trivial to see that since insertion is the most computationally
expensive operation, and its complexity is based on the number
of events in the queue, keeping multiple event queues can signifi-
cantly reduce the computational complexity of insertion, while only
slightly increasing the computational complexity of calculating the
next event thus making the use of more queues beneficial.

To implement the simulation loop, the simulator simply retrieves
the next event of each online node (sync or consensus) and keeps the
earliest one. The next system event to be executed is also retrieved
from the system queue and is compared with the earliest blockchain
event. The earliest of the two events (SE and BE) is then executed.

3.4 SymBChainSim for Dynamic Management
of Blockchain Systems

SymBChainSims Manager module is designed to function as the
interface between the simulation, and a physical blockchain system
either directly or indirectly as part of a DDDAS architecture such as
the one in Figure 1. Through this interference, the DDDAS system
can update the state of the simulation to reflect changes in the real
system. Real-time workload data, network data, and behaviour data
can be fed to the manager, which, in turn, will produce the relevant
events to update the simulation. The specifics of implementing
a real-time DDDAS system and creating a feedback loop with a
blockchain system are out of the scope of this paper. For a more
detailed explanation of a DDDAS-based architecture used for the
dynamic management of blockchain and the specifics of creating a
feedback loop with blockchain systems, we prompt the reader to
[11]. Additionally, what-if analysis can occur through the manager
by cloning the current simulator state, and simulating instances
with various parameters to study their effects on the system. The
outputs of the simulation can then be used to make real-time opti-
misation decisions or to assist in the training process of intelligent
optimisers such as the one proposed in [12] or in [20].

4 EXPERIMENTAL EVALUATION
4.1 Use Case: Profiling PBFT and BigFoot using

SymBChainSim
4.1.1 Experimental Setup. With consensus being one of the main
factors affecting the performance of a blockchain system, under-
standing the performance characteristics of protocols is critical
in both the design and optimisation of blockchain systems. Sym-
BChainSim is enabled with a low-level consensus model which can
be employed to accurately profile the performance of protocols,
under various network, workload and application environments,
providing useful insights. In this example use case, SymBChainSym
was used to evaluate the performance of PBFT and BigFoot under
the presence of faulty nodes. Network, workload and application

124

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodoropoulos

0

200

400

600

8 12 16 20 24 28
Number of Nodes

R
un

tim
e

(S
)

(a)

0e+00

1e+05

2e+05

3e+05

4e+05

8 12 16 20 24 28
Number of Nodes

C
P

 M
ss

ag
es

 Protocol

BigFoot(f=0)

BigFoot(f=1)

BigFoot(f=2)

PBFT(f=0)

PBFT(f=1)

PBFT(f=2)

(b)

Figure 3: Evolution of runtime (a) and messages sent (b) as nodes increase for PBFT and BigFoot with no faulty nodes,(f=0) one
(f=1) and two (f=2) faulty nodes.

0

50

100

150

BigFoot(f=0) BigFoot(f=1) BigFoot(f=2) PBFT(f=0) PBFT(f=1) PBFT(f=2)

A
vg

. B
lo

ck
s

P
ro

du
ce

d
(a

ll
ru

ns
)

Figure 4: Average blocks produced by each CP across all
runs with no faulty nodes,(f=0) one (f=1) and two (f=2) faulty
nodes.

variations over time, as well as byzantine behaviour, were switched
off thus making faulty nodes the only parameter affecting perfor-
mance. Specifically, PBFT and BigFoot instances of SymBChainSim
with 8, 12, 16, 20, and 28 nodes were used, each simulated for 10
minutes (simulation time) with 0, 1 and 2 faulty nodes (𝑓). The PBFT
and BigFoot protocol implementations are based on [8] and [27]
respectively. Specifically, PBFT is designed to be robust to node
faults and byzantine behaviour but suffers from low scalability,
while BigFoot, is designed to be more scalable and less robust to
faults. The messages and runtime of each simulation, along with
the average blocks produced depending on the number of faulty
nodes are used to evaluate the performance and scalability of the

protocols. The above instances were executed on a 2021 Apple Mac-
Book Air, equipped with the base Apple silicone M1 chip and 8GB
of memory. The results of the above simulation runs are shown in
Figures 3 and 4.

4.1.2 Scalability Results. The results obtained from the above ex-
periments confirm that PBFT is indeed more robust than BigFoot
but less scalable. Specifically, figures 3a and 3b clearly show that
PBFT scales worse than BigFoot which is reflected in its runtime
and messages growing at an exponential rate (consistent with the
algorithm’s theoretical scaling). Bigfoot, on the other hand, scales
better as nodes increase, but, in contrast to PBFT, its scalability gets
worse as soon as faulty nodes appear, confirming its poorer robust-
ness. Interesting to note here is that as nodes increase, the runtime
of PBFT reduces (Figure 3a) which entails fewer blocks produced
(see Figure 4). The above is justified by the fact that the completion
of a round from an online proposer takes more time than that of an
offline proposer. This is due to the fact that a round with an offline
proposer, results in a failure, and thus in fewer message exchanges
and less runtime. On the other hand, in BigFoot when an offline
node was part of the system, both runtime and messages increased
and block throughput significantly decreases. The above is justified
as a result of the fast-path stage failing (a detailed explanation of
the fast-path state and the inner workings of BigFoot can be found
in [27]). In the above case, the runtime of the simulation is highly
correlated with the number of messages produced by the consensus
process and thus the performance of the consensus protocol itself.
The above is utilised to study the performance characteristics of a
consensus through the runtime of the simulation. The above also
affects the ability of the simulator to simulate faster-than-real-time,
as shown in Figure 3a, SymBChainSim can simulate BigFoot at a
fraction of real-time with 28 nodes but fails to do so with PBFT,
a more robust algorithm relying on a more complex message ex-
change protocol. This limited scalability is a result of the low-level
modelling of events and can be significantly improved through

125

SymBChainSim: A Dynamic Blockchain Simulator for DDDAS SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA

parallelization. Finally, figure 4 shows the average blocks produced
by each protocol based on the number of faulty nodes in the system
further supporting the above. From the results shown in figure 4, an
interesting observation can be drawn in the context of blockchain
optimisation through dynamic CP switching: to maximise block
throughput, BigFoot can be employed when no offline nodes are
present while switching to PBFT once offline nodes are detected.

4.2 Dynamic Consensus Switching Overhead
4.2.1 Experimental Setup. Besides the optimisation gains, the over-
head added to the system by an optimisation approach is a critical
factor. Specifically, in blockchain, due to its asynchronous nature,
the process of switching protocols can result in various overheads.
Thus, studying the potential overheads of switching protocols can
aid our understanding of dynamically managing blockchain sys-
tems.

To better understand why blockchain’s asynchronous nature can
cause overheads, let’s consider the following case, in which, a set
of nodes are first to update their CP while the rest of the nodes are
still "behind" due to network delays. Since the update mechanism
does not operate in a "drop everything and switch" fashion, nodes
have to finish the current proposal round in order to update. Thus,
it is possible for a subset of nodes that are "ahead", to start a new
round before the update and the remaining nodes to start a round
after. In the above case, given that the subset of nodes with the new
protocol is less than the super-majority required for consensus,
the consensus process will be halted until the remaining nodes,
with the old CP, fail a round, and update. The above results in an
overhead equal to the time it takes for a round of the old protocol,
to be declared failed.

Measuring the overhead introduced by switching protocols is
not a straightforward process. Due to the complexity of the system,
identifying which delays are caused by the switch is challenging.
Despite that, the overhead is only reflected in a short window after
switching protocols, and thus, by measuring the idle time between
the 2 blocks that are proposed right before and right after the
switch, and comparing them to the usual delays, we can gauge the
magnitude of the overhead. Specifically, we define idle time as the
interval between the addition of the current block, denoted by𝐶𝑃𝑛 ,
and the creation time of the subsequent block denoted by 𝐶𝑃𝑛+1.
According to the above, we define the following two metrics: (a)
𝐵𝑃𝑎𝑙𝑙 which denotes the idle time between every subsequent block
produced and (b) 𝐵𝑃𝑠𝑤𝑖𝑡𝑐ℎ which donates the idle time between
subsequent blocks accepted before and after a CP switch.

The above metrics were measured for 100 random simulations
to derive the results shown in Figure 5. Specifically, 100 random
instances of the simulator were initialised with 4, 8 and 12 nodes
and run for 20 minutes (simulation time) with the CP protocol ran-
domly changing approximately every 30 seconds. The parameters
of the simulation were kept static and the behaviour and faults sim-
ulation were turned off to reduce the factors affecting the idle time.
Additionally, because block size heavily affects block delays, the
block size was kept fixed at 1MB with the goal of, again, reducing
factors affecting idle time.

4.2.2 Overhead Results. The results of the above experiment are
shown in figure 5. By studying the figure, one can see that, as

0.0

2.5

5.0

7.5

10.0

all_4 switch_4 all_8 switch_8 all_12 switch_12

A
ve

ra
ge

 Id
le

 T
im

e
(S

)

Figure 5: Average idle time between block proposal rounds
for 4, 8 and 12 nodes. ’All blocks’: average idle time between
all blocks. "Switch blocks": average idle time between blocks
before and after a CP switch. (The red dot denotes the mean
value).

expected, some overhead does indeed occur 4. Although, using a
DDDAS to optimise a blockchain system can speed up transaction
latency, (which is the metric most prominently affected by delayed
blocks) up to several seconds, on average, per block [11] easily
justifying the incurred overhead. Despite that, since switching pro-
tocols does come with a cost, one still has to be mindful of frequent
switches.

5 SUMMARY AND FUTUREWORK
This paper has proposed SymBChainSim, a novel blockchain sim-
ulation tool aimed at enabling dynamic blockchain management
specifically through approaches based on the DDDAS paradigm.
In contrast to the current state-of-the-art blockchain simulation
tools which are focused on modelling specific architectures and
aspects of a blockchain system, SymBChainSim aspires to provide
a generic, extensible and dynamic permissioned blockchain simu-
lation system. SymBChainSim offers a novel dynamic parameter
switching mechanism, is capable of interfacing with a blockchain
system to reflect state changes in real-time, and provides what-
if-analysis capabilities to be utilised by the DDDAS architecture.
The experimental evaluation has confirmed that the overhead of
consensus switching does not significantly diminish performance.
Current limitations of the system include the low amount of consen-
sus implementations and the lack of smart contract logic support.
Additionally, the low-level modelling of events comes at the cost of
scalability which although partially mitigates by parallelization, is
not yet supported.

In the future, adding the above functionality is an integral part of
the plan to improve the simulator and increase the range of block-
chain architectures the simulator is able to model and ultimately

4note that for 4 nodes, the outlier values cause the mean idle time of "switch" to be
higher than that of "all" despite the distribution of average idle times being seemingly
better

126

SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodoropoulos

manage. Furthure to dynamic blockchainmanagement, SymBChain-
Sim low-level models makes it a suitable platform for prototyping
and testing new consensus protocols and blockchain systems. Ad-
ditionally, its focus on node behaviour simulation can be utilised
to create attacks used to evaluate the robustness of protocols and
systems.

ACKNOWLEDGMENTS
This research was supported by: Shenzhen Science and Technology
Program, China (No. GJHZ20210705141807022); SUSTech-University
of BirminghamCollaborative PhDProgramme; Guangdong Province
Innovative and Entrepreneurial TeamProgramme, China (No. 2017Z
T07X386); SUSTech Research Institute for TrustworthyAutonomous
Systems, China.

REFERENCES
[1] 2023. AWS Latency Monitoring. https://www.cloudping.co/grid#
[2] Al-Jaroodi et al. 2019. Blockchain in Industries: A Survey. IEEE Access 7 (2019),

36500–36515. https://doi.org/10.1109/ACCESS.2019.2903554
[3] Adel Albshri, Ali Alzubaidi, Bakri Awaji, and Ellis Solaiman. 2022. Blockchain

simulators: a systematic mapping study. In 2022 IEEE International Conference on
Services Computing (SCC). IEEE, 284–294.

[4] Aoki et al. 2019. Simblock: A blockchain network simulator. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 325–329.

[5] Seyed Mojtaba Hosseini Bamakan, Amirhossein Motavali, and Alireza Babaei
Bondarti. 2020. A survey of blockchain consensus algorithms performance
evaluation criteria. Expert Systems with Applications 154 (2020), 113385.

[6] Volker Buscher. 2019. Digital twin: towards a meaningful framework. Arup,
Foresight, Research and Innovation.

[7] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3, 37 (2014).

[8] Castro et al. 1999. Practical byzantine fault tolerance. In OSDI, Vol. 99. 173–186.
[9] Dai et al. 2019. Blockchain for Internet of Things: A Survey. IEEE Internet of

Things Journal 6, 5 (2019), 8076–8094. https://doi.org/10.1109/JIOT.2019.2920987
[10] Darema et al. 2008. Dynamic Data Driven Applications Systems (DDDAS) – A

Transformative Paradigm. In Computational Science – ICCS 2008, Marian Bubak,
Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 5–5.

[11] Georgios Diamantopoulos, Nikos Tziritas, Rami Bahsoon, and Georgios Theodor-
opoulos. 2022. Digital Twins for Dynamic Management of Blockchain Systems.
In 2022 Winter Simulation Conference (WSC). 2876–2887. https://doi.org/10.1109/
WSC57314.2022.10015447

[12] Georgios Diamantopoulos, Nikos Tziritas, Rami Bahsoon, and Georgios Theodor-
opoulos. 2022. Dynamic Data-Driven Digital Twins for Blockchain Systems.
In Accepted for publication at 2022 Dynamic Data Driven Application Systems
(DDDAS) 2022.

[13] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 1085–1100. https://doi.org/10.1145/3035918.3064033

[14] Freire et al. 2021. Harnessing Blockchain For Sustainable Development: Prospects
And Challenges. United Nations Conference On Trade And Development, UNC-
TAD/DTL/STICT/2021/3.

[15] Gamage et al. 2020. A Survey on Blockchain Technology Concepts, Applications,
and Issues. SN Computer Science 1, 114 (2020).

[16] Giang-Truong et al. 2018. A Survey about Consensus Algorithms Used in Block-
chain. Journal of Information Processing Systems 14, 1 (2018).

[17] Rohitha Goonatilake and Rafic A Bachnak. 2012. Modeling latency in a network
distribution. Network and Communication Technologies 1, 2 (2012), 1.

[18] Guerraoui et al. 2010. The next 700 BFT Protocols. In Proceedings of the 5th
European Conference on Computer Systems (Paris, France) (EuroSys ’10). As-
sociation for Computing Machinery, New York, NY, USA, 363–376. https:
//doi.org/10.1145/1755913.1755950

[19] Kotla et al. 2007. Zyzzyva: speculative byzantine fault tolerance. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles. 45–58.

[20] Liu et al. 2019. Performance optimization for blockchain-enabled industrial
Internet of Things (IIoT) systems: A deep reinforcement learning approach. IEEE
Transactions on Industrial Informatics 15, 6 (2019), 3559–3570.

[21] Maesa et al. 2020. Blockchain 3.0 applications survey. J. Parallel and Distrib.
Comput. 138 (2020), 99–114. https://doi.org/10.1016/j.jpdc.2019.12.019

[22] Norm Matloff. 2008. Introduction to discrete-event simulation and the simpy
language. Davis, CA. Dept of Computer Science. University of California at Davis.
Retrieved on August 2, 2009 (2008), 1–33.

[23] Monrat et al. 2019. A Survey of Blockchain From the Perspectives of Applications,
Challenges, and Opportunities. IEEE Access 7 (2019), 117134–117151. https:
//doi.org/10.1109/ACCESS.2019.2936094

[24] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[25] Remigijus Paulavičius, Saulius Grigaitis, and Ernestas Filatovas. 2021. A system-
atic review and empirical analysis of blockchain simulators. IEEE access 9 (2021),
38010–38028.

[26] Roberto Saltini. 2022. BigFooT: A robust optimal-latency BFT blockchain con-
sensus protocol with dynamic validator membership. Computer Networks 204
(2022), 108632.

[27] Roberto Saltini. 2022. BigFooT: A robust optimal-latency BFT blockchain con-
sensus protocol with dynamic validator membership. Computer Networks 204
(2022), 108632.

[28] Lyubomir Stoykov, Kaiwen Zhang, and Hans-Arno Jacobsen. 2017. VIBES: Fast
Blockchain Simulations for Large-Scale Peer-to-Peer Networks: Demo. In Pro-
ceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos
(Las Vegas, Nevada) (Middleware ’17). Association for Computing Machinery,
New York, NY, USA, 19–20. https://doi.org/10.1145/3155016.3155020

[29] Lyubomir Stoykov, Kaiwen Zhang, and Hans-Arno Jacobsen. 2017. VIBES: Fast
Blockchain Simulations for Large-Scale Peer-to-Peer Networks: Demo. In Pro-
ceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos
(Las Vegas, Nevada) (Middleware ’17). Association for Computing Machinery,
New York, NY, USA, 19–20. https://doi.org/10.1145/3155016.3155020

[30] Uzsoki et al. 2019. Impact Tokens A blockchain based solution for impact invest-
ing. International Institute for Sustainable Development.

[31] Xing et al. 2021. Talaria: A Framework for Simulation of Permissioned
Blockchains for Logistics and Beyond. arXiv preprint arXiv:2103.02260 (2021).

[32] Ynag et al. 2022. Fusing Blockchain and AI with Metaverse: A Survey. arXiv
preprint arXiv:2201.03201 (2022).

[33] Zheng et al. 2018. Blockchain challenges and opportunities:
a survey. International Journal of Web and Grid Services 14,
4 (2018), 352–375. https://doi.org/10.1504/IJWGS.2018.095647
arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/IJWGS.2018.095647

127

https://www.cloudping.co/grid#
https://doi.org/10.1109/ACCESS.2019.2903554
https://doi.org/10.1109/JIOT.2019.2920987
https://doi.org/10.1109/WSC57314.2022.10015447
https://doi.org/10.1109/WSC57314.2022.10015447
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/1755913.1755950
https://doi.org/10.1145/1755913.1755950
https://doi.org/10.1016/j.jpdc.2019.12.019
https://doi.org/10.1109/ACCESS.2019.2936094
https://doi.org/10.1109/ACCESS.2019.2936094
https://doi.org/10.1145/3155016.3155020
https://doi.org/10.1145/3155016.3155020
https://doi.org/10.1504/IJWGS.2018.095647
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJWGS.2018.095647

	Abstract
	1 Introduction
	2 Related Work
	3 The proposed Dynamic Data Driven Blockchain Simulator (SymBChainSim)
	3.1 Layers of SymBChainSim
	3.2 Architecture of SymBChainSim
	3.3 Events in SymBChainSim
	3.4 SymBChainSim for Dynamic Management of Blockchain Systems

	4 Experimental Evaluation
	4.1 Use Case: Profiling PBFT and BigFoot using SymBChainSim
	4.2 Dynamic Consensus Switching Overhead

	5 Summary and Future Work
	Acknowledgments
	References

