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Abstract. The introduction of unsupervised methods in denoising has
shown that unpaired noisy data can be used to train denoising networks,
which can not only produce high quality results but also enable us to
sample multiple possible diverse denoising solutions. However, these sys-
tems rely on a probabilistic description of the imaging noise–a noise
model. Until now, imaging noise has been modelled as pixel-independent
in this context. While such models often capture shot noise and read-
out noise very well, they are unable to describe many of the complex
patterns that occur in real life applications. Here, we introduce a novel
learning-based autoregressive noise model to describe imaging noise and
show how it can enable unsupervised denoising for settings with com-
plex structured noise patterns. We show that our deep autoregressive
noise models have the potential to greatly improve denoising quality in
structured noise datasets. We showcase the capability of our approach
on various simulated datasets and on real photo-acoustic imaging data.

Keywords: denoising, deep learning, autoregressive, noise, diverse so-
lutions, VAE, photoacoustic imaging

1 Introduction

Whenever we attempt to acquire an image s, using a microscope or any other
recording device, we should generally expect that the result x will not perfectly
correspond to the signal. Instead, our measurement will be subject to the random
inaccuracies of the recording process, resulting in what is referred to as noise. We
can define noise n = x−s as the difference between the corrupted observation and
the true signal. Noise is especially prevalent in sub-optimal imaging conditions,
such as when imaging with only a small amount of light. As a result, noise
often becomes the limiting factor in life science imaging, operating right at the
boundary of what is possible with current technology. The algorithmic removal
of noise (denoising) can thus be a vital tool, enabling new previously unfeasible
experimental setups [4, 16]. Given a noisy image x, we can think of the denoising
task as finding an estimate ŝ that is close to the true clean image s.
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Fig. 1. Comparing HDN with our novel autoregressive noise model to HDN
and HDN3−6 with the standard pixel-independent noise model. Structured
noise can be observed in many imaging modalities. Here, the simulated striped pattern
in the noise is designed to mimic noise real noise as it frequently in some sCMOS
cameras. HDN with our novel autoregressive noise model is able to remove structured
noise, while HDN with the established pixel-independent noise model only removes the
pixel-independent component. HDN3−6 performs slightly better, but struggles with
long range correlation.

Consequently, since the introduction of digital image processing, a plethora
of denoising methods have been proposed [7, 10, 18], to name a few. The last
decade however, has seen a revolution of the field, with machine learning (ML)
emerging as the technology capable of producing the most accurate results [4,
16]. Traditional supervised ML-based methods [28] view denoising as a regression
problem, i.e., they attempt to learn a function, mapping noisy images x to the
true clean signal s, based on previously collected training data of noisy-clean-
image-pairs.

Despite its success, supervised learning of this form comes with an impor-
tant caveat, the acquisition of training data can be impractical. Originally, the
approach requires us to collect paired clean and noisy images of the same con-
tent type we would like to denoise. This is not always possible. Although the
problem was partially alleviated by Lehtinen et al . [17], showing that pairs of
corresponding noisy images are sufficient, the collection of paired data has re-
mained an obstacle for many practical applications.

Only in recent years has this problem been addressed by new self- and unsu-
pervised methods [14, 3, 15, 25, 6, 20, 24, 23], which can be trained on individual
(unpaired) noisy images, e.g . the very images that are to be denoised. Two of the
newest unsupervised techniques [24, 23], referred to as DivNoising and HDN [23],
provide an additional benefit. They do not produce a single estimate of the true
signal, but instead allow us to sample different possible solutions for a noisy
input image.

However, to achieve this, these methods require an additional ingredient dur-
ing training. They rely on a mathematical description of the imaging noise, called
noise model. The noise model is description of the probability distribution p(x|s)
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over the noisy observations x we should expect for a given underlying clean im-
age s. Noise models can be measured from calibration data [15], bootstrapped
(using a self-supervised denoising algorithm) [25], or even co-learned on-the-fly
while training the denoiser [24]. Most crucially, noise models are a property of
the imaging setup–the camera/detector, amplifier etc., but do not depend on
the object that is being imaged. That is, once a noise model has been estimated
for an imaging setup it can be reused again and again, opening the door for
denoising in many practical applications.

However, previous noise models used in this context are based on a condi-
tional pixel-independence assumption. That is, the model assumes that for an
underlying given clean image s, noise is generated independently for each pixel
in an unstructured way, similar to adding the result of separate dice rolls to each
pixel without considering its neighbours. This assumption is reasonable for many
imaging setups, such as for fluorescence microscopy, where noise is often thought
of as a combination of Poisson shot noise and Gaussian readout noise [30]. For
simplicity, we will refer to this type of noise simply as pixel-independent noise.

Unfortunately, many imaging systems, such as computed tomography (CT) [9]
or photo acoustic imaging (PA) [29], do not adhere to this property and can
produce structured noise. In practice, even in fluorescence microscopy the condi-
tional pixel-independence assumption does not always hold, due to the camera’s
complex electronics. Many fluorescence microscopy setups suffer from noise that
is partially structured. Figure 1 shows an example of simulated structured noise
with a pattern close to what is produced by many sCMOS cameras [2].

When DivNoising methods are applied to data containing structured noise
which is not accurately represented in their noise model, these methods usually
fail to remove it1. Even though, Prakash et al . [23] show that the effects of this
problem can be mitigated by reducing the expressive power of their network, we
find that this technique fails to remove noise featuring long range correlations.

Here, we present a new and principled way to address structured noise in
the DivNoising framework. We present an autoregressive noise model that is
capable of describing structured noise and thus enabling DivNoising to remove
it. We evaluate our method quantitatively on various simulated datasets and
qualitatively on a PA dataset featuring highly structured noise. We publish our
code as well as the our simulated noise datasets.2.

In summary, our contributions are:

1. We present an autoregressive noise model capable of describing structured
noise.

2. We demonstrate that DivNoising together with our noise model can effec-
tively remove simulated structured noise in situations where the previously
proposed approach [23] fails.

3. We qualitatively demonstrate structured noise removal on a real PA data.

1 The same is true for self-supervised methods such as [14], which discusses this topic
explicitly

2 Code and datsets can be found at https://github.com/krulllab/autonoise.
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2 Related Work

2.1 Self- and Unsupervised Methods for Removing Structured
Noise

Noise2Void [14] is a self-supervised approach to removing pixel-independent noise
relying on the assumption that the expected value of a noisy observed pixel,
conditioned on the those surrounding it, is the true signal. Using what is known
as a blind spot network, a model is shown as input a patch of pixels with the one in
the centre masked. It is trained to produce an output that is as close as possible
to the pixel it did not see for which, under the aforementioned assumption, its
best guess is something close to the true signal.

In the case of structured noise, that assumption is broken. Broaddus et al . [6]
accommodated for this by masking not only the pixel that is to be predicted,
but also masking all those for which the conditional expected value of the target
pixel is not the true signal. A drawback of this approach is that one must first
determine the distance and direction over which noise is correlated. Another is
that a considerable amount of valuable information is sacrificed by masking.

As mentioned previously, in [23], Prakash et al . demonstrated that tuning
the expressive power of a DivNoising based method enables it to remove some
cases of structured noise. This method is described in more detail in Section 3.1.

2.2 Noise Modelling

In [1], Abdelhamed et al . proposed a deep generative noise model known as
Noise Flow. It is based on the Glow [12] normalising flow architecture and can
be trained for both density estimation and noise generation. In their paper, the
authors demonstrated how this noise model could be applied to the problem
of denoising by using it to synthesise clean and noisy image pairs. Those pairs
could then be used to train a supervised denoising network.

A normalising flow based noise model could be used for the purposes of this
paper, but a recent review on deep generative modelling [5] found that auto-
regressive models perform slightly better in terms of log-likelihood. As will be
seen later, this makes auto-regressive noise models more suitable in a DivNoising
framework.

3 Background

Here, we want to give a brief recap of the methods our approach relies on. We will
begin with DivNoising Prakash et al . [24] and its extension [23] (HDN), which is
the framework our method is built upon. We will then discuss the currently used
pixel-independent noise models, which are a component in DivNoising and HDN
and which we will later compare against our novel autoregressive replacement.
Finally, we will have a brief look at deep autoregressive models, which provide
the backbone for our noise model.
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3.1 DivNoising and HDN

Training DivNoising requires two ingredients, the data that needs to be denoised
and a pre-trained or measured noise model, pη(x|s). We will discuss the noise
model in more detail in Section 3.2.

Instead of directly providing an estimate ŝ for a noisy image, DivNoising
allows us to sample possible solutions sk from an approximate posterior distri-
bution p(s|x), i.e., from the distribution of possible clean images given the noisy
input. To obtain a sensible single estimate, we can average a large number of
these samples to produce the minimum mean square error (MMSE) estimate

ŝ =
1

K

K∑
k=1

sk, (1)

which is comparable to the single solution provided by a supervised denoising
network.

DivNoising works by training a variational autoencoder (VAE) to approx-
imate the distribution of training images x. VAEs are latent variable models.
That is, they can model difficult and high dimensional distributions by intro-
ducing an unobserved latent variable z following a known prior distribution. In
DivNoising p(z) is assumed to be a standard normal distribution. DivNoising
describes the distribution of noisy images as

log pθ,η(x) = log

∫
pη (x|s = gθ(z))p(z)dz, (2)

where gθ : Rd → RD>d is a convolutional neural network (CNN) called the
decoder that maps from the space of latent variables to the space of signals.
We use θ to denote the parameters of the decoder network. Once trained, the
decoder warps the simple distribution p(z) to the potentially highly complex
distribution of clean images. Even though this is an extremely expressive model,
training of the parameters θ is challenging due to the intractable integral Eq. 2.
In practice, a VAE can be trained by maximising the variational lower bound

log pθ,η(x) ≥ Eqϕ(z|x)[log pη(x|s = gθ(z))]−DKL[qϕ(z|x) ∥ p(z)], (3)

where DKL is the Kullback-Liebler divergence, and qϕ(z|x) is a parametric dis-
tribution in latent space, implemented by a second CNN, called the encoder. The
encoder network takes a noisy image x as input and outputs the parameters of
the distribution. The encoder, ϕ, and the decoder, θ, are trained in tandem by
maximising Eq. 3 based on a set of noisy training images.

Once trained, DivNoising can be used to denoise an image x by processing it
with the encoder, drawing a sample zk in latent space from qϕ(z|x), and finally
decoding the sample gθ(z

k) to obtain sampled solution sk. The resulting sampled
solutions can then be combined to produce an MMSE estimate using Eq. 1.

The original DivNoising shows impressive performance in many cases, but
struggles when applied to highly complex datasets, which contain diverse pat-
terns and shapes. In these cases, the results tend to be blurry or contain artifacts.
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The reason for this is that DivNoising trains a full model of the image distribu-
tion and this is a challenging task for complex datasets. Due to it’s architecture,
DivNoising performs especially poorly for images that contain a lot of high fre-
quency information.

As a side effect of this, DivNoising was found to at times remove structured
noise even when using a pixel-independent noise model [23]. However, this comes
at the cost of a blurred denoising result.

In [23], the power of DivNoising was improved with the use of the LadderVAE
architecture [26]. This version is known as Hierarchical DivNoising (HDN). The
main difference between a LadderVAE and a typical VAE is that the latent
variable z is replaced with a hierarchy of latent variables z = {z1, z2, . . . zn}
where each zi is conditionally dependent upon all zi+1, . . . , zn, so that the prior
distribution factorises as:

pθ(z) = pθ(zn)

n−1∏
i=1

pθ(zi|zi+1, . . . , zn), (4)

and the approximate posterior factorises as:

qϕ(z|x) = qϕ(zn|x)
n−1∏
i=1

qϕ(zi|zi+1, . . . , zn,x). (5)

With these changes, the variational lower bound to the log likelihood is now:

log pθ(x) ≥ Eqϕ(z|x)[log pη(x|s = gθ(z))]

−DKL[qϕ(zn|x) ∥ p(zn)]

−
n−1∑
i=1

Eqϕ(zi|x)[qϕ(zi|zi+1, . . . , zn,x) ∥ pθ(zi|zi+1, . . . , zn)]

(6)

The authors found that with HDN the denoising capability is greatly im-
proved, especially for complex high detail datasets. However, when HDN is used
with a pixel-independent noise model, it will usually also faithfully reconstruct
any structured noise instead of removing it. Prakash et al . were able to address
this problem in some cases by not conditioning the distribution of the lowest
latent variables in the hierarchy on x. They noticed that it was through this
conditioning that the model passed information about the structured noise to
the output, so by severing the connection, the signal estimate was produced
without the structured artifacts.

In their experiments, Prakash et al . mostly used HDN with six latent vari-
ables in the hierarchy, and when tackling structured noise they would alter the
distribution of the first two. We refer this altered model as HDN3−6 for the
remainder of this paper.

We find that HDN3−6 does not work in all cases (see Figure 1) and also
comes at a cost. By removing some levels of latent variables we also reduce
the expressiveness the model. Consequently, when we combine HDN with our
autoregressive noise model, we keep all levels of latent variables activated to
allow for maximum expressive power.
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3.2 Pixel-Independent Noise Models

Noise models, as they have until now been used with DivNoising and HDN, are
based on the assumption that when an image is recorded for any underlying
signal s, noise occurs independently in each pixel i. That is, the distribution
factorises over the pixels of the image as

pη(x|s) =
N∏
i=1

pη(xi|si), (7)

where pη(xi|si) corresponds to the distributions of possible noisy pixel values
given an underlying clean pixel value at the same location i. This means that
to describe the noise model for an entire image pη(x|s), we only need to char-
acterise the much simpler 1-dimensional distributions for individual pixel values
pη(xi|si). These pixel noise models have been described with the help of 2-
dimensional histograms (using one dimension for the clean signal and one for
the noisy observation) [15], or parametrically using individual normal distribu-
tions [30] or Gaussian mixture models [25] parameterised by the pixel’s signal
si.

3.3 Signal-Independent Noise Models (a Simplification)

Even though the models described in Eq. 7 are unable to capture dependencies
on other pixels, importantly, they are able to describe a dependency on the signal
at the pixel itself. For many practical applications this is essential. For example,
fluorescence microscopy is often heavily influenced by Poisson shot noise [30],
following a distribution that depends on the pixel’s signal.

However, here in this work, we will consider only a more basic case, in which
the noise does not depend on the signal and is purely additive. In this case, we
can write

pη(x|s) ≡ pη(n), (8)

with n = x− s, turning Eq. 7 into

pη(x|s) =
N∏
i=1

pη(ni), (9)

Allowing us to fully characterise the noise model by defining a single 1-dimensional
distribution pη(ni) describing the noise at the pixel level.

In Section 4, we will introduce our novel autoregressive noise model, which
will allow us to get rid of the pixel-independence assumption. However, within
the scope of this work we are still operating under the assumption of signal-
independence (Eq. 8), leaving the more general case of combined signal- and
pixel-dependence for future work.
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3.4 Deep Autoregressive Models

Generally, the distribution of any high dimensional variable v = (v1, . . . , vN )
can be written as product

p(v) =

N∏
i=1

p(vi|v1, . . . , vi−1) (10)

of 1-dimensional distributions for each element p(vi|v1, . . . , vi−1) conditioned on
all previous elements.

Oord et al . [27] proposed using a CNN to apply this technique to image data
in an algorithm known as PixelCNN. The authors suppose a row-major ordering
of the pixels in the image and model the distribution p(vi|v1, . . . , vi−1) for each
pixel conditioned on all pixels above and to the left of it using a CNN with
an adequately shaped receptive field. When applied to the image, the network
outputs the parameters of the 1-dimensional conditional distribution for each
pixel.

4 Methods

Considering the signal-independence assumption (Eq. 8), we can see that a struc-
tured noise model can be implemented as an image model for the distribution
of noise images n. We use the PixelCNN approach to implement this model.
To train our autoregressive noise model we require training images containing
pure noise. In practice, such noise images might be derived from dark areas of
the image, where the signal is close to zero, or could be explicitly recorded for
the purpose, e.g. by imaging without a sample. We denote these noise training
images as nj .

To train our noise model based on Eq. 10, we use the following loss function

log pη(n
j) =

N∑
i=1

log pη(ni|nj
1, . . . , n

j
i−1), (11)

where pη(ni|nj
1, . . . , n

j
i−1) are the conditional pixel distributions described by

our PixelCNN for pixel i by outputting the parameters of a Gaussian mixture
model for each pixel.

Once our noise model is trained, we can proceed to our HDN model for
denoising. We follow the training process as described in [23] and use Eq. 6 as
training loss. Note that this contains the noise model log pη(x|s = gθ(z)).

Considering Eq. 8, we can compute n̂ = x − gθ(z) and insert it into Eq. 6,
this time keeping the parameters η fixed.

5 Experiments

We use a total of 5 datasets in our experiments, one is intrinsically noisy PA
data and the other four are synthetically corrupted imaging data.
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Fig. 2. Our autoregressive noise model as a component in the DivNoising
framework. Divnoising trains a VAE to describe the distribution of noisy images x.
It does so by sampling clean images ŝ and using a noise model as part of its loss
function, called reconstruction loss. The reconstruction loss assess the likelihood of
network output ŝ giving rise to original noisy training image x. It is defined as the
logarithm of the noise model. In both cases, for the pixel-independent noise model and
our autoregressive noise model, the reconstruction loss can be computed efficiently as
a sum over pixels. For the pixel-independent noise model, this is done based on the
conditional independence assumption by summing over the pixel noise models log p(n̂i),
modelled as a Gaussian mixture model. In our autoregressive noise model we sum over
the conditional distributions p(n̂i|n̂1, . . . , n̂i−1) for the noise in each pixel conditioned
on the previous pixels, i.e., the pixels above and left. Our noise models describes these
conditional distributions using a modified version of the PixelCNN [21] approach, which
is implemented as an efficient fully convolutional network, outputting the parameters
of a separate Gaussian mixture model for each pixel.

5.1 Synthetic Noise Datasets

While datasets of paired noisy and clean images are not needed to train our
denoiser, they are needed to quantitatively evaluate the denoiser’s performance
using metrics such as peak signal-to-noise ratio (PSNR). The method proposed
here is currently only capable of removing signal-independent noise, with the
extension to signal-dependent noise being left for future work. We are not aware
of any real datasets of paired noisy and clean images that do not contain signal-
dependent noise, and have therefore created synthetic pairs by adding signal-
independent noise to clean images for the purpose of quantitative evaluation.
The very noise images that were added to the clean images in the simulated
datasets were used to train their noise models but this was only for convenience.
Any dataset of noise recorded under the same conditions as the signal could be
used.



10 B. Salmon and A. Krull

Convallaria sCMOS: Broaddus et al . [6] took 1000 images of a stationary
section of a Convallaria with size 1024×1024. Each image contained signal-
dependent noise, but the average of the 1000 images is an estimate of the ground
truth. We normalised this ground truth and split it into patches of size 128×128.
For each patch, we added the same sample from the standard normal distribution
to the upper 64 pixels in a column, taking a different sample for every column,
and then did the same for the lower 64 pixels. We then added pixel-independent
Gaussian noise with a standard deviation of 0.3. This was an attempt to produce
noise similar to the sCMOS noise shown in Figure 6 of [19].
Brain CT 2486 clean CT brain scan images were taken from Hssayeni [11]
and centre cropped to size 256×256. Independent Gaussian noise was generated
with a standard deviation of 110. This noise was smoothed by a Gaussian filter
with a standard deviation of 1 vertically and 5 horizontally. More independent
Gaussian noise with a standard deviation of 20 was added on top of that. Finally,
we subtracted and shifted the noise to have zero mean. This noise was intended
to be similar to the CT noise shown in Figure 3 of [22].
KNIST The Kuzushiji-MNIST dataset was taken from Clanuwat et al . [8]. The
data was normalised before adding a value of 1 to diagonal lines to create a
stripe pattern. Independent Gaussian noise with a standard deviation of 0.3 was
then added on top. This was intended to demonstrate how HDN3−6 with a pixel-
independent noise model fails on long range, strong correlations while HDN with
our noise model is successful.

5.2 Photoacoustic Dataset

PA imaging is the process of detecting ultrasound waves as they are emitted by
tissues that are being made to thermoelastically expand and contract by pulses
of an infrared laser. The resulting data is a time series, and noise samples can
be acquired by taking a recording while the infrared laser is not pulsed.

This particular dataset is afflicted with structured noise (see Figure 4) that
is thought to have been caused by inter-pixel sensitivity variations. It consists
of 468 observations of a signal and 200 observations of only noise, with size
128×128.

5.3 Training the Noise Model

The noise model used in experiments uses the architecture in van den Oord et
al . [21], modified to output the parameters of a Gaussian mixture model. We
used the same hyperparameters for each dataset. Those hyperparameters were
5 layers, 128 feature channels and a kernel size of 7. The output of the network
was the parameters of a 10 component Gaussian mixture model for each pixel.
The Adam optimiser with an initial learning rate of 0.001 was used, and learning
rate was reduced by a factor of 0.99 every epoch. Every dataset was trained on
for a maximum of 12000 steps, but a patience of 10 on the validation loss was
used to avoid overfitting on the training set. Images were randomly cropped to
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64×64, except the kanji data which was trained on full images. All experiments
used a batch size of 8.

5.4 Training HDN

The HDN architecture was based on that of Prakash et al . [23] and was kept
the same for all experiments. 6 hierarchical latent variables were used, each with
32 feature channels. There was a dropout probability of 0.2, and to prevent
KL vanishing, the free bits approach [13] was used with a lambda of 0.5. The
Adamax optimiser was used with a learning rate of 0.0003 and learning rate was
reduce by 0.5 when the validation loss plateaued for more than 10 epochs. The
same patch and batch size as in the training of the noise model was used.

5.5 Denoising with Autoregressive Noise Models
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Fig. 3. Denoising results. Here we compare the outputs of different methods on
various datasets. The overlaid numbers indicate the mean PSNR values on the dataset
after three experiments with the standard deviation in brackets. We find that HDN
with a pixel-independent noise model is able to effectively remove some structured
artifacts, by removing layers of the latent space space [23], but fails for larger scale
structures, spanning over tens of pixels. In contrast, our method reliably removes all
small- and large-scale structured noise.
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Each of the 4 datasets was denoised using HDN with a pixel-independent
Gaussian noise model, HDN3−6 with a pixel-independent Gaussian noise model
and HDN with our autoregressive noise model. For each test image, 100 samples
were generated from each trained model and averaged to produce an MMSE esti-
mate, Each result is shown in Figure 3, with peak signal-to-noise ratio calculated
for the datasets where ground truth is available.

The highest PSNR was achieved by HDN with our noise model. For all of
the datasets, HDN with a Gaussian pixel-independent noise model seemed to
remove only the pixel-independent component of the noise, while retaining the
structured parts. In some cases, HDN3−6 manages to partially remove structured
noise.

For the KNIST dataset, both HDN and HDN3−6 fail to remove the diagonal
lines, which are completely removed by our structured noise model.

We believe that HDN3−6 is unable to remove these noise structures because
they feature long range correlations, which are not only captured by the two
lowest latent variables but also by others in the hierarchy, entangled with the
signal.

Similarly, for the PA dataset, only our autoregressive noise model is able to
remove the structured recording noise. Here, however, we find that our method
produces a slightly blurred result. We attribute this to the limited amount of
available noise model training data for this dataset. To avoid overfitting, we
had to stop noise model training early in this case, which we believe leads to a
sub-optimal end result.

5.6 Evaluating the Noise Model

To show how the autoregressive noise model is able to capture dependencies
across an image, we calculated the 2dimensional auto-correlation of the real
noise from the PA data, samples of noise generated from our autoregressive
noise model and samples of noise generated by a pixel-independent noise model.
Each of these auto-correlation graphs are shown in Figure 4, along with an image
of each type of noise for visual comparison.

5.7 Choice of Autoregressive Pixel Ordering

Some might be concerned that the choice of autoregressive ordering should take
into account the direction of dependencies in the noise, but, fundamentally, this
is not the case. Equation 10 generally holds for any distribution of images and
also regardless of the used pixel order.

Take, for example, the simulated noise in the Convallaria sCMOS dataset
which is designed to be correlated vertically but not horizontally. In the mod-
elling of the noise in this dataset, the distribution over the possible values of
one pixel will be more concentrated if it is a function of the other pixels in the
same column. However, considering Eq. 10, the autoregressive model must sweep
through the whole image one pixel at a time. Therefore, no matter if we choose
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Fig. 4. Comparing the statistics of pixel-independent noise models and our
new autoregressive model. Here, we compare generated PA noise samples from
our noise model (AR) and a Gaussian mixture pixel-independent noise model (GMM)
to real PA noise. The auto-correlation function compares different shifted versions
(pixel shift) of the noise images in both directions, characterising the dependencies
between pixels values at various distances and directions, i.e., the structure of the
noise. As expected, the pixel-independent noise model is unable to capture any such
dependencies present in the real noise. In contrast, our autoregressive noise model can
faithfully capture and reproduce even longer range dependencies.

a row-major or column-major ordering, at for at least one pixel the distribution
has to be computed using without considering relevant correlated pixels. On the
other hand, in both cases only one pixel in a column can be a function of all rel-
evant, correlated pixels. Both a row-major and column-major ordering of pixels
can achieve this if they have a large enough receptive field.

To demonstrate that there are no practical disadvantages arising from the
choice of the pixel order, we ran the experiment on the Convallaria sCMOS
dataset with transposed images, which corresponds to changing the pixel order.
Figure 5 shows the results of this experiment, where almost no perceptual dif-
ference between the MMSE of the two experiments can be detected and only a
slight difference in mean PSNR is recorded.
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T

Fig. 5. Our noise model can capture noise patterns regardless of their ori-
entation or the direction of pixel ordering. To demonstrate this, we reran the
experiment (including training of the noise model and VAE) on a transposed version of
the Convallaria sCMOS dataset. This is equivalent to using a column-major ordering of
pixels to train the noise model, while the orignal experiment used a row-major ordering.
We compare denoising results carried out on the original Convallaria sCMOS dataset
(Noisy input1, MMSE1) to the transposed version of the dataset (input2, MMSE2). We
have transposed the result MMSET

2 again to allow for easier comparison. The overlayed
numbers indicate the average PSNR and its standard deviation (in brackets) over three
reruns of the experiment.

6 Conclusion

We have presented a novel type of noise model to be used within the DivNoising
framework that addresses, structured noise and outperforms HDN3−6 on highly
structured, long range noise artefacts. Both the noise model and DivNoising
framework can be trained without matched pairs of clean and noisy images.
Instead, practitioners require a set of noise samples and the images that are
to be denoised. We believe this can potentially have great impact, by enabling
applications with structured noise for which no paired data is available.

The key difference between our noise model and those that had been used
before [15][24][25] is that ours evaluates the probability of a noise pixel condi-
tioned on other pixels in the image, while previously used noise models evaluate
the probability of each pixel independently.

Currently, our method is limited to signal-independent noise, which makes a
direct application impossible for many settings, such as fluorescence microscopy,
where data is usually affected by signal dependent Poisson shot noise. However,
we do believe, that we have made the first step towards widely applied unsuper-
vised removal of structured noise.

In future work, we plan to extend this noise model to learn the distribution
of signal-dependent noise, which would vastly increase its utility in the field of
life science imaging and beyond.
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