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Abstract—Mobile power sources (MPS), such as electric ve-
hicles (EVs), potentially improve distribution network (DN)
restoration under extreme event conditions. However, employing
EVs as a major power source is under researched, as is the
prepositioning, routing, and dispatch of large numbers of EVs.
This study proposes a three-stage optimization approach to
achieve proactive prepositioning, dynamic routing, and dynamic
power scheduling for effective assessment of resilience and needy
restoration. First, EVs are prepositioned in the DN to enable
swift pre-restoration and improve the survival of loads. Second,
following an extreme event, EVs are dynamically routed in the
DN and transportation system (TS) to improve system recovery.
This stage also proposes a novel EV travelling model, bridging
consumption rate and distance to study the efficacy of EV’s state
of charge (SOC) and the participation decision of the EV’s user.
Third, dynamic power scheduling of EVs is addressed, based
on decisions made in the previous two stages. A mixed-integer
programming model that addresses matters such as various
timeframes of EV dispatch and DS operation, and the connection
of road and power networks, is tested via case studies of a
three-phase AC IEEE 123-node test system to demonstrate the
effectiveness of the proposal.

Index Terms—Dispatching, Distribution Networks (DNs),
Electric Vehicles (EVs), Prepositioning, and Restoration.

I. INTRODUCTION

In recent years, more frequent extreme events, such as
hurricanes, have resulted in large-scale and long-duration
power disruptions [1]–[3]. Conventional restoration practice
alone may not be able to restore power to the loads af-
fected in a timely manner, according to security standards
in [4]. Specifically, distribution network (DN) disruptions
account for nearly 70% of electric service outages [5]. Mobile
power sources (MPSs), such as electric vehicles (EVs), can
provide spatial flexibility to improve DN resilience. How-
ever, EV dispatch, which is simply a vehicle routing and
scheduling problem, combined with DN restoration, is not
well-investigated. The use of EVs to power islanded feeders
during large-area and long-duration outages is justified by
industry-relevant practices [6]–[13], and is encouraged by
related organizations and authorities, as in [14]. This is due to
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their considerable potential to improve DN resilience during
abnormal operation conditions. While the extant literature in
the field considered the effects of EVs on electric service
reliability during ordinary outages, namely ’(N − 1) crite-
rion’, there are currently only limited studies regarding EV
routing and scheduling for promoting a robust response to
extreme events. For example, the authors in [15]–[17] applied
proactive EV dispatching procedure, but did not use EVs as
primary sources to improve the survival of the electrical supply
to loads, and to concurrently enhance the system service
recovery. Meanwhile, related works such as [18]–[20] inte-
grated different EV operating modes, such as vehicle-to-grid
(V2G), while considering different types of user behaviour
for restoration. However, these strategies where not examined
for a major or total blackout, namely resiliency assessment.
Overall, to the best of the present researchers’ knowledge, no
existing study evaluated a large number of EVs individually
as a primary source of DN resilience and restoration, and no
existing studies integrated different types of charging stations
(CSs) and EV characteristics alongside human behaviour in the
restoration process. This paper proposes an innovative three-
stage mixed-integer programming framework to address some
of the limitations of the models currently available in smart
power distribution network restoration using EVs. The main
contributions of the paper are as follows:

• A proactive prepositioning stage is proposed, in which
each EV is prepositioned independently, according to the
real data exchanged between the distribution network
operators (DNOs) and the charging stations operators
(CSOs). This framework implicitly considers each EV’s
user participation decisions, in order to replicate the EV’s
user behaviour during the restoration process;

• The state of charge (SOC), location, and optimal paths
of EVs are determined and integrated into the routing
stage, in order to distribute EVs optimally, maintaining
the critical route that maximizes the total sum of restored
load. The decisions made in the preceding steps are incor-
porated into the scheduling stage, where the objective is



to reduce the overall restoration cost. The negative effects
of blackouts, and the restoration effect of the black-start
scheme are assessed intuitively using economic means.

II. PROBLEM FORMULATION

Disasters can cause the partial or complete loss of power
supply from the main grid to DNs. These incidents can cause
direct and indirect impacts on power system infrastructure,
such as transmission system and substations outages and
severe damage to the components of a DN, such as the feeders
or laterals. Since these major impacts affect the conventional
top-down restoration strategies, the use of reliability metrics
is not suitable for enhancing DN performance after a major
blackout. Instead, bottom-up, resiliency-oriented restoration
strategies are an effective way of assessing how stationary
and/or MPS can be utilized to avoid prolonged power outages
shortly after extreme events, in which they are an effective
response to addressing power sources to enhance power supply
survivability and system service recovery [21]. The conceptual

Fig. 1. The conceptual resilience trapezoid curve during an event [22].

resilience trapezoid curve employed in [22] is presented in
Fig. 1 to clarify the the significant of the proposed restoration
strategy in terms of enhancing the smart DN resilience over
time. As the figure shows, a distribution network performance
(R) changes as it passes through the different states resulting
from an associated extreme disaster. These states are resilience
state t0 ∼ te , extreme event progress te ∼ tpe , post
event state (namely, degraded state) tpe ∼ tr, restorative
state tr ∼ tpr, post-restorative state tpr ∼ tir, and the
DN’s infrastructure recovery phase tir ∼ tpir. Since the post-
event state consists of three consecutive stages, (1) the post-
event state tpe ∼ tp , in which rapid pre-restoration can be
carried out immediately following the disaster, such as dis-
patching EVs and connecting energy storage systems (EESs)
and distributed generators (DGs); (2) the pre-restoration state
tp ∼ tpp; and (3) the post-restoration state , this study
proposes a three-stage optimization framework to implement
proactive EV prepositioning, dynamic routing, and the dy-
namic power scheduling of each EV as an MPS, considering
travelling time, and EV users’ participation decisions. In this
study, each EV’s connection status can be either ‘connected’
(namely, the EV is plugged into a charging slot and ready

for discharging at t0), or ‘disconnected’ (namely, the EV is
not plugged into a charging slot at t0). The connected EVs
are maximized in the prepositioning stage, while EVs whose
SOC is insufficient for participation, or whose owners decide
not to participate, are excluded from the restoration process
demonstrated. Additionally, the users of disconnected EVs,
namely EVs in travelling status, are encouraged to participate
in the restoration operations. If the user of the disconnected
EV chooses to participate, and their EV’s estimated SOC level
is sufficient when it arrives at the charging slot, the user will
share the coordinates of the closest accessible charging slot
determined in the first stage, and the critical route obtained in
the second stage. Therefore, the connection time and location
of each EV can be used for the third stage, namely the dynamic
power scheduling. The problem formulation presented in this
section is supported by the practices of industries that involve
the use of EVs to power an islanded feeder during large-area
and long-duration outages [6]-[13], as well as those of the
relevant authorities [14], and academia [15]-[18], [24], [25].

A. Proactive Prepositioning of EVs

The first stage (resilience state t0 ∼ te ), namely prior to the
event, involves collecting data for proactive prepositioning, in
which EVs are prepositioned depending on the data obtained
by the DNOs, for example the component’s status, such as
the feeders and laterals, and that of the CSOs, for instance
the CSs and EVs available. At this stage, the communication
infrastructure is expected to be operationally normal, with
data recorded automatically by the CSO, and transmitted
continuously to the DNO, for proactive prepositioning. Table I
shows the two types of data that can be used for prepositioning,
namely station records and charging records [11]. The charg-
ing record is generated by measuring each user’s charging
session, whereas the station record is collected directly from
the charging station. This data is utilized in this study to
obtain (1) the magnitude: the amount of power available in
each EV’s battery to be discharged; (2) the frequency: the
EV’s connection frequency, which can be used to forecast the
consumer’s participation decision; and (3) the duration: the
EV’s connection duration that is sufficient to discharge the
power of each EV while in V2G mode. The pre-positioning of
EVs can enhance load survivability and improve the resilience
performance index (RPI) from Rpe to Rpp , as shown by the
dotted line in Fig. 1. In contrast, in the absence of a proactive
preposition approach, the post-event resilience level remains at
Rpe , until tr , which is shown in Fig. 1 by the solid line. EVs
is prepositioned in the DN prior to the extreme event, in order
to improve its survivability. To evaluate the prepositioning
strategy, a three-stage robust optimization model is proposed.
At te , the objective is to maximize the amount of load restored
immediately following the assessment of system damages and
outages. In this stage, the objective function is formulated to
maximize the sum weighted of survived loads as follows:

max
∑
∀t

∑
∀i

∑
∀ϕ

PL
i,ϕ,t,∀t ∈ T, ∀i ∈ N, ∀ϕ ∈ Φ (1)



TABLE I
DATA RECORDED BY CHARGING OUTLETS

Charging station records Electric vehicle records
Location Charging and Discharging rates

Typical charging speed EV’s battery status (SOC)
Capacity (in terms of EV) EV’s battery status (DoD)

Connection status
Power ratings Participation rate (user’s decision)

Typical charge time
Available charging slots Energy consumption rate

where PL
i,ϕ,t is the active power demand at node i and phase

ϕ at time t. Since the EVs have different locations and SOC
levels, the connected EVs rapidly discharge the power to the
grid (namely, V2G mode) to increase the sum weight of the
survived load. The constraints involved in this stage are:

xPre
i,g,t = 1,∀g ∈ GEV ,∀i ∈ NCS , t = 1 (2)∑

∀g∈GEV

xPre
i,g,t = CSCCS

i,t ,∀i ∈ NCS , t = 1 (3)

CSCmin
i,t ≤ CSCCS

i,t ≤ CSCmax
i,t ,∀i ∈ NCS , t = 1 (4)

where xPre
i,g,t is a binary variable that indicates the EV’s g

connection status to node i prior to the event (at t = 1).
Constraint (2) enforces the fact that each connected EV is
prepositioned to exactly one of its candidate CS at t = 1 .
Constraints (3) and (4) limit the number of connected EVs
to each CS during the prepositioning stage. The CS capacity
limit (CSCCS

i,t ) is a variable in which the CS capacity changes
over time, according to the number of EVs connected at each
t. The radiality constraints in [26] are involved in this stage,
to determine the set of damaged lines.

B. Dynamic Routing of EVs

In the second stage, the dynamic routing is conducted to
route EVs to the designated CS in stage-I, via the critical
path, in order to minimize the travelling time and energy
consumption rate during travel. The TS is considered to be
operationally normal at this stage, and the routes that EVs can
use, namely according to the road map, are aligned with the
DN’s lines. In the dynamic network reconfiguration, the power
dispatch of the DN is co-optimized in this stage to coordinate
with the restoration strategy and the efforts of infrastructure
recovery, in order to enhance the DN’s RPI from tir to
tpir. The objective function of this stage is to minimize the
route path (xEV

route) required for travelling by each EV from
its allocated coordinates in stage-I to the closest available
charging station:

xEV
route = argmin

 ∑
∀i∈NCS

∑
∀g∈GEV

ev

ttravil(i,j))

 (5)

where an EV’s g travelling status (ttravil(i,j)) ) equals 1 if it is
not connected to a charging station, otherwise it is 0. The
values obtained for xEV

route are used in stage-III by setting the

connection time and the associated charging station for each
EV. The constraints involved in this stage are:∑

∀g∈GEV
ev

xPost
(i,j) = CSCCS

i,t ,∀i ∈ NCS ,∀t (6)

CSCmin
i,t ≤ CSCCS

i,t ≤ CSCmax
i,t ,∀i ∈ NCS ,∀t (7)∑

∀i∈NCS

xPost
i,g,t ≤ 1,∀g ∈ GEV

ev ,∀t (8)

Constraints (6)-(8) limit the number of EVs connected to each
CS after the prepositioning stage (t > 1). Meanwhile, the
binary variable xPost

i,g,t indicates the EV’s g connection status
shortly after the disaster. It is important to note that being
connected to the DN and moving on the TS are mutually
exclusive and collectively exhaustive states of an EV in each
time period. The following equations reflect this relationship,
where ttravil(i,j),g is the travelling time of an EV

ttravel(i,j),g = 1−
∑

∀i∈NCS

xPost
i,g,t ,∀g ∈ GEV

ev ,∀t (9)

xPost
i,g,t+τ + xPost

i,g,t ≤ 1,∀i ∈ NCS ,∀g ∈ GEV
ev , t > 1, τ ≤ T

(10)
It should also be noted that vehicle routing, which is fun-
damentally an NP-hard combinational optimization issue, is
difficult in and of itself. More multiple binary variables are
typically provided to create path-flow balance and start/end-
at-locations requirements. Without the addition of new binary
variables, the travel time is modelled in an innovative and
compact manner. That is to say, only constraint (11) is required
to ensure that the EV transportation between the TS roadways
and the DN nodes meets the travelling time requirements. Due
to the interaction between EV routing and other decisions and
constraints, additional associated constraints, such as travel
distance limitations, path-flow balance, and request satisfaction
constraints, are fulfilled implicitly, or are reflected in the other
constraints mentioned.

tarrivali,g + ttravel(i,j),g − (1− xPost
i,g,t )M ≤ tarrivalj,g ,∀i ∈ NCS ,

∀g ∈ GEV
ev ,∀t

(11)

where tarrivali,g and tarrivalj,g are the arrival time at node i and
j, respectively. In order to ensure constraint (11) is feasible
in the optimization, the Big-M approach is used; this is also
known as the penalty technique. Mathematical formulation of
this technique can be found in [25].

C. Dynamic Power Scheduling of EVs

Up to this stage, (post-event occurrence te ∼ tir ), it is
assumed that all of the connected EVs are discharging their
power to the grid via V2G mode, and that the number of
disconnected EVs available that are willing to participate is
determined in the preposition stage, and are optimally routed
in the routing stage. Therefore, the decision made in the
proceeding stages are integrated in this stage for optimal and



dynamic power scheduling. The constraints involved in this
stage are:

SOCEV
g,t = SOCEV

g,t−1 +

([
ηCHPCH

g,ϕ,t

]
−

[
PDISCH
g,ϕ,t

ηDISCH

]
−
[
xPost
i,g,t CR

] )
∆t, ∀i ∈ NCS ,∀g ∈ GEV

ev , ϕ ∈ Φ,∀t
(12)

SOCmin
g,t ≤ SOCEV

g,t ≤ SOCmax
g,t ,∀g ∈ GEV

ev ,∀t (13)

0 ≤ PDISCH
g,ϕ,t ≤ PDISCHmax

g,ϕ,t ,∀g ∈ GEV
ev , ϕ ∈ Φ,∀t (14)

0 ≤ QDISCH
g,ϕ,t ≤ QDISCHmax

g,ϕ,t ,∀g ∈ GEV
ev , ϕ ∈ Φ,∀t (15)

0 ≤ PCH
g,ϕ,t ≤ PCHmax

g,ϕ,t ,∀g ∈ GEV
ev , ϕ ∈ Φ,∀t (16)

xCH
g,t + xDISCH

g,t ≤
∑

∀i∈NCS

xPost
i,g,t ,∀g ∈ GEV

ev ,∀t (17)

SOCEV
g,t = SOCEV

g,t−1 +

([
ηCHPCH

g,ϕ,t

]
−

[
PDISCH
g,ϕ,t

ηDISCH

])
∆t,∀g ∈ GEV

ev , ϕ ∈ Φ,∀t
(18)

CR = D × ECR (19)

Constraint (12) limits the SOC of each EV g for each t.
Constraint (13) ensures the g’s SOC maximum and mini-
mum limits. Constraints (14)-(16) limit the discharging active
and reactive power, and charging active power, respectively.
Constraint (17) guarantees that the charging and discharging
actions or periods are always mutually exclusive states for
each EV g, and that if it is not connected to the DN, it can
neither charge nor discharge. Constraint (19) calculates the
consumption rate CR of an EV’s g travel for distance D in
miles, multiplied by its characterized energy consumption rate
ECR. It should be noted that the constraints associated with
the EVs are applied to each EV g; for example, constraint
(13) necessitates that each EV’s SOC be maintained within its
maximum (SOCmax

g,t ) and minimum (SOCmin
g,t ) rated values

of its characterized SOC during the restoration process. As

Fig. 2. Each EV’s SOC at each time period during restoration.

shown in Fig. 2, each EV’s SOC (for example, EV1, EV44, and
EV101) is maintained between the specified limits during the
restoration period, as guaranteed by constraint (13). The other
related constraints are held to the same concept. Alongside
constraint (18), constraints (13)-(17) are also applied on the
ESSs to ensure their functionality. Constraints (14) and (15)
are applied to the DGs to limit their generated active and
reactive power within the pre-specified limits. The following
constraints are also involved in this stage: (1) unbalanced 3-
phase optimal power flow constraints; (2) cold load pickup
(CLPU) constraint; (3) transformer/voltage regulator and line
kVA capacity constraints; (4) distributed energy resources
(DERs), loads and lines connectivity constraints, as well as
their associated operational constraints; (5) voltage limit con-
straints; (6) switching operation constraint; and (7) radiality
constraint. Mathematical formulation of these constraints can
be found in [27] and [28]. The objective function of this stage
is formulated to minimize the load shedding cost and switching
operation cost:

min
∑
∀t

α
∑

∀i

∑
∀ϕ

(
1− xL

l,t

)
PL
i,ϕ,t

+ β

∑
∀(i,j)

xSW
(i,j),t


,∀t ∈ T, ∀i ∈ N, ∀ϕ ∈ Φ

(20)

where α and β are constants representing the load shedding
cost and switching operation cost, respectively. xSW

(i,j),t is a
binary variable indicating whether the switch in line (i, j) is
operated (xSW

(i,j),t = 1) at time t, otherwise it is (xSW
(i,j),t = 0).

III. CASE STUDIES

This section demonstrates the proposed EV proactive prepo-
sitioning, dynamic routing, and power scheduling framework
on an IEEE 123-node test system with two case studies (i.e.,
Case I and Case II). In Case I, namely Proposed Strategy, the
innovative framework described in Section II was applied. The
EVs were prepositioned in a less coordinated manner in Case
II, namely Benchmark. It was assumed for both cases that
90% of the EV users agreed to participate in the restoration
processes. The problem was solved in 22.9 minutes for Case
I and 31.2 minutes for Case II. The solution gap involved in
solving this strategy was therefore set at 0.01%. As shown
in Fig 3., the solution gap in solving Case I at the first
iteration was more than that of the benchmark, due to the
incorporation of the EVs’ coordination, however the gap was
reduced sooner, due to the coordination of the EVs. In both
cases, it was assumed that the system had one EES with a
500kW/776kWh capacity, and one DG with a 800kW/600kVar
capacity. It was also assumed that the system had 34 charging
stations with different ratings and connection status, based on
the assessment made by DNO and CSO. CSs have different
capacities, namely their number of charging slots. Due to the
lack of EV technical data available, the real data of each EV,
including the SOC, charging, and discharging power ratings
were collected from multiple confidential sources. The location
of the charging stations and EVs were randomly determined



Fig. 3. Relative solution gap in each iteration.

using the MATH/Trig function, and could discharge energy
to their local loads located at the same node if the line(s)
connected to it was damaged. In both cases, a scenario was
considered with 12 damaged lines that were assumed to be
repaired in the order listed in Table II. As shown in Fig. 4., the

TABLE II
TIME SEQUENCE OF THE REPAIRS FOR DAMAGED LINES

Time 1 2 3 4 5 6
Line 1-7 15-16 19-20 57-58 58-58 98-99
Time 8 10 13 14 16 19
Line 82-83 44-45 68-71 67-68 36-39 23-25

well-coordinated EVs achieved better system restoration, due
to the innovative three-stage optimization. It demonstrated that
the sum of the weighted surviving load was higher in the early
post-event stage. Furthermore, as a result of the innovative
routing described in this paper, the amount of restored load
in Case I in the middle stage (namely, from t = 9 to t = 18)
was greatly enhanced. Also, the amount of demand grew
significantly after , because the DN’s lines were fully repaired,
specifically when lines 23-25 were assumed to be repaired.
It should be noted that the substation was assumed to be
out of service for the entire duration of the restoration; this
assumption confirmed the strategy’s robustness further. Also,
the proactive prepositioning stage presented in this article
was demonstrably more resilient, since the overall sum of
load surviving at t = 1, 2, 3 was higher than that of the
benchmark. The system was assumed to have six new remote-
controlled switches (RCSs). As shown in Table III, utilizing
well-coordinated EVs could restore loads 8.7% higher than
using EVs in a less coordinated manner, saving around 20%
of the restoration cost. Fig. 5 shows the SOC of the ESS and
the EVs, the DG active power output, and the total DN’s load
at each t, which is included in Fig. 5 for reference. The total

TABLE III
OBJECTIVE VALUE OF EACH CASE STUDY

Case Restored load Restoration cost RCS actions
I 48741.9 kW $129,517.5 6
II 44861.8 kW $155,290.9 7

Fig. 4. Total sum of restored load (%) at each time period (t).

Fig. 5. System load, total SOC of the EVs, SOC of the ESS, and active
power output of the DG in each time period.

SOC of the EVs for the restoration period was flat, due to the
way of coordinating their charging and discharging timings.
The ESS could compensate for the active power generated
and the demand mismatch; in the meantime, the DG could
be utilized to keep the total SOC decreasing in a flat pattern
to maintain the restored load and prevent it from being shed
after restoration, in case of a prolonged power outages. The
coordination proposed amongst the EVs could also lower the



RCSs’ actions, where the proposed strategy’s RCS actions
were less than those in the benchmark, as shown in Table
IV.

TABLE IV
DYNAMIC NETWORK RECONFIGURATION OF THE DN

Time RCS actions (Case I) RCS actions (Case II)
3 Close line 1-7
5 Open line 13-152
7 Close line 18-138 Close line 150-149
8 Open line 87-89 Close line 18-138
9 Close line 13-152
18 Close line 87-89 Open line 23-25
19 – – – – – – – – Close line 23-25

IV. CONCLUSION

This study presented a three-stage optimization framework
for implementing the robust prepositioning, dynamic routing,
and scheduling of EVs in a smart DN and TS, with the aim of
reducing the cost of restoration. For the first time, it proposed
a novel travelling model of EVs, which significantly reduced
computing time demand while maintaining the accuracy. Each
EV user’s decision to participate in the process was integrated
implicitly into the proposed framework to improve the effec-
tiveness. Findings of the investigations suggest that using well-
coordinated EVs potentially restore loads than using EVs in a
less coordinated manner, with a significant cost savings. The
real information interchange between the DNO and the CSOs
indicated that the sum of the weighted surviving load can be
improved, due to the unique coordination between the three
stages of the proposed approach.
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