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Abstract

The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to 
assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conforma-
tion capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus 
potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset 
of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the 
human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may 
importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discard-
ing reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in 
controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove 
artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset 
we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglyco-
side and tetracycline resistance being widespread in anaerobic commensals of the human gut.

DATA SUMMARY
Meta3C data generated in this study are available in the European Nucleotide Archive, accession number PRJNA879122. Other 
meta3C/Hi-C data re-analysed as part of this study have the following accession numbers: PRJNA413092, PRJNA505354, 
PRJNA377403 and PRJNA649316. The complete genome assembly of Enterococcus faecium E745 is available with accession 
number GCA_001750885.1. The short-read genome sequencing data of Escherichia coli E3090 and Enterococcus faecium E745 
have accession numbers ERX2620237 and SRS15053183, respectively. All Bash and R scripts used in this workflow are available 
at https://github.com/gregmcc97/3C-HiC_analysis.

INTRODUCTION
The gut microbiota is a complex ecosystem that is frequently characterized through high-throughput shotgun sequencing to 
quantify and characterize the abundance of viruses, bacteria, fungi and protists [1]. Using sequencing-based approaches, it remains 
a challenge to link genes in the gut microbiota to their microbial hosts as metagenomic assemblies are often highly fragmented 
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and metagenome assembled genomes (MAGs) are frequently incomplete or suffer from contaminating sequences [2, 3]. While 
contiguity of assemblies can be improved by the incorporation of long-read sequencing data [4, 5], the hosts of plasmids can 
only be predicted – but not conclusively identified – by a variety of bioinformatic approaches [6]. The linkage of genes to their 
microbial hosts is particularly important for genes that confer antibiotic-resistant phenotypes to their hosts. Sequencing-based 
studies have shown that the human gut microbiota forms a reservoir of antibiotic resistance genes (ARGs) [7, 8]. These genes 
often have the potential to spread promiscuously in microbial populations, particularly when they are associated with plasmids 
[9]. Horizontal transfer of ARGs in the gut has been observed among Enterobacteriaceae, Bacteroides and Enterococcus strains 
[10–12]. It is thus of interest to disentangle ARG–host linkage across the gut microbiota with the long-term goal to understand 
to what extent commensal bacteria can serve as a conduit for ARGs to be transferred to gut-dwelling opportunistic pathogens 
such as Clostridioides difficile, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis and others [2].

To improve linkage of genes to their hosts in microbial ecosystems, metagenomic proximity ligation techniques have been 
developed [13]. In short, these techniques cross-link DNA within microbial cells through an incubation with formaldehyde, 
followed by digestion with restriction enzymes, proximity ligation, the reversal of crosslinks by treatment with a protease and 
finally high-throughput sequencing of the resulting fragments (Fig. 1). A protocol along these lines was described by Marbouty 
and colleagues and was termed meta3C [14]. Approaches with an additional enrichment step involving tagging the termini of 
DNA fragments with biotin before ligation were also developed for use with metagenomic samples [15, 16]. In these protocols, 
after removal of the cross-links, DNA is sheared and streptavidin beads are used to pull down biotin-tagged fragments, thus 
enriching for ligation junctions. Protocols with this additional enrichment step are collectively termed Hi-C.

Due to its lower cross-linking efficiency, a meta3C library must be sequenced more deeply than a Hi-C library to ensure that 
sufficient numbers of cross-linked fragments are sequenced [13]. However, the relatively low proportion of non-cross-linked 
fragments sequenced from a meta3C library allows assembly of contigs directly from meta3C sequencing data [14]. For Hi-C, 
additional shotgun sequencing of the sample is required for metagenomic assembly, which must then be analysed in conjunction 
with the Hi-C data to link assembled contigs [15, 16]. 3C/Hi-C approaches have been used to considerable effect in improving the 
assembly of MAGs in complex microbial ecosystems such as those present in the bovine rumen [17], the gut of dogs [18], sheep 
[19] and pigs [20]. Several studies have been performed using 3C/Hi-C to study the human gut microbiota [21–25]. Bioinformatic 

Impact Statement

Metagenomic chromosome confirmation capture approaches, including meta3C and Hi-C, have the potential to elucidate the 
microbial hosts of antibiotic resistance genes in microbiomes. However, the analysis and interpretation of data generated in 
meta3C and Hi-C experiments is not trivial and can be influenced by the presence of repetitive elements in metagenomes. In 
this study, we quantify the impact of these repeats on the interpretation of meta3C/Hi-C data and highlight the importance of 
filtering for these sequences and the use of spike-in controls to reduce noise in meta3C/Hi-C data analysis.

Fig. 1. Metagenomic chromosome conformation capture approaches. Formaldehyde is used to cross-link DNA-bound proteins before cell lysis and 
enzymatic digestion of the DNA. In meta3C, the cross-linked digested fragments are then ligated. In Hi-C, the digested fragments are tagged with 
biotin prior to ligation, enabling enrichment of ligated biotin-labelled fragments following ligation and DNA shearing. The cross-links are then removed 
during treatment with a protease, and the fragments undergo high-throughput sequencing.
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analysis of 3C/Hi-C data is non-trivial, and several tools and workflows have been developed to aid this [14, 20, 21, 24, 26–28]. 
However, there is no general consensus on how best to analyse 3C/Hi-C data, as this will differ depending on the desired outcome 
of the analysis.

The overarching goal of this study was to explore whether meta3C and Hi-C can be used to reliably link ARGs to their microbial 
hosts. To this end, we generated a meta3C dataset, using spike-in controls, of a human stool sample. We combined the analysis 
of this dataset with re-analysis of publicly available meta3C and Hi-C data generated using gut microbiome samples, to identify 
and address technical challenges in the analysis of metagenomic chromosome conformation capture data to determine linkage 
between ARGs and chromosomes and plasmids of their microbial hosts.

METHODS
Stool sample and strains
The stool sample used to create a meta3C library was obtained from a patient with inflammatory bowel disease, an illness that is 
associated with higher levels of ARGs in the gut microbiota [29]. The stool sample was divided into ~500 mg aliquots and stored 
at −80 °C until use.

Strains used for spike-in were stored as stocks with 15 % (v/v) glycerol at −80 °C. Escherichia coli E3090 [30] was grown in lysogeny 
broth (LB) (Sigma-Aldrich), and Enterococcus faecium E745 [31] was grown in brain heart infusion (BHI) broth (Sigma-Aldrich), 
both at 37 °C with shaking at 200 rpm. To determine viable counts in an overnight broth culture, 10-fold dilutions were made in 
PBS, spread-plated onto the respective agars and incubated at 37 °C for 24 h.

Estimation of the abundance of bacterial cells in stool
To estimate the number of bacterial cells per gram of stool, the copy number of the 16S rRNA gene in the stool sample was 
estimated as previously described [32]. In short, amplicons (111 nt), generated with primers targeting the V6 region of the 16S 
rRNA gene (5′-CAACGCGARGAACCTTACC-3′ and 5′-ACAACACGAGCTGACGAC-3′ [33]), of E. coli MG1655 were cloned 
into the pJET1.2 cloning vector (Thermo Scientific). The number of 16S rRNA gene copies in stool were then determined using 
quantitative PCR (qPCR) with the above primers for a concentration range of the pJET1.2–16S construct and the DNA isolated 
from 400 mg stool, using the FastDNA Spin Kit for Soil (MP Biomedicals). We used 2× Luna Universal qPCR Master Mix [New 
England Biolabs (NEB)] for qPCR in a volume of 20 µl and primer concentrations of 250 nM each for the forward and reverse 
primers. The qPCR was then run, in triplicate, on a Bio-Rad CFX Connect Real-Time PCR Detection System, following the 
Luna protocol. To estimate the number of bacterial cells in the stool sample, the 16S rRNA copy number was divided by 3.82, the 
average 16S rRNA gene copy number in bacteria [34].

meta3C
Meta3C was carried out following the protocol from Foutel-Rodier et al. [35], summarized below. Before cross-linking was 
performed on the stool sample, a spike-in of E. coli E3090 and E. faecium E745 was added to a final concentration of 1 % (0.5 % 
each), calculated using the viable counts of overnight cultures and the estimated number of cells per gram of stool, as described 
above.

Approximately 250 mg of stool was added to 25 ml of PBS with 5 % methanol-free formaldehyde (Sigma-Aldrich). After 
resuspension by vortexing for 30 s, the stool was incubated for 30 min at room temperature (RT) with shaking (250 r.p.m.), 
followed by 30 min at 4 °C under gentle agitation (33 r.p.m. using a roller mixer). Glycine (Fisher Scientific) was then added 
to a final concentration of 420 mM to quench remaining formaldehyde and incubated for 5 min at RT with moderate shaking 
(120 r.p.m.), followed by 15 min at 4 °C under gentle agitation. The sample was then centrifuged at 4 800 g for 10 min at 4 °C. 
The pellet was washed with sterile distilled water and resuspended in 4 ml of 1× TE (Tris/EDTA) buffer pH 8.3 (Sigma-
Aldrich) supplemented with cOmplete mini EDTA-free protease inhibitor (Roche Diagnostics). The suspended pellet was 
then transferred to four Lysing Matrix E tubes (MP Biomedicals) and run on the FastPrep-24 bead-beater (MP Biomedicals) 
for three cycles of 8.0 m s–1 for 20 s, off for 30 s. This run of three cycles was repeated three times, with cooling of the tubes 
on ice for 5 min between each run. After transfer of the lysate to 15 ml tubes, SDS (National Diagnostics) was added to the 
samples to a final concentration of 0.5 % and, after mixing by inversion, the tubes were incubated for 20 min at 65 °C, then 
cooled on ice. The DNA was then digested using 1000 units of either MluCI or HpaII in 1× NEB1 digestion buffer (NEB) 
and 1 % Triton X-100 (Sigma-Aldrich) for 3 h at 37 °C. The digestion reaction mixes were centrifuged at 16 000 g for 20 min 
at 4 °C, and each pellet was resuspended in 500 µL of cold sterile distilled water. Separate ligation reactions (total volume 
16 ml) were prepared for the MluCI- and HpaII-digested DNA with mixes were prepared containing 1× ligation buffer [50 mM 
Tris–HCl pH 7.4 (Jena Bioscience), 10 mM MgCl2 (Sigma-Aldrich), 10 mM DTT (Roche Diagnostics)] and 0.1 mg ml−1 BSA 
(Sigma-Aldrich). To start the ligation reaction, ATP (Roche Diagnostics), to a final concentration of 1 mM, and 250 U of 
T4 DNA ligase (NEB) were added to the ligation reaction tubes, which were then incubated at 16 °C for 4 h. Reversal of the 
cross-links was then carried out by the addition of 200 µl 0.5 M EDTA, 200 µl 10 % SDS and 100 µl 20 mg ml−1 proteinase 
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K to the ligation reactions, followed by overnight incubation at 60 °C. DNA was then further purified using extraction 
with phenol–chloroform–isoamyl alcohol and precipitation with isopropanol and ethanol. The purified DNA pellets were 
resuspended in 60 µl Tris–HCl pH 7.5 with 0.8 mg ml−1 RNAse A (Qiagen) and incubated at 37 °C for 30 min. The quality and 
quantity of DNA were assessed by performing gel electrophoresis and the Qubit dsDNA BR Assay Kit (Thermo Scientific), 
respectively. DNA was stored at −20 °C until library preparation.

Meta3C sequencing libraries were generated with the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (NEB catalogue 
number #E6177) following the manufacturer’s protocol with barcoding of the MluCI and HpaII libraries with the NEBNext 
Multiplex Oligos for Illuminia (NEB #E7335). The libraries were quantified on a 2200 TapeStation system (Agilent) using the 
High Sensitivity D5000 reagents and ScreenTape (Agilent) as per the manufacturer’s protocol to ensure fragmentation ranging 
between 300 and 1000 bp. Prepared sequencing libraries were sequenced by Genomics Birmingham on an Illumina NextSeq 2×150 
paired-end platform using a Mid Output Kit v2.5 (300 cycles) (Illumina) with a 1 % PhiX spike-in. This dataset is named G_3C in 
this publication and the short read data are available in the European Nucleotide Archive (ENA), accession number PRJNA879122.

Analysis of 3C/Hi-C datasets
Reads from published 3C/Hi-C gut microbiome studies (Table 1) were downloaded from the short read archive (SRA) using the 
fastq-dump of the SRA-Toolkit [36] with the --split-files option.

We used identical workflows for G3_C and the downloaded datasets. All Bash and R scripts used in this workflow are available at 
https://github.com/gregmcc97/3C-HiC_analysis. Duplicate reads were removed using PrinSeq-lite [37]. Reads were then quality 
filtered (--nextseq-trim=20 or -q 20 and min length 60 nt) and had adapter sequences removed using CutAdapt v2.5 [38]. Human 
sequences were removed with Bowtie2 v2.3.4.1 [39], BEDtools v2.25.0 [40] and Samtools v0.1.19 [41] using the GRCh38.p13 
human reference genome (or the GRCm38.p6 mouse reference genome for the M_3C dataset) from the National Center for 
Biotechnology Information (NCBI) [42]. The remaining high-quality, non-human, unique, paired reads were then assembled 
using MEGAHIT v1.1.3 [43] using default parameters and filtering out contigs shorter than 1 kb (--min-contig-len 1000). The 
taxonomic profile of the processed reads was generated using MetaPhlAn3 v3.0 (--unknown-estimation -–add-viruses) [44].

ARGs were identified using ABRicate v0.9.8 (https://github.com/tseemann/abricate) with the ResFinder database [45] (≥75 % 
coverage, ≥95 % identity). To calculate the abundance of the ARGs, they were first extracted from their contigs and CoverM 
v0.4.0 (https://github.com/wwood/CoverM) was used to calculate the number of reads mapping to each ARG. The number of 
mapped reads was then used to calculate the reads per kilobase per million mapped reads (RPKM) using the following formula:

	﻿‍
RPKM =

(
reads mapped/

(
total number of reads/1000000

))
(
gene length/1000

)
‍�

The first 50 bp of the 3C/Hi-C reads was mapped to their respective assemblies using the Burrows–Wheeler Alignment Tool 
v0.7.12 [46] using the aln and sampe sub-commands. The aligned reads were then filtered to remove those with a mapping 
quality <20 using Samtools. Read pairs where each mate of the pair mapped to a different contig (intercontig reads) were then 
identified using Samtools (view -F 14) to filter out reads in the SAM file that mapped in a proper pair, were unmapped or had 
an unmapped mate, followed by the Unix ‘awk’ command to remove reads in the SAM file that mapped to the same contig as 
their mate (awk ‘$7!="=" {print $0}’).

Analysis of G_3C reads mapping to spike-ins
The complete genome sequences of the E. coli E3090 (assembled as described in [30]) and E. faecium E745 (downloaded from 
NCBI, accession GCA_001750885.1) spike-ins were annotated using Prokka [47]. Whole genome sequencing (WGS) reads 
(ENA accession numbers: E. coli E3090: ERX2620237; E. faecium E745: SRS15053183) and meta3C reads were then mapped to 
the genomes and an R script (available at https://github.com/gregmcc97/3C-HiC_analysis) was used to identify the annotated 
region of the genome being mapped to by each read. From the output file, products labelled as ‘NA’ were assigned as intergenic 
regions. Products labelled as ‘*IS*’ or ‘*transposase*’ were assigned as insertion sequence (IS) elements. Products labelled as 

Table 1. Published 3C/Hi-C datasets used in study

Study Accession no. Reference

M_3C PRJNA302158PRJNA302158 [51]

P_HiC PRJNA413092 [24]

Y_3C PRJNA505354 [21]

D_HiC PRJNA377403 [23]

K_HiC PRJNA649316 [22]

https://github.com/gregmcc97/3C-HiC_analysis
https://github.com/tseemann/abricate
https://github.com/wwood/CoverM
https://github.com/gregmcc97/3C-HiC_analysis
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA302158
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA302158
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA413092
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA505354
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA377403
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA649316
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‘*hypothetical_protein*’ or ‘*product=putative protein*’ were assigned as genes with unknown functions. Remaining products 
labelled as ‘*gene*’, ‘*locus_tag*’, ‘*db_xref*’, ‘*protein*’, ‘*note*’, or ‘*product*’ were assigned, using a bash script, as genes with 
predicted functions. To calculate the proportion of reads that map within the first or last 500 nt of a contig, a bash script was used 
that mapped coordinates in the SAM mapping file and the contig lengths in the assembly.

Filtering of artefactual intercontig reads
A bash script (available at https://github.com/gregmcc97/3C-HiC_analysis) was written to remove intercontig reads that mapped 
within the first or last 500 nt of a contig. Further filtering was carried out after intercontig reads linking contigs to ARG contigs 
were identified (see below).

Linking ARGs to their microbial hosts
3C/Hi-C intercontig reads where one mate mapped to a contig carrying an ARG were identified to generate a list of linked contigs 
for each ARG contig. These lists were then filtered so that only contigs that linked at least five times to an ARG contig were kept. 
Additionally, and to remove potential false cross-links from contigs that contain IS elements, IS elements in the assembly were 
identified using ABRicate with the ISfinder [48] database (≥60 % coverage, ≥99 % identity) and these were removed from the lists 
of contigs linked to ARGs.

Remaining contigs for each ARG were then taxonomically classified using Kraken2 v2.0.8 [49] using the prebuilt kraken2 microbial 
database (https://lomanlab.github.io/mockcommunity/mc_databases.html). The contigs were also mapped to NCBI’s nucleotide 
(nt) database using blastn v2.2.31 [50]. Links to contigs that aligned with 99 % identity to known plasmid sequences using blast 
were removed. Pheatmap (https://github.com/raivokolde/pheatmap) was used to create a heatmap of the ARG–host associations.

RESULTS
Generation of a meta3C library using a human stool sample
A meta3C library was generated using a human stool sample from an individual with inflammatory bowel disease (IBD). Prior 
to the first step of the meta3C protocol (i.e. incubation with formaldehyde), we spiked in two ARG-carrying strains, E. coli E3070 
[30] and E. faecium E745 [31], at 6.4×108 c.f.u. g–1 each, equivalent to an estimated 0.5 % of the total community. Two meta3C 
libraries, differing by the enzymes (MluCI and HpaII) used for restriction digestion were generated and sequenced independently. 
After processing of the reads (to remove low-quality, duplicate and human reads), 101 million and 97 million high-quality reads 
remained for the HpaII and MluCI meta3C libraries, respectively. These reads were then combined to generate the G_3C dataset 
and used for the metagenomic assembly. The reads were assembled into 89 005 contigs, with a contig N50 of 10 778 and a total 
length of 404 824 063 bp (Table 2).

Table 2. Read counts and assembly statistics

Dataset Assembly Read length 
(bp)

Raw reads Processed reads Total length of 
assembly (bp)

No. of contigs Contig N50 Reference

G_3C G_3C 2×150 223 169 682 198 493 086 404 824 063 89 005 10 778 This study

M_3C M_3C 2×75 375 815 400 366 961 002 480 933 195 116 057 7562 [51]

P_HiC P_HiC 2×150 171 853 886 157 755 162 nd nd nd [24]

P_SG 2×150 250 884 672 237 293 522 528 999 126 104 368 14 455

Y_3C Y_3C_A 2×160 3 019 738 680 2 921 579 828 1 040 533 919 177 689 17 376 [21]

Y_SG_A 2×160 416 571 650 410 280 634 658 813 968 101 575 22 551

Y_3C_B 2×160 682 773 219 1 239 950 680 866 666 497 146 989 18 851 [21]

Y_SG_B 2×160 202 617 904 198 775 312 484 955 068 83 017 19 100

D_HiC D_HiC 2×80 143 286 468 133 509 800 nd nd nd [23]

D_SG 2×150 20 088 550 18 925 950 131 298 239 37 723 5924

K_HiC 
(average*)

K_HiC 2×150 41 021 508 37 984 239 nd nd nd [22]

K_SG 2×150 90 510 991 83 397 427 156 853 335 32 197 18 026

*For K_HiC, an average of 43 samples is presented in this table; x_SG, accompanying shotgun metagenomic reads; assemblies in bold type were used 
during analysis of 3C/Hi-C data; nd, not determined.

https://github.com/gregmcc97/3C-HiC_analysis
https://lomanlab.github.io/mockcommunity/mc_databases.html
https://github.com/raivokolde/pheatmap
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3C/Hi-C datasets reflect composition of the gut microbiota
To benchmark the meta3C data generated here against previously published 3C/Hi-C gut microbiota data, several published 
datasets using gut microbiota samples that were available at the inception of this study (June 2020) were reanalysed (Table 2). All 
these datasets originated from humans, with the exception of M_3C, which was generated using a murine gut microbiota sample 
[51]. The raw reads from these published datasets were downloaded from NCBI, processed and analysed identically to the reads 
generated in this study. Where more than one enzyme was used and sequenced as separate libraries, or if 3C/Hi-C datasets were 
made up of technical repeats, the reads were combined before metagenomic assembly. For studies using the meta3C protocol, 
assemblies were made using the meta3C data, as advised in the publication describing meta3C [14], while for Hi-C data assemblies 
were generated using the shotgun metagenomic sequencing datasets (Table 2). The study of Yaffe and Relman [21] was the only 
study which contained both meta3C and shotgun sequencing data. We assembled both but we decided to use the assembly based 
on meta3C data for further analyses as these assemblies were 1.6- and 1.8-fold larger (for sample A and B, respectively) than the 
assemblies generated by shotgun sequencing data.

The taxonomic compositions of the gut microbiota, on the basis of the processed reads from all datasets, were determined using 
MetaPhlAn3 [44]. Among classified reads, most samples showed results that can be expected for a human faecal sample, with 
the majority of the reads being assigned to the classes Clostridia and Bacteroidia (Fig. 2). Some samples differed greatly from the 
others, such as K_HiC_N1-4, where 88.55 % of the classified reads were assigned to ‘Viruses_unclassified’, which may reflect the 
neutropenic nature of most of the individuals in the K_HiC dataset [22]. For the dataset generated for this study (G_3C), 39.92 % 
of classified reads were assigned to the class Clostridia, 17.63 % to Actinobacteria, 10.64 % Coriobacteria and 9.94 % to Bacteroidia 
(Fig. 2). The genera Enterococcus and Escherichia had similar abundances to each other (3.79 and 3.43 %, respectively), which 
suggests that the E. coli and E. faecium strains had been spiked in at a higher level than the 0.5 % target due to an overestimation 
of the overall bacterial density. We cannot exclude that there were indigenous strains of E. coli and E. faecium in the sample prior 
to the spike-in.

Diverse ARGs are present in all datasets
After phylogenetic profiling of the reads, ABRicate was used to identify contigs containing ARGs in the metagenomic assemblies. 
In the G_3C assembly, 37 contigs containing ARGs were identified. The known ARGs from the E3090 and E745 spike-ins were 
all present (Fig. 3). For E745, the two chromosomal ARGs [aac(6’)-Ii and msr(C)] had similar abundances of 15.0 and 14.3 
RPKM, respectively. The other ARGs from E745, vanHAX and dfrG, are carried on plasmids, and had higher abundance (43.4 

Fig. 2. Class-level compositions of all datasets. The reads from all datasets were taxonomically profiled using MetaPhlAn3. The stacked bars show 
the relative abundance (%) of each class for the classified reads. Reads that could not be classified by MetaPhlAn3 (~60 % of reads for each dataset) 
are excluded. For the K_HiC dataset, individuals are either neutropenic (N1-7) or healthy (H1-2) with multiple samples collected longitudinally for each 
individual.
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and 34.9 RPKM) than the chromosomal ARGs, probably due to being carried on a plasmid that has a higher copy number than 
the chromosome. For the E3090 ARGs, six chromosomal ARGs [sul1, sul2, ant(3’’)-Ia, blaOXA-1, floR and mdf(A)] had relatively 
similar abundances, ranging from 9.6 to 27.4 RPKM. The ARGs carried on plasmids in E3090 had higher relative abundances. 
The mcr-1.1 gene had an abundance of 98.1 RPKM, while blaTEM was present at a high abundance of 104.8 RPKM. The blaTEM gene 
present in the metagenomic assembly was identified as blaTEM-116, as opposed to blaTEM-1B in the E3090 genome. These genes differ 
by five SNPs, so this is probably due to a misassembly in either the original genome sequence or the metagenomic assembly. We 
cannot rule out that blaTEM-116 was naturally present at a high abundance in the sample prior to spiking in E3090.

The rest of the datasets contained many and diverse ARGs, with 71 unique ARGs in total across the datasets, excluding the K_HiC 
samples (Fig. 3). The 86 samples in the K_HiC dataset (43 Hi-C and 43 corresponding shotgun metagenomic samples) contained 
141 unique ARGs and have been shown separately in Fig. S1, available in the online version of this article.

Presence of spurious crosslinks in 3C/Hi-C data
To identify reads from cross-linked fragments of DNA, the first 50 bp of the 3C/Hi-C reads from each dataset were first mapped 
against their respective metagenomic assemblies. For Hi-C datasets (P_HiC, D_HiC, K_HiC), the Hi-C reads were mapped to 
assemblies generated from the accompanying shotgun metagenomic library, whereas 3C reads from the 3C datasets (G_3C, 
M_3C, Y_3C) were mapped to assemblies generated directly from the 3C library. From the reads that mapped with a mapping 
quality (MAPQ) >20, intercontig read pairs were identified as instances where both reads of the pair mapped to different contigs 
(Fig. 4; Table S1), indicating the read pair potentially came from a cross-linked fragment of DNA.

The proportion of intercontig reads varied greatly across the datasets, with the highest being 13.74 % for P_HiC, and the lowest 
being 0.2 % for K_HiC_N1-1 (0.64 % average across all K_HiC samples). For the meta3C datasets, M_3C had the highest propor-
tion of intercontig reads at 9.73 %. The G_3C dataset had the lowest number of cross-linked reads of the meta3C datasets at 1.65 % 
(Table S1).

Due to the large differences in the proportion of intercontig reads across the datasets, we set out to study whether these intercontig 
reads were truly a result of physical cross-linking. We first mapped shotgun metagenomic reads, which, by definition, cannot have 
been physically cross-linked, in the datasets that contained them (Y_3C_A/B, D_HiC, P_HiC, K_HiC) back to the assemblies 
in the same way as the 3C/Hi-C reads were in the previous step. They were then analysed as for the 3C/Hi-C reads to isolate the 
intercontig read pairs and calculate the proportion of intercontig reads. The shotgun metagenomic reads showed a background 
level of 0.16–4.20% intercontig reads (Fig. 4). These reads have not been generated from physically cross-linked fragments of 
DNA and can thus be considered noise that we refer to as ‘artefactual intercontig reads’. In the K_HiC datasets, the average 
proportion of intercontig reads from the shotgun metagenomic reads was 0.74 %, compared to the average of 0.64 % cross-linked 
reads from the Hi-C reads. This suggested that there may be no, or very few, reads resulting from the physical cross-linking of 
DNA in the K_HiC dataset.

Non-contiguous assemblies introduce noise in 3C/Hi-C datasets
We recognized that the G_3C dataset, with an intercontig read proportion of 1.65 %, is within the range of the artefactual inter-
contig reads from the shotgun metagenomic data and may thus also have been insufficiently cross-linked during the experimental 

Fig. 3. Relative abundance of antimicrobial resistance genes (ARGs) in 3C/Hi-C datasets. The ARG sequences from the assemblies of each dataset were 
isolated, and the reads from that dataset were mapped to the ARGs (columns). The relative abundance was calculated as reads per kilobase per million 
mapped reads (RPKM). White cells mean the ARG was not present, and coloured cells show that the ARG was present, with the colour relating to the 
relative abundance of the ARG within that set of reads (log

10
 transformed RPKM values). Different datasets are separated by gaps in the heatmap. 3C 

datasets (*_3C) have rows showing the RPKM of the 3C reads mapping to the ARGs identified in the 3C metagenomic assembly. Hi-C datasets show 
RPKM of the shotgun reads (*_SG) or Hi-C reads (*_HiC) mapping to ARGs identified in the shotgun metagenomic assembly. The ARGs highlighted with 
a coloured dot are ARGs from the spike-ins in the G_3C dataset (purple, E. coli E3090; yellow, E. faecium E745).
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procedure. Because the G_3C dataset contained the E. coli and E. faecium spike-ins, for which whole genome sequences are 
available, the intercontig reads mapping to the respective genome sequences could be examined further. G_3C reads were mapped 
to the E. coli E3090 and E. faecium E745 genomes to isolate spike-in 3C reads for each genome. These reads were then compared 
to WGS reads downloaded from NCBI for each genome by mapping the first 50 bp of all reads to the G_3C assembly (Table S2).

The proportion of intercontig reads from the 3C reads (0.98 and 0.99 % for E. coli and E. faecium, respectively) were comparable 
to the WGS reads (0.78 and 2.34 % for E. coli and E. faecium, respectively) confirming again that short-read sequencing produces 
a considerable background level of reads that can be erroneously interpreted as originating from cross-links. Aligning both the 
intercontig and non-intercontig reads from the G_3C spike-in and the WGS reads back to their respective genomes revealed the 
regions the reads were mapping to on the genome. Both the intercontig and non-intercontig reads spanned the whole genome 
for both spike-ins and aligned to different genomic regions (Fig. 5). A greater proportion of the intercontig reads mapped to IS 
elements in the genome compared to the non-intercontig reads for all sets of reads, except for the G_3C E3090 reads. This was 
most clear in the E745 reads, where over 20 % of the intercontig reads for both the G_3C and WGS reads aligned to IS elements, 
compared to less than 1 % of the non-intercontig reads, suggesting that the presence of multiple copies of IS elements in the 
assembly is partially responsible for the artefactual intercontig reads. Using ABRicate with the ISfinder database [52], 93 copies of 
18 different types of IS elements were found across the 3 168 411 bp E. faecium E745 genome (29.3 IS elements per Mb), compared 
to 79 copies of 25 different types of IS element copies in the 5 270 976 bp E. coli E3090 genome (15.0 IS elements per Mb). The 
E745 reads thus have a higher chance of mapping to an IS element, causing more artefactual intercontig reads.

Next, the position in the contigs from the G_3C assembly that the spike-in reads mapped to was checked to determine whether 
artefactual intercontig reads were more likely to map near to the beginning or end of a contig, meaning they were potentially 
caused by fragmentation in the assembly. Indeed, a greater proportion of the intercontig reads for both the G_3C and WGS 
spike-in reads mapped within 500 nt of the ends of a contig compared to the non-intercontig reads (Fig. 6). For G_3C E3090 
reads, 37.7 % of the intercontig reads mapped within the first or last 500 nt of a contig, compared to only 5.0 % of non-intercontig 

Fig. 4. Proportion of intercontig reads in 3C/Hi-C and shotgun reads of the same sample. The first 50 bp of each read was mapped against the 
corresponding assembly, and pairs where each read of the pair mapped to different contigs were labelled as intercontig reads. The y-axis shows the 
percentage reads that were intercontig. K_HiC average (cyan) is the average for all 43 K_HiC samples (black). G_3C (orange) and M_3C (green) did not 
have accompanying shotgun reads, so only the intercontig proportion for the 3C reads is shown.
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G_3C E3090 reads. This observation was even clearer for the E3090 WGS and G_3C/WGS E745 reads, where over 80 % of the 
intercontig reads were mapping near the ends of a contig, compared to less than 10 % of the non-intercontig reads (Fig. 6).

To determine whether intercontig reads mapped to the ends of contigs for all 3C/Hi-C reads, the positions in the metagenomic 
assembly that the reads mapped to were checked for all datasets. The majority of artefactual intercontig reads from the shotgun 
metagenomic data mapped within the first or last 500 nt of a contig for all datasets that had shotgun data (Fig. 7). For the 3C/
Hi-C intercontig reads, the proportion varied, but was lower for P_HiC, D_HiC, Y_3C_B and M_3C (12.7, 27.5, 32.1 and 19.4 %, 
respectively), compared to around 52 % for G_3C and Y_3C_A.

The proportion of intercontig 3C/Hi-C reads mapping near ends of a contig correlated (R2=0.84; P=0.0067) with the proportion 
of intercontig reads in the dataset, whereby datasets with a higher proportion of intercontig reads in the sequence data had a 
lower proportion of intercontig reads mapping near the ends of a contig (Fig. S2). This, along with the high proportion of shotgun 
intercontig reads mapping near the ends of a contig, suggested that many artefactual intercontig reads can be filtered out by 
removing those that mapped within the first or last 500 nt of a contig.

Filtering reads that map in the first or last 500 nt of a contig removes most artefactual intercontig reads
To reduce the number of artefactual intercontig reads in the data, intercontig reads that mapped within the first or last 500 nt of 
a contig were removed in all datasets, reducing the proportion of intercontig reads by 38.3 %, on average, across all the datasets 
(Fig. 8). Notably, when the same filtering step was performed on the shotgun data, the proportion of intercontig reads decreased 
by 68.2 %, suggesting that this step is essential to reduce the number of artefactual intercontig reads in the data. After removing 
the reads mapping near the ends of contigs, the proportion of intercontig reads from the Hi-C data in the K_HiC dataset was 
0.18 % on average, hardly different from the average of the K_SG artefactual intercontig reads (0.16 %). Therefore, this dataset 
was not included in further analyses.

Linking ARGs to microbial hosts in 3C/Hi-C datasets
After filtering out the intercontig reads that mapped to the 500 nt ends of contigs, pairs where one read mapped to an ARG contig 
in its respective assembly were identified. To further reduce the impact of the noise from any remaining artefactual intercontig 
reads, contigs were only considered linked to ARG contigs if there were five or more unique intercontig read pairs linking them. 
In addition, ARG-linked contigs identified as IS elements were also filtered out (Table 3).

Fig. 5. G_3C reads and WGS reads mapping to genome sequences of spike-in controls Both the intercontig and non-intercontig reads for G_3C spike-in 
reads and WGS reads of the spike-ins (E. coli E3090 and E. faecium E745) were mapped to their respective genomes. The genomes were annotated 
using Prokka and the regions in which the reads mapped to were grouped into four categories (see key). Percentages at the end of the stacked charts 
show the proportion of mapped reads that were assigned to intercontig/non-intercontig.
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For G_3C, this resulted in 26 607 intercontig reads that linked a total of 466 contigs to 27 out of 37 of the ARG contigs (Table 3). 
Linked contigs that mapped with >99 % identity to known plasmid sequences in the NCBI nt database, which were all linking 
to ARGs from the spike-ins, were removed as no definitive identification of the microbial hosts could be made (Table 3). The 
remaining contigs were then taxonomically classified using Kraken2. This revealed that the ARGs were linked to a wide range of 
taxa (Fig. 9). Genes from the E745 spike-in were correctly linked to Enterococcus, although vanHAX was excluded as it only linked 
to plasmid contigs. The same was true for catA1 and blaTEM in the E. coli E3090 spike-in, but the remaining E3090 ARGs were all 
linked to Escherichia. A small proportion (1.7–3.7 %) of the contigs that linked to several of the E3090 ARGs [blaCTX-M-1, mcr-1.1, 
aph(3’’)-Ib, aph(6)-Id, mdf(A), sul1, ant(3’’)-Ia, blaOXA-1, and sul2] were only classified to the family level as Enterobacteriaceae, 
with the remaining contigs linked to these genes being successfully classified to species level as E. coli.

These results indicated that the analysis pipeline used here could successfully link the spike-in ARGs to their correct host. The 
non-spike-in ARGs linked to a wide range of hosts. Some ARGs such as cfxA3 and tet(X) linked to single hosts, whereas others, 
like tet(40) and tet(W), were widespread and linked to various gut commensals. Where ARGs were associated with multiple taxa, 
the potential microbial hosts were usually related at the phylum level, such as tet(40) which linked to the genera Streptococcus, 
Flavonifractor and Lachnoclostridium, which are all in the phylum Firmicutes.

Fig. 6. Proportions of reads mapping within the first or last 500 nt of a contig in the G_3C assembly for spike-in G_3C and WGS reads. The position of 
the alignment to contigs in the G_3C assembly was checked for both intercontig and non-intercontig read pairs from WGS reads and reads from G_3C 
that mapped to each spike-in genome (E. coli E3090 and E. faecium E745). Orange shows the proportion of reads mapping within 500 nt of the ends of 
a contig. Blue shows the proportion of reads mapping more than 500 nt away from the ends of a contig.
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ARGs were then linked to their microbial hosts for the other 3C/Hi-C datasets. As with G_3C, some ARGs were linked to few 
microbial hosts, whereas others were linked to a wide range of hosts (Fig. 10), and the proportions of ARGs successfully linked 
to their hosts were high, with 6/11, 9/15, 23/30, 16/23 and 6/7 for D_HiC, P_HiC, Y_3C_A, Y_3C_B and M_3C, respectively 
(Table 3).

Some of the shared ARGs linked to the same hosts across datasets, whereas others linked to multiple diverse hosts. The tet(X), 
tet(Q) and erm(F) genes were linked predominantly to Alistipes and Bacteroides, both from the order Bacteroidales, in all datasets 
that they were present in. The beta-lactamase cfxA3 was only linked to Bacteroides in all datasets that it was present in. Conversely, 
tet(O), tet(40), lnu(C), cat, ant(6)-Ia and tet(W) showed a wide range of hosts across the datasets, with tet(W) linking to over 20 
taxonomic classifications in total across five datasets.

Overall, these results indicate that the ARGs identified in the assemblies were able to be linked to their microbial hosts using 
meta3C/Hi-C data, with stringent filtering to minimize the impact of artefactual links, revealing some genes to be promiscuous 
and linking to a wide range of gut bacteria.

DISCUSSION
Previous studies have implemented 3C/Hi-C-based methods on the gut microbiome of humans and animals [21–24, 51]. In this 
study, we sought to implement meta3C on a human stool sample to link ARGs to their microbial hosts, as well as compare the 
3C data generated here to previously published 3C/Hi-C datasets with the aim to optimize analysis methods for 3C/Hi-C data 
by reducing the impact of artefactual intercontig reads.

The proportion of intercontig reads calculated here varied considerably between each dataset, ranging from 0.64 % in the K_HiC 
dataset to 13.74 % in P_HiC. In the meta3C libraries that were generated in this study, the fractions of intercontig read pairs 
were 1.65 %. This is lower than expected from the protocol which suggested that 10–15 % of the reads will be from cross-linked 
fragments [35]. However, another study by the same authors using meta3C on human stool samples reported intercontig reads 
ranging between 1.92 and 14.58 % [53]. Additionally, a study that tested the meta3C protocol on a synthetic community also 
reported that most of their experiments resulted in approximately 1 % proximity ligation read rate [54], which suggests that it 
may be challenging to generate high levels of crosslinks using the original meta3C protocol and that additional enrichment, as 
in the Hi-C protocol, may be required.

The relatively low average number of intercontig reads in the K_HiC dataset was unexpected. After analysing the shotgun metagen-
omic reads in the same way as the Hi-C reads by mapping them back to the assembly in each sample of K_HiC, the proportion 
of artefactual intercontig reads was higher than the Hi-C intercontig reads, substantiating the hypothesis that true cross-linking 
had not been achieved for this Hi-C dataset. Our analyses suggest that the Hi-C procedure may not have worked effectively in 
most of the K_HiC samples. The authors’ claims on widespread horizontal gene transfer (HGT) between different phyla in the 
human gut [22] thus needs further validation as other studies indicate that interphylum HGT in the human gut microbiome is a 

Fig. 7. Proportions of intercontig reads mapping within the first or last 500 nt of a contig in their respective assemblies for all datasets. The position 
of the alignment to contigs was checked for the intercontig reads in all datasets. Orange shows the proportion of reads mapping within 500 nt of the 
ends of a contig. Blue shows the proportion of reads mapping greater than 500 nt away from the ends of a contig.
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rare event [9, 55]. These observations also highlighted that background noise introduced by artefactual intercontig reads could 
interfere with analysis of the intercontig reads in the 3C/Hi-C datasets.

Artefactual intercontig reads can be the result of the formation of spurious ligation products between DNA that originated in 
different hosts during the experimental process of 3C/Hi-C [56]. They can also occur from sequencing errors [57], and as the 
results in this study show, they are an inherent artefact during bioinformatic analysis of short-read sequencing data, being present 

Fig. 8. Proportion of intercontig reads in 3C/Hi-C and shotgun reads before and after filtering. The first 50 bp of each read was mapped against the 
corresponding assembly, and pairs where each read of the pair mapped to different contigs were labelled as intercontig reads (‘Before’ on the x-axis). 
These were then filtered to remove intercontig reads that mapped within the first or last 500 nt of a contig (‘After’ on the x-axis). The y-axis shows the 
percentage reads that were intercontig. K_HiC average (cyan) is the average for all 43 K_HiC samples (black). G_3C (orange) and M_3C (green) did not 
have accompanying shotgun reads, so only the intercontig proportion for the 3C reads before and after filtering are shown.

Table 3. Number of contigs linking to ARG contigs in 3C/Hi-C datasets

For datasets that used multiple restriction enzymes, numbers presented are a combined total.

Dataset G_3C M_3C P_HiC Y_3C D_HiC

Y_3C_A Y_3C_B

Intercontig reads linking contigs to an ARG contig 26 607 17 321 28 200 188 519 128 774 19 475

Unique contigs linked to ARG contig 4767 6763 4517 9229 14 757 3007

Linked ≥5 times 519 264 445 617 1661 392

After removal of links to IS elements 466 264 443 612 1655 392

After removal of links to plasmids 342 259 439 600 1627 387

Number of ARGs linked to host(s) (/ number of ARGs in sample) 27/37 6/7 9/15 23/30 16/23 6/11
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in both the shotgun metagenomic sequence datasets and the WGS short-read data analysed here. On the basis of the analyses in 
this study, it is clear that artefactual intercontig reads have potential to significantly disrupt the interpretation of data by misas-
signing hosts to functional genes being investigated. Indeed, when analysing Hi-C reads from wastewater samples, Stalder et al. 
[58] found that several clusters of contigs characterized as Firmicutes, Alphaproteobacteria and Betaproteobacteria were linked 
by Hi-C reads to the E. coli spike-in strain that had been added to the sample. This E. coli spike-in was also linked to several ARGs 
and plasmids that were not present in the spike-in strain, and the authors concluded that these Hi-C links were artefactual and 
probably due to the high abundance of the spike-in strain [58]. The authors suggested that these ARGs and plasmids were probably 
present in other strains of E. coli that were present in the sample. However, this cannot be confirmed without culturing of the 
sample. Press et al. [24] also observed results that are probably caused by artefactual intercontig reads, including a Eubacterium 
eligens megaplasmid being linked by Hi-C reads to another large plasmid originating from a species in the phylum Bacteroidetes.

The majority of the original studies that generated the datasets analysed in this paper did little to remove artefactual intercontig 
reads during their analysis. Like the analysis pipeline used in this study, most studies removed reads aligning with a low MAPQ and 
reads mapping to multiple contigs [21, 22, 24]. Some also required the presence of restriction sites on the contigs being mapped to 
[21, 22]. However, as these studies used restriction enzymes recognizing 4 nt motifs, these restriction sites could be quite common 
in the assembly. Notably, Yaffe and Relman [21] did most to reduce artefactual intercontig reads from interfering with the data 
analysis by developing a pipeline that included probabilistic modelling of experimental noise to determine the likelihood of links 
made using the 3C data being real. This method allowed the detection and removal of thousands of artefactual links. Artefactual 
links can also be removed through normalization of Hi-C data based on zero-inflated negative binomial regression frameworks, 
although this method has not been applied to 3C/Hi-C experiments on the human gut microbiota [27].

The results in this paper show that artefactual intercontig reads often account for ~2 % of shotgun metagenomic reads, indicating 
that a considerable fraction of identified intercontig reads in meta3C/Hi-C datasets, even after removal of low-quality mapping, 
could be artefactual reads that do not originate from cross-linked fragments. Intercontig reads from both 3C data and WGS data 

Fig. 9. Heatmap showing ARGs linked to their microbial hosts for G_3C. Contigs linked to ARG-containing contigs were taxonomically classified using 
Kraken2. The heatmap shows the proportion of contigs linked to each ARG that was classified as the taxon on the right. E. coli E3090 and E. faecium 
E745 and were spiked into the stool sample, and the ARGs that these strains carried are highlighted in yellow and purple, respectively.
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were more likely to map near to IS elements. This indicates that many artefactual intercontig reads could be caused by repeats in 
the genome leading to fragmentation of the assembly into smaller contigs. Repeat regions, like IS elements, that are longer than 
the read length cause fragmentation in the assembly, as the assembly software will not be able to determine which sequences 
flank the repeat in the genome. This results in fragmented assemblies in which the repeats are represented as separate individual 

Fig. 10. Heatmap showing ARGs linked to their microbial hosts for downloaded 3C/Hi C datasets. Contigs linked to ARG-containing contigs were 
taxonomically classified using Kraken2. The heatmaps show the proportion of contigs linked to each ARG that was classified as the taxon on the right. 
Where there were multiple taxa that made up a proportion of no more than 0.02 for any ARG in that dataset, they have been grouped into ‘Other’.
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contigs [59]. This is especially an issue for bacteria, as repeat regions are estimated to make up around 5–10 % of the total genome 
[60]. The typical lengths of IS range between 1000 and 1 750 bp [61], which is longer than read-length and insert sizes used in 3C/
Hi-C. It is thus likely that one of the reads of a pair could map to an IS element contig, or even a contig flanked by repeats. This 
could cause not only artefactual intercontig reads, but also false host associations of contigs during analysis of 3C/Hi-C data, as 
the same IS elements can be present in different species [61]. This is particularly relevant for ARGs, which are often flanked by IS 
elements [62]. Furthermore, our results also showed that intercontig reads were much more likely to map within the first or last 
500 nt of a contig compared to non-intercontig reads for both the 3C and WGS reads for the spike-ins. The ends of contigs often 
contain fragments of repeats [63, 64]. By filtering out reads that mapped to IS elements and those that map to the first or last 
500 nt of a contig, many of the artefactual intercontig reads will be removed. Whilst this may also remove some true intercontig 
reads that originated from cross-linked fragments of DNA, it is an important step to reduce the impact of artefactual intercontig 
reads on host–ARG associations during further analysis.

Our study also highlights the importance of spike-ins, with completely sequenced genomes, in 3C/Hi-C experiments. Here, a 
spike-in of two strains of E. coli and E. faecium were added to the stool sample before meta3C. This was the first study to add 
spike-ins during proximity ligation of a stool sample, although Marbouty et al. [51] added meta3C reads post-sequencing from 
three bacterial species into the mouse faecal meta3C reads before downstream analysis, and a study implementing Hi-C on 
wastewater used an E. coli spike-in strain in one of the samples [58]. Whilst the G_3C spike-ins were useful in analysis of the 
meta3C data, by providing positive controls for linkage between ARGs and hosts, the strains used may not have been optimal. 
Both spike-ins were species of bacteria that are commonly found in the human gut microbiome [65, 66]. This meant that any 
E. coli or E. faecium strains that were naturally present in the sample used would have been masked by, or be confused with, the 
spike-in strains, complicating the detection of potential ARG–host links to these species. For future 3C/Hi-C experiments, strains 
of species that are unlikely to be naturally present in the sample type that is being studied should be considered. Ideally these 
strains should carry resistance genes on both plasmids and chromosomes to corroborate ARG–host linkages on different replicons.

After filtering out artefactual intercontig reads, 87 ARGs were linked to their microbial hosts across the six datasets, including 
27 in the meta3C data first described in this paper. These included six ARGs known to be carried on plasmids in two spike-in 
strains that were added to G_3C, showing that meta3C was able to link ARGs carried on plasmids to chromosomal DNA of their 
microbial hosts in a human stool sample. A potential limitation of our study is that Kraken2 was used to taxonomically classify 
the linked contigs to determine the hosts of the ARGs. This tool classifies sequences by finding the lowest common ancestor 
(LCA) of genomes containing an exact match to each k-mer in the sequence [67]. Kraken2 relies heavily on correct classifications 
in the database being used, which is especially a problem when the query contigs differ greatly from sequences in the database 
[68]. The hosts of some ARGs were probably misclassified, including the linkage of tet(Q) to the fungal genus Saccharomyces in 
the M_3C dataset, lnu(P) linking to Kosmotoga, a thermophile found in hydrothermal systems in the ocean [69] in Y_3C_A, and 
blaTEM-116 in Y_3C_B linking to human mastadenovirus C. Querying these contigs using the blast nt database confirmed these 
misclassifications. The contig classified as Saccharomyces was probably phage DNA [top blast hit Caudoviricetes sp. (accession 
number: BK046140.1) at 98 % identity, 31 % coverage], the contig classified as Kosmotoga was probably a species from the class 
Clostridia [top blast hit Intestinibacter bartlettii (accession number: CP102273.1) at 84 % identity, 90 % coverage], and the 
contig classified as human mastadenovirus was probably plasmid DNA, aligning to E. coli plasmid pME11 (accession number: 
MT868887.1, 100 % identity, 40 % coverage). Note that these links represented less than 3 % of the ARG–host cross-links for those 
genes. Other 3C/Hi-C studies have used binning methods to improve the reliability of the gene–host link, as this will link genes 
to a group of contigs rather than just one, which could reduce the chance of misclassifying the host [20]. Classifying these MAGs 
often uses phylogenetic trees of multiple marker genes, and whilst this is a well-established method, interpreting the resulting 
phylogeny and taxonomically classifying the MAGs still has the limitations of needing an accurate reference database [3, 68].

Nevertheless, the results of this study showed that ARGs were widespread amongst different microbial hosts, including in many 
known commensals in the gut microbiome. Genes that were present in multiple datasets showed similar hosts across the datasets. 
The genes tet(Q), tet(X) and erm(F) were associated with the genera Alistipes and Bacteroides in nearly all datasets in which these 
genes occurred. The tet(Q), tet(X) and erm(F) genes are known to be prevalent amongst Bacteroides species, and commonly occur 
together in the same strains, along with the presence of a conjugative transposon [70]. These genes have also been observed in an 
Alistipes strain isolated from the chicken gut [71]. The beta-lactamase genes cfxA3 and cfxA5 were exclusively linked to contigs 
assigned to the genus Bacteroides, where these genes are known to be prevalent [72]. Other genes were widespread and were 
linked to multiple hosts, including various tetracycline resistance genes, which are highly prevalent and widespread in the human 
gut microbiota [7, 73, 74]. Novel observations include the linkage of the vancomycin resistance genes vanHDX to the genus 
Eubacterium in the Y_3C_B dataset. This gene has not been observed in Eubacterium previously, although vanD has been found 
in several other Eubacteriales, including Ruminococcus and Blautia [75, 76]. Notably, VanD-type glycopeptide resistance genes 
in gut commensals can be transferred to the opportunistic pathogen Enterococcus faecium, complicating therapy of infections 
caused by this species [77].

Overall, the findings in this study demonstrate that 3C/Hi-C data contain a substantial background noise, originating from 
artefactual intercontig reads, confounding host–ARG associations during analysis. Several steps should be taken to reduce the 
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impact of these artefactual intercontig reads, including discarding reads that map near to the ends of a contig, removing reads 
mapping to IS element contigs, and requiring at least five unique intercontig read pairs to link two contigs together. In addition, the 
use of spike-ins as a control for the efficacy of the cross-linking step in 3C/Hi-C is recommended to ensure the validity of the data.
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