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Ivanov introduced the shape of a Majorana algebra as a 
record of the 2-generated subalgebras arising in that algebra. 
As a broad generalisation of this concept and to free it 
from the ambient algebra, we introduce the concept of an 
axet and shapes on an axet. A shape can be viewed as an 
algebra version of a group amalgam. Just like an amalgam, 
a shape leads to a unique algebra completion which may be 
non-trivial or it may collapse. Then for a natural family of 
shapes of generalised Monster type we classify all completion 
algebras and discover that a great majority of them collapse, 
confirming the observations made in an earlier paper [12].
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Axial algebras are a class of non-associative algebras which have a strong link to 
groups. The motivating example is the Griess algebra whose axial behaviour was noticed 
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in the context of vertex operator algebras arising in quantum physics. Recently examples 
of axial algebras have been found in other areas of mathematics and beyond. One such 
example is the class of Hsiang algebras in the theory of non-linear PDEs [18]. Axial 
behaviour is also speculated by Fox in the algebras of vector flows on manifolds [2].

An axial algebra is generated by a set of special elements called axes. One way to 
describe the structure of an axial algebra is by its shape which identifies for each pair of 
axes the 2-generated subalgebra they generate. The Miyamoto group, which is a group 
of automorphisms naturally associated with the algebra, acts by permuting the set of 
axes X, and conjugate pairs of axes must generate isomorphic subalgebras. So the shape 
is consistent with respect to the action of the Miyamoto group. On the other hand, 
given a group G acting on a set X and a consistent choice S of subalgebras to pairs of 
elements from X, we can ask whether there is some algebra with X as axes, G as its 
Miyamoto group, and shape S. This is analogous to group amalgams where an amalgam 
is a configuration of groups and we ask whether there is a group (called a completion) 
which contains this configuration.

Shapes were first introduced for Majorana algebras by Ivanov in [10]. Initially, Majo-
rana algebras were constructed for small hand-picked groups of interest and there would 
normally be one algebra for each shape. However, in a recent project [12], where we 
systematically looked at all groups in a naturally defined class and all possible shapes, it 
transpired that the overwhelming majority of shapes collapse. That is, there is no non-
trivial axial algebra with that shape. In fact, there we had over 11, 000 shapes and only 
about a hundred did not collapse. In [12], we proposed a practical solution for how to 
eliminate collapsing shapes quickly. Namely, we identified a number of specific small col-
lapsing shapes that frequently appear as subshapes of larger shapes, causing those larger 
shapes to collapse too. We call these small collapsing shapes forbidden configurations.

This revelation means that the structure of an axial algebra for a given shape is far 
more restricted than one might otherwise think. So we have the two following theoretical 
problems, the first of which was posed in [12].

Problem.

(1) What natural conditions or additional axioms can we impose on the shapes to ensure 
that they lead to non-trivial algebras?

(2) For a given shape, can we classify the non-trivial axial algebras with this shape?

In this paper, we set this programme of investigation in motion. We have two main 
themes. First we introduce axets which axiomatise the notion of a set of axes together 
with the Miyamoto group. This allows us to formalise shapes and talk about their com-
pletions in a rigorous way. Secondly, we generalise some small collapsing shapes found in 
[12] specifically for algebras of type M(1

4 , 
1
32 ) to whole families of shapes for arbitrary 

algebras of Monster type M(α, β). Furthermore, we classify all the completions, showing 
that these are non-trivial only in very specific exceptional situations. Our result is the 



60 J. McInroy, S. Shpectorov / Journal of Algebra 627 (2023) 58–105
first ever classification of a family of axial algebras of Monster type M(α, β) outside the 
2-generated case.

As already mentioned, axets abstract the notion of a set of axes. In an axial algebra, 
axes are semisimple idempotents whose eigenvectors multiply according to a so-called 
fusion law. Whenever this fusion law is T -graded by a group T , we have a natural map 
τ : X × T ∗ → Aut(A) (the Miyamoto map) which associates to each axis a ∈ X a 
subgroup of automorphisms Ta = {τa(χ) : χ ∈ T ∗}. (Here T ∗ is the group of linear 
characters of T .) The Miyamoto group Miy(X) is generated by all the Ta, a ∈ X. In the 
algebra, automorphisms take axes to axes and so the Miyamoto group Miy(X) acts on 
X.

We introduce an S-axet as a G-set X, together with a Miyamoto map τ : X×S → G, 
for some abelian group S, which satisfies analogous properties to that of a set of axes. 
The Miyamoto group of the axet is the subgroup of G generated by the image of τ . So 
every axial algebra A involves an axet X(A) given by the action of Miy(X) on the set 
of axes X, but now we can talk about an axet without an ambient axial algebra.

In addition to introducing axets, we also introduce morphisms between axets, i.e. 
natural maps. Thus, we define the category S-Axet of axets. In particular, this gives 
us isomorphisms of axets and so we can classify them up to isomorphism. We note 
that our concept of isomorphism of axets does not require an isomorphism between 
the corresponding groups G. Essentially, two axets are isomorphic if the action of their 
Miyamoto groups is the same.

We also develop the basic theory for general morphisms of axets, including subax-
ets, factor axets and versions of the First Isomorphism Theorem and Correspondence 
Theorem for axets.

We are particularly interested in axial algebras with a fusion law which is C2-graded 
(such as the fusion law for the Griess algebra and the generalised Monster fusion law 
M(α, β)), so here we focus on C2-axets. One example of a C2-axet is X(n) of size n (we 
allow n = ∞) whose G-action is given by the action of the dihedral group D2n on the 
n-gon. We identify an entirely new example X ′(3k) given by gluing two (dual) copies of 
X(2k), one of which has been ‘folded’. This is isomorphic to a factor axet of X(4k).

Even though an axet is just a combinatorial group-theoretic object, it still carries 
much information about axial algebras. In particular, we have the following.

Theorem 1.1. A 2-generated C2-axet is isomorphic to either

(1) X(n), or
(2) X ′(n), where n = 3k, k ∈ N.

In X(n), there is either one orbit of axes, or two orbits of axes each of length n
2 . 

However, in X ′(3k), there are two orbits, one of length k and the other of length 2k. 
We call the first type regular and the second skew. Almost all 2-generated axial algebras 
currently known have a regular axet. However, very recently and after the initial version 
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of this article appeared on the arXiv, the first examples of algebras with a skew axet (for 
k = 1 only) have been found by Turner.

Question 1.2. Do there exist 2-generated axial algebras of Monster type M(α, β) with a 
skew axet X ′(3k) for k > 1? Can one classify all such algebras?

A 2-generated axial algebra A, generated by axes a and b, is symmetric if there exists 
an involutory automorphism ϕ of A switching a and b. In the symmetric case, the orbits 
of a and b under the action of the Miyamoto group have equal size and so the axet must 
be regular. The symmetric 2-generated algebras of Monster type have been classified 
recently by Yabe [19], with some cases completed by Franchi and Mainardis [3] and by 
Franchi, Mainardis and McInroy in [4]. By the above, a skew axet can only occur in the 
non-symmetric case and the classification of such 2-generated algebras of Monster type 
remains an open problem.

In this paper, we are interested in classifying shapes on small axets. So it is natural to 
first consider 3-generated axets. However, even this is too broad without assuming extra 
conditions (indeed, any normal set of involutions in a group leads to a C2-axet and there 
are infinitely many groups generated by three involutions). We explore 3-generated axets 
X with one orbit under its Miyamoto group being a single axis {a} and the remainder 
X−{a} forming a second orbit. We find two families of examples and prove the following.

Proposition 1.3. Let X be a 3-generated axet with two orbits under its Miyamoto group 
{a} and X − {a}. Then X is isomorphic to either

(1) X1(1 + n), n ≥ 3 finite and odd, or
(2) X2(1 + n), where n = 2k and k odd.

Of these, the first family is regular and the second is skew.
Having laid the foundations by defining axets, we can now define shapes. Roughly 

speaking, for a fusion law F , a shape Θ on an axet X is a coherent assignment of a 
2-generated F-axial algebra AY to every 2-generated subaxet Y ⊂ X. Hence shapes are 
similar to group amalgams.

A morphism of shapes is a morphism of the underlying axets which induces an algebra 
homomorphism on the algebras AY in a consistent way. Thus we also get a category of 
shapes. We say that an algebra A is a completion of Θ if there is a surjective morphism 
of shapes from Θ to the shape Θ(A) of the algebra A. A shape collapses if it does not 
have any completions.

Our second main theme is classifying shapes, particularly those which collapse. We 
are most interested in the generalised Monster fusion law M(α, β), which is C2-graded. 
All previous collapsing examples were obtained computationally as individual ad-hoc 
examples for the M(1

4 , 
1
32 ) fusion law (which the Griess algebra satisfies), whereas here 

we exhibit families of collapsing examples in the class of M(α, β)-axial algebras.
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We begin by considering a 3-generated axet X with a fixed axis {a} as described 
above. Since almost all known 2-generated algebras for M(α, β) are regular, we only 
consider X1(1 + n), which is regular. As {a} is a single orbit, τa acts trivially on X
and so a has no β-part in any completion A. This means we can define an additional 
automorphism σa which inverts the α-eigenspace of a. By studying the action of σa on 
any completion A, we prove a powerful reduction statement (Proposition 6.1). Roughly 
speaking, we have two cases: either σa = 1, in which case we get a direct sum of algebras, 
or σa �= 1. In this latter case, we show that we have a 2-generated subalgebra B with 
axet X(2n), which is symmetric and in almost all cases B = A. Moreover, a ∈ B and σa

switches the two orbits of axes in B. We call this property (J).
Combining our reduction result and the classification of symmetric 2-generated 

M(α, β)-axial algebras, we are left only to check which of these 2-generated algebras 
have a finite axet and which have property (J). It is known in folklore that algebras of 
Jordan type β = 1

2 (which are also algebras of Monster type (α, 12)) generically have an 
infinite axet, but it can be finite for some parameters. We make this precise in Subsection 
5.2. Since Yabe’s classification is very recent, such behaviour for other families has not 
been studied yet; we determine in Section 7 the axets arising in the symmetric algebras. 
This is done case by case and the resulting statements are quite technical. We mention 
here a consequence that is quite unexpected.1

Theorem 1.4. For any n ∈ N ∪{∞}, there exists a symmetric 2-generated M(α, β)-axial 
algebra with axet X(n).

Most of the families of algebras of Monster type M(α, β) have a fixed finite axet. 
However, two of the families generically have an infinite axet, but we list all values of 
the parameter where the axet is finite. The result for quotients of the Highwater algebra 
follows from [4]. We explore other properties of these algebras in Section 7, including 
property (J).

Writing J 2(α) for the set of 2-generated axial algebras of Jordan type α, we have the 
following (for a more precise version see Theorem 8.1).

Theorem 1.5. Let X = 〈a, b, c〉 ∼= X1(1 + n), n ≥ 3 odd, be a 3-generated axet, where a
is the fixed axis, and let Y = 〈a, b〉 and Z = X − {a}. Suppose that Θ is a shape on X
for M(α, β) and A is a completion. Then

(1) If σa = 1, then AY
∼= 2B and A = 1A ⊕AZ .

(2) If σa �= 1, then AY ∈ J 2(α) − {2B} and either

(a) A belongs to one of five families of symmetric 2-generated algebra with axet 
X(2n), or

1 In a sense, this already follows from results from [16] and [4] (see Theorem 7.15), but it was not stated 
in this form.
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(b) (α, β) = (1
2 , 2) and A ∼= Bar0,1(1

2 , 2).

In Theorem 8.1, we give the full list of possible algebras for AZ in case 1 and the 
five families in case 2, as well as a description of the 3-generated exception Bar0,1(1

2 , 2), 
which is a baric algebra.

The structure of the paper is as follows. In Section 2, we briefly review the background 
for axial algebras and their Miyamoto groups and discuss the structure of their ideals. 
The first main topic of this paper, axets, is introduced in Section 3. We focus on C2-
axets, classifying 2-generated axets and 3-generated axets with a fixed axis under the 
action of the Miyamoto group. In Section 4, we introduce shapes for axets. We review 
2-generated axial algebras of Jordan type and M(α, β) type in Section 5. In particular, 
some of the details we need about their ideals, quotients and axets have not appeared 
before. Our reduction theorem for shapes on X1(1 + n) is the subject of Section 6. We 
explore 2-generated axial algebras of Monster type M(α, β) in Section 7, in particular 
classifying their axets and whether they have property (J). Finally, in Section 8, we 
combine these to prove our main theorem.

The work of the second author was partially supported by the Mathematical Center 
in Akademgorodok under agreement No. 075-15-2019-1675 with the Ministry of Science 
and Higher Education of the Russian Federation.

We would like to thank the anonymous referee for their very useful comments.

2. Background

2.1. Axial algebras

We give brief details here introducing axial algebras; for a full account see [13].

Definition 2.1. Let F be a field. A fusion law is a set F ⊂ F together with a symmetric 
binary map � : F × F → 2F .

We represent a fusion law in a table, similar to a group multiplication table. In this, 
we drop the set notation in each cell and simply list the elements of λ � μ, for λ, μ ∈ F .

Let A be a commutative algebra over F and a ∈ A. By ada we denote the adjoint 
map with respect to a and by Aλ(a) we denote the λ-eigenspace of ada (if λ is not an 
eigenvalue, then Aλ = 0). We will also write AS(a) =

⊕
λ∈S Aλ(a) where S ⊂ F .

Definition 2.2. Let F be a fusion law. A commutative algebra A over F together with a 
distinguished subset of elements X is an F-axial algebra if

(1) A is generated by X;
(2) for each a ∈ X,
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1 0 η

1 1 η

0 0 η

η η η 1, 0

1 0 α β

1 1 α β

0 0 α β

α α α 1, 0 β

β β β β 1, 0, α

Fig. 1. Fusion laws J (η), and M(α, β).

(a) a is an idempotent;
(b) a is semisimple, namely A = AF =

⊕
λ∈F Aλ(a);

(c) for all λ, μ ∈ F , Aλ(a)Aμ(a) ⊆ Aλ�μ(a).

The elements of X are called F-axes and for 2(c) we say that a satisfies the fusion 
law F . Where F is obvious from context, we drop it and just say axes and axial algebra. 
Similarly, if a is obvious, we write Aλ for Aλ(a). Where X is understood, we will simply 
refer to A as an axial algebra with X being implicit.

We are particularly interested in axial algebras with the fusion laws in Fig. 1. We say 
an axial algebra is of Jordan type η if it has the Jordan fusion law J (η), for η �= 1, 0, 
and is of Monster type (α, β) if it has the Monster fusion law M(α, β), for α, β �= 1, 0, 
α �= β. Similarly, we say that an axis is of Jordan type, or Monster type if it obeys the 
Jordan, or Monster fusion law, respectively.

Note that a ∈ A1, so we will always assume that 1 ∈ F .

Definition 2.3. An axis a is primitive if A1 = 〈a〉 is 1-dimensional and A is primitive if 
all axes in X are primitive.

In the primitive case, we may assume that 1 � λ ⊆ {λ} and we have equality if and 
only if λ �= 0. We say that the fusion law is Seress if 0 ∈ F and 0 �λ ⊆ {λ} for all λ ∈ F . 
In this case, we have the following partial associativity result.

Lemma 2.4 (Seress Lemma). [7, Proposition 3.9] If F is Seress, then an axis a associates 
with A{1,0}(a). That is, for x ∈ A and y ∈ A{1,0}(a),

a(xy) = (ax)y.

Axial algebras can also have a bilinear form which associates with the algebra product.

Definition 2.5. Let A be an axial algebra. A Frobenius form is a bilinear form (·, ·) : A ×
A → F such that, for all a, b, c ∈ A,

(a, bc) = (ab, c).

Note that a Frobenius form is necessarily symmetric.
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2.2. Gradings and automorphisms

Definition 2.6. Let F be a fusion law and T be a group. A T -grading is a map f : F → T

such that

f(λ)f(μ) = f(ν)

for all λ, μ ∈ F and all ν ∈ λ � μ.

This definition is in the same style as the one given for decomposition algebras in [1]. 
Note that this definition is equivalent to the one given in [13].

Definition 2.7. Let A be an axial algebra with a T -graded fusion law F and T ∗ be the 
group of linear characters of T over F . The Miyamoto map τ : X × T ∗ → Aut(A) sends 
the pair (a, χ) to the automorphism τa(χ) : A → A given by

v �→ χ(f(λ))v

for each λ ∈ F and v ∈ Aλ(a).

We call τa(χ) a Miyamoto automorphism and Ta := 〈τa(χ) : χ ∈ T ∗〉 the axial 
subgroup of a. When F is C2-graded and F does not have characteristic 2, there is only 
one non-trivial character, χ−1, and we write τa = τa(χ−1).

Definition 2.8. The Miyamoto group is the group

Miy(X) := 〈Ta : a ∈ X〉 ≤ Aut(A).

An automorphism g ∈ Aut(A) takes an axis a ∈ X to another axis, possibly outside 
X. We say that X is closed if it is closed under the action of its Miyamoto group 
Miy(X). If X̄ := XMiy(X), then Miy(X̄) = Miy(X) and X̄ is closed. Whenever we have 
a graded fusion law, we will typically assume that X is closed. We will also consider 
proper subsets Y ⊂ X, using the notation Miy(Y ) and Ȳ = Y Miy(Y ) and saying that Y
is closed if Y = Ȳ .

2.3. Ideals

The structure of ideals of axial algebras was studied in [13].
First, observe that an ideal I is invariant under multiplication by an axis a, so the 

axis must be semisimple when restricted to I. That is, I is a direct sum of eigenspaces 
for ada|I.

Lemma 2.9. [13, Corollary 3.11] Every ideal of an axial algebra A is invariant under the 
action of the Miyamoto group Miy(X).
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Ideals in an axial algebra can be understood by naturally splitting them into two 
classes: those which contain an axis and those which do not contain any axes.

Definition 2.10. The radical R(A, X) of an axial algebra A = 〈 〈X〉 〉 is the unique largest 
ideal of A containing no axes.

For axial algebras with a Frobenius form, the following allows us to easily identify the 
radical.

Theorem 2.11. [13, Theorem 4.9] Let A be a primitive axial algebra with a Frobenius 
form. Then the radical A⊥ of the Frobenius form coincides with the radical R(A, X) if 
and only if (a, a) �= 0 for all a ∈ X.

We now turn to ideals which do contain an axis. Let a, b ∈ X. Since b is semisimple, 
we may decompose a =

∑
λ∈F aλ, where aλ ∈ Aλ(b). If A is primitive, then a1 is a scalar 

multiple of b and we call a1 the projection of a onto b.

Definition 2.12. Let A be a primitive axial algebra. The projection graph Γ is a directed 
graph with vertex set X and a directed edge from a to b if the projection a1 of a onto b
is non-zero.

Lemma 2.13. [13, Lemma 4.14] Let A be a primitive axial algebra with projection graph 
Γ and I �A. Suppose that a ∈ I. If there exists a directed path from a to another axis b, 
then b ∈ I.

Definition 2.14. [13, Lemma 4.17] Let A be a primitive axial algebra with a Frobenius 
form such that (a, a) �= 0 for all a ∈ X. Then the projection graph Γ is an undirected 
graph with an edge from a to b if and only if (a, b) �= 0.

In light of the above, we see that for an axial algebra with a Frobenius form which 
is non-zero on the axes, the ideals of A containing axes are given by sums of connected 
components of the projection graph. In particular, if the projection graph is connected, 
then there does not exist a proper ideal which contains an axis.

3. Axets

The concept of an axet is new and it formalises a closed set of axes together with its 
Miyamoto group. Some of the ideas in this section appeared implicitly in [14].

3.1. Axets

Definition 3.1. Let S be a group. An S-axet (G, X, τ) consists of a group G and a G-set 
X (i.e. G acts on X) together with a Miyamoto map τ : X × S → G (we write τx(s) for 
τ(x, s)) satisfying, for all x ∈ X, s, s′ ∈ S, and g ∈ G:
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(1) τx(s) ∈ Gx;
(2) τx(ss′) = τx(s)τx(s′); and
(3) τxg(s) = τx(s)g.

By an abuse of terminology, we may talk about the axet X, when S, G and τ are 
assumed or clear from context.

We call the elements of X axes. The first two properties above mean that τx is a 
homomorphism from S to the stabiliser Gx of the axis x. The third property ties the 
action on X to conjugation in G. More precisely it says that, for a fixed s ∈ S, the map 
x �→ τx(s) is G-equivariant.

Example 3.2. Let A be an axial algebra for a T -graded fusion law F and consider a 
closed subset of axes Y ⊆ X. Define G to be the setwise stabiliser of Y in Aut(A). Then, 
(G, Y, τ) is a T ∗-axet. When Y = X, we call it the axet of A and write X = X(A).

The following examples show that axets are plentiful.

Example 3.3. Let S = 〈s〉 ∼= C2.

(1) Suppose G is a group and let X be a normal set of involutions in G. We define 
τ : X × S → G by τx(1) = 1 and τx(s) = x, for all x ∈ X. Then X is a C2-axet.

(2) Suppose Φ is a root system and let G = W be its Weyl group. Let X = {{α, −α} :
α ∈ Φ} and define τx(s) to be the reflection in the root α, where x = {α, −α} and 
τx(1) = 1. Then X is a C2-axet. In fact this example is just a more combinatorial 
description of the set of reflections X in the Weyl group W .

Lemma 3.4. Let x, y ∈ X.

(1) If x and y are in the same G-orbit, then the homomorphisms τx and τy have a 
common kernel.

(2) The image Im(τx) is in the centre of Gx.

Proof. For the first claim, let g ∈ G be such that xg = y. If s ∈ ker(τx) then τy(s) =
τxg(s) = τx(s)g = 1g = 1. So ker(τx) ≤ ker(τy) and, by symmetry, we have equality.

Turning to the second claim, if g ∈ Gx and s ∈ S then τx(s)g = τxg(s) = τx(s). So 
τx(s) ∈ Z(Gx) for each s ∈ S. �

As a consequence of the second claim, the derived subgroup [S, S] is in the kernel of 
τx for all x ∈ X. Because of this, we may assume that S is abelian. In the context of 
axial algebras, S = T ∗ is the group of linear characters of the grading group T of the 
fusion law. So S is automatically abelian.

Definition 3.5. Suppose (G, X, τ) is an S-axet.
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(1) The subgroup Tx := Im(τx) ≤ G is the axial subgroup corresponding to the axis x.
(2) The Miyamoto group of the axet X is the subgroup

Miy(X) = 〈Tx : x ∈ X〉 ≤ G.

For the example of an axial algebra A in Example 3.2, the Miyamoto group of its axet 
X is the Miyamoto group of the axial algebra. Note that, just as the Miyamoto group 
of an axial algebra is not necessarily its full automorphism group, the Miyamoto group 
of an axet X can be a proper subgroup of G.

Lemma 3.6.

(1) If g ∈ G and x ∈ X then T g
x = Txg.

(2) The Miyamoto group Miy(X) is a normal subgroup of G.

Proof. The first claim follows from the last axiom of axets, and the second claim follows 
from the first one. �

Note that G is not assumed to act faithfully on X. We call an axet faithful when the 
G-set in it is faithful.

Lemma 3.7. Let π : G → Sym(X) be the action of G on X. Then K = ker(π) centralises 
Miy(X). In particular, the kernel Miy(X) ∩K of Miy(X) acting on X is in the centre 
of Miy(X).

Proof. If g ∈ K then g is contained in each axis stabilizer Gx, which means, by 
Lemma 3.4, that g centralises each axial subgroup Tx. �

So if we define Ḡ = Im(π), X̄ := X and τ̄ = π ◦ τ , then (Ḡ, X̄, ̄τ) is an S-axet which 
is faithful. However, the group Ḡ may still have some automorphisms which are not in 
Miy(X̄) = Miy(X), so we want to define an even smaller axet.

Definition 3.8. Suppose (G, X, τ) is an S-axet and let π : G → Sym(X) be the action of 
G on X. Then (Miy(X), X̄, ̄τ) is an S-axet, which we call the core of the axet (G, X, τ).

We define the action Miyamoto group AMiy(X) := Miy(X). Clearly, AMiy(X) ∼=
Miy(X)/(Miy(X) ∩K), where, as above, K is the kernel of the action π of G on X. In 
other words, Miy(X) is an extension of AMiy(X) and according to Lemma 3.7, it is in 
fact a central extension.

We now turn to subaxets.

Definition 3.9. Suppose (G, X, τ) is an S-axet. A subset Y ⊆ X is closed if Y is invariant 
under each axial subgroup Ty, y ∈ Y .



J. McInroy, S. Shpectorov / Journal of Algebra 627 (2023) 58–105 69
It is easy to see that the intersection of closed subsets is itself closed. This allows us 
to introduce, for a subset Y ⊆ X, its closure 〈Y 〉 as the smallest closed subset containing 
Y . (We note that Y is closed if and only if Y = 〈Y 〉.) We will also say that Y generates
〈Y 〉 and that 〈Y 〉 is k-generated if it is generated by a set of axes Y of cardinality k.

Definition 3.10. A subaxet (H, Y, σ) of the axet (G, X, τ) consists of a closed subset 
Y ⊆ X, its set-wise stabiliser H = GY , and the map σ, which is the restriction of τ to 
the set Y × S.

Note that since Y is closed, the axial subgroup Ty is contained in H for each y ∈ Y . 
So (H, Y, σ) is indeed an S-axet. Correspondingly, we can talk about Miy(Y ), AMiy(Y )
and the core of Y . For the example of an axial algebra A in Example 3.2, if B is a sub 
axial algebra with a closed set of axes Y , then (H, Y, σ) is indeed a subaxet of X.

Our aim is to define the category of axets. One way is to define a morphism of S-axets 
(G, X, τ) and (G′, X ′, τ ′) as a pair of maps (ϕ, ψ), where ϕ : G → G′ is a homomorphism 
and ψ : X → X ′ is a map, such that the natural consistency conditions on the action 
and Miyamoto map are satisfied. However, as it turns out, this concept is too restrictive 
and often a natural map ψ between the two sets of axes has no corresponding group 
homomorphism ϕ. Because of this, we opt for a weaker concept that better suits our 
needs.

Definition 3.11. For S-axets (G, X, τ) and (G′, X ′, τ ′), a morphism from X to X ′ is a 
map of sets ψ : X → X ′ such that for all x, y ∈ X and s ∈ S,

ψ(yτx(s)) = ψ(y)τ ′ψ(x)(s).

It is immediate that the composition of two morphisms is again a morphism. So we 
indeed have a category of S-axets, denoted S-Axet. In the remainder of this subsection, 
we investigate this category, specifically the morphisms, in more detail.

Firstly, let us identify the isomorphisms, i.e. invertible morphisms.

Proposition 3.12. If a morphism ψ : X → X ′ is bijective then ψ−1 : X ′ → X is also a 
morphism of axets.

Proof. We need to show that, for all x′, y′ ∈ X ′ and all s ∈ S, we have that 
ψ−1((y′)τ ′x′(s)) = ψ−1(y′)τψ−1(x′)(s). Let x = ψ−1(x′) and y = ψ−1(y′) (that is, 
x′ = ψ(x) and y′ = ψ(y)). Since ψ is a morphism, we have ψ(y)τ ′ψ(x)(s) = ψ(yτx(s)). 
Applying ψ−1 to both sides of this equality, we obtain ψ−1(ψ(y)τ ′ψ(x)(s)) = yτx(s), which 
is exactly the condition we require. �

Thus, isomorphisms are just bijective morphisms. As usual, we try to classify axets 
up to isomorphism. In this context, let us mention the following fact.
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Proposition 3.13. Every axet is isomorphic to its core.

The required isomorphism is simply the identity map. This proposition justifies our 
introduction of the core axet, which serves as a canonical version of the axet.

Our next task is to develop the structure theory of axet morphisms similar to the 
First Isomorphism Theorem for groups. We begin by discussing congruences on axets.

Definition 3.14. Suppose (G, X, τ) is an S-axet. A congruence ∼ on X is an equivalence 
relation on X such that if x ∼ y and z ∼ w then xτz(s) ∼ yτw(s) for x, y, z, w ∈ X and 
all s ∈ S.

We will use [x] for the congruence class of x ∈ X. Note the following properties of 
congruences.

Lemma 3.15. Suppose ∼ is a congruence on an S-axet (G, X, τ). Then

(1) ∼ is invariant under the action of Miy(X), i.e. x ∼ y if and only if xg ∼ yg for 
x, y ∈ X and g ∈ Miy(X); consequently, Miy(X) acts on the set of congruence 
classes X/ ∼ via [x]g = [xg];

(2) if z ∼ w then the action of τz(s) and τw(s) on the set of congruence classes X/ ∼ is 
the same.

Proof. It suffices to show that ∼ is invariant under g = τz(s) for all z ∈ X and s ∈ S. 
Suppose x ∼ y for some x, y ∈ X and set x′ = xτz(s) and y′ = yτz(s). The congruence 
condition taken with w = z gives us that xτz(s) ∼ yτz(s), i.e. x′ ∼ y′. Conversely, suppose 
that x′ ∼ y′. We again use the congruence condition, this time with τz(s−1) = τz(s)−1

to get that x = x′τz(s−1) ∼ y′τz(s−1) = y.
For the second part, let z ∼ w. Since x ∼ x, we can write xτz(s) ∼ xτw(s). Therefore, 

[x]τz(s) = [x]τw(s) for all s ∈ S. �
These properties show that the following concept is well-defined.

Definition 3.16. The factor axet X/ ∼ is the axet (Ḡ, X̄, ̄τ), where X̄ = X/ ∼ is the set of 
congruence classes of ∼, Ḡ is the group induced by Miy(X) acting on X̄, and τ̄[x](s) ∈ Ḡ

is the permutation of X̄ induced by τx(s).

Note that the factor axet immediately appears in its canonical core version as the 
group G here is the action Miyamoto group. We could in principle have defined the group 
part of the axet differently, taking a larger group. However, in view of Proposition 3.13, 
any other version of the factor axet would be isomorphic to the core version given above.

Theorem 3.17 (First Isomorphism Theorem). Suppose that we have a morphism of axets 
ψ : X → X ′. Then
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(1) the image ψ(X) is a subaxet of X ′;
(2) the equivalence x ∼ y given by ψ(x) = ψ(y) is a congruence on X; and
(3) ψ(X) ∼= X/ ∼.

Proof. Let x′, y′ ∈ ψ(X). Say, x′ = ψ(x) and y′ = ψ(y) for some x, y ∈ X. Then, 
y′τ ′x′(s) = ψ(y)τ ′ψ(x)(s) = ψ(yτx(s)), which is in ψ(X). So, ψ(X) is closed in X ′ and 
hence it is a subaxet, as claimed.

Let x ∼ y and z ∼ w. Then ψ(xτz(s)) = ψ(x)τ ′ψ(z)(s) = ψ(y)τ ′ψ(w)(s) = ψ(yτw(s))
and so xτz(s) ∼ yτw(s). Hence, ∼ is a congruence on X.

Finally, the congruence classes of ∼ are fibres of ψ and so we have a bijection ψ̄ between 
X̄ = X/ ∼ and Imψ. We just need to check that this bijection is a morphism. Let [x], [y] ∈
X̄. Then, ψ̄([y]τ̄[x](s)) = ψ̄([yτx(s)]) = ψ(yτx(s)) = ψ(y)τ ′ψ(x)(s) = ψ̄([y])τ ′

ψ̄([x])(s) and 

so the bijection ψ̄ is indeed an isomorphism. �
Let us now consider the groups involved. If ψ : X → X ′ is a morphism of axets, then 

it is also a isomorphism between the core of X and the core of the image axet ψ(X).

Proposition 3.18. Suppose (G, X, τ) and (G′, X ′, τ ′) are core axets and ψ : X → X ′ is a 
surjective morphism. Then, there exists a unique surjective homomorphism ϕ : G → G′

such that

ϕ(τx(s)) = τ ′ψ(x)(s)

for all x ∈ X, s ∈ S.

Proof. Let ∼ be the congruence associated with ψ, X̄ = X/ ∼ be the factor axet and let 
ψ̄ : X̄ → X ′ = ψ(X) be the isomorphism coming from the First Isomorphism Theorem. 
By Lemma 3.15, the group G = AMiy(X) has a natural action on X̄ given by [y]g = [yg]. 
Using the bijection ψ̄, we translate this action to X ′ to get y′g = ψ̄([y]g) = ψ̄([yg]), where 
[y] = ψ̄−1(y′), i.e. y′ = ψ(y). Hence, y′g = ψ(yg). We let ϕ : G → Sym(X ′) be the action 
homomorphism.

We claim that ϕ(G) = G′ and the condition in the proposition is satisfied. We check 
the action of ϕ(τx(s)) on y′:

ϕ(τx(s))(y′) = y′τx(s) = ψ(yτx(s)) = ψ(y)τ ′ψ(x)(s) = y′τ ′ψ(x)(s)

and hence ϕ(τx(s)) = τ ′ψ(x)(s) as claimed. Since G′ = AMiy(X ′), we immediately have 
that ϕ(G) = G′. �

As we can now see, there is in fact a correspondence between groups involved in an 
axet morphism. But this correspondence is a group homomorphism only when we deal 
with the action Miyamoto groups (the Miyamoto groups of the cores). In other situations, 
G is a central extension of the Miyamoto group, possibly with some extra automorphisms 
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on top. So this is why we cannot expect a group homomorphism to accompany a general 
axet morphism: the correspondence we get is more like an isogeny.

Let us now mention some additional properties of axet morphisms which lead to a 
correspondence theory for axets.

Proposition 3.19. Suppose that ψ : X → X ′ is a morphism of axets.

(1) For Z ⊆ X, we have that ψ(〈Z〉) = 〈ψ(Z)〉; i.e., ψ takes closed sets to closed sets.
(2) For Z ′ ⊆ X ′, we have ψ−1(〈Z ′〉) = 〈ψ−1(Z)〉; i.e., full preimages under ψ of closed 

sets are closed.

The proof of this is straightforward and in a large part repeats the previous arguments. 
As a corollary of (2), we have that every congruence class [x] is a subaxet of X as it is 
the preimage of the single point axet {ψ(x)} in X ′.

Let ψ : X → X ′ be a morphism and ∼ be the corresponding congruence. We say 
that a subaxet Y of X is complete with respect to the morphism ψ if, for every y ∈ Y , 
its full congruence class [y] with respect to ∼ is contained in Y . Note that a complete 
subaxet is just a union of congruence classes which form a subaxet in the factor axet. 
This immediately gives us the following.

Theorem 3.20 (Correspondence Theorem). Suppose that ψ : X → X ′ is a morphism of 
axets. There is a bijection between the set of complete subaxets of X and the subaxets of 
Imψ.

This is clearly very similar to the Correspondence Theorem for group homomorphisms. 
The later Theorem also contains a statement about the correspondence for normal sub-
groups. This can again be generalised for axets. We say that a congruence ≈ on X is a 
coarsening of ∼ if it is a coarsening of ∼ as an equivalence relation, i.e. if x ∼ y, then 
x ≈ y, for all x, y ∈ X. Then, the ‘normal correspondence’ in the case of axets states 
that the coarsenings of ∼ are in a natural bijection with the congruences of Imψ.

For the final topic of this subsection, let us discuss the orbits of G on X. Suppose 
that Y is one of the orbits. Then Y is closed and GY = G, so (G, Y, τ |Y×S) is a subaxet. 
In this way X decomposes as a union of disjoint subaxets corresponding to the orbits of 
G on X. Let us formalise this union operation as follows.

Definition 3.21. Suppose (G, Xi, τi), i ∈ I, are axets with the same group G. The union of 
these axets is the axet (G, X, τ), where X is the disjoint union of all Xi and τ , similarly, 
is the union of all maps τi.

Looking at Definition 3.1, it is easy to see that the union X is indeed an axet.
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3.2. 2-generated C2-axets

We are most interested in C2-axets and a natural place to start is to consider 2-
generated axets. Since S = C2, we will write τx for τx(s), where s is the generator of S, 
and say that τ is a map from X to G.

Suppose that X = 〈a, b〉 is a 2-generated C2-axet, where a �= b. Then, τa and τb have 
order at most 2 and hence Miy(X) is either trivial, C2, or a dihedral group D2n, or D∞.

Example 3.22.

(1) For a finite n ≥ 1, consider the action of G = D2n on the regular n-gon. Let 
X = X(n) be the set of all vertices of the n-gon; this has size n. We turn (G, X)
into a C2-axet by defining τx to be the generator of the stabiliser Gx

∼= C2 for each 
x ∈ X. We will call X the n-gonal axet.

(2) For the infinite case, G = D∞ acts transitively on X := X(∞) = Z. Set τx to be 
the reflection in x for each x ∈ X. We will call X the ∞-gonal axet, or the apeirogon 
axet.

From now on, the notation X(n) includes the case of n = ∞. Note that X(n) is faithful 
provided n ≥ 3. Let us record a few further facts about the action of the Miyamoto group 
on the axet X(n).

Lemma 3.23. Let X = X(n).

(1) If n is finite and odd, then Miy(X) = G = D2n is transitive on X.
(2) If n is finite and even, then Miy(X) ∼= Dn has index two in G = D2n and has two 

orbits of equal length n2 on X. If X = 〈a, b〉 for axes a, b ∈ X, then a and b are in 
different orbits.

(3) If n = ∞, then Miy(X) ∼= D∞ has index two in G = D∞ and it has two infinite 
orbits on X. Again, if X = 〈a, b〉, then a and b are in different orbits.2

We can consider the above examples to be vertex axets. In a similar way to above, 
we can define the edge axet X∗(n) which has as axes the edges of the n-gon with the 
natural action of D2n and for an edge e, τ∗e being the generator of the stabiliser of e. 
However, this is not a new axet as the edge axet is isomorphic (in a sense, dual) to the 
vertex axet.

If n is even or infinite, then the involutions in the image of τ∗ form a different (dual) 
class in G to those in the image of τ , and so the isomorphism between X∗(n) and X(n)
corresponds to an outer automorphism of G. If n is odd then X∗(n) is isomorphic to 

2 So in this context, infinity appears to be even!
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X(n) in a more direct way. Namely, the isomorphism ψ sends every edge to the opposite 
vertex and this corresponds to the identity automorphism of G.

We could have also defined an axet using vertices and edges, but in fact this does not 
give us a new axet. Indeed, what we get is the union of X(n) and its dual X∗(n), and 
this union is isomorphic to the 2n-gonal vertex axet X(2n).

Note that G acts transitively on X = X(n) and recall that it acts faithfully if and 
only if n ≥ 3. Also, by Lemma 3.23, Miy(X) = G if and only if n is odd. When n is 
even, or infinite, then Miy(X) ∼= Dn is of index 2 in G.

Lemma 3.24 (Folding Lemma). Let (G, X, τ) be an S-axet and suppose that ∼ is a congru-
ence on X with the additional condition that if x, x′ ∈ X with x ∼ x′, then τx(s) = τx′(s)
for all s ∈ S. Let X̃ = X/ ∼ be the set of equivalence classes and define τ̃ : X̃ × S → G

naturally. Then (G, X̃, ̃τ) is an S-axet and Miy(X̃) = Miy(X).

Clearly, X̃ is isomorphic to the factor axet X/ ∼. The map from this lemma will be 
referred to as the folding map and it is a surjective morphism from X to X̃.

Note that although we have the same group G for X and X̃, the kernel of the action 
may have increased by folding. Since the action of G on X̃ may not be faithful, X̃ is 
not the factor axet, but rather is isomorphic to it. Note that the folding map, being a 
morphism, preserves closure and generation.

When n is finite and even, we have a folding congruence on X(n). Indeed, we can 
make opposite vertices in the n-gon equivalent. However, this folding does not give us a 
new example as X̃(n) is isomorphic to X(n2 ). Yet, we can still use the folding lemma to 
give us a new example.

Example 3.25. Let n = 3k be finite and consider X = X(4k) formed from the 4k-gon. 
As above, G = D8k, but Miy(X) = D4k, a subgroup of index 2. So, we may consider 
the axet (Miy(X), X, τ) which now has two orbits under the action of Miy(X) = D4k, 
each of length 2k. Note that on either orbit we have a folding congruence given by 
pairing opposite vertices in the 4k-gon. Let X ′ := X ′(3k) = X ′(n) be the set formed 
by folding one of the orbits of axes. Then, (D4k, X ′, τ ′) is an axet with n = 3k axes. 
Moreover, Miy(X ′) = Miy(X) = D4k and this action is faithful if k �= 1. We call X ′ a 
skew 2-generated axet.

Let us again record the basic properties of this new axet.

Lemma 3.26. If X = X ′(3k), then Miy(X) ∼= D4k and it has orbits of length 2k and k
on X. Furthermore, if X = 〈a, b〉, then a and b are in different orbits.

Note that if we fold the other orbit instead, this results in an isomorphic (dual) version 
of the same axet, which is conjugate to X ′(n) via an element of G = D8k. It is also clear 
that X ′(n) is not isomorphic to X(n) as the orbit structure under the Miyamoto group 
is different.
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We may now classify the 2-generated faithful C2-axets.

Theorem 3.27. Let X = 〈a, b〉 be a 2-generated C2-axet with n axes, where n ≥ 2, or 
n = ∞. Then X is isomorphic to either

(1) X(n), or
(2) X ′(n), where n = 3k for k ∈ N.

Proof. Without loss of generality, by Proposition 3.13, we may assume that X is equal 
to its core and so G = Miy(X) = AMiy(X) is faithful on X. Since X is 2-generated and 
τa and τb have order at most 2, G is either trivial, C2, a dihedral group D2m, or D∞. 
Observe that, by axiom (3) for axets, τ is a morphism from the G-set X to the G-set of 
involutions from G (see Example 3.3). Also, by definition, X = aG ∪ bG.

We start with the finite case. Suppose first that G ∼= D2m, with m ≥ 2 and so τa and 
τb both have order 2. Since τa ∈ Ga, by the orbit-stabiliser theorem, aG has size at most 
m. Similarly for b.

If m is odd, then there is one conjugacy class of involution in D2m of size m. By 
axiom (3), |aG| ≥ |{τag : g ∈ G}| = |{τga : g ∈ G}| = |τGa | = m. So, |aG| = m and, 
similarly, |bG| = m. Furthermore, these orbits are either equal, or disjoint. Let Y be one 
of these orbits. Then τ is an isomorphism of axets from Y to the axet whose set is the 
set of involutions τ(Y ). Note that our example X(m) is also isomorphic to the axet of 
involutions in D2m when m is odd. Hence, if aG = bG, then X is isomorphic to X(m). 
On the other hand, if aG and bG are disjoint, then each is isomorphic to X(m) and so X
is their union. Since m is odd, X(m) is the same as its dual and so X = X(m) ∪X∗(m), 
which is isomorphic to X(2m).

If m is even, then the generating involutions τa and τb are in different conjugacy 
classes of G, each of size m

2 . By axiom (3), aG and bG must also be disjoint and can 
have size m, or m2 . Suppose first that X has two orbits of length m. Then one orbit is 
isomorphic to the vertex axet X(m) of the m-gon and the other is isomorphic to the edge 
axet X∗(m) of the same m-gon. So their union X is isomorphic to X(2m). Now suppose 
that one orbit Y has length m2 , then G induces Dm on Y , and so Y is the folded X(m), 
isomorphic to X(m2 ). If the other orbit Z is of length m then Z = X∗(m), because τb
is not in the same class as τa. Thus, X is the union of the folded X(m) and X∗(m), 
which is precisely X ′(3

2m). (Note that if G ∼= D4 = V4, then X being faithful implies 
that both orbits must have length 2.) Finally, suppose that both orbits are of length 
m
2 . Then (τaτb)

m
2 fixes each axis and so it is in the kernel, a contradiction to G being 

faithful.
We now deal with the remaining small cases. If the Miyamoto group is trivial, then 

clearly X = {a, b} and X is isomorphic to X(2). Suppose that G ∼= C2 = 〈g〉 and, with-
out loss of generality, let τa = g. Then, τa must act non-trivially on b and so bG = {b, b′}. 
Since τx ∈ Gx, aG = {a} and also τb = τb′ = 1. In this case, X is isomorphic to X ′(3).
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Finally, the infinite case is similar to the generic even case. The involutions τa and τb
are in two different G-conjugacy classes and hence aG and bG are two disjoint orbits. One 
orbit is isomorphic to X(∞) and the other to X∗(∞). Hence their union X is isomorphic 
to X(∞). �
Definition 3.28. We will call an axet X skew if it contains a 2-generated subaxet isomor-
phic to a skew axet X ′(n). Otherwise, we will call X regular.

3.3. Some 3-generated C2-axets

We consider some 3-generated C2-axets which we will return to later in the paper. 
Let us first define the trivial one point extension of an S-axet X as the S-axet on the 
G-set Y = {a} ∪X, where a /∈ X and G fixes a and acts on X as before. Similarly, we 
extend the Miyamoto map from X ×S to Y × S by setting τa(s) = 1 for all s ∈ S. Note 
that Miy(Y ) ∼= Miy(X) and Y is faithful if and only if X is faithful.

Example 3.29.

(1) Suppose n is arbitrary (including ∞). Let X1 = X1(1 + n) = {a} ∪ X(n) be the 
trivial one point extension of X = X(n). Since X is faithful when n ≥ 3, so is X1.

(2) Let n = 2k be finite and even. Again consider a one point extension X2 = X2(1 +n) =
{a} ∪ X(n) but this time define τa ∈ D2n to be the rotation of the n-gon through 
180◦ (if n �= 2, then it is the unique central involution). We call this the central 
one point extension of X = X(n). Recall that Miy(X(n)) = Dn and there are two 
Miy(X)-orbits. Now Miy(X2) = G = D2n if and only if k is odd (if k is even, then 
Miy(X2) = Dn is of index 2). Again X2 is faithful if and only if X is faithful, i.e. for 
n �= 2.

The subaxets of X1(1 + n) are Y and Y ∪ {a}, where Y is a subaxet of X(n). In 
particular, {a, x} ∼= X(2) for each x ∈ X1 − {a}. Whereas in X2(1 + n), 〈a, x〉 ∼= X ′(3)
for every x ∈ X2 − {a}. So X1(1 + n) is regular and X2(1 + n) is skew.

Proposition 3.30. Let X = 〈a, b, c〉 be a 3-generated axet which has two orbits under its 
Miyamoto group, {a} and Y := X − {a}. Then X is isomorphic to either

(1) X1(1 + n), with n finite and odd; or
(2) X2(1 + n), with n = 2k and k odd.

In both cases, Miy(X) = D2n unless X is isomorphic to X2(1 +2) and then Miy(X) = C2.

Proof. Without loss of generality, by Proposition 3.13, we may assume that X is equal 
to its core. Suppose first that τa = 1. Then, 〈τb, τc〉 = Miy(X) and 〈b, c〉 is a 2-generated 
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subaxet with one orbit of axes. By Theorem 3.27 and Lemmas 3.23 and 3.26, n is finite 
and odd and Y ∼= X(n), hence X = X1(1 + n).

Suppose now that τa �= 1. By Lemma 3.4, τa ∈ Z(G). In particular, 〈τb, τc〉 has index 
at most 2 in Miy(X) and hence 〈τb, τc〉 has either a single orbit, or two orbits of equal size 
on Y . In the first case, by Theorem 3.27, Y is isomorphic to X(n) with n odd. However, 
in this case the centraliser of Miy(Y ) in the symmetric group on Y is trivial and hence 
τa = 1, a contradiction.

Thus Y has two orbits Y1 and Y2 under the action of 〈τb, τc〉 and τa fuses these two 
orbits. In particular, for y1 ∈ Y1, y2 = yτa1 ∈ Y2 and τy1 = τy2 . If b and c are from different 
orbits, then 〈b, c〉 = Y and Imτ |Y1 = Imτ |Y2 , so by Theorem 3.27 and Lemmas 3.23 and 
3.26, Y is isomorphic to X(2k) with k odd. Therefore, X is isomorphic to X2(1 +n) with 
n = 2k and k odd. If c is in the same orbit as b, then we swap c for cτa and the above 
argument applies. �

Note that X2(1 + 2) is in fact isomorphic to the 2-generated axet X ′(3). However, 
by Theorem 3.27, all the other axets in the above proposition are 3-generated and not 
2-generated.

4. Shapes

We wish to introduce the notion of shape on an axet and we begin with a motivating 
example. Let X = X(A) be the axet of an axial algebra A. Recall that when A has 
a T -graded fusion law then its axet X(A) is an S-axet for S = T ∗. Every 2-generated 
subaxet Y ⊂ X = X(A) generates a 2-generated sub axial algebra AY = 〈 〈Y 〉 〉A of A. 
The shape Θ(A) of A is the collection of the embeddings θY = idY : Y → AY , one for 
each such Y . If we have an abstract axet X, then there is no ambient algebra A, but we 
still wish to have a similar notion of shape.

Let us start by introducing additional notation and terminology. First of all, in this 
section it is assumed throughout that all axial algebras have a T -graded fusion law F
and all axets are S-axets, where S = T ∗.

Definition 4.1. An embedding of an axet Y into an axial algebra A is an injective mor-
phism θ : Y → X = X(A). We say that an embedding is full if θ is surjective, i.e. it is 
an isomorphism.

Given an embedding θ, we will often identify an axis a ∈ X with its image θ(a) in the 
algebra; i.e., we may write a for θ(a).

We can now introduce shapes. For an axet X, we denote the set of all 1- and 2-
generated subaxets by X2 = X2(X).

Definition 4.2. For an axet (G, X, τ), suppose that Θ = {θY : Y ∈ X2}, where θY : Y →
X(AY ) is a full embedding of Y into an axial algebra AY for each Y ∈ X2. We say that 
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Θ is a shape on X if for all g ∈ G and Y, Z ∈ X2 such that Zg ⊆ Y , there exists an 
injective algebra homomorphism ϕg,Z,Y : AZ → AY such that

θY ◦ ψg = ϕg,Z,Y ◦ θZ , (1)

where ψg : Z → Y , z �→ zg is the morphism induced by g.

The consistency condition (1) in this definition is illustrated in the following commu-
tative diagram:

Z Y

AZ AY

ψg

θZ θY

ϕg,Z,Y

In a sense, a shape is an amalgam of small axial algebras organised around an axet in 
a consistent way. Note that every AY must be generated by at most two generators, so 
indeed each of the AY is ‘small’. The subaxet Y is 1-generated if and only if it consists 
of just a single axis. In this case, AY

∼= F and it is usually denoted by 1A.
Note also that if we build a shape from an algebra, then the consistency requirement 

is automatically satisfied as ϕg,Z,Y is just the restriction of the action of g from A to 
AZ .

Furthermore, ϕg,Z,Y : AZ → AY is unique and depends only on the action of g, as 
follows from the next lemma.

Lemma 4.3. If g, g′ ∈ G are such that ψg|Z = ψg′ |Z , then ϕg,Z,Y = ϕg′,Z,Y .

Proof. Since ϕg,Z,Y and ϕg′,Z,Y are both algebra homomorphisms from AZ to AY , it 
suffices to show that they agree on a generating set of AZ. Indeed, θZ(Z) generates AZ

and for z ∈ Z, we have ϕg,Z,Y (θZ(z)) = θY ◦(ψg(z)) = θY ◦(ψg′(z)) = ϕg′,Z,Y (θZ(z)). �
This leads to the following results.

Corollary 4.4. Let Θ be a shape on an axet X.

(1) For any Z ⊆ X2, ϕ1,Z,Z is the identity map on AZ .
(2) For Z, Y, T ∈ X2 and g, h ∈ G such that Zg ⊆ Y and Y h ⊆ T , we have

ϕgh,Z,T = ϕh,Y,T ◦ ϕg,Z,Y .

(3) If Y, Z ∈ X2 such that Zg = Y for g ∈ G, then (ϕg,Z,Y )−1 = ϕg−1,Y,Z and in 
particular, both maps are algebra isomorphisms.
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Proof. The first is immediate. The second follows as Zgh ⊆ T and the composition 
ϕ = ϕh,Y,T ◦ ϕg,Z,Y satisfies θT ◦ ψgh = ϕ ◦ θZ and so, by uniqueness, it equals ϕgh,Z,T . 
Finally, the last claim follows from the first two parts if we take Y = Zg, T = Z and 
h = g−1. �
Definition 4.5. Suppose that Θ = {θY : Y → AY : Y ∈ X2(X)} and Θ′ = {θ′Y ′ : Y ′ →
A′

Y ′ : Y ′ ∈ X2(X ′)} are shapes on axets X and X ′. A morphism from Θ to Θ′ is a mor-
phism ψ : X → X ′ such that for all Y ∈ X2(X), there exists an algebra homomorphism 
ϕY : AY → A′

ψ(Y ) such that

ϕY ◦ θY = θ′ψ(Y ) ◦ ψ

In other words, the following diagram commutes.

Y ψ(Y )

AY A′
ψ(Y )

ψ

θY θ′
ψ(Y )

ϕY

Note that the algebra homomorphisms ϕY are part of the morphism of shapes. How-
ever, they are uniquely defined by ψ and so all we need to assume is that they exist.

This gives us a category of shapes on S-axets and when we say that two shapes are 
isomorphic, we mean that they are isomorphic in this category. Such an isomorphism of 
shapes naturally is an isomorphism of the underlying axets.

Now that we have a good concept of isomorphism of shapes, we can develop a more 
concise way of describing a shape. By part 3 of Corollary 4.4, we have a natural isomor-
phism between the algebras AY for conjugate subaxets Y . Moreover, if the consistency 
condition (1) holds for some pair of subaxets Z ⊂ Y , then it must also hold for Zg ⊂ Y g, 
for g ∈ G. In light of this, we define the condensed shape to be a set of embeddings 
θY , one for each representative Y ∈ X2 of the G-orbit Y G subject to the consistency 
condition. It is clear that the (full) shape can be recovered from the condensed shape 
uniquely up to isomorphism. From now on, when we talk of the shape, we usually mean 
the condensed shape.

Let us now note that these choices for different Y are not always independent because 
of the consistency requirement. In particular, if Z ⊂ Y are two 2-generated subaxets, 
then θY defines θZ up to isomorphism. A choice of θZ also restricts the possible choices 
for θY , however this is not as strong as the other way around.

Note that if Z is a subaxet with a single axis, then AZ
∼= F and the consistency 

requirement for Z ⊆ Y is always satisfied. In other words, Z does not impose any extra 
conditions on the shape and we may just limit ourselves to the subaxets which are 2-
generated and not 1-generated. We let X �

2 = X �
2 (X) be the set of all such subaxets 

of X.
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We use containment to define an object which will help us better understand the 
consistency requirements. Consider the digraph whose vertex set is X �

2 and the directed 
edges are given by containment. As for the shape, if Y ⊇ Z, then Y g ⊇ Zg for all 
g ∈ G. Hence we can quotient by the action of G making a more compact object as 
follows.

Definition 4.6. Let X = (G, X, τ) be an S-axet. The shape graph ΓX of X has vertices 
given by the G-orbits on X �

2 and there is a directed edge from one orbit to another, if 
there exist representatives Y and Z, respectively, such that Y ⊇ Z.

Note that in [14], we gave a similar definition of shape graph, however there the vertices 
were pairs of axes.3 The definition we give here is better as there could be multiple pairs 
(up to the action of G) which generate the same subaxet.

Recall that the weakly connected components of a directed graph Γ are the connected 
components of the undirected graph with the same vertex set as Γ, but an undirected 
edge for every directed edge.

Now, to select a valid shape for an axet X, we may consider its shape graph ΓX and 
give an embedding θY for each vertex Y of ΓX . The directed edges in the graph show us 
when we must consider the consistency condition. In particular, for a weakly connected 
component of the shape graph, the choices of embeddings for the vertices will depend 
on one another. Indeed, there may only be one such possible choice. However, choices of 
embeddings in different weakly connected components are independent.

Finally, we wish to know if there is an axial algebra which contains the given axet 
and shape.

Definition 4.7. Let X be an axet and Θ a shape on X. A completion of Θ is a surjective 
morphism ψ : Θ → Θ(A) of shapes, for some axial algebra A (we may also say that A is 
the completion of Θ). We say a completion is faithful if ψ is injective. If there does not 
exist such a completion, we say that Θ collapses.

We are most interested in completions which are faithful.
It is obvious that a shape Θ for X defines by restriction a shape ΘY on any subaxet 

Y of X and similarly, a completion for Θ induces a completion for ΘY . Because of this, 
if Θ contains a subshape ΘY which is not faithful, then Θ also cannot be faithful. If we 
have the stronger property that ΘY collapses, then Θ also collapses. So, if we can find 
collapsing (or non-faithful) shapes on small axets Y , then we can use these to show that 
a shape Θ on a bigger axet X containing Y also collapses (or is non-faithful). In this 
spirit, in Section 8, we will give several results about collapsing small shapes.

3 Also, that definition was in terms of domination which meant containment between subaxets generated 
by the two pairs.
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5. 2-generated algebras of Jordan type

In the next section, we will tackle completions of shapes on a one-point extension of 
an axet X. For this, we will need some details about the 2-generated algebras of Jordan 
type which we discuss here.

Throughout, 1A will denote the 1-dimensional axial algebra spanned by a single axis. 
Also F will be a field of characteristic different from 2.

Definition 5.1. A 2B axial algebra is spanned by two axes a0, a1 such that a0a1 = 0.

It is isomorphic to F × F and is a 2-generated axial algebra for many different fusion 
laws, including J (η) and M(α, β).

5.1. Axial algebras of Jordan type η

Here we briefly review the 2-generated algebras of Jordan type η (for a more full 
exposition see [8]). We use J 2(η) to denote the set of all 2-generated axial algebras of 
Jordan type η.

The next example belongs to the class of Matsuo algebras corresponding to 3-
transposition groups. It is the smallest non-trivial example.

Definition 5.2. Let η ∈ F − {1, 0}. Let 3C(η) be the algebra with basis x, y, z and, for 
a, b ∈ {x, y, z}, the algebra product is defined by

ab =
{
a, if b = a;
η
2 (a + b− c), if {a, b, c} = {x, y, z}.

This is an axial algebra of Jordan type η.

Note that x(x + y + z) = (1 + η)x and similarly for y and z. So, if η �= −1, then 
1

1+η (x +y+ z) is the identity for 3C(η). However, if η = −1, then I := 〈x +y+ z〉 is a nil 
ideal. The quotient 3C(−1)/I is an axial algebra of Jordan type −1 denoted by 3C(−1)×. 
Note that xy = −1

2(x + y − z) = z = −x − y in 3C(−1)× and so 3C(−1)× � 2B.
The only other case where 3C(η) is not simple is for η = 2. Namely, 3C(2) has an 

ideal J := 〈x − y, y − z〉 which is the 2-dimensional space of elements whose coefficients 
sum to 0. Note that in this case, for all axes, J = A0⊕A2. Clearly, the quotient 3C(2)/J
is 1-dimensional and hence isomorphic to 1A. If char(F) �= 3, then I and J are the only 
possible non-trivial proper ideals of 3C(η) and so 3C(−1)× is simple. In characteristic 3, 
−1 = 2 and so we have both ideals. In fact, I ⊂ J and hence 3C(−1)× is not simple.

If η �= 1
2 , then 2B and 3C(η) for all η and 3C(−1)× for η = −1 are the only axial 

algebras of Jordan type generated by two distinct axes. For η = 1
2 , the situation is more 

complicated and there are infinitely many additional algebras.
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Definition 5.3. Let V be a 2-dimensional vector space over F and b be a symmetric 
bilinear form on V . We define a product on S := 〈1〉 ⊕ V by

(c1 + u)(d1 + v) = (cd + 1
2b(u, v))1 + cu + dv

where c, d ∈ F and u, v ∈ V . The algebra S = S(b) is a Jordan algebra called the spin 
factor (when dim(V ) = 2, this is ClJ(F2, b) in [8]).

Note that two spin factor algebras S(b) and S(b′) are isomorphic if and only if their 
forms b and b′ are equivalent. It is easy to see that the non-trivial (non-zero and non-
identity) idempotents in S are x := 1

2 (1 +u), where u ∈ V with b(u, u) = 2.4 The adjoint 
of x has eigenspaces

A1(x) = 〈x〉,

A0(x) = 〈1
2 (1 − u)〉,

A 1
2
(x) = u⊥ ⊂ V.

Moreover x is a primitive axis of Jordan type 1
2 and so the Miyamoto involution τx acts 

trivially on 〈1, u〉 and inverts u⊥. Note that x− := 1
2 (1 − u) is also an axis. We call x−

the opposite axis of x and it is clear from the eigenspaces of x that it is the only axis of 
S which satisfies xx− = 0. In this case, 〈 〈x, x−〉 〉 ∼= 2B and it is a proper subalgebra of S.

From now on, suppose that x = 1
2 (1 + u), y = 1

2 (1 + v) are two distinct non-opposite 
axes in S. Then u, v is a basis for V satisfying b(u, u) = 2 = b(v, v). The form b is fully 
identified by the value δ := b(u, v) and so we will write S(δ) for S(b).

We wish to investigate when x and y generate S.

Proposition 5.4. We have 〈 〈x, y〉 〉 �= S if and only if δ = 2. In this case, xy = 1
2 (x + y)

and 〈x, y〉 � S.

Proof. Since x and y are not opposite, u and v are linearly independent. In particular, 
1 /∈ 〈x, y〉. Since the product xy = 1

4
(
(1 + 1

2b(u, v))1 +u +v
)

= 1
2 (x +y) + 1

8 (b(u, v) −2)1, 
we see that xy ∈ 〈x, y〉 if and only if δ = b(u, v) = 2 and so xy = 1

2 (x + y). Since 
S = 〈1〉 ⊕ 〈x, y〉, S〈x, y〉 = 〈x, y〉 and hence 〈x, y〉 � S. �

We denote the proper subalgebra 〈 〈x, y〉 〉 arising in Proposition 5.4 when δ = 2 by 
S(2)◦ (this is Cl0(F2, b) in [8]).

Notice that as long as we have two distinct non-opposite axes, x and y, then S is 
generated by x and y, by x and y−, or by both. We now restrict ourselves to where 

4 We note that V might not contain any vectors u such that b(u, u) = 2, in which case S is not an axial 
algebra.
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S(δ) = 〈 〈x, y〉 〉 is a 2-generated axial algebra of Jordan type 1
2 , which by the above is 

precisely when δ �= 2.
Every axial algebra of Jordan type admits a Frobenius form [9] and the form for S is 

a natural extension of b. We will also denote it by b and then b(1, 1) = 2 and b(1, v) = 0
for all v ∈ V . Note that b(z, z) = 1 for each axis z.

Note that the radical is non-trivial if and only if δ = −2 (recall that we excluded 
δ = 2). In this case, the radical of the form b is a 1-dimensional ideal R := 〈u + v〉 =
〈x − y−〉 = 〈x− − y〉 and R2 = 0. Note that b(u, −v) = 2 and so in S(−2), 〈 〈x, y−〉 〉 ∼=
S(2)◦ ∼= 〈 〈x−, y〉 〉. We note that these are ideals as S = 〈1〉 ⊕ 〈 〈x, y−〉 〉 = 〈1〉 ⊕ 〈 〈x−, y〉 〉. 
Furthermore, their intersection is R.

We will see now that this is the only case where S is not simple.

Proposition 5.5. [8, Theorem 4.7] Suppose S = 〈 〈x, y〉 〉 is a spin factor algebra as above. 
Then δ �= 2 and

(1) S is simple if and only if δ �= −2.
(2) If δ = −2, then S has a single 1-dimensional ideal R = 〈x −y−〉, equal to the radical 

of b, and two 2-dimensional ideals corresponding to the two 1-dimensional ideals in 
S/R ∼= 2B. These two ideals are isomorphic to S(2)◦ and they are 〈 〈x, y−〉 〉 and 
〈 〈x−, y〉 〉.

Clearly, if J �S(−2) is 2-dimensional, then S(−2)/J ∼= 1A. Also, note that every axis 
a lies in one of the two 2-dimensional ideals in S(−2), say a ∈ J . Then, a− cannot be in 
J as 〈 〈a, a−〉 〉 ∼= 2B, so a− lies in the other 2-dimensional ideal, which we denote J−.

We now want to examine the situation in Lemma 5.4 in a bit more detail for use later.

Lemma 5.6. Suppose S = 〈 〈x, y〉 〉 is a spin factor algebra as above and set y′ = yτx . Then 
〈 〈y, y′〉 〉 is 2-dimensional if and only if

(1) δ = 0, y′ = y− and 〈 〈y, y′〉 〉 ∼= 2B, or
(2) δ = −2 and 〈 〈y, y′〉 〉 ∼= S(2)◦.

Proof. The algebra 〈 〈y, y′〉 〉 is 2-dimensional if and only if either y′ is opposite to y, in 
which case 〈 〈y, y′〉 〉 ∼= 2B, or, by Lemma 5.4, 〈 〈y, y′〉 〉 ∼= S(2)◦.

Suppose first that y′ = y− = 1
2 (1 − v). Since A 1

2
(x) = u⊥, for τx to switch y and y′, 

we must have v − (−v) = 2v ∈ u⊥. That is, b(u, v) = 0.
Finally, suppose that J := 〈 〈y, y′〉 〉 ∼= S(2)◦. As noted, J�S and so, by Proposition 5.5, 

b(u, v) = −2. �
There is one further example we need to consider.

Definition 5.7. Let Ŝ(2)◦ = 〈x, y, z〉 be the 3-dimensional algebra with multiplication 
given by x2 = x, y2 = y, az = 0 for all a ∈ Ŝ(2)◦, and
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xy = 1
2 (x + y) + z

Note that we write Ŝ(2)◦ since it is a cover of S(2)◦ by extending by a nil element z. 
(Ŝ(2)◦ was called Cl00(F2, b) in [8]).

It is an easy calculation to see that a is an idempotent in Ŝ(2)◦ if and only if a =
μx + (1 − μ)y + 2μ(1 − μ)z for some μ ∈ F . Moreover,

A0(a) = 〈z〉

A 1
2
(a) = 〈x− y − 2(1 − 2μ)z〉

and so a is a primitive axis of Jordan type 1
2 . It is then an easy calculation to see that 

any pair of distinct axes generate Ŝ(2)◦, so in particular it is an axial algebra of Jordan 
type 1

2 .
The algebra Ŝ(2)◦ has a Frobenius form given by (a, b) = 1, for any two axes a and 

b, and (a, z) = 0 = (z, z). By Lemma 2.14, any proper ideal of Ŝ(2)◦ is contained in the 
radical and, by Theorem 2.11, an easy calculation shows that this is 〈x − y, z〉. Observe 
that 〈z〉 is a nil ideal and from the multiplication, one can show that Ŝ(2)◦/〈z〉 ∼= S(2)◦. 
A straightforward calculation shows that these are the only non-trivial proper ideals.

We now state the classification of 2-generated axial algebras of Jordan type η.

Theorem 5.8. [7, Theorem 1.1] Let A � 1A be a 2-generated axial algebra of Jordan type 
η. Then A is isomorphic to one of

(1) 2B,
(2) 3C(η),
(3) 3C(−1)× and η = −1,
(4) S(δ), δ �= 2 and η = 1

2 ,
(5) S(2)◦ and η = 1

2 ,
(6) Ŝ(2)◦ and η = 1

2 .

Remark 5.9. The only possible isomorphism between two algebras in different cases above 
is between 3C(1

2 ) and S(δ) for some specific values of δ and choice of axes. Indeed, since 
both algebras have an identity, the identity and two generating axes are a basis. So 
writing 〈 〈a, b〉 〉 ∼= 3C(1

2 ) and 〈 〈x, y〉 〉 ∼= S(δ), the map ϕ : 1 �→ 1, a �→ x, b �→ y is an 
isomorphism if and only if ϕ(ab) = xy. In both algebras ab = 1

2 (a + b) + γ1 for some 
γ ∈ F . So, to check for an isomorphism we just need to identify γ for each algebra and 
pair of generating axes.

In 〈 〈x, y〉 〉 = S(δ), for x, y we get γ = 1
8 (δ−2). The algebra 3C(1

2 ) has a 1-dimensional 
variety of idempotents, but there are two obvious classes of J (1

2 )-axes, namely {a, b, c}
and {1 −a, 1 −b, 1 −c}. One can easily see that a(1 −a) = 0, and so 〈 〈a, 1 −a〉 〉 ∼= 2B and 
similarly for b and c. Apart from these, any other pair generate 3C(1). A short calculation 
2
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then shows that using a, b, or 1 − a, 1 − b, we get γ = −3
8 and so 3C(1

2 ) ∼= S(−1); and 
using a, 1 − b, we get γ = −1

8 and so 3C(1
2 ) ∼= S(1).

Remark 5.10. If A ∈ J 2(η) and x, y ∈ A are distinct axes such that 〈 〈x, y〉 〉 �= A, then 
A = S(δ) and the situation is described in Proposition 5.4.

5.2. Axets

It is clear that 2B has axet X(2). The algebra 3C(η), η �= 1
2 , has axet X(3).

For η = 1
2 , where we have Ŝ(2)◦ and the spin factor algebras S(δ) (which include 

3C(1
2)), the situation is more complicated. First let A = 〈 〈x, y〉 〉 ∼= S(δ). Recall that 

x = 1
2 (1 + u) and y = 1

2 (1 + v), where b(u, u) = 2 = b(v, v) and b(u, v) = δ. For an 
axis z = 1

2 (1 + w) in S(δ), the Miyamoto involution τz restricted to the underlying 
2-dimensional quadratic space is −rw, where rw is the reflection in w. So to calculate 
the closure of {x, y} under the action of the Miyamoto group, it suffices to consider the 
closure of {u, v} under the action of 〈−ru, −rv〉 ∼= Miy(A).

As we will see later, this more general setup of a 2-dimensional reflection group arises 
also in the split spin factor algebras [16] and we briefly recount it here. Note that in [16], 
the form was scaled differently, with b′ = 1

2b, but here we will use our b. Let D be the 
dihedral subgroup D := 〈−ru, −rv〉. We are interested in the size of Ω := uD ∪ vD. Note 
that uD and vD may be equal, or disjoint. Define θ to be the involution swapping u and 
v. Then the dihedral group D̂ := 〈θ, −ru〉 contains D and |D̂ : D| ≤ 2. We note that 
uD̂ = uD ∪ vD = Ω. Since the stabiliser in D̂ of u is 〈−ru〉, the size of Ω is equal to the 
order of ρ := θ(−ru). With respect to the basis u, v we have

ρ =
(
δ −1
1 0

)
Since ρ has determinant 1 and trace δ, it has eigenvalues ζ and ζ−1 which are roots of 
the polynomial x2 − δx + 1. These eigenvalues lie in F , or a quadratic extension of F . In 
the next lemma, o(ζ) denotes the multiplicative order of ζ. In particular, o(ζ) is finite if 
and only if ζ is a root of unity.

Lemma 5.11. [16, Lemma 5.3]

(1) If ζ is not a root of unity, then |Ω| is infinite.
(2) If ζ �= ±1, then |Ω| = o(ζ).
(3) Suppose that ζ = ±1. If char(F) = 0, then |Ω| = ∞; if char(F) = p > 0, then |Ω| = p

if ζ = 1 and 2p if ζ = −1.

Using the above lemma and since δ = ζ + ζ−1, the set of δ for which ρ has finite order 
n is
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N(n) :=

⎧⎪⎪⎨⎪⎪⎩
{ζ + ζ−1 ∈ F : ζ ∈ F̄ , o(ζ) = n}, if n �= p, 2p
{2}, if n = p > 0
{−2}, if n = 2p > 0

where char(F) = p.5 When char(F) = 0, n > 1 can be arbitrary, whereas if char(F) =
p > 0, then n > 1 can be p, 2p, or coprime to p. Note that N(n) and N(m) are disjoint 
for n �= m. We define N(∞) to be F −

⋃
n>1 N(n).

We can now describe the axet for S(δ) = 〈 〈x, y〉 〉, where as before x = 1
2(1 + u), 

y = 1
2 (1 + v). We have the following immediately from Lemma 5.11 and the definition 

of N(n).

Lemma 5.12. S(δ), δ �= 2, has axet X(n), n ∈ N ∪ {∞}, if and only if δ ∈ N(n). S(2)◦
has axet X(∞) in characteristic 0 and X(p) in characteristic p > 0.

Finally, for Ŝ(2)◦ we have the following.

Lemma 5.13. Ŝ(2)◦ has axet X(∞) if char(F) = 0 and axet X(p) if char(F) = p > 0.

Proof. Let X = xMiy(X) ∪ yMiy(X) be the closed set of axes. It can be seen that the 
difference of two distinct axes is never in the nil ideal 〈z〉 and so axes in Ŝ(2)◦ are in 
bijection with those in the quotient Ŝ(2)◦/〈z〉 ∼= S(2)◦. Since Miy(X) acts faithfully on 
X, it has an induced faithful action on S(2)◦ and the result follows from Lemma 5.12. �
6. Identifying shapes on 3-generated axets

The first interesting case for identifying completions of shapes on axets is that of 3-
generated axets. In this paper, we consider a 3-generated C2-axet X = (G, X, τ) which 
is a one point extension of a 2-generated axet, where the Miyamoto group has two orbits 
on X. By Proposition 3.30, either X is isomorphic to X1(1 + n), with n odd, or to 
X2(1 + n), with n twice odd. Since we are primarily interested in the Monster type 
fusion law M(α, β) and all known 2-generated algebras of this type are regular (see 
Definition 3.28), we restrict ourselves to those axets which are regular. In particular, 
X2(1 + n) is skew, so here we concentrate on X1(1 + n), n odd, which is regular.

Note that, if n = 1, then we do not have three axes and so X is in fact 2-generated, 
so we will assume that n ≥ 3.

We now consider the shape graph on X = X1(1 + n). By definition, there exists a 
unique axis a ∈ X which is fixed by the Miyamoto group and a necessarily lies in any 
generating set of X (see Section 3.3). Suppose that X = 〈a, b, c〉. Then Z := 〈b, c〉 =
X−{a} is a 2-generated subaxet. Since Z is 2-generated, the choice of the algebra AZ on 
Z in the shape determines the algebra AW for all subaxets W of Z. So the only part of 

5 Note that in [16] N(n) also appeared, but the values there in each set N(n) are scaled by a factor of 1
2 .
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the shape which is not identified by AZ is AY , where Y = 〈a, b〉. Note that every subaxet 
〈a, z〉, for z ∈ Z, is conjugate to 〈a, b〉. Hence we do indeed just have two choices, AY

and AZ .
Since a is a fixed axis, τa = 1. So in any completion A, the axis a has trivial 

β-eigenspace.6 Hence a is actually an axis of Jordan type α. The related Miyamoto 
automorphism that negates the α-eigenspace will be denoted by σa to distinguish it 
from τa. Note that we may still have σa = 1, equivalently Aα(a) = 0.

In the following proposition we consider completions for several different shapes Θ on 
X ∼= X(1 + n) simultaneously, for all n ≥ 3 odd. For z ∈ Z, we define z′ = zσa and set 
Z ′ = {z′ : z ∈ Z}.

Recall from the introduction, that a 2-generated algebra 〈 〈a, b〉 〉 is called symmetric
whenever it admits an automorphism of order 2 switching the two generating axes a
and b.

Proposition 6.1. Let X = 〈a, b, c〉 ∼= X1(1 + n), n ≥ 3 odd, be a 3-generated axet, where 
a is the fixed axis. Let Y = 〈a, b〉 and Z = X −{a}. Suppose that Θ is a shape on X for 
M(α, β) and A is a completion.

(1) If σa = 1, then AY
∼= 2B and A ∼= 1A ⊕ 〈 〈b, c〉 〉, where 〈 〈b, c〉 〉 is symmetric.

(2) If σa �= 1, then AY ∈ J 2(α) −{2B} and A contains an axet {a} ∪Z∪Z ′ ∼= X2(1 +2n)
with Miyamoto map t given by ta = σa and tz = tz′ = τz for all z ∈ Z. Moreover, 
B := 〈 〈b′, c〉 〉 is a symmetric 2-generated subalgebra with X(B) = Z ∪ Z ′ and

(a) A = B; or
(b) α = 1

2 , AY
∼= S(−2) and 〈 〈b, b′〉 〉 ∼= S(2)◦; or

(c) α = 1
2 , AY

∼= S(0), b′ = b− and 〈 〈b, b′〉 〉 ∼= 2B.

Proof. Suppose first that σa = 1. Then Aα(a) = {0} and so A = 〈a〉 ⊕ A0(a) where 
both summands are subalgebras which annihilate each other. Since b and c are primitive 
and not equal to a, by [13, Lemma 5.9(2)], b, c ∈ A0(a). Therefore, A0(a) = 〈 〈b, c〉 〉, 
A ∼= 1A ⊕ 〈 〈b, c〉 〉 and AY

∼= 2B.
Now assume that σa �= 1 and so AY ∈ J 2(α) − {2B}. Note that τb fixes a and so 

στb
a = σaτb = σa. That is, σa and τb commute. Similarly, σa and τc commute and so 

σa centralises Miy(A) = 〈τb, τc〉. Since Z is a Miy(A)-orbit of odd length, σa cannot 
preserve Z and so Z and Z ′ are disjoint. Since τz′ = τzσa = τσa

z = τz, we see that 
{a} ∪ Z ∪ Z ′ ∼= X2(1 + 2n) with Miyamoto map t as required.

Let B := 〈 〈b′, c〉 〉. Then B is invariant under 〈τb′ , τc〉 = 〈τb, τc〉 ∼= Miy(A). Since Miy(A)
is transitive on Z and so also on Z ′, the closure of {b′, c} is X(B) = Z ∪ Z ′. Moreover, 
as σa switches z and z′, it leaves B invariant and so it is an automorphism of B. Since 

6 Recall that we identify an axis a from the axet with its image in the algebra.
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n is odd, there exists an involution g ∈ Miy(B) ∼= D2n such that bg = c. Then σag is an 
involution switching b′ and c and so B is a symmetric 2-generated subalgebra.

If 〈 〈b, b′〉 〉 = AY then a ∈ B and hence A = B is 2-generated, which is case (a). 
So suppose that 〈 〈b, b′〉 〉 is a proper subalgebra of AY . In particular, since 〈 〈b, b′〉 〉 is at 
least 2-dimensional, by Remark 5.10, α = 1

2 and AY is a spin factor algebra. Moreover, 
by Lemma 5.6, either AY

∼= S(0), b′ = b− and 〈 〈b, b′〉 〉 ∼= 2B, which is case (c); or 
AY

∼= S(−2) and 〈 〈b, b′〉 〉 ∼= S(2)◦, which is case (b). �
We will use the above result as a powerful reduction theorem. Apart from the two 

exceptional cases, A is either a direct sum of a symmetric 2-generated algebra with a 
1A algebra, or a symmetric 2-generated algebra on an X(2n) axet. Since the algebras 
in the outcome of this reduction theorem are symmetric, the statement can be further 
enhanced by using the classification of symmetric 2-generated algebras of Monster type 
and checking them class by class. In the remainder of this section, we develop a useful 
condition coming from Proposition 6.1 that we can use when going through the list of 
symmetric algebras.

In case 1, the algebra 〈 〈b, c〉 〉 must have axet X(n), with n finite and odd. In case 
2(a), the algebra B must have axet X(2n), n finite and odd, and satisfy the following 
property:

(J) There exists an additional axis a of Jordan type α, which is fixed by Miy(X), such 
that σa switches the two halves of X ∼= X(2n).

Note that, in such an algebra, given x ∈ X, we can identify x′ without knowing a, 
or σa. Indeed, x′ is the opposite axis in the axet X. That is, the unique axis such that 
τx = τx′ . The following lemma gives a condition which we will use to identify which 
algebras have property (J).

Lemma 6.2. Suppose that A is a symmetric 2-generated axial algebra of Monster type 
which has property (J ). Then either the additional axis a of Jordan type α is contained 
in 

⋂
x∈X〈 〈x, x′〉 〉 (recall that x′ = xσa); or

(1) for every x ∈ X(A), 〈 〈x, x′〉 〉 ∼= 2B and 〈 〈a, x〉 〉 ∼= S(0); or
(2) for every x ∈ X(A), 〈 〈x, x′〉 〉 ∼= S(2)◦ and 〈 〈a, x〉 〉 ∼= S(−2).

In particular, α = 1
2 in these two exceptional cases.

Proof. Since a is fixed by Miy(X), 〈 〈a, x〉 〉, for x ∈ X, is a subalgebra with trivial 
Miyamoto group. Equivalently, it is an axial algebra of Jordan type α. Since τx fixes 
a, στx

a = σaτx = σa and so τx and σa commute. Hence, τxσa = τx. However, there is 
only one other axis in X with the same Miyamoto involution as x, namely the oppo-
site axis x′. Since σa switches the two orbits, xσa = x′ and so x′ ∈ 〈 〈a, x〉 〉. Clearly, 
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〈 〈x, x′〉 〉 ≤ 〈 〈a, x〉 〉, as x′ = xσa . Moreover this containment is proper if and only if α = 1
2

and 
(
〈 〈x, x′〉 〉, 〈 〈a, x〉 〉

)
is isomorphic to either 

(
2B, S(0)

)
, or to 

(
S(2)◦, S(−2)

)
. Therefore, 

if 〈 〈x, x′〉 〉 � 2B, S(2)◦, then a must lie in 
⋂

x∈X〈 〈x, x′〉 〉. �
In the next section, we identify the algebras which have property (J). We will discuss 

the two exceptional situations, 2(b) and 2(c), from Proposition 6.1 in Section 8.

7. Symmetric 2-generated M(α, β)-axial algebras

A symmetric 2-generated axial algebra A = 〈 〈a, b〉 〉 is one where there is an involutory 
automorphism f , called the flip, which switches the generating axes a and b. Since the 
algebra is symmetric, its axet X = aMiy(A) ∪ bMiy(A) is regular (cf. Definition 3.28). It 
will be convenient below to number the axes in a standard way. We let a0 = a, a1 = b

and for k ∈ Z, we let a2k+ε = aε
ρk , where ε = 0, 1 and ρ = τaτb. Our notation does 

not mean that every axet is infinite, rather if the axet is finite, then an axis will have 
multiple names with ai = aj if and only if i ≡ j mod |X|.

Let us now turn to the statement of the classification of the symmetric case.

Theorem 7.1. [19,3,4] A symmetric 2-generated M(α, β)-axial algebra is one of the fol-
lowing:

(1) an axial algebra of Jordan type α, or β;
(2) a quotient of the Highwater algebra H, or its characteristic 5 cover Ĥ, where (α, β) =

(2, 12 ); or
(3) one of the algebras listed in [19, Table 2].

We organise the list in [19, Table 2] into twelve families, each depending on its own set 
of parameters. Below we split the families into two main types: those with a finite and 
fixed axet and those where the axet is generically infinite but can be finite depending on 
the parameters.

(1) 3A(α, β), 4A(1
4 , β), 4B(α, α

2

2 ), 4J(2β, β), 4Y(1
2 , β), 4Y(α, 1−α2

2 ), 5A(α, 5α−1
8 ), 

6A(α, −α2

4(2α−1) ), 6J(2β, β) and 6Y(1
2 , 2);

(2) IY3(α, 12 , μ) and IY5(α, 12 ).7

Note that not all these algebras exist for all parameters. For an algebra here to be an 
axial algebra, it is clear that 1, 0, α and β must be distinct. For all the algebras except 

7 Yabe’s names for these algebras are: (1) III(α, β, 0), IV1( 1
4 , β), IV2(α, α

2

2 ), IV1(2β, β), IV2( 1
2 , β), 

IV2(α, 1−α2

2 ), V1(α, 5α−1
8 ), VI2(α, −α2

4(2α−1) ), VI1(2β, β) and IV3( 1
2 , 2) and (2) III(α, 12 , δ), where δ =

−2μ − 1, and V2(α, 12 ). Here the Roman numeral indicates axial dimension.
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3A(α, β) and 6A(α, −α2

4(2α−1) ), these are the only restrictions. For the two exceptional 
families, we must also exempt α = 1

2 .
In our notation, those algebras with a finite axet X(n) we label nL, and for those 

which generically have the infinite axet X(∞) we use ILd instead, for various letters 
L. This notation better fits with our focus on axets, rather than Yabe’s focus on axial 
dimension d. If the algebra can be specialised to a Norton-Sakuma algebra (see, for 
example, [10, Table 3]), we use the corresponding letters for this, e.g. A, B, or C. For 
those which arise from Joshi’s double axis construction [11,6], we use J (these necessarily 
have α = 2β) and for those which were found by Yabe, we use Y.

We need to find among this list all the algebras which satisfies the conditions stated 
at the end of the last section. That is, those with finite odd axet and those with axet 
X(2n), n ≥ 3 odd, which have property (J). Those algebras which always have a finite 
odd axet can be read off the list above. Namely, 3A(α, β) and 5A(α, 5α−1

8 ). Those which 

always have a finite axet X(2n), n odd necessarily have axet X(6) and are 6A(α, −α2

4(2α−1) ), 
6J(2β, β) and 6Y(1

2 , 2). For those algebras, which generically have an infinite axet, we 
must determine when this can be finite and when the algebra has property (J).

7.1. Jordan type algebras

The axets for Jordan type algebras were discussed in Subsection 5.2, in particular 
when they are finite (cf. Lemmas 5.12 and 5.13).

We now discuss property (J). The only algebras which possibly have axet X(2n), for 
n ≥ 3 odd, are some spin factor algebras. Since every non-trivial idempotent in a spin 
factor algebra has eigenvalues 1, 0 and 1

2 (see discussion after Definition 5.3), there does 
not exist any additional axis of Jordan type α with α �= 1

2 . Hence no 2-generated axial 
algebra of Jordan type β has property (J).

7.2. Algebras with axet X(6)

By Theorem 7.1, there are three families of algebras which always have the axet 
X(6), namely 6A(α, −α2

4(2α−1) ), 6J(2β, β) and 6Y(1
2 , 2), and we give these in Table 1. We 

only give some products, the remaining can be obtained from using the action of the 
Miyamoto group. Since the axet X(n) was defined as the vertex set of the n-gon, the 
axes are numbered naturally by the integers taken modulo n, and here we have n = 6. 
Note that we choose different bases to those in [19] to try to better reflect the structure 
of the algebras.8

For 6J(2β, β), the only values of β we need to exclude (forbidden values) are those 
which cause the eigenvalues to coincide, namely β �= 0, 12 , 1. For 6A(α, −α2

4(2α−1) ), the 

8 Compared to Yabe’s bases, for 6A(α, −α2

4(2α−1) ) we have c = âi + âi+3− 2
α âiâi+3, z = − 3α−2

α

∑3
i=−2 âi +

8(2α−1)(3α−2)(5α−2)
α3(9α−4) p̂1 − 8(2α−1)

α(5α−2) q̂. For 6J(2β, β), we have u = âi + âi+3 − 2
α âiâi+3, w = 2(âi + âi+1) −

4
α âiâi+1 as per the basis in [6]. For 6Y( 1

2 , 2), we have a4 = a0 + a2 − a0a2, d = a−1 − a2, z = q.
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Table 1
Symmetric 2-generated M(α, β)-axial algebras on X(6).

Type Basis Products & form
6A(α, −α2

4(2α−1) ) a−2, . . . , a3, c, z aiai+1 = β
2 (ai + ai+1 − ai+2 − ai+3

− ai−1 − ai−2 + c + z)
aiai+2 = α

4 (ai + ai+2) + α(3α−1)
4(2α−1) ai+4 − α(5α−2)

8(2α−1) z

aiai+3 = α
2 (ai + ai+3 − c)

aic = α
2 (ai + c − ai+3)

aiz = α(3α−2)
4(2α−1) (2ai − ai−2 − ai+2 + z)

c2 = c, cz = 0, z2 = (α+2)(3α−2)
4(2α−1) z

(ai, ai) = (c, c) = 1, (ai, ai+1) = − α2(3α−2)
(4(2α−1))2 ,

(ai, ai+2) = α(21α2−18α+4)
(4(2α−1))2 , (ai, ai+3) = (ai, c) = α

2

(ai, z) = α(7α−4)(3α−2)
8(2α−1)2

(c, z) = 0, (z, z) = (α+2)(7α−4)(3α−2)
8(2α−1)2

6J(2β, β) a−2, . . . , a3, u, w aiai+1 = β
2 (2(ai + ai+1) − w)

aiai+2 = β
2 (ai + ai+2 − ai+4)

aiai+3 = α
2 (ai + ai+3 − u)

aiu = α
2 (ai + u − ai+3)

aiw = α
2 (2ai − ai−1 − ai+1 + w)

u2 = u, uw = βu, w2 = (β + 1)w − βu

(ai, ai) = (u, u) = 1, (ai, ai+1) = (u,w) = β

(ai, ai+2) = β
2 , (ai, ai+3) = (ai, u) = α

2 ,

(ai, w) = α, (w,w) = β + 2

6Y( 1
2 , 2) a0, a2, a4, d, z

where
ai := ai+3 + d

aiai+2 = (ai + ai+2 − ai+4)
aid = 1

2d + z

d2 = −2z, zai = zd = z2 = 0
(ai, ai) = 1, (ai, aj) = 1
(d, x) = (z, x) = 0, forallx ∈ A

eigenvalues coincide when α = 0, 1, 49 , −4 ± 2
√

5 and hence these are forbidden. In addi-
tion, clearly we must exclude α = 1

2 for β = −α2

4(2α−1) to make sense. These are the only 

forbidden values for 6A(α, −α2

4(2α−1) ). In particular, in our new basis for 6A(α, −α2

4(2α−1) ), 
α = 2

5 (excluded in [19, Table 2] and [17, Table 2]) and α = 1
3 (excluded in [17, Table 

2]) both lead to valid algebras.

Lemma 7.2. The algebras 6A(α, −α2

4(2α−1) ) and 6J(2β, β) have property (J) with the addi-
tional Jordan type axis being c and u, respectively (see Table 1 on page 91).

Proof. We just show the proof for 6A(α, −α2

4(2α−1) ). The proof for 6J(2β, β) is similar. 
First, observe from the multiplication defined in Table 1, that c is the third axis in each 
〈ai, ai+3, c〉 ∼= 3C(α). Since additionally cz = 0, by counting dimensions, we see that c is 
semisimple with eigenvalues 1, 0 and α and A1(c) = 〈c〉, A0(c) = 〈z, ai + ai+3 − αc : i =
1, 2, 3〉 and Aα(c) = 〈ai − ai+3 : i = 1, 2, 3〉.

We will now compute the fusion law for c. Define σc : A → A to be the linear map 
that fixes c and z and switches ai with ai+3, for i = 1, 2, 3. One can easily check that 
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σc preserves the algebra product and hence is an automorphism of A. Now, observe 
that σc fixes A+ := A1(c) ⊕ A0(c) and negates A− := Aα(c). Since σc is an involutory 
automorphism, we have A−A− ⊆ A+, A+A− ⊆ A− and A+A+ ⊆ A+. Clearly we have 
A1(c)A1(c) = A1(c) and A1(c)A0(c) = 0, so it remains to show that A0(c)A0(c) ⊆
A0(c). For this we calculate. We have z2 ∈ 〈z〉 ⊆ A0(c) and, since 〈ai, ai+3, c〉 ∼= 3C(α), 
(ai + ai+3 − αc)2 ∈ A0(c). We have

z(ai + ai+3 − αc) = α(3α−2)
4(2α−1)

(
2ai − ai−2 − ai+2 + z

+ 2ai+3 − ai+1 − ai+5 + z + 0
)

= α(3α−2)
4(2α−1)

(
2z + 2(ai + ai+3 − αc)

− (ai+1 + ai+4 − αc) − (ai+2 + ai+5 − αc)
)

which is in A0(c). Another straightforward, but slightly longer computation gives

(ai + ai+3 − αc)(ai+1 + ai+4 − αc) = −α(5α−1)
4(2α−1) z + α

4 (ai + ai+3 − αc)

+ α
4 (ai+1 + ai+4 − αc)

+ α(4α−1)
4(2α−1) (ai+2 + ai+5 − αc)

and so A0(c)A0(c) ⊆ A0(c) as required. �
Lemma 7.3. 6Y(1

2 , 2) does not have property (J).

Proof. Suppose, for a contradiction that it did have property (J) with respect to some 
axis a. Then, by Lemma 6.2, a would be in each Jordan type α subalgebra 〈 〈ai, ai+3〉 〉 for 
i = 1, 2, 3. However, ai+3 = ai + d (see Table 1) and 〈 〈ai, ai+3〉 〉 = 〈ai, ai + d, z〉 ∼= Ŝ(2)◦. 
Looking again at Table 1, 〈 〈a0, a3〉 〉 ∩ 〈 〈a1, a4〉 〉 ∩ 〈 〈a2, a5〉 〉 = 〈d, z〉. So, a = γd + δz for 
some γ, δ ∈ F . We have

a = a2 = (γd + δz)2 = γ2d2 = −2γ2z

a contradiction since a is idempotent and z2 = 0. �
7.3. Finite dimensional algebras on X(∞)

There are two families of finite-dimensional algebra on Yabe’s list that generically 
have the axet X(∞), namely IY3(α, 12 , μ)9 and IY5(α, 12 ). Since β = 1

2 for both these 
algebras, we assume that char(F) �= 2. We must decide when these algebras have finite 

9 Note that the parameter μ we use is different to Yabe’s parameter. Here IY3(α, 12 , μ) ∼= III(α, 12 , −2μ −1).
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axets and when they have property (J). We again use our own bases for these algebras, 
which will allow us to better exhibit their axial structure.

For IY3(α, 12 , μ), we note that α �= β = 1
2 (as well as α �= 1, 0). We split into three 

subcases: α = −1, μ = 1 and otherwise. The last case is dealt with by considering split 
spin factor algebras.

Definition 7.4. [16] Let E be a vector space with a symmetric bilinear form b and α ∈ F . 
The split spin factor algebra S(b, α) is the algebra on E⊕Fz1 ⊕Fz2 with multiplication

z2
1 = z1, z2

2 = z2, z1z2 = 0,

ez1 = αe, ez2 = (1 − α)e,

ef = −b(e, f)z,

for all e, f ∈ E, where z := α(α− 2)z1 + (α− 1)(α + 1)z2.

From [16], we have the following properties. If e ∈ E and b(e, e) = 1, then x :=
1
2(e + αz1 + (α + 1)z2) is a (primitive) axis of Monster type M(α, 12) and these are all 
such axes (not counting z1, which is of Jordan type α). Therefore, S(b, α) is an axial 
algebra of Monster type M(α, 12) if and only if E is spanned by vectors of norm 1. Since 
we are interested in 2-generated algebras, we take E = 〈e, f〉 to be 2-dimensional. Let 
b(e, e) = b(f, f) = 1 and b(e, f) = μ, for some μ ∈ F . Define x := 1

2 (e + αz1 + (α+ 1)z2)
and y := 1

2 (f + αz1 + (α + 1)z2).

Theorem 7.5. [16, Theorem 5.1] If α �= −1 and μ �= 1, then 〈 〈x, y〉 〉 = S(b, α) ∼=
IY3(α, 12 , μ).

It is easy to see that S(b, α) has an identity given by 1 = z1 + z2, so in particular, 
IY3(α, 12 , μ) has an identity whenever α �= −1 and μ �= 1. It turns out that when α = −1, 
or μ = 1, the algebra has no identity and instead has a nil element. Also, in these two 
cases, 〈 〈x, y〉 〉 is a proper subalgebra. Indeed for α = −1 and μ �= 1, S(b, −1)◦ := 〈 〈x, y〉 〉
has codimension 1. In [16], we introduce a nil cover of this subalgebra.

Definition 7.6. Let E be a vector space with a symmetric bilinear form b. Let Ŝ(b, −1)◦
be the algebra on E ⊕ Fz1 ⊕ Fn with multiplication

z2
1 = z1, n2 = 0, z1n = 0,

ez1 = −e, en = 0,

ef = −b(e, f)z,

for all e, f ∈ E, where z := 3z1 − 2n.
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The analogous results to the above also hold for Ŝ(b, −1)◦. That is, if b(e, e) = 1
then x = 1

2 (e − z1 + n) is an axis of Monster type M(−1, 12) and these are all such 
axes. Hence, Ŝ(b, −1)◦ is an axial algebra of Monster type M(−1, 12 ) if and only if E is 
spanned by vectors of norm 1. Suppose E = 〈e, f〉 is as above with b(e, e) = b(f, f) = 1
and b(e, f) = μ, x := 1

2 (e − z1 + n) and y := 1
2(f − z1 + n). By [16, Theorem 6.9], if 

μ �= 1, then 〈 〈x, y〉 〉 = Ŝ(b, −1)◦ ∼= IY3(−1, 12 , μ).
We may now consider the axets for both of these algebras simultaneously. From [16], 

the Miyamoto involution for x is τx = −re (cf. Section 5.2). Let θ be the flip automor-
phism which switches x and y. Note that it fixes z1 and z2 (or n) and so acts on E by 
switching e and f . Define ρ := θτx. Recall from Subsection 5.2, the definition of N(n)
(note that our form here is scaled by a factor of 1

2 compared to the form in Subsection 
5.2; equivalently, N(n) defined in this paper is scaled by a factor of 2 compared to [16]).

Lemma 7.7. [16, Lemma 5.3] IY3(α, 12 , μ), μ �= 1, has axet X(n), where 2μ ∈ N(n).

We can now see that IY3(α, 12 , μ), μ �= 1, has property (J).

Lemma 7.8. Let n ≥ 3 odd and 2μ ∈ N(2n). Then A = IY3(α, 12 , μ) has property (J) 
with respect to z1.

Proof. Since x and x− have the same Miyamoto involution and are the only such axes, if 
x ∈ X then x− is also in X and moreover x and x− lie in different orbits on X ∼= X(2n). 
From [16], z1 is an axis of Jordan type α. Since Aα(z1) = E, τz1 maps e to −e and so 
maps x to x−, thus switching the two orbits. �

When μ = 1, IY3(α, 12 , 1) has a different structure. We define it with basis10 a0, a1, z, n
with the following multiplication:

a2
i = ai, a0a1 = 1

2(a0 + a1) + (α− 1
2 )z + n,

z2 = 0 = n2, aiz = αz, ain = 0 = zn.

In IY3(α, 12 , 1), all axes have a common α eigenspace 〈z〉 and a common 0-eigenspace 
〈n〉.

Lemma 7.9. IY3(α, 12 , 1) has axet X(∞) if char(F) = 0 and axet X(p) if char(F) = p.

Proof. An easy calculation shows that any idempotent in A = IY3(α, 12 , 1) has the form 
λa0+(1 −λ)a1+λ(λ −1)(2α−1)z+2λ(1 −λ)n, for λ ∈ F . In particular, the difference of two 
axes never lies in the ideal 〈z〉. So axes in A are in bijection with axes in the quotient 
Ā = A/〈z〉. However, Ā is a 2-generated axial algebra of Jordan type 1

2 containing a 

10 Compared to Yabe’s basis, we have z := 1
2 (a1 + a−1) − a0 + 1

α q and n := 1
2α q.
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nilpotent ideal 〈n̄〉. By Theorem 5.8 and Proposition 5.5, the only possibilities are S(−2)
and Ŝ(2)◦. However, n̄ annihilates every element of Ā and so Ā ∼= Ŝ(2)◦. Hence axet for 
A is the same as the axet for Ā ∼= Ŝ(2)◦ and so the result follows from Lemma 5.13. �

In particular, the axet for IY3(α, 12 , 1) is never even in size and so it cannot have 
property (J).

We now turn to the algebra IY5(α, 12 ). From [19], this algebra has axial dimension 
5. That is, the subspace spanned by the axes has dimension 5 and in fact we have the 
relation ai+5 − 5ai+4 + 10ai+3 − 10ai+2 + 5ai+1 − ai = 0, for i ∈ Z. (Recall the notation 
ai from the beginning of Section 7.) Moreover, any five consecutive axes are a basis for 
this subspace and so we may express an as a linear combination of, say, a0, . . . , a4.

Before we prove this, we need a technical lemma.

Lemma 7.10. If P (t) ∈ F [t] is a polynomial of degree strictly less than k, then ∑k
t=0(−1)t

(
k
t

)
P (t) = 0.

Proof. Since the polynomials Qs(t) := t(t − 1) . . . (t − s + 1), for 0 ≤ s < k, form a 
basis for the space of polynomials of degree at most k, it suffices to prove this for each 
Qs(t). Consider (1 +x)k =

∑k
t=0

(
k
t

)
xt and differentiate both sides 0 ≤ s < k times with 

respect to x. By setting x = −1, we obtain 0 =
∑k

t=0(−1)t−s
(
k
t

)
t(t − 1) . . . (t − s + 1) =

(−1)−s
∑k

t=0(−1)t
(
k
t

)
Qs(t) and hence the claim is shown. �

We can now express an as a linear combination of a0, . . . , a4.

Lemma 7.11. In IY5(α, 12 ), for n ∈ Z and char(F) �= 3, we have

an =
4∑

i=0

(−1)i

i!(4 − i)!
n5

(n− i)ai

where n5 := n(n − 1) . . . (n − 4).11

Proof. We prove this by induction on n. One can easily check that this holds for the 
base cases n = 0, . . . , 4. We will write fi(n) := (−1)i

i!(4−i)!
n5

(n−i) so that we need to prove that 
an =

∑4
i=0 fi(n)ai. Using the recurrence relation for an+1 we have

an+1 = 5an − 10an−1 + 10an−2 − 5an−3 + an−4

=
4∑

j=0
(−1)j

(
5
j

)
an−4+j

11 Note that we cancel n − i in the denominator with a term in n5 before evaluating this formula and so 
every term makes sense provided char(F) 	= 3.
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=
4∑

j=0
(−1)j

(
5
j

) 4∑
i=0

fi(n− 4 + j)ai

=
4∑

i=0

⎛⎝ 4∑
j=0

(−1)j
(

5
j

)
fi(n− 4 + j)

⎞⎠ ai

Now observe that all of our fi(n − 4 + j) are polynomials in j of degree strictly less than 
5. By Lemma 7.10, we have that

4∑
j=0

(−1)j
(

5
j

)
fi(n− 4 + j) = (−1)5

(
5
5

)
fi(n− 4 + 5) = fi(n + 1)

and hence the result follows by induction. �
Corollary 7.12. The algebra IY5(α, 12 ) has axet X(p) over a field of characteristic p ≥ 5, 
X(9) over a field of characteristic 3 and axet X(∞) otherwise.

Proof. Since A = IY5(α, 12 ) is symmetric, it has a regular axet. So A has finite axet X(n)
if and only if n > 0 is minimal such that an = a0 (see the discussion of the notation 
ai at the beginning of this section). If char(F) �= 3, by Lemma 7.11, we can express 
an in the basis a0, . . . , a4 as an =

∑4
i=0

(−1)i
i!(4−i)!

n5

(n−i)ai. Hence a0 = an if and only if 

1 = 1
4! (n − 1)(n − 2)(n − 3)(n − 4) and 0 = (−1)i

i!(4−1)!
n5

(n−i) for i = 1, . . . , 4. First observe 
that the latter equations are never simultaneously satisfied when char(F) = 0. So we 
now assume that char(F) = p ≥ 5. From the first equation we see that p does not divide 
(n − 1)(n − 2)(n − 3)(n − 4). Hence from the latter equations, we see that p|n is the only 
solution. Since n is the minimal such integer, we have n = p and axet X(p) in positive 
characteristic p > 3.

For char(F) = 3, using the relation ri := ai+5−5ai+4+10ai+3−10ai+2+5ai+1−ai we 
see by inspection that ak �= 0, for k = 5, . . . , 8. Whereas 0 = r4 +5r3 +15r2 +5r1 + r0 =
a9 − 30a6 + 81a5 − 81a4 + 30a3 − a0 = a9 − a0 and hence we get axet X(9). �

In particular, IY5(α, 12 ) never has an axet of even size and hence it never has property 
(J).

7.4. The Highwater algebra and its characteristic 5 cover

The Highwater algebra H was introduced by Franchi, Mainardis and Shpectorov in 
[5] and also discovered independently by Yabe in [19]. It is an infinite dimensional 2-
generated symmetric M(2, 12)-axial algebra over any field of characteristic not 2, or 3. 
Its axet is X(∞). In characteristic 5, the Highwater algebra has a cover Ĥ, introduced 
by Franchi and Mainardis [3], which is also an M(2, 1 )-axial algebra.
2
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The algebras H and Ĥ have many ideals and hence many quotients, including ones 
with a finite axet. In this subsection, we consider two questions:

(1) which quotients of H and Ĥ have a finite odd axet X(n);
(2) which quotients of H and Ĥ have axet X(2n), with n odd, and property (J).

In [4], Franchi, Mainardis and McInroy classify the ideals of H and Ĥ. In particular, 
they show that, for every n ∈ N, there is a universal (largest) quotient Hn of H (and Ĥn

of Ĥ) which has axet X(n). The quotient Hn has dimension n + �n
2 �. In characteristic 

5, Ĥn coincides with Hn unless 3|n, in which case it has dimension n + �n
2 � + 2�n

6 �. 
This answers the first question. In the remainder of the section we focus on the second 
question and show the following.

Proposition 7.13. Suppose n ∈ N is odd.

(1) There is a universal quotient HJ
2n of H2n which has axet X(2n) and property (J ). 

It has dimension n + �n
2 � + 1.

(2) Similarly, in characteristic 5, there exists a universal quotient ĤJ
2n of Ĥ2n which has 

axet X(2n) and property (J ). Furthermore, ĤJ
2n = HJ

2n if 3 � n and it has dimension 
n + �n

2 � + 2�n
6 � + 1 if 3|n.

In [4], Franchi, Mainardis and McInroy define a cover Ĥ for H in all characteristics. 
It contains an ideal J such that Ĥ/J is isomorphic to the Highwater algebra. In charac-
teristic 5, Ĥ coincides with Franchi and Mainardis’s cover of the Highwater algebra. In 
other characteristics, Ĥ is a symmetric 2-generated axial algebra, but for a larger fusion 
law. However, it can be used to prove statements about both H and Ĥ in a unified way. 
This is precisely the approach taken by Franchi, Mainardis and McInroy in [4]. We will 
follow a similar approach here, giving a unified description of the quotients which have 
property (J). Hence we will be working in a factor algebra of Ĥ2n which is an algebra of 
Monster type (2, 12 ).

For r ∈ Z, we write r for its image in Z3 = Z/3Z.

Definition 7.14. [4] Let Ĥ be the algebra over a field F , where char(F) �= 2, 3, with basis

{ai : i ∈ Z} ∪ {sj : j ∈ N} ∪ {pr,k : r ∈ {1, 2}, k ∈ 3N}

Set s0 = 0, pr,j = 0 for all r ∈ Z3, if j /∈ 3N, p0,j := −p1,j−p2,j and zr,j = pr+1,j−pr−1,j . 
We define multiplication on the basis of Ĥ by

(1) aiaj := 1
2 (ai + aj) + s|i−j| + zı,|i−j|

(2) aisj := −3
4ai + 3

8 (ai−j + ai+j) + 3
2sj − zı,j

(3) aipr,j := 3pr,j − p−(ı+r),j
2
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(4) sjsl := 3
4 (sj + sl) − 3

8 (s|j−l| + sj+l)
(5) sjpr,k := 3

4 (pr,j + pr,k) − 3
8 (pr,|j−k| + pr,j+k)

(6) pr,hpt,k := 1
4 (z−(r+t),h + z−(r+t),k) − 1

8(z−(r+t),|h−k| + z−(r+t),h+k)

where i ∈ Z, j, l ∈ N, h, k ∈ 3N and r, t ∈ Z3.

Naturally, the ai are the axes of this algebra and they form the axet X(∞). Note 
that, J = 〈pr,j : r ∈ Z3, j ∈ 3N〉 and H ∼= Ĥ/J . So the images of the pr,j and zr,j are 
all 0 in H, which greatly simplifies the above definition.

From [4], Aut(Ĥ) ∼= D∞. Indeed, for k ∈ 1
2Z, let τk be the reflection given by i �→ 2k−i

and D = 〈τ0, τ 1
2
〉. Let sgn : D → Z be the sign representation of D and so sgn(ρ) = −1

if ρ is a reflection and sgn(ρ) = 1 if ρ is a translation. Then, for g ∈ D = Aut(Ĥ),

ai
g = aig , sj

g = sj , pr,k
g = sgn(g)prg,k

Moreover, the Miyamoto involution τaj
coincides with τj and the flip automorphism f

is equal to τ 1
2
.

Theorem 7.15. [4, Corollary 10.1] For n ∈ N , let In �Ĥ be the ideal generated by a0−an
and define Ĥn := Ĥ/In and Hn = Ĥ/JIn. Moreover, let B be the set of the following 
elements:

ai − ai+n, for i ∈ Z,

sj − sj+n, sjn, for j ∈ N,

sj − sn−j , for 1 ≤ j ≤
⌊
n
2
⌋
.

(1) Hn and Ĥn are 2-generated symmetric axial algebras with axet X(n). Moreover, 
every quotient of H, respectively Ĥ, with axet X(n) is a quotient of Hn, respectively 
Ĥn.

(2) If 3 � n, then

(a) In is spanned by the union of B and a basis for J .
(b) Ĥn = Hn has a basis given by the images of {ai : 0 ≤ i < n} ∪ {sj : 1 ≤ j ≤

�n
2 �}.

(3) If 3|n, then

(a) In is spanned by the union of B and the set of elements

pr,j − pr,j+n, pr,jn, for j ∈ N, r = 1, 2,

pr,j − pr,n−j , for 1 ≤ j ≤
⌊
n
⌋
, r = 1, 2.
2
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(b) Ĥn has a basis given by the images of {ai : 0 ≤ i < n} ∪ {sj : 1 ≤ j ≤
�n

2 �} ∪ {p1,j , p2,j : j ∈ 3Z, 1 ≤ j ≤ �n
2 �}.

By [4, Theorem 1.4], every ideal of Ĥ is invariant under the full automorphism group 
and hence every quotient is symmetric and has a regular axet. In particular, the auto-
morphism group acts transitively on the axet X(n) in Hn and Ĥn for all n ∈ N.

Recall that we wish to find the quotients of H2n (or Ĥ2n when char(F) = 5), for n
odd, which have property (J). For simplicity, we use the same notation ai and sj for 
elements of H and their images in Hn; similarly for Ĥ and Ĥn. As before, the opposite 
axes ai and ai+n in H2n (or Ĥ2n) generate a 2-generated axial algebra of Jordan type 2. 
Since char(F) �= 3, 2 �= 1

2 and so by Theorem 5.8, 〈 〈ai, ai+n〉 〉 ∼= 3C(2). By Lemma 6.2, 
any additional axis a of Jordan type 2 giving the algebra property (J) must lie in the 
intersection of all the 3C(2) subalgebras 〈 〈ai, ai+n〉 〉. In particular, a is an axis of Jordan 
type 2 in each subalgebra. The algebra 3C(2) only has 6 primitive idempotents, three of 
Jordan type 2 and three of Jordan type 1 − 2 = −1. Since char(F) �= 3, −1 �= 2 and so 
a must be the third axis of Jordan type 2 in each 〈 〈ai, ai+n〉 〉 subalgebra.

Lemma 7.16. In Ĥ2n, for every i ∈ 0, . . . , n − 1, the third axis of the subalgebra 
〈 〈ai, ai+n〉 〉 = 〈ai, ai+n, sn + zı,n〉 ∼= 3C(2) is bi := 1

2 (ai + ai+n) − (sn + zı,n).

Proof. The third axis in a 3C(2) subalgebra generated by axes x and y is given by 
x +y−xy. For Ĥ2n, this is bi := ai+ai+n−aiai+n = ai+ai+n− 1

2 (ai+ai+n) −(sn+zı,n) =
1
2(ai + ai+n) − (sn + zı,n).12 �

By Theorem 7.15 (2) and (4), bi �= bj for 0 ≤ i �= j ≤ n −1. However, we may quotient 
by an ideal to force these to be equal. The smallest such ideal I is generated by bi − bj
for all 0 ≤ i < j ≤ n − 1. Note that, since ideals are invariant under the action of the 
Miyamoto group, I is in fact generated by b0 − b1.

Before calculating an explicit basis for the ideal I, we need a technical lemma from 
[4], which follows immediately from the multiplication in Ĥ.

Lemma 7.17. [4, Lemma 3.8] For i ∈ Z, j ∈ N, h, k ∈ 3N and {r, t} ⊆ Z3, we have the 
following.

(1) aizr,j = 3
2zr,j + z−(ı+r),j

(2) sjzr,k = 3
4 (zr,j + zr,k) − 3

8 (zr,|j−k| + zr,j+k)
(3) pr,hzt,k = 3

4 (p−(r+t),h + p−(r+t),k) − 3
8 (p−(r+t),|h−k| + p−(r+t),h+k)

(4) zr,hzt,k = −3
4 (z−(r+t),h + z−(r+t),k) + 3

8 (z−(r+t),|h−k| + z−(r+t),h+k)

12 When Ĥ2n is not of Monster type, one can check that 〈 〈ai, ai+n〉 〉 is still isomorphic to a 3C(2) subal-
gebra. This is automatic if it is of Monster type.
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Lemma 7.18. Let I = (b0 − b1) � Ĥ2n. If J ⊂ I2n, then I has a basis given by

a0 + an − (ai + ai+n) − 2(z0,n − zı,n), 1 ≤ i ≤ n− 1,

sj + sn−j − sn, 1 ≤ j ≤
⌊
n
2
⌋
.

If J �⊂ I2n, then 3|n (and char(F) = 5). Then I has a basis given by the above elements 
and

pr,j + pr,n−j − pr,n, j ∈ 3N, 1 ≤ j ≤
⌊
n
2
⌋
, r = 1, 2.

Proof. First, 2(bi − bj) ∈ I and these are linear combinations of 2(b0 − bi) = a0 + an −
ai − ai+n − 2(z0,n − zı,n), where i = 1, . . . , n − 1. We wish to calculate ak(bi − bj), 
for all 0 ≤ k < 2n. Since the automorphism group acts transitively on the axet, it 
also acts transitively on the set of bi. Let g ∈ Aut(Ĥ2n) such that agk = a0. Then, 
ak(bi − bj) = (a0(big − bjg ))g

−1 . Since the b0 − bi span the space of differences of the bi, 
it suffices to calculate just a0(b0− bi) and take the orbit under the automorphism group.

Now, using Lemma 7.17 (1), we calculate

2a0(b0 − bi) = a0
(
a0 + an − ai − ai+n − 2(z0,n − zı,n)

)
= 1

2 (a0 + an − ai − ai+n) + sn − si − si+n

+ z0,n − z0,i − z0,i+n − 3(z0,n − zı,n) − 2(z0,n − zı,n)

= 1
2 (b0 − bi) + sn − si − si+n + z0,n − z0,i − z0,i+n

− 2(2z0,n − (zı,n + z−ı,n))

First, suppose that J ⊂ I2n. Then all the zr,j ∈ J ⊂ I2n and hence the above yields 
sn − si − si+n ∈ I. By Theorem 7.15 (2), sn−i − sn+i ∈ I2n and so si + sn−i − sn ∈ I

as required. Since si + sn−i − sn is fixed by Aut(Ĥ2n), we do not obtain any additional 
elements from ak(bi − bj). Note that it is immediately clear from Theorem 7.15 (2) that 
for the sj + sn−j − sn, we may take 1 ≤ j ≤ �n

2 �.
Now suppose that J �⊂ I2n; then 3|n and by assumption char(F) = 5. By the above 

calculation, we have that

sn − si − si+n + z0,n − z0,i − z0,i+n − 2(2z0,n − (zı,n + z−ı,n)) ∈ I (2)

If i �≡ 0(3), then z0,i = 0 = z0,n−i and z0,n + zı,n + z−ı,n = 0. So Equation (2) reduces 
to sn − si − si+n − 5z0,n = sn − si − si+n ∈ I, as char(F) = 5.

If i ≡ 0(3), then zı,n = z−ı,n = z0,n. So Equation (2) reduces to sn − si − si+n +
z0,n − z0,i − z0,i+n ∈ I. Since g ∈ Aut(Ĥ2n) fixes all the sk but acts as zr,jg = zrg,j , 
we get that sn − si − si+n ∈ I and zr,n − zr,i − zr,i+n ∈ I, for r = 0, 1, 2. Once again 
as sn−i − sn+i ∈ I2n, we get si + sn−i − sn ∈ I. Since 3pr,j = zr−1,j − zr+1,j and 
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pr,n−j −pr,n+j ∈ I2n, we get that pr,j +pr,n−j −pr,n ∈ I for all 1 ≤ j ≤
⌊
n
2
⌋

and r = 1, 2
as required.

A straightforward, but long, calculation now shows that the space spanned by the 
given elements is closed under multiplication with elements of Ĥ2n and so these span the 
ideal I. By Theorem 7.15 (2) and (4), they are linearly independent and so they form a 
basis. �

In particular, I is a proper ideal of Ĥ2n. Let a be the common image of all the 
bi = 1

2(ai + an) − σn in Ĥ2n/I.

Lemma 7.19. The algebra ĤJ
2n := Ĥ2n/I has property (J) with respect to the axis a.

Proof. From the 3C(2) subalgebras, we know that ai − ai+n is a 2-eigenvector of a for 
all i = 0, . . . , n − 1. Using the multiplication in Ĥ2n, we have

asj =
( 1

2 (a0 + an) − (sn + z0,n)
)
sj

= −3
8 (a0 + an) + 3

16 (a−j + an−j + aj + aj+n) + 3
2sj −

1
2 (z0,j + zn,j)

− 3
4 (sn + sj) + 3

8 (sn−j + sn+j) − 3
4 (z0,n + z0,j) + 3

8 (z0,n−j + z0,n+j)

= −3
8 (b0 − bj + b0 − bn−j) + 3

4 (sj + sn−j − sn)

+ 3
4 (z0,j + z0,n−j − z0,n) − 10

4 z0,j − 3
8
(
2z0,n − (zj,n + z−j,n)

)
By Lemma 7.18, to show the above is in I, we must show that

3
4 (z0,j + z0,n−j − z0,n) − 10

4 z0,j − 3
8
(
2z0,n − (zj,n + z−j,n)

)
(3)

is in I. If J ⊂ I2n, then all the zr,k ∈ I2n and so this is trivially true. So suppose that 
J �⊂ I2n; then 3|n and hence we have that char(F) = 5.

If j ≡ 0 mod 3, then zj,n = z−j,n = z0,n and hence, by Lemma 7.18, Equation (3)
reduces to 3

4(z0,j + z0,n−j − z0,n), which is in I.
If j �≡ 0 mod 3, then z0,j = 0 = z0,n−j and z0,n + zj,n + z−j,n = 0. So Equation (3)

reduces to −15
8 z0,n = 0 since char(F) = 5. Therefore in all cases, sj is a 0-eigenvector 

for a in H2n/I. A very similar calculation shows that pr,j is also a 0-eigenvector for a in 
H2n/I.

A counting argument shows that a, the ai−an+i, sj and pr,j is a basis of eigenvectors 
for ĤJ

2n. So we see that a is semisimple with eigenvalues 1, 0 and 2.
Since the flip automorphism f = τ 1

2
also fixes I, it induces an automorphism of ĤJ

2n

which we will also call f . Now observe that (τ0τ 1
2
)n in D = Aut(Ĥ) maps i �→ i + n. So 

this induces ρ ∈ Aut(Ĥ2n) which fixes a and the sj and inverts each ai−ai+n. If J ⊂ I2n, 
then this is a basis for ĤJ

2n. If J �⊂ I2n, then 3|n and hence pr,jρ = sgn(ρ)pr+n,j = pr,j . 
Hence in both cases, ρ is an automorphism which negates the 2-eigenspace of a and fixes 
the 1- and 0-eigenspaces. As this preserves the fusion law of a, the fusion law must be 
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Z2-graded. From the definition, the product of sj with sk, sj with pr,k and pr,j with ps,k
all lie in the space spanned by the sj and pr,k. Hence, for the fusion law, 0 � 0 ⊆ {0} and 
hence a is an axis of Jordan type 2. �

These lemmas complete the proof of Proposition 7.13. The claims about the dimen-
sions follow from the bases given in Lemma 7.18. Note that a is not contained in any 
proper ideal of ĤJ

2n. Indeed, if a were contained in some proper ideal K, then K∩〈 〈x, x′〉 〉
would be an ideal of 〈 〈x, x′〉 〉 ∼= 3C(2) (and 3C(2) � 3C(1

2 ) since char(F) �= 3 as 
noted above). Suppose K ∩ 〈 〈x, x′〉 〉 is a proper ideal of 〈 〈x, x′〉 〉. From Section 5.1, as 
char(F) �= 3, 3C(2) has a single proper ideal 〈x − x′, x − a〉 and a /∈ 〈x − x′, x − a〉. So 
K ∩ 〈 〈x, x′〉 〉 = 〈 〈x, x′〉 〉. Then, x, x′ ∈ K for all x ∈ X and hence I = Ĥ, a contradiction. 
Hence a is not contained in any proper ideal and therefore every non-trivial quotient of 
ĤJ

2n also has property (J).

8. Collapsing shapes on 3-generated axets revisited

Having studied the 2-generated symmetric algebras in the previous section, we can 
now prove our final theorem.

Theorem 8.1. Let X = 〈a, b, c〉 ∼= X1(1 + n), n ≥ 3 odd, be a 3-generated axet, where a
is the fixed axis. Let Y = 〈a, b〉 and Z = X − {a}. Suppose that Θ is a shape on X for 
M(α, β) and A is a completion for Θ.

(1) If σa = 1, then AY
∼= 2B and A ∼= 1A ⊕ 〈 〈b, c〉 〉, where 〈 〈b, c〉 〉 is isomorphic to a 

quotient of one of:

(a) 3C(β), 3A(α, β), 5A(α, 5α−1
8 ), Hn, Ĥn,

(b) S(δ), IY3(α, 12 , 
δ
2 ) where δ ∈ N(n),

(c) Ŝ(2)◦, IY3(α, 12 , 1), IY5(α, 12 ) over a field of characteristic p ≥ 3.

(2) If σa �= 1, then AY ∈ J 2(α) − {2B} and either

(a) A is in fact a symmetric 2-generated algebra and a quotient of one of

(i) A ∼= 6A(α, α2

4(1−2α) ),
(ii) A ∼= 6J(2β, β),
(iii) A ∼= IY3(α, 12 , μ), where 2μ ∈ N(2n),
(iv) A ∼= HJ

2n
(v) A ∼= ĤJ

2n, where 3|n, or

(b) (α, β) = (1 , 2) and A ∼= Bar0,1(1 , 2).
2 2
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Proof. If σa = 1, then by Proposition 6.1, A ∼= 1A ⊕ 〈 〈b, c〉 〉. Since n is odd, 〈 〈b, c〉 〉 is 
a symmetric 2-generated algebra and so, by the results in Section 7, it is one of the 
algebras listed.

For σa �= 1, we use the case distinction in Proposition 6.1. Suppose we are in case 
2(a). Then, A = B is a symmetric 2-generated algebra which has property (J). Again by 
the results in Section 7, these are the algebras listed.

We now turn to the two exceptional situations 2(b) and 2(c). The algebra B is a 
symmetric 2-generated algebra with axet X(2n). By Section 7, the possibilities are a 
quotient of one of S(δ) with δ ∈ N(2n), H2n, Ĥ2n, 6A(α, α2

4(1−2α) ), 6J(2β, β), 6Y(1
2 , 2), 

or IY3(α, 12 , μ) where 2μ ∈ N(2n). Note that α = 1
2 and so B cannot also have β = 1

2 . 
This leaves 6A(α, α2

4(1−2α) ), 6J(2β, β), or 6Y(1
2 , 2), or one of their quotients. In these, 

〈 〈b, b′〉 〉 is isomorphic to 3C(α), 3C(α) and Ŝ(2)◦, respectively. Since 2B is not a quotient 
of these, case 2(c) where 〈 〈b, b′〉 〉 ∼= 2B does not occur.

For case 2(b), 〈 〈b, b′〉 〉 ∼= S(2)◦, the only choice for B is 6Y(1
2 , 2)× and so β = 2. Since 

B ∼= 6Y(1
2 , 2)× is 4-dimensional and spanned by its six axes and AY

∼= S(−2), we know 
the multiplication of a with B and hence A is 5-dimensional. This is precisely the algebra 
Bar0,1(1

2 , 2). �
Remark 8.2. The algebra Bar0,1(1

2 , 2) in case 2(b) is one of a family of algebras 
Bari,j(1

2 , 2) which are baric [15]. That is, there is an algebra homomorphism w : A → F

called a weight function. In fact, we discovered this family of baric algebras by proving 
this theorem. The algebra Bar0,1(1

2 , 2) in the above theorem is 5-dimensional, cannot be 
generated by two axes, and contains 6Y(1

2 , 2)× ∼= Bar1,0(1
2 , 2) as a codimension 1 subal-

gebra. We note that we discovered 6Y(1
2 , 2)× ∼= Bar1,0(1

2 , 2) in this way independently 
to Yabe.

Remark 8.3. Note that a 2-generated algebra in case 2(a) of the above theorem is not 
generated by two of the 1 +n axes given. In this case, σa �= 1 and Z and Zσa are disjoint. 
The algebra is then generated by, for example, bσa and c.

Remark 8.4. The above theorem implies that the vast majority of shapes on the axet 
X1(1 + n) collapse. In particular, if AY ∈ J 2(α) − {2B} and n �= 3, then all the shapes 
on X1(1 + n) collapse unless the subalgebras for AY and AZ are (quotients of) those 
found in the completions listed. Explicitly, these shapes are:

(a)(i) If A ∼= 6A(α, α2

4(1−2α) ), then AY
∼= 3C(α) and AZ

∼= 3A(α, α2

4(1−2α) ).
(a)(ii) If A ∼= 6J(2β, β), then AY

∼= 3C(2β) and AZ
∼= 3C(β).

(a)(iii) If A ∼= IY3(α, 12 , μ), then AY
∼= 3C(α) and AZ

∼= IY3(α, 12 , −μ).
(a)(iv) If A ∼= HJ

2n, then AY
∼= 3C(2) and AZ

∼= HJ
n (and (α, β) = (2, 12 )).

(a)(v) If A ∼= ĤJ
2n, then AY

∼= 3C(2) and AZ
∼= ĤJ

n (and (α, β) = (2, 12 )).
(b) If A ∼= Bar0,1(1 , 2), then AY

∼= S(−2), AZ
∼= 3C(2).
2
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Let us see what happens in the only case, M(1
4 , 

1
32 ), where we do know all the 2-

generated algebras. These are the Norton-Sakuma algebras [10]. Since n ≥ 3 is odd, it is 
either 3, or 5 and so in the shape Θ, 〈 〈b, c〉 〉 ∼= 3A, 3C, 5A and 〈 〈a, b〉 〉 ∼= 2A, 2B. Hence the 
only possible shapes are 3A2B, 3C2B, 5A2B, 3A2A, 3C2A, or 5A2A. The completions 
of the first three are direct sum algebras in case (1) of Theorem 8.1.

Corollary 8.5. [12, Proposition 5.2 and Corollary 5.3]

(1) The shape 3A2A has the unique completion 6A.
(2) The shapes 3C2A and 5A2A collapse.

Proof. By Theorem 8.1, such a completion for any of these shapes would be 2-generated 
with axet X(2n), n ≥ 3 odd. By inspection, 6A is the only such algebra and 〈 〈b, c〉 〉 is 
isomorphic to 3A and not 3C, or 5A. �
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