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Behavioral/Cognitive

Cortical Patterns Shift from Sequence Feature Separation
during Planning to Integration during Motor Execution

Rhys Yewbrey,1,2 Myrto Mantziara,1 and Katja Kornysheva1,2
1Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom and 2Centre for Human Brain Health, School of Psychology,
University of Birmingham, Birmingham, B15 2TT, United Kingdom

Performing sequences of movements from memory and adapting them to changing task demands is a hallmark of skilled
human behavior, from handwriting to playing a musical instrument. Prior studies showed a fine-grained tuning of cortical
primary motor, premotor, and parietal regions to motor sequences: from the low-level specification of individual movements
to high-level sequence features, such as sequence order and timing. However, it is not known how tuning in these regions
unfolds dynamically across planning and execution. To address this, we trained 24 healthy right-handed human participants
(14 females, 10 males) to produce four five-element finger press sequences with a particular finger order and timing structure
in a delayed sequence production paradigm entirely from memory. Local cortical fMRI patterns during preparation and pro-
duction phases were extracted from separate No-Go and Go trials, respectively, to tease out activity related to these perimove-
ment phases. During sequence planning, premotor and parietal areas increased tuning to movement order or timing,
regardless of their combinations. In contrast, patterns reflecting the unique integration of sequence features emerged in these
regions during execution only, alongside timing-specific tuning in the ventral premotor, supplementary motor, and superior
parietal areas. This was in line with the participants’ behavioral transfer of trained timing, but not of order to new sequence
feature combinations. Our findings suggest a general informational state shift from high-level feature separation to low-level
feature integration within cortical regions for movement execution. Recompiling sequence features trial-by-trial during plan-
ning may enable flexible last-minute adjustment before movement initiation.

Key words: fMRI; motor control; MVPA; planning; sequence; timing

Significance Statement

Musicians and athletes can modify the timing and order of movements in a sequence trial-by-trial, allowing for a vast repertoire of
flexible behaviors. How does the brain put together these high-level sequence features into an integrated whole? We found that,
trial-by-trial, the control of sequence features undergoes a state shift from separation during planning to integration during execu-
tion across a network of motor-related cortical areas. These findings have implications for understanding the hierarchical control of
skilled movement sequences, as well as how information in brain areas unfolds across planning and execution.

Introduction
Skilled sequences of movements performed from memory are
regarded as a hallmark of human dexterity (Hikosaka et al., 2002;

Rosenbaum et al., 2007; Diedrichsen and Kornysheva, 2015).
They are essential building blocks of everyday skilled behaviors,
from typing, to tying shoelaces, or playing a musical instrument
(Fig. 1a). In addition to the order of movements in a sequence,
the temporal accuracy of the movements can be crucial to the
success of the task (e.g., when tapping a Morse code). Previous
behavioral (Ullén and Bengtsson, 2003; Gobel et al., 2011;
Kornysheva et al., 2013), computational (Zeid and Bullock, 2019;
Calderon et al., 2022), neurophysiological (Merchant et al., 2013;
Zimnik and Churchland, 2021; Lafuente et al., 2022), and neuroi-
maging findings (Bengtsson et al., 2004; Kornysheva and
Diedrichsen, 2014; Kornysheva et al., 2019) established that
movement order is controlled independently of timing, and
vice versa, whenever motor sequences incorporated temporally
discrete subgoals. This includes sequences that are extensively
trained and performed from memory without external guid-
ance, characteristic of motor sequence execution in the real

Received Aug. 26, 2022; revised Jan. 11, 2023; accepted Jan. 13, 2023.
Author contributions: R.Y., M.M., and K.K. designed research; R.Y., M.M., and K.K. performed research; R.Y.

and K.K. analyzed data; R.Y. and K.K. wrote the first draft of the paper; R.Y., M.M., and K.K. edited the paper;
R.Y. and K.K. wrote the paper.
K.K. was supported by Academy of Medical Sciences Springboard Award SBF006/1052. We thank David

McKiernan for the construction and technical support of the force keyboard device; and Prof. Paul Downing,
Prof. Paul Mullins, and Dr. Ken Valyear for useful comments on the study design and MRI acquisition.
The authors declare no competing financial interests.
Correspondence should be addressed to Katja Kornysheva at k.kornysheva@bham.ac.uk.
https://doi.org/10.1523/JNEUROSCI.1628-22.2023

Copyright © 2023 Yewbrey et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International license, which permits unrestricted use, distribution and reproduction in any medium provided
that the original work is properly attributed.

1742 • The Journal of Neuroscience, March 8, 2023 • 43(10):1742–1756

mailto:k.kornysheva@bham.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


world. The integration of movement timing and order has been
studied in the context of execution (Shin and Ivry, 2002;
Kennerley et al., 2004; O’Reilly et al., 2008; Kornysheva et al.,
2013; Kornysheva and Diedrichsen, 2014), but we currently do
not know whether the binding of order and timing takes place
before the initiation of the first movement, and which motor-
related cortical areas underlie this process.

Neural and hemodynamic activity patterns in contralat-
eral primary motor (M1) and sensorimotor (S1), premotor,
and parietal cortices show informational tuning to trained
motor sequences (Tanji and Shima, 1994; Matsuzaka et al.,
2007; Wymbs et al., 2012; Picard et al., 2013; Wiestler and
Diedrichsen, 2013; Kornysheva and Diedrichsen, 2014;
Wiestler et al., 2014; Wymbs and Grafton, 2015; Yokoi et
al., 2018; Yokoi and Diedrichsen, 2019; Berlot et al., 2020).
Specifically, activity patterns outside the primary motor
cortex (premotor, supplementary motor, and parietal areas)
contain high-level information (e.g., about sequence chunks),
positional rank in the sequence (Tanji and Shima, 1994; Yokoi
and Diedrichsen, 2019; Russo et al., 2020), and spatial, rather
than body-centered, coordinates (Wiestler et al., 2014). Further, ac-
tivity patterns in these regions can generalize across different pair-
ings of movement order and timing (Kornysheva and Diedrichsen,
2014) (Fig. 1b). In contrast, activity patterns in contralateral M1/S1
are associated with the planning and execution of single movements
in a sequence (Yokoi et al., 2018; Berlot et al., 2020; Zimnik and
Churchland, 2021; Ariani et al., 2022), body-centered coordinates
(Wiestler et al., 2014), and information about unique sequence
order and timing integration, suggesting lower-level repre-
sentations driven by motor implementation (Kornysheva
and Diedrichsen, 2014) (Fig. 1b).

Despite the progress made, it remains uncertain when
and where motor-related cortical areas integrate the order
and the timing of movements trial-by-trial. One possibility

is that premotor and parietal regions show a fixed mapping
to high-level independent, and M1/S1 to lower-level integrated
sequence features, respectively (Kornysheva and Diedrichsen,
2014). These may be activated simultaneously or sequentially
depending on the perimovement phase, but their informa-
tional content could remain stable (Fig. 1c, “Fixed map-
ping”). Alternatively, the tuning to high- and low-level features
may change dynamically with phase with the same regions parsing
sequence order and timing during planning but integrating these
sequence features during execution (“Dynamic mapping”).

We trained participants to produce five-element finger press
sequences comprised of two finger orders and two temporal
interval orders (timings) from memory in a delayed production
paradigm. To disentangle planning from execution using fMRI,
activity was extracted from No-Go and Go trials, respectively.
We utilized multivariate pattern analysis (MVPA) to decode
fMRI patterns related to the planned and executed sequence
order and timing. Our results provide strong evidence for the
integration of sequence order and timing during sequence execu-
tion only, but not during planning. Further, they support the
idea that contralateral cortical regions are not fixed in their infor-
mational content but update their tuning dynamically.

Materials and Methods
Participants. Twenty-four neurologically healthy participants, 14

females and 10 males (mean = 21.00 years, SD = 1.64 years), met all
behavioral and imaging requirements after completing the 3 d
experiment. Twenty-three participants were right-handed with a
mean Edinburgh Handedness Inventory (https://www.brainmapping.org/
shared/Edinburgh.php) (adapted from Oldfield, 1971) score of 75.22
(SD=20.97, range: 25-100), one was left-handed with an Edinburgh
Handedness Inventory score of �70. Although our preregistration (www.
osf.io/g64hv) stated we would exclude left-handed individuals, we
included this participant as their data were not qualitatively different

Figure 1. Theoretical framework and hypotheses. a, Skilled sequence production (e.g., when playing a melody on a piano) is characterized by producing movements with a specific order
and timing and combining them flexibly trial-by-trial. b, Previous findings localized independent patterns of order and timing to premotor, supplementary motor, and parietal regions, while
their integration was found in M1 (Kornysheva and Diedrichsen, 2014). c, How does this mapping evolve across planning and execution? “Fixed mapping” hypotheses state that premotor and
parietal regions outside of M1 control order and timing as independent motor sequence features, and M1 itself controls the nonlinear integration of the two during planning and/or production.
In contrast, the “Dynamic mapping” hypothesis proposes that there is a state shift within regions from independent feature control during planning to integration during execution (OSF prereg-
istration: https://doi.org/10.17605/OSF.IO/G64HV).
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from the rest of the sample. Data were collected from an additional 17
participants but were excluded. One participant was excluded because of
unforeseen technical difficulties with the apparatus, and one participant
was excluded because of a corrupted functional scan. Fifteen further par-
ticipants did not reach target performance after 2 d of training. Target per-
formance consisted of an error rate ,20% (mean = 6.54%, SD=6.03%,
for the group) and distinct sequence timing structures that transferred
across sequence finger orders (see Results). Participants were recruited ei-
ther through social media and given monetary reward at a standard rate,
or through a participation panel at Bangor University and awarded mod-
ule credits for their participation. Participants with professional musical
qualifications were excluded from recruitment. All participants provided
informed consent, including consent to data analysis and publication,
through an online questionnaire hosted by Qualtrics. This experi-
ment and its procedures were approved by the Bangor University
School of Psychology Ethics Committee (Ethics approval number
2019-16478).

Apparatus. Force data from fingers of both the right and left hands
were recorded at a sample rate of 1000Hz using two custom-built force
transducer keyboards (10 channels). Each key had a groove within which
the respective fingertip was positioned. A force transducer (Honeywell
FS Series, with a range of up to 15 N) was located under each groove and
recorded the respective finger force without crosstalk between channels.
Force data acquisition occurred in each trial from 500ms before
sequence cue onset to the end of the production period in production
trials, and the end of the false production period in No-Go trials. The
keys could be adjusted in position by sliding them up and down individ-
ually along the keyboard plane to achieve the most comfortable position
for the hand and wrist when seated during training or in supine position
in the MRI scanner, respectively. Once adjusted, the position of the
keys was fixed. Traces from the right hand were baseline-corrected by
the first 500ms of acquisition (500ms before the sequence cue) and
smoothed to a Gaussian window of 100ms, trial-by-trial. Button
presses were defined as the point at which forces above baseline
exceeded a fixed threshold (2.5 N for the first 8 participants and 1 N
for the subsequent 16 of 24 participants). Press timings were identi-
fied by the timestamp provided by National Instruments Data
Acquisition Software (National Instruments) associated with the
data point at which the respective threshold was exceeded.

During behavioral training sessions, participants were seated at a
wooden table ;75 cm away from a 19 inch LCD LG Flatron L1953HR,
at a resolution of 1280� 1024, at a refresh rate of 60Hz. Their hands
were occluded by a horizontally positioned panel on posts around the
force boxes. During fMRI sessions, stimuli were presented on an MR
Safe BOLDScreen 24 inch, at a resolution of 1920� 1200 and a refresh
rate of 60Hz. Participants laid supine on the scanner bed, and the two
force transducers were positioned on a plastic support board resting on
their bent upper legs to enable comfortable and stable positioning of the
hands.

Behavioral task. Participants were trained to produce four five-finger
sequences with defined interpress intervals (IPIs) from memory in a
delayed sequence production paradigm. Go trials began with a fractal
image (Sequence cue) presented for 400 ms, which was associated with a
sequence. The mapping between fractal image and each sequence was
defined randomly for each participant. Following the Sequence cue, a
fixation cross was shown to allow participants to prepare the upcoming
sequence; display length of this fixation cross was jittered at durations of
600, 1100, 1600, and 2100ms, pseudorandomized across trials within
blocks. A black hand with a green background (Go cue) then appeared
for 4000ms to cue sequence production. Succeeding the Go cue, another
fixation cross was presented in a jittered fashion at durations of 500,
1000, 1500, and 2000ms. Feedback (for more details, see Feedback) was
then presented to participants for 1000ms, followed by a jittered inter-
trial interval (ITI) duration of 1000, 1500, 2000, and 2500ms. Visually
guided (Instructed) Go trials during training were presented in the same
fashion, albeit featuring a Go cue with a gray background, and a red dot
on the tip of each finger on the hand image would move from finger to
finger in the target production order and in-pace with the target timing
structure. No-Go had the same structure to Go trials, but No-Go cue

was shown succeeding the preparatory fixation cross. Instead of the Go
cue, the fixation cross continued to show for an additional 1000ms. As
in Go trials, this phase of the trial was followed by a fixation cross, feed-
back, and ITI.

Four target sequences consisted of permutations of two finger orders
(Order 1 and 2) and two IPI orders (Timing 1 and 2) matched in finger
occurrence and sequence duration. Sequence orders were generated ran-
domly for each participant. All trained sequences began with the same
finger press to avoid differences in the first press driving the decoding of
sequence identity during preparation (Yokoi et al., 2018). Ascending and
descending press triplets and any identical sequences were excluded.
Timing structures were the same across participants, to allow for com-
parison of timing performance across participants. The two trained
timing structures consisted of four target IPI sequences as follows:
1200ms-810 ms-350 ms-650 ms (Timing 1), and 350ms-1200 ms-650
ms-810 ms (Timing 2). To assess whether participants maintained the
target timing structure despite individual tendencies to lengthen or com-
press overall sequence length, we calculated timing error for each partici-
pant relative to their average total production length. This was calculated
offline by normalizing target and produced IPIs as a percentage of the
participant’s average total sequence length during the session across
sequences, then calculating the cumulative percent deviation from target
for each IPI, averaged across trials.

Feedback was given to participants trial-by-trial on a points-based
scale ranging from 0 to 10. Points were based on initiation reaction time
and temporal deviation from target timing calculated as a percentage of
the target interval length. For initiation reaction time, up to 5 points
were awarded for a fast initiation reaction time as follows: 5 points for
presses within 200ms of the Go cue, 4 points for presses within 200-360
ms, 3 points for presses within 360-480 ms, 2 points for presses within
480-560 ms, 1 point for presses within 560-600 ms, and 0 points for
presses .600ms. For IPI performance, up to 5 points were awarded
based on deviation from target IPI structure in percent of respective
interval to account for the scaling of temporal error with IPI length
(Rakitin et al., 1998). Five points were awarded for average deviations of
IPIs from target for each trial which was lower than 10%, 4 points for
10%-20%, 3 points for 20%-30%, 2 points for 30%-40%, 1 point for 40%-
50%, and 0 points for .50%. If the executed press order was incorrect,
participants were awarded 0 points for the trial. If the executed press
order was correct, they were awarded their earned timing points. To dis-
courage premature key presses in the preparation period of Go trials and
No-Go trials, 0 points were awarded if participants exceeded a force thresh-
old during preparation above the baseline period. In No-Go trials, 5 points
were awarded if no press was made as instructed. A monetary reward of
£10 was offered to the 2 participants who accumulated the most points
across the course of the experiment, to incentivize good performance.

Participants were presented with a feedback screen after each trial
showing the number of points achieved in the current trial, as well as
feedback on whether they pressed the correct finger at the correct time.
Total points accumulated across the whole experiment were shown at
the end of each block. A horizontal line was placed in the center of the
screen, with four symbols displayed equidistantly along the line which
represented each of the five finger presses. An “X” indicated a correct
finger press, and a “–” indicated an incorrect finger press for each
sequence position. The vertical position of these symbols above (“too
late”) or below (“too early”) the line was proportional to the participant’s
timing of the respective press relative to target IPI (in %). Using these
cues, participants could adjust their performance online to ensure maxi-
mum accuracy of sequence production and prevent a drift in perform-
ance from memory following training. During the first 2 d of training,
auditory feedback in the form of successive rising tones corresponding
to the number of points (0-10) was played alongside the visual feedback.
Auditory feedback was absent during the fMRI session, to prevent any
auditory processing driving decoding accuracy.

Procedure. Training duration was fixed across participants and
occurred across the first 2 d of the experiment over three distinct train-
ing stages (for a visual representation of the training stages, see Fig. 2b;
for trial numbers during each session, see Table 1). In the first training
stage, 80% of all trials were instructed Go trials (black hand on gray
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background, see Fig. 2c), and the remaining
20% were No-Go trials. During the second
training stage, 40% of trials were instructed Go
trials, 40% were from-memory Go trials (black
hand on green background, see Fig. 2c), and
20% were No-Go trials (see Fig. 2d). In the third
and final stage of training, 80% of trials were
from-memory Go trials, and 20% were No-Go
trials. Each stage of training consisted of 240 tri-
als for a total of 720 trials across all three train-
ing sections. The third and final day consisted
of a short refresher stage of 40 trials, made up
of the same proportion of trials as the second
stage of training, during which T1 images
were collected. Following this refresher stage,
there was an fMRI stage consisting of 288 tri-
als (48 trials in each block) featuring 50%
from-memory Go trials and 50% No-Go
trials.

In addition, before and after the last training
stage, participants completed a synchronization
task during which they were asked to synchron-
ize their respective presses to a visual finger cue,
as in the first stages of training consisting of
four blocks of 32 trials, which included trained
sequences, sequences with new timings but the
same orders (order transfer), sequences with
the same timings but new orders (timing trans-
fer), and new sequences. Trial structure was
identical to instructed Go trials. There were
four sequences belonging to each condition,
and each sequence was shown for eight consec-
utive exposures (see Fig. 3c) to assess short-
term learning gains. We expected that partici-
pants would show more accurate synchroniza-
tion to visual sequences when they encountered
trained sequences as well as sequences with a
trained finger order or trained timing compared
with untrained control sequences following the
completion of training.

MRI acquisition. Images were obtained on
a Philips Ingenia Elition X 3T MRI scanner
using a 32-channel head coil. T1 anatomic
scans were acquired using a MPRAGE scan at
a 0.937� 0.937� 1 resolution, with an FOV
of 240� 240 � 175 (A-P, R-L, F-H), encoded
in the anterior-posterior dimension.

T2*-weighted functional images were col-
lected across six runs of 230 volumes each with
a TR of 2 s, a TE of 35ms, and a flip angle of
90°. The voxel size was 2 mm isotropic, at a slice
thickness of 2 mm, with 60 slices. These were
obtained in an interleaved odd-even EPI acqui-
sition at a multiband factor of 2. Four images
were discarded at the beginning of each run to
allow the stabilization of the magnetic field. The
central PFC, the anterior temporal lobe, and
ventral parts of the cerebellum were not covered
in each participant. Jitters were used within each
trial during preparation periods, post-production
fixation crosses, and ITIs, to vary which part of
the trial is sampled by each TR and therefore give
us a more accurate estimate of the Hemodynamic
Response Function (HRF) (Serences, 2004).

Preprocessing and first-level analysis. All
fMRI preprocessing was completed using
SPM12 (revision 7219) on MATLAB (The
MathWorks). Slice timing correction was
applied using the first slice as a reference to

Figure 2. Experimental and trial designs. a, Participants produced finger presses on a 10-finger force transducer keyboard.
The hands were visually occluded from the participants’ view by a panel during training and when lying in a supine position
during the fMRI session. Target fingers on the right hand are indicated by different colors that also correspond to the legend
in later panels. Fingers on the left (inactive) hand are marked as black. b, Trial type proportions on each experimental day
progressed from 100% instructed (Training 1) to 50%/50% mixed (Training 2) to 100% from memory (Training 3) trials dur-
ing the last stage of training and during fMRI. For a detailed overview of trial numbers during each session, see Table 1.
Black hands with a gray background and a red finger cue represent visually instructed trials. Black hands with a green back-
ground represent trials with sequence production from memory. c, Go trials from memory consisted of a Sequence cue, fol-
lowed by a fixation cross and a Go cue instructing a production period. The occurrence of the Go cue was the onset of the
respective hand stimulus. The trial ended with a feedback screen which indicated finger and temporal accuracy relative to a
target sequence. Instructed trials, shown as an inset at the top of the image, followed the same trial structure as from mem-
ory trials, but displayed visual finger cues to aid production. d, No-Go trials consisted of a Sequence cue, followed by a fixa-
tion cross without a Go cue, and feedback screen. e, A raster plot shows all button press timings in correct trials produced
from memory across the entire fMRI session in one representative participant. Horizontal lines separate the different sequen-
ces that followed a two finger order by two timing design (for details, see Materials and Methods). Vertical dotted lines indi-
cate target press timings. Each colored dot represents a different effector, see corresponding legend. f, Example force traces
from 10 channels corresponding to the fingers on the right (colored) and left hands (black) in one representative Go trial dur-
ing fMRI. Horizontal dashed line indicates the finger press threshold. Colored vertical lines indicate the time point at which a
press was detected from the respective finger. g, Example force traces, as in f, from one representative No-Go trial.
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interpolate all other slices to, ensuring analysis occurred on slices
which represent the same time point. Realignment and unwarping
were conducted using a weighted least-squares method correcting
for head movements using a 6-parameter motion algorithm. A
mean EPI was produced using SPM’s Imcalc function, wherein
data acquired across all six runs were combined into a mean EPI
image to be coregistered to the anatomic image. Mean EPIs were
coregistered to anatomic images using SPM’s coreg function, and
their alignment was checked and adjusted by hand to improve the
alignment, if necessary. All EPI runs were then coregistered to the
mean EPI image.

For the GLM, regressors were defined for each sequence separately
for both preparation and production. Preparation- and production-
related BOLD responses were independently modeled from No-Go and
Go trials, respectively, to tease out activity from these brief trial phases
despite the hemodynamic response lag (Logothetis, 2003). The prepara-
tion regressor consisted of boxcar function starting at the moment of the
Sequence cue in No-Go trials and lasting for the duration of the maxi-
mum possible preparation phase (2500ms). The production regressor
consisted of a boxcar function starting at the onset of the first press with
a fixed duration of 0 (constant impulse), to capture activity related to
sequence initiation and extract sequence production-related activity
from the first finger press that was matched across sequences within
each participant. We aimed at capturing BOLD responses related to
neuronal populations that become differentially active for different
sequences (Tanji and Shima, 1994), for which a single estimate of
sequence production has been used to successfully identify sequence
representations in a number of previous fMRI studies (Wiestler and
Diedrichsen, 2013; Kornysheva and Diedrichsen, 2014; Nambu et al.,
2015; Yokoi et al., 2018; Berlot et al., 2020). We used a separate pilot
dataset (N= 9) recorded before the preregistration of the study to
determine the optimal GLM regressor model for the execution period.
To be certain that the constant impulse model provided the best model
for sequence production, we assessed contrast values extracted from a
spherical Region Of Interest (ROI) centered on M1a (MNI coordinates:
[�38, �31, 48]) with a radius of 6 mm obtained from a separate pilot
dataset (N= 9) for a model containing variable epoch versus constant
impulse regressor for sequence execution. A repeated-measures t test
found that the constant impulse GLM produced significantly higher
contrast values (mean = 10.89, SD = 3.07) than the variable epoch
GLM (mean = 3.64, SD = 1.27; t(8) = 10.24, p, 0.001, d = 3.41). This
may be because of the way that the BOLD response scales nonlinearly
with movement initiation rather than movement duration or speed
(Khushu et al., 2001).

Additionally, we included regressors of no interest: (1) error
trials (incorrect or premature presses during Go trials and presses
during No-Go trials), which were modeled from sequence cue
onset to the end of the ITI; (2) the preparation period in Go trials
(1000-2500 ms from Sequence cue); and (3) the temporal derivate
of each regressor. The boxcar model was then convolved with the
standard HRF. To remove the influence of movement-related arti-
facts, we used a weighted least-squares approach (Diedrichsen and
Shadmehr, 2005).

Surface reconstruction. Cortical surface reconstruction was con-
ducted on each participant’s T1 anatomic image using Freesurfer’s
recon-all function (Dale et al., 1999). Surface structures were then core-
gistered to the symmetrical Freesurfer average atlas (Fischl et al., 1999)

using surface Caret (Van Essen et al., 2001). Searchlights for MVPA
were then defined on each individual surface using the node maps pro-
vided by the surface reconstruction and displayed in atlas space.

Cross-sectional and ROI analysis. Two cross-sections were defined
on the cortical surface: (1) anterior to posterior, running from dorsal
premotor cortex (PMd) to occipito-parietal junction and (2) ventral to
dorsal, running from ventral premotor cortex (PMv) to supplementary
motor area (SMA). These cross-sections were taken from a previous
study (Kornysheva and Diedrichsen, 2014). Data points along these axes
were extracted to provide a continuous measure along the cortical sur-
face, which was then subjected to a nonparametric permutation analysis
to identify clusters which were significantly above baseline (Maris and
Oostenveld, 2007). This was conducted as a one-tailed test, with 10,000
permutations, for which Cohen’s d effect size was calculated by averag-
ing across the values in each significant cluster (Meyer et al., 2021).

ROI analysis was conducted using the Caret toolbox (Van Essen et
al., 2001) on ROIs, which were defined based on Caret masks used by
several previous studies (Wiestler and Diedrichsen, 2013; Kornysheva
and Diedrichsen, 2014; Wiestler et al., 2014; Yokoi et al., 2018), consist-
ing of PMv, PMd, M1, S1, SMA/pre-SMA, anterior superior parietal
cortex (SPCa), and posterior superior parietal cortex (SPCp). The pre-
registration (www.osf.io/g64hv) referred to the SPCa ROI as “SPC”
and S1 and SPCp were added after the preregistration. This was to ena-
ble comparison to more recent results, including those published after
the preregistration, showing S1 (Gale et al., 2021; Ariani et al., 2022)
and SPCp involvement in movement planning (Culham and Valyear,
2006; Lindner et al., 2010; Fitzpatrick et al., 2019), as well as to probe
the functional differentiation between SPCa and SPCp with respect to
sequence representations demonstrated by Yokoi et al. (2018). Z values
for each classifier were averaged within regions to give an overall value
for each decoder. These values were calculated from unsmoothed indi-
vidual data. One-sample t tests against chance level (zero) then identi-
fied significantly above-chance decoding values within these ROIs
Bonferroni-corrected for six comparisons. To test the hypotheses in
Figure 1 (dynamic vs fixed mapping across planning and execution),
we performed a repeated-measures ANOVA on decoding values with
factors trial phase, region, and classifier.

MVPA of fMRI. MVPA was conducted using a custom-written
MATLAB code to detect sequence-specific representations (Kornysheva
and Diedrichsen, 2014; Kornysheva et al., 2019). We used a searchlight
of 160 voxels and a maximum searchlight radius of 6 mm. Each search-
light was run on each individual’s cortical surface-reconstructed anat-
omy, projected onto the Freesurfer average atlas (Fischl et al., 1999). The
classification accuracy for each searchlight (compare classification proce-
dures below) was assigned to the center of each searchlight. A classifica-
tion accuracy map was generated by moving the searchlight across the
cortical surface (Oosterhof et al., 2011). Mean patterns and common
voxel-by-voxel covariance matrices were extracted for each class from
training dataset (five of the six imaging runs), and then a Gaussian linear
discriminant classifier was used to distinguish between the same classes
in a test dataset (the remaining imaging run).

The factorized classification of finger order, timing, and integrated
order and timing followed the previous approach (Kornysheva and
Diedrichsen, 2014) and performed on betas estimated from the sequence
preparation and production periods independently. For the decoding of
sequence timing, the classifier was trained to distinguish between two
sequences with differing timing but matching order across five runs and

Table 1. Distribution of trial types across experimental phasesa

Day 1 Day 2 Day 3

Example Pre-training test Training 1 Training 2 Training 2 Training 3 Post-training test Refresher Test (fMRI)

Instructed trials 4 (33%) 32 (100%) 16 (80%) 8 (40%) 8 (40%) 0 32 (100%) 8 (40%) 0
Memory trials 4 (33%) 0 0 8 (40%) 8 (40%) 16 (80%) 0 8 (40%) 24 (50%)
No-Go trials 4 (33%) 0 4 (20%) 4 (20%) 4 (20%) 4 (20%) 0 4 (20%) 24 (50%)
Total trials per block 12 32 20 20 20 20 32 20 48
Number of blocks 1 4 12 6 6 12 4 2 6
Repetitions per condition per block 2 8 4 4 4 4 8 4 6
a The first half of Training 2 occurred on day 1, the second half on day 2.
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was then tested on two sequences with the same two timings paired with
a different order in the remaining run. This classification was then cross-
validated across runs and across training/test sequences, for a total of 12
cross-validation folds. For the decoding of sequence order, the classifier
was trained to distinguish between two sequences of differing orders
paired with the same timing and tested on two sequences with the same
two orders when paired with a different timing and underwent the same
cross-validation procedure. This method of training and testing the lin-
ear discriminant classifier allowed for identification of sequence feature
representations that were transferrable across conditions they are paired
with and therefore independent. The integrated classifier was trained to
distinguish between all four sequences on five runs and then tested on
the remaining run. Here, the mean activity for each timing (collapsed
across two orders) and finger order (collapsed across two timings) con-
dition within each run was subtracted from the overall activity for each
run, separately (Kornysheva and Diedrichsen, 2014). This allowed for
the measurement of residual activity patterns that were not explained
by a linear combination of timing and order. For better comparability
across classifiers, the classification accuracies were transformed to z
scores, assuming a binomial distribution of the number of correct
guesses. We then tested these z scores against zero (chance level) on cort-
ical cross-sections of interest and in predefined ROIs across participants
for statistical analysis. In addition to the main analysis, we provided an

exploratory analysis across the whole cortex by performing a random-
effects analysis with an uncorrected threshold of t(23). 3.48, p, 0.001
and a cluster-wise p value for the cluster of that size (Worsley et al.,
1996) on the z-transformed decoding values for order, timing, and inte-
gration. This was Bonferroni-corrected for two hemispheres and the
results, including a full table of significant clusters, are available in Table 3.

Experimental design and statistical analysis. All data collection and
analyses were conducted using a repeated-measures design. For the be-
havioral data, we assessed changes in finger force production from
baseline during the preparation period in both Go and No-Go trials
using two-tailed paired-samples t tests. We also assessed the length of
IPIs and timing error during sequence production using a repeated-
measures ANOVA with factors timing, order, and interval position.
These ANOVAs were conducted both across the group and within
each participant to determine effects within individuals. To evaluate
accuracy in the synchronization task, we compared absolute deviation
from target interval in the trained, order transfer, and timing transfer
conditions to the new sequence condition using three one-sided
paired-sample t tests, in line with previous work (Kornysheva et al.,
2013, 2019; Kornysheva and Diedrichsen, 2014).

To investigate fMRI activity increases in motor-related areas dur-
ing preparation and production, we tested for increases above a base-
line along our two cross-sections using a one-tailed nonparametric

Figure 3. Sequence timing and feature transfer. a, IPI structure of the four trained sequences during the fMRI session (day 3). An interaction between sequence timing and interval position shows dis-
tinct IPI sequences between Timing 1 and Timing 2 across finger order sequences Order 1 and 2. **p, .01; repeated measures ANOVA. b, Timing error (normalized to the target interval durations, see
Materials and Methods) during the fMRI session did not differ between sequences. c, Behavioral transfer results from the synchronization task obtained from instructed Go cue trials following the last
training stage on day 2. Absolute deviation from target timing is shown across sequence repetitions for trained sequences (green), sequences with trained finger orders, but unfamiliar timing (blue),
sequences with trained timing, but unfamiliar order (red), and new sequences with both unfamiliar finger order and timing (black). d, Absolute deviation from target timing, as in a, extracted from the
fourth to the last sequence repetition as in previous work (e.g., Kornysheva et al., 2019). Significance of t tests to identify performance benefits compared with new sequences is shown by colored aster-
isks and horizontal lines. The trained order condition showed an increase in synchronization error (p=0.002, two-tailed t test), suggesting interference rather than benefits related to sequence feature
transfer. **p, 0.01; *p, 0.05; one-sided t test. The boxplots indicate the median as a white line with the box size delineating the 25th to 75th percentiles, respectively. Lower and upper whiskers cor-
respond the minimum and maximum values, respectively. Outliers are drawn as points.
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permutation test with a p value threshold of 0.05 and 10,000 permuta-
tions (Maris and Oostenveld, 2007). This method was also used to
assess Z-transformed decoding accuracy above chance in each of our
three classifiers. Further, we ran one-sample t tests against chance for
each classifier within each ROI and trial phase (preparation and pro-
duction), Bonferroni-corrected for six comparisons (3 classifiers � 2
trial phases). We also ran a repeated-measures ANOVA with factors
phase, classifier, and region to assess interaction effects, and ran post hoc
pairwise comparisons to investigate a significant interaction between
phase and classifier. In addition, we investigated percent signal
change and decoding accuracy across cortical hemispheres using
whole-brain cluster-based analyses, Bonferroni-corrected for two
hemispheres (Tables 2 and 3). The significance value was set to
p = 0.05 with exact p values � 0.001 and effect sizes for each test
reported throughout. All statistical tests were performed with
MATLAB (The MathWorks) and IBM SPSS Statistics 25.0.

Results
Discrete sequence production frommemory
Participants were trained to produce four finger-press sequences
from memory with the right hand on a force transducer key-
board (Fig. 2a). Training consisted of a three-staged transition
across 2 d from trials which visually guided sequence production,
toward trials which required sequence production entirely from
memory (Fig. 2b). During fMRI scans taking place on the third
day, participants were required to produce movement sequences
from memory only (for trial distribution, see Table 1). Sequences
were cued 1000-2500 ms before the Go cue by a Sequence cue
(abstract fractal image) to prompt the planning of the respective
sequence without movement (Fig. 2c). To isolate fMRI responses
to movement planning without contamination from execution
patterns, in addition to Go trials, No-Go trials were implemented
which consisted only of the Sequence cue but did not contain a
Go cue (Fig. 2d). No-Go trials made up 20% of trials during
training, and 50% of trials during the fMRI session (see Materials
and Methods). Sequence planning during the preparation period
in Go and No-Go trials was facilitated through trial-by-trial
reward for fast initiation after the Go cue. Fast initiation and
accurate sequence performance in Go trials could result in up to
double the points of No-Go trials, in line with a previous study
(Mantziara et al., 2021). Thus, to achieve fast and accurate per-
formance and maximize the points, it was beneficial to plan the
movement in advance of the Go cue. The target sequences were
unique combinations of two finger orders consisting of five
presses matched in finger press occurrence and two target rela-
tive IPI orders involving four IPIs matched in target duration
(Fig. 2e). The finger orders were generated pseudo-randomly
for each participant, but each sequence started with the
same finger press within each participant to avoid first-fin-
ger identity driving the sequence decoding during the pre-
paratory period (Yokoi et al., 2018). Timing 1 and Timing 2
were the same across participants.

The keyboard recorded isometric force trajectories from fin-
gers of both the active right and the passive left hand concur-
rently during preparation and production (Fig. 2f,g). Points were
awarded trial-by-trial only if participants did not exceed a force
threshold above the baseline period during preparation and No-
Go trials. In Go trials, points were calculated based on initiation
time after the Go cue, finger press accuracy, and timing accuracy.
No-Go trials were rewarded when no responses were made
above threshold (see Materials and Methods). To ensure that
participants were not prepressing the keys below the force
threshold, we checked offline if exerted force of the right hand
increased significantly above the baseline level. In No-Go trials,

we checked for force increase from the Sequence cue onset to the
last possible moment a Go cue could appear if it were a Go trial,
to represent the preparatory period. Participants did not increase
force during No-Go trials, and instead showed a small but force
reduction (mean = 0.154 N, SD= 0.09) relative to baseline (mean
= 0.162 N, SD= 0.09; t(23) = 3.39, p= 0.003, d=0.69). A similar
small decrease, rather than an increase, was found in the prepa-
ration phase of Go trials (mean = 0.163 N, SD=0.09) relative to
baseline (mean = 0.164 N, SD= 0.09; t(23) = 2.44, p=0.023,
d=0.50), suggesting that this force decrease associated with plan-
ning was not specific to No-Go trials. Importantly, the data show
that participants did not engage in any subthreshold prepressing
or rehearsal of the sequence during sequence preparation.

All participants that were included in the study following
training produced two distinct timing structures across fin-
ger orders when performing the sequences from memory
during the fMRI session as instructed, resulting in the
expected interaction between sequence timing and interval
position at the group level (F(1.78,40.77) = 73.76, p, 0.001,
hp2 = 0.762, Greenhouse-Geisser–corrected, repeated-meas-
ures ANOVA; Fig. 3a). Since trained finger orders were differ-
ent across participants (see Materials and Methods), we also
assessed the main effects of order and timing and their inter-
action at the individual level. Here 18 of the 24 participants
showed a significant order by interval position interaction,
and 10 showed a significant three-way interaction between
timing, order, and interval position. The presence of these idi-
osyncratic press timing patterns at the individual level suggests
the integration of sequence order and timing features. Crucially,
sequence timing error showed no difference between timing struc-
tures, suggesting that there were no systematic differences in diffi-
culty for Timing 1 and Timing 2 at the group level (F(1,23) = 0.07,
p=0.792, hp2 = 0.003; Fig. 3b). At the individual level, 10 partici-
pants showed a significant main effect of order, 15 showed a
significant main effect of timing, and 4 showed a significant
interaction between order and timing, again suggesting an
integration of the two sequence features.

Learning new sequences is facilitated if the order or the timing
of the sequence has been previously trained (Shin and Ivry, 2002;
Ullén and Bengtsson, 2003; O’Reilly et al., 2008; Kornysheva et al.,
2013, 2019; Kornysheva and Diedrichsen, 2014). Behavioral trans-
fer to new sequences can be taken as evidence for independent
control of sequence order and timing, respectively. Accordingly,
we set out to measure behavioral transfer following training.
Participants completed a post-training test on day 2 involving
a synchronization task which assessed how well participants
could synchronize to a visually guided sequence. The trials in
each condition were presented in a blocked manner with eight
repetitions to assess short-term learning gains related to trained
finger order and timing (Fig. 3c) analogous to previous studies
(Kornysheva et al., 2013, 2019; Kornysheva and Diedrichsen,
2014). Since the transfer of trained sequence timing to a new fin-
ger order only takes place after three exposures, synchronization
performance was only assessed from the fourth sequence exposure
onwards consistent with previously reported analyses (Kornysheva
et al., 2013, 2019; Kornysheva and Diedrichsen, 2014). We com-
pared each condition (trained, order transfer, timing transfer) to
new sequences (mean =196.15ms, SD=34.00 ms) in a one-tailed
paired-sample t test. As expected, trained sequences (mean =
160.43ms, SD= 33.09 ms) showed a performance advantage
(t(23) = 6.34, p. 0.001, d = 1.29), and so did sequences with
trained timing and a new order (mean = 182.10, SD= 39.72;
t(23) = 2.09, p = 0.024, d = 0.43), replicating previous findings
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Table 2. Surface-based clusters with significant % signal change above resta

Contrast versus rest Area (Brodmann area)

MNI

Extent p (cluster) Peak t x y z

Preparation Contralateral
Extrastriate visual cortex (BA18) 4886.16 ,0.001 7.21 �12 �60 �5
Pre-SMA (BA32) 2249.6 ,0.001 6.99 �11 14 50
Primary auditory cortex (BA41) 940.58 ,0.001 7.84 �44 �29 11
Posterior cingulate (BA23) 733.45 ,0.001 6.86 �11 �38 31
Anterior insula (BA48) 706.11 ,0.001 6.55 �37 �12 3
Occipitotemporal area (BA37) 698.86 ,0.001 6.39 �38 �62 2
Anterior insula (BA48) 523.72 ,0.001 6.67 �46 18 11
M1 (BA4) 483.3 ,0.001 6.86 �46 �10 44
Inferior parietal (BA39) 480.37 ,0.001 5.48 �50 �59 26
Extrastriate visual cortex (BA18) 477.2 ,0.001 6.19 �20 �90 6
S1 (BA2) 429.79 ,0.001 5.06 �18 �39 59
Orbitofrontal (BA47) 373.43 ,0.001 6.82 �23 29 2
Superior parietal (BA7) 293.49 ,0.001 5.52 �21 �49 51
Posterior cingulate (BA23) 274.22 ,0.001 6.71 �13 �55 26
Pre-SMA (BA32) 231.75 ,0.001 5.46 �9 46 6
Middle temporal (BA21) 179.26 ,0.001 6.06 �46 �37 �3
Middle temporal (BA21) 125.41 ,0.001 6.18 �54 �26 �7
Inferior parietal (BA39) 122.42 ,0.001 5.42 �50 �71 16
Anterior insula (BA48) 115.35 ,0.001 4.46 �28 31 29
Extrastriate visual cortex (BA19) 98.81 ,0.001 5.38 �19 �53 3
Wernicke’s area (BA22) 92.06 ,0.001 4.82 �53 �19 3
Occipitotemporal area (BA37) 86.6 ,0.001 4.75 �43 �41 �19
Anterior prefrontal (BA10) 54.95 0.007 4.49 �6 56 13
Wernicke’s area (BA22) 53.73 0.008 4.5 �57 �37 3
Anterior insula (BA48) 53.07 0.009 4.35 �54 �1 11
Posterior cingulate (BA23) 51.92 0.01 6.21 �4 �26 38
Anterior insula (BA48) 51.89 0.01 5.99 �55 3 14
Primary auditory cortex (BA42) 48.98 0.014 4.71 �57 �37 16
Superior parietal (BA5) 39.88 0.043 5 �12 �44 45

Ipsilateral
Extrastriate visual cortex (BA18) 2605.25 ,0.001 7.71 �14 �73 �8
Extrastriate visual cortex (BA19) 1523.99 ,0.001 7.2 �21 �83 16
S1 (BA3) 1498.75 ,0.001 7.89 �37 �26 37
Superior parietal (BA5) 1142.07 ,0.001 7.88 �17 �53 47
Occipitotemporal area (BA37) 883.28 ,0.001 7.65 �46 �63 �1
Ventral temporal (BA20) 671.28 ,0.001 6.27 �49 �37 14
Superior parietal (BA40) 336.82 ,0.001 5.56 �34 �52 49
Anterior cingulate (BA24) 282.58 ,0.001 5.86 �6 31 12
Extrastriate visual cortex (BA18) 274.65 ,0.001 4.87 �23 �87 3
Anterior insula (BA48) 268.99 ,0.001 6.19 �41 �24 20
Superior parietal (BA40) 245.49 ,0.001 5.49 �31 36 35
Anterior insula (BA48) 159.52 ,0.001 6.36 �55 �8 13
Pre-SMA (BA32) 145.62 ,0.001 5.05 �10 54 22
Middle temporal (BA21) 122.81 ,0.001 4.83 �53 �50 3
Pre-SMA (BA32) 106.49 ,0.001 5.86 �5 44 7
Anterior cingulate (BA24) 93.31 ,0.001 4.94 �9 11 30
Subgenual area (BA25) 56.97 0.003 5.21 �4 22 6
Posterior cingulate (BA23) 56.86 0.003 5.13 �4 �12 34
S1 (BA3) 48.96 0.008 5.22 �54 �17 37
Middle temporal (BA21) 48.93 0.008 4.64 �49 �34 �4
Posterior cingulate (BA23) 44.43 0.015 5.35 �4 �30 32
Pre-SMA (BA32) 43.95 0.016 4.43 �6 48 27
Dorsolateral prefrontal (BA9) 40.09 0.026 4.57 �12 34 46
Ectosplenial area (BA26) 36.16 0.045 4.43 �6 �45 25

Production Contralateral
Superior parietal (BA40) 9012.24 ,0.001 13.05 �34 �34 38
Extrastriate visual cortex (BA18) 1166.68 ,0.001 7.05 �30 �86 �12
SMA (BA6) 741.62 ,0.001 9.5 �3 �16 59
M1 (BA4) 717.53 ,0.001 8.91 �53 �1 30
Extrastriate visual cortex (BA18) 701.31 ,0.001 6.37 �18 �71 �2
Extrastriate visual cortex (BA18) 561.59 ,0.001 7.03 �20 �86 �21
Anterior insula (BA48) 400.9 ,0.001 6.84 �33 2 7

(Table continues.)
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Table 3. Surface-based clusters with significant above-chance classification accuracy for the decoding of sequences and their constituent features (order and timing)a

Classifier Area (Brodmann atlas) Extent p (cluster) Peak t

MNI

X Y Z

Integrated preparation
Integrated production Contralateral

Superior parietal (BA7) 606.08 ,0.001 7.27 �17 �63 56
Superior parietal (ba5) 183.08 ,0.001 6.6 �14 �47 46
Extrastriate visual cortex (ba19) 62.85 0.008 4.67 �47 �66 �19
S1 (BA2) 46.26 0.05 4.34 �28 �44 58

Ipsilateral
Inferior parietal (BA39) 69.53 0.004 5.81 �51 �54 29
Superior parietal (BA7) 63.4 0.008 5.01 �16 �65 49

Order preparation Contralateral
Extrastriate visual cortex (BA18) 61.68 0.012 4.33 �23 �73 �18
Extrastriate visual cortex (BA18) 56.03 0.022 5.04 �23 �82 �13

Ipsilateral
Extrastriate visual cortex (BA18) 199.36 ,0.001 5.56 �9 �80 30
Extrastriate visual cortex (BA19) 80.09 0.004 4.9 �21 �62 �5

Order production Contralateral
Extrastriate visual cortex (BA18) 118.04 ,0.001 6.51 �24 �94 �10

Timing preparation Ipsilateral
Extrastriate visual cortex (BA18) 58.41 0.026 4.69 �19 �81 �22

Timing production Contralateral
SMA (BA6) 130.73 ,0.001 5.13 �3 3 53
Broca’s area (BA44) 128.93 ,0.001 4.94 �49 9 13
S1 (BA3) 114.82 ,0.001 5.78 �50 �14 39
Superior parietal (BA40) 76.95 0.01 5.57 �40 �45 36
Extrastriate visual cortex (BA19) 59.21 0.044 4.36 �35 �81 16
Inferior parietal (BA39) 57.46 0.05 4.25 �35 �57 28

Ipsilateral
M1 (BA4) 199.04 ,0.001 6.08 �52 �11 40
PMv (ventral BA6) 164.2 ,0.001 6.26 �55 7 23
Inferior parietal (BA39) 155.11 ,0.001 5.76 �39 �48 27
Pars opercularis (BA44) 151.26 ,0.001 5.42 �41 22 35
Inferior parietal (ba39) 93.54 0.002 5.14 �35 �60 28
Pars triangularis (ba45) 59.82 0.034 4.21 �43 27 17

a Table of significant surface-based clusters across the cortex (as in Table 2) for the order, timing, and integrated classifiers.

Table 2 Continued

Contrast versus rest Area (Brodmann area)

MNI

Extent p (cluster) Peak t x y z

Extrastriate visual cortex (BA18) 174.37 ,0.001 5.88 �15 �92 �12
Posterior cingulate (BA23) 103.37 ,0.001 5.43 �5 �5 38
Anterior insula (BA48) 86.36 ,0.001 7.69 �26 13 16
Primary auditory cortex (BA41) 79.07 ,0.001 5.6 �48 �44 25
Broca’s area (BA45) 77.51 ,0.001 5.8 �45 30 32
Extrastriate visual cortex (BA18) 45.13 0.001 4.98 �37 �69 �16

Ipsilateral
Anterior insula (BA48) 2828.07 ,0.001 9.24 �51 �42 34
Extrastriate visual cortex (BA19) 2365.33 ,0.001 7.46 �46 �73 �21
Extrastriate visual cortex (BA18) 1295.15 ,0.001 6.91 �9 �81 32
M1 (BA4) 974.65 ,0.001 7.87 �55 �4 35
V1 (BA17) 542.45 ,0.001 5.52 �9 �71 5
SMA (medial BA6) 513.52 ,0.001 8.01 �4 �14 61
PMd (dorsal BA6) 285.07 ,0.001 7.48 �29 �7 48
Extrastriate visual cortex (BA18) 266.94 ,0.001 6.91 �21 �89 �13
M1 (BA4) 239.01 ,0.001 8.4 �33 �21 56
Posterior cingulate (BA23) 159.35 ,0.001 6.4 �8 �24 24
Anterior cingulate (BA24) 70.39 ,0.001 5.71 �9 11 31
Pars opercularis (BA44) 62.97 ,0.001 5.49 �48 19 33
Pars triangularis (BA45) 42.9 0.008 5.16 �43 34 32
Pars triangularis (BA45) 39.1 0.014 4.87 �38 40 18

a Results of surface-based random effects analysis (N = 24) with an uncorrected threshold of t(23) . 3.48, p , 0.001. p (cluster) is the cluster-wise p value for the cluster of that size. The p value is corrected over the cortical
surface using the area of the cluster (Worsley et al., 1996) and Bonferroni-corrected for two hemispheres. The cluster coordinates reflect the location of the cluster peak in MNI space.
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(Kornysheva et al., 2013, 2019; Kornysheva and Diedrichsen, 2014)
(Fig. 3d). In contrast to earlier reports, order transfer sequences
(mean = 223.87, SD=48.30) showed a worse performance relative to
a new sequence (t(23) =3.52, p=0.002, d=0.72, two-tailed test).
While knowledge of both features of a sequence combined, or just
its timing, facilitated task performance, knowledge of sequence order
hindered future learning of novel sequence acquisition when paired
with a new timing structure. This implies that the participants in our
study acquired a stronger independent representation of timing than
of finger order which was closely integrated with a particular timing
structure during production.

Activity increases during preparation and production
Relative increases or decreases in the BOLD activity can be disso-
ciated from the presence of informational content in an area,

especially as efficiency increases and effort
decreases with motor training (Wiestler and
Diedrichsen, 2013; Berlot et al., 2020).
Movement planning sometimes involves a
decrease or no change relative to baseline in
motor-related cortical areas while informa-
tion about the upcoming action is still present
in these regions (Gale et al., 2021; Ariani et
al., 2022). However, planning can also involve
increases in BOLD activity in premotor to pa-
rietal areas (Gallivan et al., 2011; Ariani et al.,
2015; Nambu et al., 2015). To characterize the
physiological response in a task that required
rapid planning and production of finger
sequences from long-term memory, the per-
cent signal change during preparation and
production relative to rest were calculated.
Preparatory activity was solely sampled from
No-Go trials for % signal change and multi-
variate pattern analyses to separate the BOLD
activity related to sequence planning from
production in a fast event-related design (see
Materials and Methods). We then calculated
the percent signal change across the cortex
(Fig. 4a) and extracted values along two
cross-sections of the cortical surface on the
contralateral (left) side to the motor effector
(Kornysheva and Diedrichsen, 2014) (Fig.
4b). These cross-sections extended from
anterior to posterior and ventral to dorsal,
across premotor to parietal and premotor to
supplementary motor regions, respectively,
because our hypotheses (www.osf.io/g64hv)
on the imaging results during sequence prep-
aration and production were put forward for
contralateral premotor, primary motor, and
parietal regions, which we expected to be
tuned to sequence information based on
previous studies (Tanji and Shima, 1994;
Matsuzaka et al., 2007; Wymbs et al., 2012;
Picard et al., 2013; Wiestler and Diedrichsen,
2013; Kornysheva and Diedrichsen, 2014;
Wiestler et al., 2014; Yokoi et al., 2018;
Berlot et al., 2020). We conducted one-tailed
nonparametric permutation tests along these
cross-sections to identify significant clusters
where activity increased above baseline (Maris
and Oostenveld, 2007). During preparation, a

very small, but significant, activity increase was found within PMv
(p=0.002), and a marginally significant increase within PMd
(p=0.050; Fig. 4b), suggesting large variability across partici-
pants. During production, activity increases were found across
the majority of contralateral motor-related regions, with one
large cluster across PMd, M1, S1, SPCa, and SPCp (p, 0.001),
and another cluster which spanned the cross-section from
PMv to PMd (p, 0.001). The cross-section overlapping with
anterior SMA did not show a significant activity increase from
rest during production. However, note that the section of the
SMA directly posterior to the cross-section did show a signifi-
cant activity increase (for whole-brain contrast cluster analy-
sis, Table 2).

Overall, no or small BOLD increases were observed across
regions on the contralateral premotor-to-parietal axis during the

Figure 4. Percent signal change during preparation and production. a, Inflated surface maps are shown in
top panels and flat maps in bottom panels, displaying mean % signal change during preparation (left panels) and
production relative to rest (right panels), respectively. For significant surface-based clusters across the cortex, see
Table 2. b, Mean % signal change relative to rest for both preparation (blue lines) and production (orange lines),
plotted on cross-sections running from rostral premotor cortex, through the hand area, to the occipito-parietal
junction (top) and on a profile running from the ventral, through the PMd, to the SMA (BA6; bottom). Clusters
with increases above baseline are denoted by the colored horizontal lines and asterisks, calculated using one-tailed
nonparametric permutation tests. Cing, Cingulate; CS, central sulcus; IPS, intraparietal sulcus; m, medial wall; OPJ,
occipito-parietal junction; PoCS, postcentral sulcus; PreCS, precentral sulcus; SFS, superior frontal sulcus.
**p, 0.01; *p, 0.05; one-sided t test. Shaded areas around the lines in b and c represent standard error of the
sample mean.
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short period of sequence planning. These
results are in line with recent findings involv-
ing the motor planning of well-trained actions,
for example, common object manipulations,
such as grasping and lifting, or tapping with
the same finger (Gale et al., 2021; Ariani et al.,
2022).

MVPA
We used MVPA to identify cortical areas that
showed systematic changes in BOLD activity
patterns between sequences with different fin-
ger orders, temporal structures, and unique
combinations of the latter. Using a whole-
brain searchlight of 160 voxels (Oosterhof et
al., 2011), we trained a linear discriminant
analysis classifier to distinguish between
sequences in a one-run-out cross-valida-
tion method, an approach that has been
validated with pattern simulations in a pre-
vious study (Kornysheva and Diedrichsen,
2014). Specifically, we looked for regional
activity patterns that either transferred across
or were unique for specific combinations of
order and timing. The order classifier was used
to decode between sequences with different
finger orders, regardless of their pairing with a
timing feature, whereas the timing classifier
was trained to decode between sequences with
different finger timings regardless of their
pairing with a specific finger order. These
two classifiers allowed the identification
of regions which contained above-chance
decoding of sequence order and timing
independently of the other sequence fea-
ture, respectively (Fig. 5a). The integrated
classifier decoded residual patterns after sub-
tracting averaged sequence order and timing-
related patterns for each run separately, to
detect regions which hold information on
sequence identity that is not driven by a sim-
ple summation of order and timing informa-
tion (see Materials and Methods).

To reveal the continuous profile of feature
decoding along contralateral motor regions on
the cortical surface, we used the same permu-
tation test approach (Maris and Oostenveld,
2007) as in the % signal change analysis for
each of the three classifiers, for preparation
and production, separately (Fig. 5b). During
preparation, a significant cluster was found for
finger order within SPCp (p=0.040, d=0.60),
and a marginally significant cluster for timing
decoding was identified within PMv (p=0.054,
d=0.62). During production, above-chance
decoding was shown for the integrated clas-
sifier within PMd in two clusters (p = 0.002,
d = 0.81; p = 0.044, d = 0.63; on anterior to
posterior and ventral to dorsal cross-sec-
tions, respectively) and S1, which extended
into M1 and SPCa (p=0.007, d=0.79). Above-chance decoding of
timing was found within SPCa (p=0.016, d=0.70), PMv (p,
0.001, d= 0.79), and SMA (p=0.045, d=0.53).

Next, we examined how well sequence features could be
decoded from ROIs during preparation and production. These
regions covered premotor to superior parietal areas: PMd,
PMv, M1, S1, SMA/pre-SMA, SPCa, and SPCp. First, to identify
above-chance decoding of sequence information in these areas,

Figure 5. Multivariate pattern classification results. a, Inflated surface (top panels) and flat maps (bottom panels),
showing mean decoding z-accuracy values above chance for finger order (blue), timing (red), and integrated sequence
patterns (green) (Kornysheva and Diedrichsen, 2014). For the corresponding significant surface-based clusters across the
cortex, see Table 3. b, Mean decoding z-accuracy values for each classifier along the cross-sections explained in Figure
4b. Colored asterisks indicate the respective above-chance clusters for each classifier during preparation and production.
c, Searchlight z-accuracy values were extracted using predetermined ROIs (Wiestler and Diedrichsen, 2013; Kornysheva
and Diedrichsen, 2014; Yokoi et al., 2018) shown in the left panel. Colored asterisks indicate decoding above chance. (*)
p= 0.060; **p, 0.01; *p, 0.05; one-sided t test above chance (Bonferroni-corrected for six comparisons within each
ROI). Shaded areas around and error bars in b and c represent standard error of the sample mean.
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one-sample t tests were performed on the z values extracted
from each of the predefined ROIs during both preparation and
production for timing, order, and integrated classifiers (Fig. 5c).
These t tests were Bonferroni-corrected 6 times, to account for
phase (2) by classifier (3) within each predefined ROI. During
preparation, the above chance was found in SPCp for sequence
order decoding (t(23) = 2.74, p = 0.036, d= 0.56), with marginally
significant, but equal sized above-chance accuracy in SPCp for
sequence timing (t(23) = 2.51, p = 0.060, d = 0.51, Bonferroni-
corrected). During production, classification increased above
chance for sequence timing in SMA/pre-SMA (t(23) = 2.71,
p = 0.036, d= 0.56, Bonferroni-corrected), PMv (t(23) = 3.00,
p = 0.018, d = 0.61, Bonferroni-corrected), and SPCa (t(23) =
2.67, p = 0.042, d = 0.55, Bonferroni-corrected). Further, classifica-
tion increased above chance for order-timing integration in S1
(t(23) = 3.69, p = 0.003, d = 0.75, Bonferroni-corrected), PMd
(t(23) =3.06, p=0.018, d=0.63, Bonferroni-corrected), SPCa (t(23) =
4.36, p, . 001, d=0.89, Bonferroni-corrected), and SPCp (t(23) =
3.20, p=0.012, d=0.65, Bonferroni-corrected).

ROI analyses were only performed in the hemisphere contra-
lateral to the movement in line with our hypotheses. For explora-
tive purposes, we also conducted searchlight analyses across the
whole cortex, including the ipsilateral surface, which were clus-
ter- and Bonferroni-corrected for two hemispheres (Table 3). On
the ipsilateral side, significant clusters during preparation were
only found for order in the extrastriate visual cortex (p, 0.001,
p=0.004). During production, significant clusters were found for
timing in M1 (p, 0.001), PMv (p, 0.001), inferior parietal (p.
0.001), and three clusters in lateral prefrontal (p. 0.001, p=0.002,
and p=0.034) regions, with significant clusters for integration in
inferior (p=0.004) and superior parietal regions (p = 0.008).
These findings suggest a general shift toward integration
across phase across the cortex, with several regions also rep-
resenting timing during production.

Finally, we set out to test our main hypotheses (Fig. 1, www.
osf.io/g64hv) regarding an interaction between perimovement
phase (preparation, production), classifier (timing, order, inte-
grated), and region (PMd, PMv, M1, S1, SMA/pre-SMA, SPCa,
SPCp). A repeated-measures ANOVA revealed a main effect of
phase (F(1,23) = 9.49, p=0.005, hp

2 = 0.292), substantiating a gen-
eral increase of decoding accuracy across regions and classifiers
during production. The main effect of region was not significant
(F(3.84,88.42) = 0.45, p= 0.763, hp

2 = 0.019, Greenhouse-Geisser–
corrected), suggesting that all the contralateral cortical ROIs had
a comparable contribution to sequence decoding across trial phases.
Importantly, we found a phase by classifier interaction (F(2,46) =
10.34, p=0.044, hp2 = 0.127), which was driven by an overall
increase in the integrated classifier accuracy from preparation
(mean = �0.10, SE=0.13) to production (mean =0.49, SE=0.11)
(p=0.003, 95% CI [0.217, 0.971], Bonferroni-corrected). Finally, we
found no interaction of phase by region (F(3.20,73.50) =0.79, p=0.512,
hp2 = 0.033, Greenhouse-Geisser–corrected), or phase by classifier
by region (F(5.40,124.18) =1.63, p=0.151, hp

2 = 0.066, Greenhouse-
Geisser–corrected). In sum, this supports the hypothesis that tuning
of these regions to high- and low-level features of sequences changes
dynamically depending on trial phase, rather than region, with a
state shift toward sequence feature integration after movement ini-
tiation across multiple regions.

Discussion
Activity along the cortical premotor to parietal axis has been
associated with motor sequence control, from its hierarchical

organization (Gerloff et al., 1997; Sakai et al., 2003; Kennerley et
al., 2004; Wiestler et al., 2014; Yokoi and Diedrichsen, 2019;
Russo et al., 2020; Zimnik and Churchland, 2021) to sequence
order and timing (Shima and Tanji, 1998; Ramnani and
Passingham, 2001; Merchant et al., 2013; Crowe et al., 2014;
Kornysheva and Diedrichsen, 2014; Wiestler et al., 2014). Yet
how sequence-related computations in these regions unfold
across planning and execution remains uncertain. Do these
cortical areas retain a fixed tuning to sequence features and
their integration throughout planning and execution? Or do
they switch their content dynamically from before to after
movement initiation? Here, we examined how motor cortical
areas integrate informational content on the order of finger
movement sequences and their timing across the planning
and execution phases. Sequence decoding from activity pat-
terns revealed that high-level features of sequence organiza-
tion remain separate during movement planning and are
integrated into unique patterns on movement initiation in
premotor and parietal areas.

Cortical patterns switch their tuning from planning to
execution
Our results demonstrate a generalized dependency of corti-
cal representations on perimovement phase, with a global
shift across regions toward order and timing integration at
the transition from sequence planning to execution. This
indicates that most cortical motor-related areas do not rig-
idly map onto higher- versus lower-level representations of
sequential organization, as assumed by earlier studies that focused
on sequence execution alone (Diedrichsen et al., 2013; Kornysheva
and Diedrichsen, 2014; Yokoi and Diedrichsen, 2019). Instead,
pattern activity tuning in these regions changes dynamically on
motor initiation (Fig. 6). Such a state switch in motor-related pat-
terns echoes previous findings for the primary motor and dorsal
premotor cortices in the context of single movements. These show
that preparatory neural population activity occupies a different
state space (“output-null”) from production to prevent readout
from downstream areas during planning (Kaufman et al., 2014;
O’Shea and Shenoy, 2016; Zimnik and Churchland, 2021). Here,
cortical motor planning patterns are not simply subthreshold ver-
sions of execution activity patterns controlled by inhibitory gating
within the cortex or downstream (Cisek and Kalaska, 2005; Duque
and Ivry, 2009), but a qualitatively different neural activity pattern.
Our results support the notion of a largely distinct functional tun-
ing during motor planning across regions on the premotor to pari-
etal axis in the context of sequential movements.

Lack of sequence feature integration before motor initiation
As participants trained to perform the four finger sequences over
2 d and entirely from memory, one may expect that this level of
practice would result in their retrieval as one integrated spatio-
temporal synergy (Gentner et al., 2010). However, we found that
information about motor sequence order and timing of the
upcoming sequence was parsed trial-by-trial and integrated after
motor initiation only. One possibility is that the 2� 2 task design
may encourage participants to hold onto higher-level representa-
tions of movement order and timing. However, in previous tasks
where only one combination of order and timing was trained,
transfer of known order and timing to new combinations were
still found, showing that the separation is not dependent on the
task structure but arises automatically (Ullén and Bengtsson,
2003; Kornysheva et al., 2013).
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Although previous work has shown that
planning-related activity in motor areas is
predictive of movement features, such as
speed, force, and trajectory of the upcoming
movement (Pearce and Moran, 2012; Yang et
al., 2015; Wong et al., 2016), these may be
regarded as part of planning a holistic motor
synergy (d’Avella et al., 2003; Shenoy et al.,
2013; Overduin et al., 2015). In contrast, for
discrete sequence learning, there is now ample
evidence that higher-level sequence features, such
as movement order and timing, are encoded inde-
pendently (Ullén and Bengtsson, 2003; Bengtsson
et al., 2004; Kornysheva and Diedrichsen, 2014;
Zeid and Bullock, 2019) and remain so separate
during planning (Kornysheva et al., 2019;
Mantziara et al., 2021), despite training across
multiple days and entirely memory-guided
production. Specifically, sequence planning
is do minated by higher-level control of motor
sequences without precise implementation pa-
rameters (e.g., movement order without speed
or timing information) (Mantziara et al., 2021),
and ordinal position without effector informa-
tion (Kornysheva et al., 2019). Further, the neu-
ral generation of sequence elements with a
discrete timing goal (instructed delay or rapid
succession) shows no fusion in M1, despite long-
term training and fusion at the muscular level
(Zimnik and Churchland, 2021). Yet, when and
how integrated control is engaged during plan-
ning of more continuous overlapping movement sequences are
uncertain. Rather than engaging a dedicated timing system, as is
observed with discrete movements here and in previous work
(Ullén and Bengtsson, 2003; Bengtsson et al., 2004; Medina et al.,
2005; Kornysheva and Diedrichsen, 2014), continuously over-
lapping movements have been shown to use a state-depend-
ent control system which integrates sensorimotor states of
effectors (Ivry and Spencer, 2004; Diedrichsen et al., 2007;
Ivry and Schlerf, 2008; Kornysheva, 2016) . Thus, we predict
that integrated control for continuous sequences would
occur throughout planning and execution, unlike for dis-
crete motor sequences.

What triggers sequence feature integration trial-by-trial?
We propose that contralateral motor-related cortical regions
activate movement order and timing plans separately until a
sensory stimulus like the Go cue triggers the binding of the
corresponding neural patterns. This binding may occur
through subcortical, for example, thalamic input triggering
an appropriate state for motor execution of specific combi-
nation of features (Wang et al., 2018; Inagaki et al., 2022).
Delaying the binding of sequence features to the production
phase and maintaining higher-level separation may allow the
system to retain maximum flexibility trial-by-trial, should
task demands change.

Independent patterns for sequence timing, but not finger
order, are reinstated during execution
We found a stark asymmetry between sequence order and timing
during the sequence production phase. In contrast to the inde-
pendent patterns for finger order, the activity patterns tuned to
sequence timing increased (PMv) or emerged (SMA/pre-
SMA, SPCa) during production. Thus, cortical patterns for

sequence timing accompanied the emergence of sequence-specific
integrated patterns, unlike patterns related to sequence order,
which were restricted to the planning phase. This asymmetry was
also observed at the behavioral level in the transfer task. Here,
trained timing could be quickly recombined with a new order in
line with previous work (Ullén and Bengtsson, 2003; Kornysheva
et al., 2013, 2019; Kornysheva and Diedrichsen, 2014). In contrast,
producing the same finger order with a new timing was associ-
ated with poorer performance, unlike a previous study involving
a delayed sequence production from memory (Kornysheva et al.,
2019). This interference effect suggests that participants were
unable to separate the trained order from their timing during
execution, which directly parallels the prominence of integrated
and the lack of independent finger order tuning during motor
production.

M1 lacks information about sequences despite a large activity
increase during execution
Our results show a lack of sequence feature separation or integra-
tion in contralateral M1 during preparation and only limited evi-
dence for integration above chance during production extending
out from the greater peak in S1. This occurs despite a large activ-
ity increase in M1 during production. While this contrasts with
several older neuroimaging studies (Wiestler and Diedrichsen,
2013; Kornysheva and Diedrichsen, 2014; Nambu et al., 2015;
Wymbs and Grafton, 2015), recent findings show that informa-
tion held within M1 is not related to sequence control. Activity
patterns in M1 do not change with sequence learning (Berlot et
al., 2020, 2021) and reflect the processing of individual move-
ments, particularly the first press of a sequence (Yokoi et al.,
2018; Yokoi and Diedrichsen, 2019). Further, there has been no
experimental evidence that sequential movements are neurally
fused in M1 into holistic sequence representations: Constituent

Figure 6. Schematic representation of sequence feature control during planning and integration across regions
on the premotor-to-parietal axis contralateral to the movement. a, Inflated cortical surface showing a schematic
summary of the fMRI pattern decoding results. b, These findings suggest that there is a shift within regions from
planning to execution driven by the emergence of patterns related to the integration of sequence order and timing
(Dynamic mapping: State shift). This is accompanied by pattern stabilization and increase within medial and lateral
premotor and parietal areas related to timing (Fixed mapping: Higher-level stabilization). Notably, evidence for the
control of movement order independently of its lower-level integration with timing is restricted to the planning
phase only. Semi-transparent clusters of timing-related pattern decoding above chance reflect Bonferroni-corrected
p values between 0.05 and 0.06 during planning.
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movements remain individuated in M1 regardless of sequential
context (Russo et al., 2020; Zimnik and Churchland, 2021).
Thus, matching the first finger press across trained sequences in
each participant may explain why we see no prominent sequence
feature decoding from M1 in contrast to a previous study on
sequence timing and order (Kornysheva and Diedrichsen, 2014).

Extending the motor planning framework to sequential
actions
The framework for single movement motor planning pro-
poses that the motor system enters a preparatory state that is
distinct from movement execution (Churchland et al., 2010;
Shenoy et al., 2013; Kaufman et al., 2014). Recent findings
also suggest a distinction between the selection of motor
goals and motor implementation planning, which formulate
“what” movements to execute and “how” to execute them, respec-
tively (Wong et al., 2015; Haith and Bestmann, 2020), converging
with the idea of hierarchical motor sequence control (Diedrichsen
and Kornysheva, 2015; Yokoi and Diedrichsen, 2019). Here, we
propose that sequence order and timing features are specified dur-
ing planning as “what” elements, representing higher-level control,
and integrated during execution as “how” elements, representing
lower-level implementation. Crucially, our results suggest that
individual regions can undergo a state shift from “what” to “how”
control depending on the perimovement phase. Future electro-
physiological research should address whether the same neuronal
populations are involved in both types of control within areas, and
determine the neural origin and exact time point that triggers the
informational state shift.
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