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UPPER DENSITY OF MONOCHROMATIC PATHS IN
EDGE-COLOURED INFINITE COMPLETE GRAPHS AND
BIPARTITE GRAPHS

A. NICHOLAS DAY

Umea University, Umea, Sweden

ALLAN LO

University of Birmingham, Birmingham B15 2TT, United Kingdom

ABSTRACT. The upper density of an infinite graph G with V(G) C N is defined as
d(G) = limsup,,_, . |[V(G)N{l,...,n}|/n. Let Ky be the infinite complete graph
with vertex set N. Cortsen, DeBiasio, Lamaison and Lang showed that in every 2-
edge-colouring of K, there exists a monochromatic path with upper density at least
(12 4 v/8)/17, which is best possible. In this paper, we extend this result to k-edge-
colouring of Ky for k > 3. We conjecture that every k-edge-coloured Ky contains a
monochromatic path with upper density at least 1/(k—1), which is best possible (when
k — 1 is a prime power). We prove that this is true when k = 3 and asymptotically
when k = 4. Furthermore, we show that this problem can be deduced from its bipartite

variant, which is of independent interest.

1. INTRODUCTION

Throughout the paper, a k-edge-colouring of a graph uses colours 1,2,...,k. Given
a k-edge-coloured K, how long is the longest monochromatic path? This question is
equivalent to asking for the k-colour Ramsey number of paths P,, denoted by Ry(P,).
When k = 2, Gerencsér and Gyérfas [8] show that Ra(P,) = [3n/2] — 1. When k = 3,
Gyérfds, Ruszinkd, Sarkozy and Szemerédi [9] show that R3(P,) = n+ 2[n/2] — 2. For
k > 4, we know that (k — 1+ o(1))n < Ri(P,) < (k—1/2+ o(1))n by Sun, Yang,
Xu and Li [16] and Knierim and Su [10], respectively. This implies that every k-edge-
coloured K, contains a monochromatic path of density between 2/(2k—1) and 1/(k—1).

We ask the analogous question for infinite complete graphs.
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Let Ky be the infinite complete graph with vertex set N, where N is the set of strictly
positive integers (i.e. without zero). Given a set A C N, the upper density of A is
defined as

d(A) = limsup |A(;[n]|’

n—00
where [n] = {1,...,n}. Similarly, if G is a graph with V(G) C N, then the upper density
of G is defined as d(G) = d(V(G)). Hence, the main focus of this paper is determine
the largest upper density of a monochromatic path guaranteed in any k-edge-colouring
of Ky.

A result of Rado [14] states that any k-edge-coloured Ky can be partitioned into at
most k£ monochromatic paths. This implies that one of these paths must have upper
density at least 1/k. When k = 2, Erdds and Galvin [6] proved that any 2-edge-
coloured Ky contains a monochromatic path with upper density between 2/3 and 8/9.
The lower bound was further improved in [5,[13]. Finally, Corsten, DeBiasio, Lamaison
and Lang [4] proved that any 2-edge-coloured Ky contains a monochromatic path with
upper density at least (12 ++/8)/17, which is best possible. See [1,3,{11] for other upper
densities of monochromatic subgraphs in 2-edge-coloured Ky.

In this paper, we consider k-edge-colourings of Ky for k£ > 3; we conjecture that the

picture is quite different from the case k = 2.

Conjecture 1.1. Let k > 3. In any k-edge-colouring of Ky, there exists a monochro-
matic path P with d(P) > 1/(k —1).

We prove that this conjecture holds when k = 3 and asymptotically when k = 4.

Theorem 1.2. In any 3-edge-colouring of Ky, there exists a monochromatic path P with
d(P) > 1/2. In any 4-edge-colouring of Ky, sup{d(P) : P is a monochromatic path} >
1/3.

The following result shows that if Conjecture [I.I] holds, then it is sharp when & — 1

is a prime power. In particular, Theorem is best possible.

Proposition 1.3 ([5, Corollary 3.5]). Let k > 3 and let q be a prime power with
q < k—1. Then there exists a k-edge-colouring of Ky in which every monochromatic
path P satisfies d(P) < 1/q.

1.1. Monochromatic paths in complete bipartite infinite graphs. We now look
at the bipartite variant of the above problem, which turns out to be closely related. Let
Ky n denote the set of all complete bipartite graphs on N where both vertex classes are
infinite. We will write Ky € Ky to denote that Ky is a graph in Ky y such that
V and W are both infinite, disjoint and together partition N.

We investigate the largest guaranteed upper density of monochromatic paths in a
k-edge-coloured Ky w € Knn. A result of D. Soukup |15, Theorem 2.4.1] states that

any k-edge-coloured Ky can be partitioned into at most 2k — 1 monochromatic paths.
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So one of them will have upper density at least 1/(2k — 1). By considering a k-edge-
colouring of Ky w derived from a proper k-edge-colouring of Kj j (see Section (3| for
details), it is not difficult to see that 1/k is an upper bound on the upper density of a

monochromatic path in Ky .

Proposition 1.4. Let Ky € Kyn. For all k € N, there exists a k-edge-colouring
of Kv.w in which every monochromatic path P satisfies d(P) < 1/k.

We conjecture that this bound is in fact tight.

Conjecture 1.5. In any k-edge-colouring of Kyw € Ky, there exists a monochro-
matic path P with d(P) > 1/k.

The conjecture is trivial for kK = 1. In this paper, we show that the conjecture is true
for k = 2 and a weaker result when k& > 3, which improves the lower bound of 1/(2k —1)

coming from Soukup’s result [15].

Theorem 1.6. Let Ky € Knn. In any 2-edge-colouring of Ky, there exists a
monochromatic path P with d(P) > 1/2. In any k-edge-colouring of Kyw with k > 3,
sup{d(P) : P is a monochromatic path} > 1/(2k — 3).

The case k = 2 for both Theorem[I.6]and Conjecture[I.5 are also implied by a result of
Corsten, DeBiasio and McKenney [3, Theorem 1.15]. They also conjectured a stronger
version of Conjecture [1.5

We show that one can deduce Conjecture from Conjecture [1.5| using the following

result.

Theorem 1.7. Let k > 3. Let ¢y, be such that, for all Ky € Kyn and all k-edge-
colourings of Ky,w, there exists a monochromatic path P with d(P) > ¢r. Then, in any
k-edge-colouring of Ky, there exists a monochromatic path P with d(P) > ¢p_1.

Therefore, Theorem [1.2]is a corollary of Theorems [1.6] and
A natural open problem is to show that Conjecture for all k£ > 3. Note that when
k = 3, Theorem shows that the supremum of the upper densities of monochromatic

paths is at least 1/3. It would be good to replace the supremum with the maximum.

1.2. Notations and layout. Given a graph G, a vertex v € V(G), and a colouring
of the edges of G, we write N;(v) for the set of vertices x in G such that edge va has
colour 7. A path of colour ¢ refers to a monochromatic path of colour i.

The layout of this paper is as follows. In Section [2] we employ some ideas from graph
regularity to prove Theorem In Section [3| we investigate k-edge-coloured Ky . In
particular, we prove Proposition [I.4] and Theorem [I.6]

2. PROOF OF THEOREM

We need a Ramsey-type result on matchings. Cockayne and Lorimer [2] showed that

in any k-edge-colouring of K,,, there exists a monochromatic matching of size at least
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n+k—1
k+1

K, with graphs with large minimum degree.

J . We need the analogous result by Omidi, Raesi and Rahimi [12], which replaces

Theorem 2.1 (Omidi, Raesi and Rahimi [12, Corollary 1.4]). Let G be a graph on n
vertices with 6(G) > k. Then, in any k-edge-colouring of G, there exists a monochro-

= k+1-
- ; ; +hk—1
matic matching of size at least L%TJ

By a standard application of the regularity lemma, we can deduce that any large k-
edge-coloured K, contains a constant number of monochromatic paths covering about
2/(k 4+ 1) fraction of the vertices. (Namely, we first apply the Szemerédi’s regularity
lemma to K, then obtain a large monochromatic matching in the reduced graph using
Theorem and finally, convert the edges of the monochromatic matchings into long
monochromatic paths by the blow-up lemma. For example, see the proof of Lemma 3
in [7].)

Corollary 2.2. For all k > 3 and all € > 0, there exists tg = to(k,e) > 0 and ng =
no(k,e) € N such that the following holds. In any k-edge-colouring of K,, with n > ny,

there exist vertex-disjoint paths Py, ..., P, such that t < to, Uie[t] P; is monochromatic
(2—¢)
and ’U’LE[t] P’L‘ 2 k:-‘,—ln'

We now prove Theorem

Proof of Theorem [1.7]. Fix a k-edge-colouring of K. Suppose to the contrary that there
is no monochromatic path P with d(P) > ¢_1. We say that a vertex v € V(Ky) is of

colour i if N;(v) is infinite. Note that a vertex can have more than one colour.

Claim 2.3. For every finite set S C N, everyi € [k] and every pair of vertices z,y € N\S

of colour i, there exists a path of colour i from x to y that avoids S.

Proof of Claim. Suppose to the contrary that there exists a finite set S C N, i € [k]
and z,y € N\ § of colour ¢ such that there is no path from x to y of colour i which
avoids S. Let X be the set of vertices that can be reached from x by a path of colour
i that avoids S, and let Y = N\ (X U S). Since N;(z)\ S € X and N;(y) \ S C Y,
each of X and Y is infinite. Moreover, there is no edge of colour ¢ between X and Y.
Thus the infinite complete bipartite graph K[X,Y] (with vertex classes X and Y) is

(k — 1)-coloured. So there exists a monochromatic path P in K[X,Y] C Ky with
3P -t VL OB VPO ) 8]

n—00 n n—00 |[n] \ S|

a contradiction. |

> Pk—1,

For each i € [k], let U; be the set of vertices which is of colour i only. Suppose
that there exists i € [k] such that U; is finite, so all but finitely many vertices is of
some colour in [k] \ {i}. So there exists j € [k] \ {i} and a set A C N such that each
vertex in A is of colour j and A has upper density at least 1/(k —1). By Claim we

obtain a monochromatic path P of colour j containing A. Thus P has upper density at
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least 1/(k — 1) > ¢x_1 by Proposition a contradiction. Therefore, U; is infinite for
all i € [k].

Let e; =277 for j € NU{0}. We will now construct monochromatic paths as follows.

Claim 2.4. For j € NU {0}, there exist an integer {; and paths Plj, - ,Pg such that

i) each P’ is monochromatic of colour i with vertices in [£;] and both endvertices
7 J
m Ui;
(ii) each Pij is an extension of Pijf1 and, moreover, Pijf1 is the subgraph of Pij

induced by the vertex set [{;_1];
V(P )nl]] S 21-g))
17 k+1 7

(ili) there exists ij € [k] such that
(iv) 4> et =2,

Proof of Claim. Let j = 0. Since each Uj; is infinite, let ¢y be the smallest ¢ such that
UiN[€] # 0 for all i € [¢]. For each i € [k], set P be a vertex in U; N [¢]. Thus the claim
holds for 7 = 0. Consider j € N. Suppose we have already constructed Plj _1, . ,P,g -1
and we construct Plj yenn ,P,z as follows.

Let tg = to(k,e5) and ng = ng(k, ;) be given by Corollary Let E;- > {j_1 be the
smallest integer such that |U; N [¢j_1 + 1,£}]| > to for all i € [k]. Let m > ¢ be the
smallest integer such that, for all i € [k], all edges between U; N [¢}] and [m,co) have
colour 1.

Let n’ = max{ng,2m/e;} and ¢; = m +n'. Let I’ = [m + 1,¢;]. Consider the
complete subgraph K. of Ky induced by I’. By Corollary Ky contains vertex-
disjoint paths P,..., P, such that ¢ < ¢y, |J

and

el P; is monochromatic of colour iy say,

U Pl > (2—€j)n, > 2(1 _5j)€j.
} - k+1 T k+1

JE[¢
Recall that |Uj,N[¢j—1+1, ]| > to > t and all edges between Uy, N[¢;] and V(e Pj) ©
[m + 1,00) have colour 4p. Together with ((i)| and using vertices in Uy, N [¢;—1 + 1,£}],

we join Pij(‘)_l,Pl7 ..., P, into a monochromatic path szo of colour ig with endvertices
in Ui, N [¢5]. We are done by setting Pz-j = szj_l for i € [k] \ {io}- [ |

Note that there exists a colour i such that i; = ¢ for infinitely many j € N. Then the
monochromatic path P' = [J;cy Pij satisfies d(P') > 2/(k + 1) > ¢5._1, where the last
inequality holds by Proposition This is a contradiction. O

3. COMPLETE BIPARTITE INFINITE GRAPHS

We now prove Proposition that is, bounding the upper density of monochromatic
paths in k-edge-coloured Ky € Ky from above.

Proof of Proposition[I.4 Let ¢ be a proper k-edge-colouring of K}, ; with vertex classes
X =Ax1,...,;zx} and Y = {y1,...,yx}. Let ¢x : V — X and ¢y : W — Y be such
that d(¢y' (z;) U ¢y (y;)) = 1/k for all 4,5 € [k]. (For instance, if V' = {v1,vs,...} and
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W = {wy,we, ...} withv; < vi41 and wj < wjy1, then set dx (v;) = zy and Py (w;) = y;r
such that ¢ =i’ (mod k) and j = 5/ (mod k).) We now edge-colour Ky y such that the
edge vw with v € V and w € W has colour ¢(¢x (v)¢y (w)). Since each colour class of ¢
is a perfect matching, any monochromatic path in Ky lies in gb;{l (z;) U gb;l (y;) for

some i, j € [k]. Hence the result follows. O

In order to prove Theorem we use the notion of an ultrafilter. Given an infinite
set X, a family U of subsets of X is an wltrafilter if U is closed under finite intersections
and supersets, the empty set is not in U, and for every set Y C X, we have that either
Y el o X\Y €U. Thusif U is an ultrafilter on X, and {Xi,...,X,,} is a finite
partition of X, then exactly one X; is in /. Finally, an ultrafilter U is nonprincipal if no
set in U is finite. By Zorn’s Lemma, for any infinite set X, there exists a nonprincipal
ultrafilter on X.

Let Kyw € Kyny. Let A C V and B € W be infinite sets. A pair (V4, Wg) is
an ultrafilter-pair of (A, B), if V4 and Wp are nonprincipal ultrafilters on A and B,
respectively. Given an ultrafilter-pair S = (V4, Wp) of (A, B), define the k-vertex-
colouring cs of V. UW such that cs(v) =i if N;(v)N(AUB) € VAUWpg forv e VUW.

Note that every vertex gets exactly one colour. Moreover, for each i € [k], let
Vi(S) ={v e V:cs(v) =i} and Wi(S) = {w € W: cs(w) = i}.

When it is clear which ultrafilter-pair we are referring to, we will often omit the & and

write V; and W; instead. We make use of the following lemma.

Lemma 3.1. Let Kyw € Kyn be k-edge-coloured and ip € [k]. Let S = (V,\ W)
be an ultrafilter-pair on (V' W') with V! C V and W' C W. Then there exists a
monochromatic path of colour ig containing Vj,.

Moreover, let Uj be the set of vertices v € Vi, U Wy, such that Ni,(v) N (Vip UW;,) is
infinate. If Uj itself is infinite, then there exists a monochromatic path P of colour ig

containing Vi, U Wi, .

Proof. Without loss of generality, we may assume that i = 1. Let Vi = {aj,a2,...}
with a; < aj11. For each j € N, note that Ni(a;) " W', Ni(aj1) N W' € W and recall
that W' is closed under finite intersections, so Ni(a;) N Ni(ajr1) N W/ € W' is infinite.
Hence, we can find distinct vertices wy, wa, - -- € W’ such that w; € Ni(a;) N Ni(aj41).
Then P = vjwivows ... is a monochromatic path of colour 1 containing V.

We now prove the moreover statement. Without loss of generality, we may assume
V¥ = Vi N Uy is infinite. Let Vi U Wy = {ai1,a9,...} with a; < aj41. Let A4; =
{a1,...,a;}. We will construct monochromatic path P; of colour 1 containing A; with
endpoints in V}*. Set Py be a single vertex in V*. Suppose that we have constructed Pj_;
and construct P; as follows. If a; € V(Pj_1), then set Pj = P;j_;.

Suppose that a; ¢ V(P;j—1) and v;—_; be an endpoint of P;_i. If a; € Vi, then pick
vj € Vi*\ (V(Pj—1) U{a;}). Note that vj_1,vj,a; € V1, so Ni(vj—1) " W', Ny(v;) N W’
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and Ni(a;) "W’ are members of W'. Hence, Ni(v;—1)NN1(v;) N Ni(a;)NW' € W' is an
infinite set. Pick distinct vertices wj_1, w; € (Ni(vj—1)NN1(v;) N1 (a; ) NW)\V(Pj_1).
Note that P; = Pj_1vj_1wj_1a;w;v; is a path of colour 1 as desired.

If a; € Wy, then pick distinct vertices v; € Vi* \ V(Pj_1), wj—1 € (N1(vj—1) N W1) \
V(Pj—1) and w; € (N1(vj) N W1) \ V(Pj—1). Similarly, pick distinct vertices v}_;,v} €

(Nl(wj_l)le (wj)ﬂNl(aj)ﬂV’)\V(Pj_l). Note that Pj = Pj_lvj_le_w;_lajvg»wjvj

is a path of colour 1 as desired. We are done by setting P = | J;cy Fi- (]
First we prove Theorem [I.6| when k = 2.

Proof of Theorem when k = 2. Fix a 2-edge-colouring of Ky, and let S = (V, W)
be an ultrafilter-pair on (V,W). Note that d(V; UW;) + d(Vo U W) > 1. Thus, by

relabelling colours if necessary, we may assume that

d(Vi UWy) > 1/2.

We may assume that d(V4),d(W1) > 0 (or else, d(V4) > 1/2 or d(W;) > 1/2 and we are
done by Lemma. Hence Vi and W; are infinite.

Let Uj be the set of vertices v € V3 UW; such that Ny(v) N (V3 UWY) is infinite. If Uf
is infinite, then Lemma [3.1] implies that there is a path of colour 1 containing Vi U W7,
as required. Thus we may assume that U is finite.

Thus V1 \U; and W, \U{ are infinite. Futhermore, every v € V1\U; (and w € W1\ U5)
sends finitely many edges of colour 1 to W; (and to Vi, respectively). It is easy to
construct a monochromatic path P of colour 2 with vertex set V(P) = (ViUW7)\ U5 (see
the proof of the moreover statement of Lemma/3.1)). Note that d(P) = d((ViuW)\U;) =
d(V1 UW7) > 1/2 as required. O

Before proving Theorem when k£ > 3, we would need to define the lower density

of a set. Given a set A C N, the lower density of A is defined as
A
d(A) = liminf A0

n—00 n

For sets U, W C N with UNW finite (i.e. almost disjoint sets of U, W C N), the following
standard inequality holds:

AU) +d(W) < dUUW) < d(U) +d(W) <dUUW) <dU)+dW).  (3.1)

Proof of Theorem[1.6] when k > 3. Let o = 1/(2k — 3). Suppose to the contrary that
there exists € > 0 and a k-edge-coloured Ky i such that every monochromatic path P
in Kyw has d(P) < o — 2e.

Let 3 be the supremum of max;e({d(V;(S)UW;(S))} taken over all ultrafilter-pairs S
of (V/,W’) with infinite sets V' C V and W/ C W. Clearly,

8> 1/k. (3.2)

Let S = (W9, WY) be an ultrafilter-pair on (VY W?) with infinite sets V° C V and
WO C W such that max;ep{d(V;(S°) UW;(8%))} > B —e. For each i € [k], let V;) =
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Vi(8°) and W2 = W;(S8°). By relabelling if necessary, we may assume that
AV WD) = max((V UW)} 2 8 —<. (3.3)
1€

By Lemma (with S = 8% and 4y = 1), there exists a path of colour 1 containing V,
so d(V) < a — 2¢. Hence

G —
> d

_ B2)
dWy) =

VPuw)—d(V) = B—a+e > 0

and so WY is infinite. Similarly, d(W}) < a — 2¢ and V7 is infinite. Moreover,

B3 _
B dVPUWD) 4+ e < d(VY) +dW?D) + & < 2a — 3¢ < 2a. (3.4)
Let 8" = (V', V') be an ultrafilter-pair on (V?,W?). Let V/ = V;(S') and W] =
W;(S’) for all i € [k].

Claim 3.2. (V UW{)n (VY UW?) is finite.

Proof of Claim. Suppose to the contrary that (V/UW])N (V2 UW?) is infinite. Without
loss of generality VN V/ is infinite. For all v € VPNV{ C V/, we have that Ny (v)NW} €
W' is infinite. Lemma (with S = S, igp = 1 and U7 2 V2N V/) implies that there
exists a path of colour 1 containing Vl0 U Wlo with upper density at least

_ (3-2)
dVPUW)>pB—ec > 1/k—e>a—c¢,

a contradiction. |

Consider the ultrafilter-pair S* = (V', W), so Vi(S*) = V{ and Wi(S*) = Wj.
Moreover, for all w € W{, Ny(w)NVL € V' is infinite. If W] is finite, then d(V? UW]) =
d(V?) < o — 2e. If W] is infinite, then Lemma (with § = §*, ip = 1 and Uy O W)
implies that there exists a path of colour 1 containing V> U W/. In both cases, we have
d(VP UW]) < a — 2. Similarly by considering the ultrafilter-pair (V°, W), we deduce
that d(W U V{) < o — 2e. Together with Claim [3.2|and (3.1]), we deduce that

AV UW)) + 6 - E2AV UW)) + AVE UWY)
<d(V{uwjuvuwyp)
< d(VY UWT) +d(WP UVY) < 2(a — 2¢),
which implies that
AV UW!) < 2a — . (3.5)

Since V' is an ultrafilter on V2, there exists some 7o € [k] such that VIOQV;’O € V'. Note
that V" N Vlg is infinite, so ig # 1 by Claim Therefore, without loss of generality,
we may assume that ip = 2. Recall that V2 N'VJ € V'. For all w € W}, note that
No(w) NV € V' implying that No(w) NV N VY = (No(w) NV2) N (VPN VY)) € V' is
infinite. If W, is infinite, then Lemma (with § = &', ip = 2 and Uy D WJ) implies
that there exists a path of colour 2 containing V4 U Wj. If W; is finite, then we have
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d(VaUW}) = d(VJ) and Lemma implies that there is a path of colour 2 containing V;.

In both cases, we deduce that
d(Va UW)) < a—2e < a. (3.6)
Recall the definition of 8 that d(V;/ UW/) < 8 for all i € [k]. Putting these all together,

we get that

L=d(VUW) <dVJuw)) +d| |J (uw)) | <dViuw])+ > dviuwy)

2<i<k 2<i<k
’<—5)+oz+ Z dV/UW])<3a—B+ (k—2)=3a+ (k—3)B
3<i<k
Dok~ 3)a =1,
a contradiction. 0
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