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ABSTRACT 1 

The current measures for railway track fixity in the UK’s railway remain at a relatively low level 2 

of granularity. This paper presents a pilot proof-of-concept study on the development of an 3 

integrated computing framework for improving the measurement, prediction, and analysis of 4 

profile-specific track fixity in the context of the UK’s rail network. The framework is aimed to 5 

produce a data integration and mining tool, which can determine track fixity parameters for any 6 

given section of track. In this study, we propose to measure track movement based on point cloud 7 

data and assess the track fixity by a set of parameters such as the direction and rate of the track 8 

movement relative to the plane of rail within a certain period. We seek to integrate a data mining 9 

algorithm into the framework to predict these parameters, given vast amounts of disparate and 10 

heterogeneous data of potential influencing factors in the area. From the study, we have developed 11 

a prototype framework, which allows the rapid implementation of data workflows with the 12 

necessary functionality. The feasibility of the prototype was demonstrated by training a random 13 

forest model on real data from an approximately 80-kilometer section of the East Coast Main Line, 14 

southeast of Edinburgh, Scotland. The modelling results indicate that curvature, cant, and 15 

maximum speed of trains are among the key factors that impact on, and are critical for predicting 16 

and analyzing, the profile-specific track fixity.  17 

 18 

Keywords: Railway track fixity, Track movement, Data integration, LiDAR point cloud, Random 19 

forest20 
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INTRODUCTION 1 

Track fixity, which refers to the degree to which the position of a railway track remains unchanged 2 

over time, is one of the key measures used to calculate clearances between rolling stock and 3 

structures. In the UK’s rail industry, the track fixity is typically presented as a simple value of 4 

“low,” “medium,” or “high,” with unrestrained ballast being the lowest and slab track being the 5 

highest. The measurement of the fixity, however, remains at a low level of granularity; and there 6 

is a lack of predictive tools that can provide more detailed, constantly updated information about 7 

the movement of tracks through an automated process. As Network Rail – the major railway 8 

infrastructure manager in the UK – seeks to improve the accuracy and reliability of its gauging 9 

assessments, there is an immediate requirement for improved resolution of the track fixity across 10 

its railway network. To achieve this would require explicit computation and prediction of the rate 11 

and direction of the track movement within a given period, depending on the speed and use of the 12 

track (e.g., six months or even a longer term). With such short-, medium- and long-term 13 

calculations, track engineers would be able to better assess the risk of foul clearance developing 14 

in a foreseeable future based on changes in the track alignment and historic surveys, thus making 15 

better informed decisions about proactive actions against the risk. The assessment results would 16 

in turn help identify and verify key factors influencing the track fixity in the area and thus allow 17 

more intelligent prioritization of survey campaigns and preventative maintenance activities in the 18 

event of resource challenges.  19 

In essence, the possibility of some movement (i.e., shift or displacement) of a railway track 20 

directly describes the track fixity. In the study discussed in this paper, accordingly, the track fixity 21 

is measured in terms of both the rate and direction of the track movement, given a certain 22 

confidence level. More specifically, the parameters of the track fixity examined in this study 23 

include the displacements of any rail head in both the horizontal and vertical planes (relative to the 24 

plane of the rail) within a certain period.  25 

The track movement can be caused by numerous factors. Apart from known factors, such 26 

as track geometry (1), track subgrade (2, 3), track conditions (4), and train dynamics (5, 6, 7) there 27 

can be an interplay of various factors, which can potentially have some direct or indirect impact 28 

on track movement. To better understand the relative influence of these factors on track movement, 29 

and identify any unidentified risk requires mining a large amount (e.g., terabytes worth of data) 30 

and a wide spectrum of data, allied to the elicitation of information from experts. Usually, these 31 

data are made available from disparate sources across different rail subsystems, such as 32 

engineering structures and rolling stock; many of them, such as LiDAR data, are likely to be 33 

clustered with redundant or irrelevant information and some may be unstructured. The diversity 34 

and unobserved heterogeneity of the data resources often poses a major obstacle to data integration 35 

for meeting the requirements of examining the profile-specific track fixity, given a higher degree 36 

of granularity. To overcome these difficulties, there is clearly a critical need to develop an 37 

integrated computing framework for facilitating a congruent workflow, involving: a) effective 38 

integration of the heterogeneous data into a unified view, followed by b) implementation of 39 

appropriate tools for timely calculation of track fixity and prediction of fixities of new structures. 40 

Despite the growing salience of such kind of models (e.g., 8, 9, 10, 11), few studies in the literature 41 

have investigated this subject.  42 

This paper presents a pilot proof-of-concept study that seeks to: a) design a data pre-43 

processing workflow, which enables the smooth integration and management of a structured 44 

corpus of data that is relevant to track fixity; and b) create a data mining tool as a prototype, which 45 

can assist track engineers in measuring, predicting, and analyzing the track fixity parameters for 46 
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any given section of a railway track. In this phase of the framework development, we compile a 1 

comprehensive database for a representative section of the railway track in the UK. It is used as 2 

the fundamental building block of the computing framework for generating track fixity values, 3 

which would serve as a basis for all reference curves used across the whole rail network. On this 4 

basis, we develop data-driven models to investigate the relationships between potential influencing 5 

factors and track movement. Through this analysis, we identify and verify some key parameters 6 

that can serve as predictors of future track movements. Accordingly, the present paper is dedicated 7 

to:  8 

1) proposing an effective metric and method of calculating track movements using LiDAR 9 

(Light Detection and Ranging) point cloud data; 10 

2) developing an integrated data model with a machine learning model (e.g., a random forest 11 

model), which is trained on data of calculated track movements and a set of empirically 12 

selected relevant factors that potentially influence the movements; and  13 

3) verifying the identified influencing factors on the track movement.  14 

The remainder of the paper consists of three sections. In the following section, we provide detailed 15 

information on the data resources used in the study and propose a method for calculating the rate 16 

and direction of track movement. Next, we demonstrate the method with a case-study example on 17 

a selected section of the railway track of the East Coast Main Line between Edinburgh and the 18 

Scottish border. We present a prototype computing framework for track fixity, which considers a 19 

selected set of key factors influencing the track movement in the UK context. In the concluding 20 

section, we summarize the outcomes of the work, discuss limitations of our study, and suggest 21 

possible avenues for further research. 22 

 23 

 24 

METHODOLOGY 25 

To address the challenges outlined above, we gathered a wide spectrum of survey data, including 26 

track geometry, tonnage, line speed, ballast age, geology, and many other potential factors (e.g., 27 

type of ballast materials, track quality measurements and lineside vegetation) that may influence 28 

track fixity. These factors were empirically identified following an interview with Network Rail’s 29 

engineering staff. The disparate data resources are of various data formats, and they could be 30 

extracted and made available from different subsystems (e.g., Civil Asset Register and Reporting 31 

System) and data models (e.g., Corporate Network Model) of Network Rail. They, together with 32 

historical track positions and movements, were processed on a uniformed computing environment 33 

(i.e., using Python programming language). By doing so, a comprehensive database was created, 34 

allowing the analysis, restructuring, integration and cross-referencing of the data associated with 35 

the influencing factors, thus enabling the extraction of spatial-temporal information that is most 36 

relevant to track movement. On this basis, we can further construct a new data model specifically 37 

for track movement, which incorporates suitable machine learning algorithms to predict gauging 38 

issues with a quantifiable confidence level of their risk of occurrence. However, it needs to be 39 

pointed out that in this study, not all the above-named data resources were thoroughly evaluated 40 

for their compatibility and potentiality of being integrated into the same data set. Therefore, only 41 

a selected set of factors and their data were considered for the development of a protype model.  42 

 43 

Data Integration 44 

The data utilized in the study were mainly from the following four different resources.  45 
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a) LiDAR data, which contains point cloud data showing the spatial position of every profile-1 

specific railway track, represented as three-dimensional (3D) geographic coordinates, of 2 

rail heads – This data was available in LAS / LAZ file format (12). With data preprocessing, 3 

position data aligning with the rail head was made available for every roughly one-meter 4 

length. The positions are described by geographic coordinates measured in the OSGB36 5 

(Ordnance Survey Great Britain 1936) reference system (13). Note that all the geographic 6 

coordinates utilized in this study are OSGB36 based.  7 

b) Survey data that is related to the infrastructure that supports the rails – This data provides 8 

basic information such as curvature, cant, maximum allowable train speed and axle load, 9 

as well as the types of embankments, cuttings, rails, and sleepers used, for every varying 10 

length of meters of a railway track. It was available in CSV file format (14).  11 

c) Data of structures, including overline and underline bridges, retaining walls, tunnels, and 12 

stations – To further clarify, an “overline bridge” refers to a bridge structure that spans over 13 

a railway line, while an “underline bridge” refers to a railway bridge that passes over a 14 

road. This data encompasses information about their locations, materials, structural forms, 15 

and construction details. It was available in DGN file format (15, 16).  16 

d) Data of a range of parameters associated with track geometry – This data comprises 17 

information on the layout and geographic locations of the railway tracks within the UK’s 18 

rail network, as well as reference data that associates the tracks with different infrastructure. 19 

It was available in shapefile format (17).  20 

Noticeably, these resources present distinctly different data and file formats. To integrate the data, 21 

we transform them into a unified format and visualize the preprocessed data through the use of the 22 

Python programming language (hereafter referred to as Python). All the preprocessed data were 23 

stored in a database managed by a PostgreSQL server. On this basis, an application programming 24 

interface (API) is established, as a prototype, for further data processing in a fully Python-25 

supported computing environment. Utilizing this approach not only facilitates efficient storage, 26 

retrieval, and extraction of the most relevant information among all the available data, but also 27 

offers greater flexibility and extensibility in terms of software engineering for modelling and future 28 

development of an integrated computing framework, as compared to using commercial tools. With 29 

the prototype API in this pilot study, we shall be able to:  30 

1) calculate the displacement of rail heads in terms of both rate and direction;  31 

2) cross-reference the track fixity measures with data of any identified influencing factors 32 

(given their availability);  33 

3) integrate these data in both spatial and temporal contexts to create a comprehensive data 34 

set; and  35 

4) develop a prototype track fixity prediction model using an appropriate machine learning 36 

model and the data set.  37 

To be more specific, the data set can be created at a specified level of resolution, such as 1 m, 10 38 

m, or 100 m intervals, by matching the location and time across the different data resources. In 39 

this study, it relies entirely on open-source tools, including PyHelpers (18), PyRCS (19), PyDriosm 40 

(20), LAStools (21), Laspy (22), folium (23), and Open3D (24), all of which are under free licenses. 41 

The method of how to calculate the displacement is detailed and illustrated in the case-study 42 

example in the next section of the paper.  43 

 44 
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Calculation of Track Movement 1 

Traditionally, the calculation of the rail displacements would necessarily entail data about on-site 2 

in-situ measurement; some researchers have also used digital images (25, 26). Inspired by (27)’s 3 

work, we propose in our study to use the LiDAR data to calculate the track movement. The LiDAR 4 

data provides comprehensive information on all visible objects within a certain area that scanners 5 

can reach. It generates a ‘point cloud,’ namely, a set of 3D points, which could be used to describe 6 

and represent the shape and relative spatial position of an object, given a reference system such as 7 

the OSGB36.  8 

In this pilot study, the point cloud data extracted from the raw LiDAR data is a dense, 9 

ordered set of 3D Cartesian coordinates, representing spatial position of the external surface of the 10 

rail heads. Each point is in the format of (X, Y, Z), referring to Easting, Northing, and elevation, 11 

respectively. In view of the wheel-rail contact where the most significant impact on track 12 

movement is, the focus in this study is on the top surface and running edge of the rail heads. More 13 

specifically, with any two sets of the point cloud data – collected from scanning the same railway 14 

track at two different times, we shall be able to reproduce two trajectories – also referred to as 15 

curves or ‘polylines’ – of the mobile scanner moving along the track. Calculating the track 16 

movement is therefore essentially equivalent to measuring the relative displacement (or shift) of 17 

one polyline to another formed by the point clouds.  18 

 One way to approach this problem is to measure the similarity between the two polylines. 19 

In this regard, there are several methods for conducting the comparisons of two given polylines. 20 

One possible option is to compute Fréchet distance (28, 29, 30), which, however, usually describes 21 

the smallest of the maximum pairwise distances. Alternatively, one may consider the Pompeiu-22 

Hausdorff distance (or Hausdorff distance) which, as suggested by (31), may not be adequate for 23 

measuring the polylines’ similarities. Besides the notion of mathematical distance, one may also 24 

utilize statistical theory and consider Kolmogorov-Smirnov statistics (32), and weighted least 25 

squares (i.e. the sum of the absolute differences between observed values and expectations divided 26 

by the observed values). The investigation of such approaches is beyond the scope of this pilot 27 

study but may usefully be explored in the next phase of the study. In this study, we propose a more 28 

straightforward method, which can have two options:  29 

a) to calculate the distance between a point (of a later observed data set) and its nearest line 30 

segment formed of two adjacent points (of an earlier observed data set); or  31 

b) to calculate the distance between a line segment formed of two adjacent points (of a later 32 

observed data set) and its corresponding one (of an earlier observed data set).  33 

The line segment can be of arbitrary length (e.g., 1 m, 10 m, or 100 m) given the granularity of the 34 

point cloud data provided. To minimize computing errors, we consider the minimum distance 35 

between any two points as a unit line segment. On this basis, we shall be able to calculate the 36 

average and/or moving average of track movement at equal distances, or that at any greater 37 

distances by aggregating the displacements of their unit line segments. In this study, the unit line 38 

segment is approximately 1 m. After an interview with experienced railway track engineers at 39 

Network Rail, we adopt the method b) in this pilot study, as illustrated in Figure 1. 40 

 41 
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 1 
FIGURE 1: Illustration of the displacement (movement) of the top surface of a one-meter 2 

length of rail head.  3 

 4 

Figure 1 shows an example of calculating the movement of the top surface of a rail head, with the 5 

blue line representing a 1 m rail head measured in October 2019 and the orange, nearest line 6 

segment, measured in April 2020. Taking a point on the blue line – empirically, the centroid – we 7 

draw and compute the length of a perpendicular line segment (in the dotted purple in Figure 1) 8 

from that point to the orange line, and hence obtain the displacement of the blue line from October 9 

2019 to April 2020. On this basis, the lateral displacement (dotted green) and vertical displacement 10 

(dotted red) of the top surface can be easily computed.  11 

It must be noted that a) the line segments of the same rail head observed/measured at 12 

different times would not be necessarily parallel with each other; b) the two ends of any line 13 

segment would not necessarily correspond to the same ones in the different observation times; and 14 

c) the two line segments (e.g., the blue and orange lines in Figure 1) may not be of exactly the 15 

same length, due to measuring errors. For these reasons, using the above proposed method would 16 

entail offsetting the errors by cutting out a section of the same length for each line segment in 17 

either the horizontal or the vertical plane. That way we could directly connect the two centroids 18 
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each located on a cut-out section (slightly shorter than 1 m) to obtain a perpendicular line between 1 

the two segments.  2 

Besides the method illustrated in Figure 1, there can be different alternatives. For example, 3 

one could also project either an end or the centroid of a line segment onto the other line in the 4 

space to obtain a perpendicular line, whereby calculations of the lateral and vertical displacements 5 

could also be obtained. However, this method is likely to result in more errors when many pairs of 6 

line segments are highly mismatched in terms of the spatial position, in which case the cut-out 7 

section can be shorter than 0.5 m. In this paper, we consider only the method illustrated in Figure 8 

1. 9 

 10 

Predicting Track Movements 11 

The data integration and further data processing generates a comprehensive data set that contains 12 

both:  13 

1) calculated results of average displacements for every 1 m track section and for a given 14 

period (i.e., six months), and 15 

2) specific information of the associated factors affecting the track fixity, translated into 16 

numerical forms.  17 

With the data of calculated track movements for every 1 m, the track fixity is measured as the 18 

direction and average rate of movement of the rail head for any track section length 1 m and above. 19 

As part of the computing framework discussed in this study, we propose to further integrate it with 20 

an appropriate machine learning model (e.g., a random forest model) to establish a functional link 21 

between the track fixity and those influencing factors for analyzing the movement of the rail heads, 22 

which should be capable of assisting track engineers in the analysis of track movement over time.  23 

Given the immediate availability of data in this pilot study, we consider the following 24 

variables as some major influencing factors:  25 

a) curvature and cant of a railway track;  26 

b) presence of structures, including overline bridges, underline bridges, tunnels, stations and 27 

retaining walls; and  28 

c) axle load (33) and speed of trains (34). 29 

 30 

 31 

A CASE-STUDY EXAMPLE 32 

This section demonstrates the methodology proposed in the previous section with a case-study 33 

example in the context of the UK’s railway system.  34 

 35 

Case-study Region 36 

To develop and demonstrate our proposed computing framework, we selected an approximately 37 

80-km section of railway track along the East Coast Main Line in the UK. This section of track, as 38 

highlighted in blue in Figure 2(a), passes through four stations located between Prestonpans and 39 

Berwick-upon-Tweed, southeast of Edinburgh in Scotland, and is primarily used for passenger rail, 40 

though there may also be some freight train traffic. In this study, we refer to this section of track 41 

as the “example rail line” (or “example track”), which we treat as a representative of the entire 42 

network. The area highlighted in yellow in Figure 2(a) is magnified in Figure 2(b). 43 
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 1 

 
(a) An 80-km section of the East Coast Main Line for case study 

  
(b) The west end of the track section (c) An example 100m×100m survey grid 

FIGURE 2: Illustration of an 80-km section of the East Coast Main Line and its survey 2 

grids for case study.  3 

 4 

The point cloud data for the example rail line was available for two survey periods: October 2019 5 

and April 2020. The data was collected from about 2,000 survey grids, each of which was a 6 

100m×100m area measured in the OSGB36 reference system, as illustrated in Figure 2(b). In this 7 

study, we randomly selected a survey grid highlighted in yellow in Figure 2(b) and magnified it 8 

in Figure 2(c). The example grid was originally labelled “Tile_X+0000340500_Y+0000674200”, 9 
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indicating that its lower left corner is located at the OSGB36 coordinates (340500, 674200). We 1 

used this example grid to further demonstrate the framework and methodology for calculating and 2 

predicting track movement.  3 

 4 

Track Movement 5 

The raw LiDAR data from the example grid, Tile_X+0000340500_Y+0000674200, for the two 6 

survey periods, October 2019 and April 2020, are shown in Figure 3(a) and Figure 3(b), 7 

respectively. The colors in the figures represent different elevations of objects, where warmer 8 

colors (e.g., red, orange, and yellow) indicate relatively higher elevations, while cooler colors (e.g., 9 

green, blue, and purple) indicate relatively lower elevations. According to Figure 2(c), it can be 10 

inferred that the blue lines in both Figure 3(a) and Figure 3(b) represent the railway tracks; the 11 

warmer colors surrounding the tracks represent mostly lineside vegetation, which notably had 12 

grown considerably higher from since October 2019.  13 

Further, Figure 3(c) and Figure 3(d) illustrate the point cloud data of the rail heads in 14 

Figure 3(a) and Figure 3(b), respectively. We linked every two adjacent points in sequential order 15 

to create a polyline for each of the elements, including top surfaces, running edges and the center 16 

of a track, as illustrated in Figure 3(e) and Figure 3(f). On this basis, we could use the method 17 

described in the methodology section to calculate the displacements of each of the polylines.  18 

For example, consider the top surface of the rail head of the left rail of the track (hereafter 19 

referred to as “left rail top”) in the Up direction where all trains run towards Edinburgh. Note that 20 

in the UK, the terms “Up” and “Down” are conventionally used to indicate, respectively, the 21 

directions of trains running towards and away from a major destination, such as Edinburgh and 22 

London. This predefined reference system is used across the entire UK rail network and provides 23 

a convenient and straightforward way for on-site railway staff to conduct inspections and 24 

maintenance work. In our case-study example, Edinburgh is identified as a major destination, and 25 

the direction in which trains run towards it is thus referred to as the Up direction.  26 

Figure 4 shows violin plots for the calculated movements of the left rail top of the example 27 

80-km track in the Up direction. The plots depict the probability density and boxplot information 28 

of average displacements in both lateral and vertical planes for every 10-m track section between 29 

October 2019 and April 2020. The direction of track movement is indicated by a positive (+) or 30 

negative (−) sign, where a positive sign (+) denotes that the track had moved towards the left in 31 

the Up direction since October 2019, and a negative sign (−) denotes movement to the right.  32 

As illustrated in Figure 4, the lateral track movement exhibited an average displacement 33 

of less than 5 mm per 10-m track section, with the maximum displacement of nearly 20 mm 34 

observed in the rightward movement (i.e., movement of the left rail top towards the center of the 35 

track). Notably, there was a greater range of values for leftward movement (i.e., movement of the 36 

left rail top away from the center of the track), which may indicate a need for further investigation 37 

into the underlying factors contributing to this variation. On the vertical track movement, however, 38 

the 10-m average displacement was mostly around 2 mm or less; and a few extreme values ranging 39 

from 5 to 15 mm were also observed. 40 

 41 
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(a) Raw LiDAR data (October 2019) (b) Raw LiDAR data (April 2020) 

  
(c) Point cloud of the rail heads (October 2019) (d) Point cloud of the rail heads (April 2020) 

  
(e) Polyline based on the point cloud (October 2019) (f) Polyline based on the point cloud (April 2020) 

FIGURE 3: Representation of the rail heads based on their point cloud data within the 1 

example 100m×100m grid (340500, 674200). 2 

 ailway trac s 
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 1 
FIGURE 4: Violin plot of the average lateral and vertical track movements for every 10-m 2 

section of the example track. 3 

 4 

Based on the calculation results, Figure 5(a) and Figure 5(b) show the hotspots of significant 5 

lateral and vertical displacements of the left rail top, respectively. The color scale ranges from 6 

cooler colors like green, indicating relatively lower rates of movement, to warmer colors like 7 

yellow for moderate rates and red for higher rates. It needs to be noted that these heatmaps are 8 

based only on the absolute values of the calculated track movements.  9 

Further to the calculation of the track fixity parameters, we proceeded to integrate all the 10 

available data of the several selected factors influencing the track fixity to create a comprehensive 11 

data set for developing a prototype machine learning model capable of analyzing the movement of 12 

the rail heads.  13 

 14 

 15 
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 1 
(a) Lateral track movement 2 

 3 
(b) Vertical track movement 4 

FIGURE 5: Average track movement (mm per 10-meter length) of the top surface of rail 5 

head of the left rail in the Up direction (October 2019 vs. April 2020).  6 

 7 

 8 

 9 
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Prototype Predictive Model for the Region 1 

This subsection describes how we could develop a prototype model, which is capable of predicting 2 

the track movement under specific conditions, drawing on a comprehensive data set of recorded 3 

asset data, local operational factors, and a knowledge of the track design.  4 

 5 

Influencing Factors and Modelling 6 

For the data integration of influencing factors, we created a series of contiguous circular “buffer 7 

zones” overlaying the example trac , as illustrated in Figure 6. Each of the buffer zones represents 8 

a virtual area surrounding a specific section of the track, where we calculate the track movement 9 

and collect data of any factors that may influence the track fixity. The diameter of the buffer zone 10 

is equal to the length of the track section (or rather, the rail head), for which average track 11 

movement is calculated. This approach allows us to gather information on influencing factors and 12 

associate them with the track movement within the same designated buffer zone. For instance, in 13 

Figure 6, the green dots indicate the presence of overline bridges within each of the buffer zones. 14 

It should be noted that the buffer zones in Figure 6 have a diameter of 1 km, which is used for 15 

demonstration purposes only.  16 

 17 

 18 
FIGURE 6: Illustration of buffer zones and the presence of overline bridges on the example 19 

rail line. 20 

 21 

As mentioned in the methodology, our modelling trial in this case-study example was limited to 22 

nine factors, including curvature, cant, maximum allowable train axle load and speed, as well as 23 

the presence of overline bridges, underline bridges, retaining walls, tunnels, and stations. To create 24 

a prototype predicative tool for the track movement in this study, we trialed, a random forest (RF) 25 

model (35), considering only the nine factors.  26 

The RF model is one of the most popular machine learning methods used in many 27 

applications (36). We chose RF as a starting point from among various machine learning models 28 

due to its robustness and interpretability. In comparison to other models, the RF is less susceptible 29 

to overfitting and is capable of handling irrelevant factors in the data. Moreover, the output of an 30 

RF model can offer valuable insights into which factors are most important for making predictions. 31 

In essence, an RF model is an ensemble learning method that combines a set of decision tree 32 
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models (hereafter referred to as “trees”), each of which may have insufficient individual 1 

competence in using the same data for making predictions (37). More specifically, an RF model 2 

evaluates all the predictions made independently by its component trees and provides a 3 

comprehensive prediction result (38).  4 

Take for example the lateral displacement of the left rail top. Following consultation with 5 

Network Rail engineers, we categorized the displacement into five ranges, including “≤ −4.45 6 

mm”, “(−4.45 mm, −3.5 mm]”, “(−3.5 mm, −2.5 mm]”, “(−2.5 mm, 0.0 mm]” and “> 0.0 mm”. 7 

Note again that negative sign (−) indicates that the left rail top moves rightwards in the Up direction, 8 

and leftwards otherwise. The predicted class for a given case should correspond to the class with 9 

the highest probability across all the decision trees in the RF model. In this case-study example, a 10 

total of 6,792 valid cases of 10-m track movements were obtained; we shuffled and divided the 11 

data set into a training set of 5,433 cases and a test set of 1,359 cases. We trained a commonly 12 

used RF classifier on the training set using a Python package, scikit-learn (39), considering 13 

different numbers of individual trees (i.e., 50, 150, 200, 250, 300, and 350) and different maximum 14 

allowed depths of the trees (i.e., 5, 10, 15, 20, 25, and 30). Through an exhaustive search from 15 

different combinations of the two sets of values, we identified the best RF model on the training 16 

set, which was formed of 300 decision trees, each with a maximum allowed depth of 15. This 17 

model was based on 5-fold cross validation.  18 

 19 

Results 20 

The results from the trained RF model presented valuable evidence of the relative importance of 21 

the identified factors on predicting track fixity, which could be used to better understand how much 22 

impact these factors would have on the track fixity and hence the prediction of future track 23 

movement.  24 

To get the overall performance of the RF model in predicting the lateral track movement, 25 

Figure 7 shows a confusion matrix on a set of test data. It illustrates a comparison between the 26 

predicted values of the model with the actual values of the test data. For instance, the model 27 

predicted that the lateral displacement of 255 10-m left-rail-top section fell within the range of 28 

(−4.45 mm, −3.5 mm], which was consistent with their corresponding calculated values. Due to 29 

limited data availability, the model's absolute accuracy is only around 50% overall. However, the 30 

confusion matrix shows that most cases are centered around the diagonal, indicating that the 31 

model’s predictions of lateral displacements are largely consistent with the calculated track 32 

movements. The output of the trained RF model demonstrates good predictive capability and 33 

shows that the proposed computing framework has enormous potential as a tool for predicting and 34 

further exploring the sensitivity of the factors influencing track fixity.  35 
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 1 

 2 
FIGURE 7: Confusion matrix on the test data set. 3 

 4 

The importance of the different influencing factors (relative to all the others) being considered in 5 

the RF model is presented in Table 1, where the values associated with the different factors sum 6 

to one. The table is sorted in the descending order of the importance values; the higher the value, 7 

the more significant the impact that the corresponding factor can exert on the track fixity in the 8 

lateral plane.  9 

 10 

TABLE 1: Relative importance of factors influencing the track fixity. 11 

Factor Relative importance 

Curvature 0.3887 

Cant 0.3725 

Maximum speed 0.2016 

Presence of underline bridges 0.0095 

Presence of overline bridges 0.0073 

Maximum axle load 0.0067 

Presence of retaining walls 0.0060 

Presence of tunnels 0.0058 

Presence of stations 0.0019 

 12 

As expected, curvature and cant proved to be the most important among all that were considered 13 

in the model. Besides the track geometry, axle load and train speed would also be expected to 14 

significantly impact track fixity (33). In terms of the presence of structures, track fixity of ballasted 15 

track can be more vulnerable to movement than fixed structures such as retaining walls and tunnels 16 

that may offer a greater degree of track bed stability. Track sections within station areas are much 17 

less likely to suffer from fixity issues given much slower train speeds and lack of track curvature.  18 
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In summary, the integrated computing framework in the current phase of this study allows for high 1 

flexibility for further development with more, adequate data across the railway network. There 2 

remains, however, a need for trialing and validating the data model in different areas of the railway 3 

network to help further refine the methodology.  4 

 5 

 6 

CONCLUSION AND DISCUSSIONS 7 

This paper presents a pilot study that seeks to design the most comprehensive integrated computing 8 

framework to date for track fixity in the context of the UK’s railway system, allowing for a step 9 

change in temporal and spatial resolution of understanding profile-specific track fixity. Although 10 

it is currently in the prototype stage, the design of the data flow pipeline enables it to gather, 11 

process and combine as much relevant information as possible to track fixity. With the established 12 

workflow, we propose a new metric for assigning track fixity values to a given track profile in 13 

terms of its movement relative to the plane of rail within a given period. A random forest model 14 

was trialed to predict future movement of the track. The prototype framework has demonstrated 15 

its capability of predicting track movement with an engineering acceptable confidence level, with 16 

most movements classified either in the predefined ranges or within a single bin width of the true 17 

value (based on calculation with point cloud data). There is thus a potential of using the framework 18 

to explore the sensitivity of track fixity to the factors affecting it and calculate future track fixity 19 

for new structures. Also, the prediction model developed from this research is highly adaptable in 20 

different contexts, given the availability of similar data resources of the factors that the model 21 

accounts for.  22 

However, it is recognized there are three main limitations in this pilot study. Firstly, the 23 

calculation of track movement was based only on 3D geographical coordinates of rail head position, 24 

which were made available in the form of point cloud data. However, errors generated from data 25 

collection, as well as that in the data collected at different times, are unavoidable, notwithstanding 26 

the same geographical coordinate system. While the actual track movement is mostly within a few 27 

millimeters, it can possibly be even smaller than the errors in the measurement at the same point. 28 

Arguably, on the one hand, the errors can depend largely on the technology used for collecting the 29 

data; on the other hand, it also needs to be noted that the development of the prediction model was 30 

not intended for predicting the precise movement but the movement within a predefined set of 31 

displacement ranges, into which the movement would be most likely to fall. Whether the errors in 32 

the measurements could be fully contained within the predefined range would be worth further 33 

investigation for a specific data collection technology. Secondly, the data integration for the model 34 

development relies heavily on mapping heterogeneous information (about the factors influencing 35 

track movement) onto a same geographical system. Due to a deficiency of accurate location 36 

referencing data, it was not possible to consider all influencing factors in the prototype model. 37 

Thirdly, data was only available from two time periods (October 2019 and April 2020). Therefore, 38 

to further the development of the framework, the following issues should be addressed:  39 

1) Improving the quality of reference data across various location identifiers in different data 40 

resources.  41 

2) The comprehensive data set should be extended to include additional line sections with 42 

differing reference curves and speed profiles. In this way, it will become possible to test 43 

the potential of the model in a more general context, and to begin to a) determine what and 44 

how many prediction models would need to be trained to obtain national coverage, and b) 45 
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investigate the trade-off between the type and number of models and the individual 1 

discriminatory power of each instance. 2 

3) Using data from additional measurement campaigns to enable the existing model to be 3 

further developed, leading to improved accuracy and greater confidence in the results 4 

produced by the model. 5 

4) To look ahead in a longer term, would require a more harmonized and unified data 6 

codification system across the rail industry to accelerate the further development of the 7 

proposed framework and the implementation of a full-fledged, automated computing 8 

platform to be integrated into the railway track system.  9 

 10 
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