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Evaluating the efficacy of human dental pulp ==

stem cells and scaffold combination for bone
regeneration in animal models: a systematic
review and meta-analysis

Amin Namjoynik', Md Asiful Islam? and Mohammad Islam'”

Abstract

Introduction Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth
(SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteo-
genic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental
pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone
regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-
analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for
bone regeneration in animal bone defect models.

Methodology This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to
include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic
review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone
regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also
extracted for meta-analysis.

Results Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis.
90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped
by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p <0.0001) in
experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% Cl
1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% Cl
2.612-5.246) while % BV/TV (SMD: 2.693, 95% Cl —0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-
containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The fun-
nel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also
indicated that the results generated in this meta-analysis are robust and reliable.

Conclusion This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination
enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and
animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more
clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.
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Introduction

Many orthopaedic and dental complications involve the
need for bone grafts, such as repair of traumatic and
congenital defects, spinal surgery and build-up of bone
stock around biomedical implants. Nevertheless, achiev-
ing complete and functional bone regeneration remains
major challenge for orthopaedic and craniofacial sur-
geons. Diverse techniques are currently used in the clinic
for bone regeneration, such as bone grafting, distraction
osteogenesis and guided bone regeneration (GBR) [1-3].
While autogenous bone grafts are the gold standard for
bone regeneration, donor site morbidity and the limited
availability of bone volume restrict their practical appli-
cation in clinical contexts. Thus, xenograft and synthetic
biomaterials are widely explored as bone graft substitutes
or scaffolds. As the comprehension of bone tissue biology
is improving and with the current advances in the devel-
opment of tissue engineering, mesenchymal stem cell
(MSCs) therapy has drawn major interest in enhancing
bone tissue reconstruction [4—6].

Mesenchymal stem cells (MSCs) are multi-potent stro-
mal cells with the ability to undergo self-renewal and
multi-lineage differentiation. Dental pulp mesenchymal
stem cells such as adult dental pulp stem cells (DPSCs)
and stem cells from human exfoliated deciduous teeth
(SHED) have attracted growing attention due to their
high proliferation rate, excellent bone forming potential,
and favourable paracrine and immunomodulatory prop-
erties [7]. Furthermore, the ease of isolation and acces-
sibility of DPSCs and SHED from removed and discarded
teeth offers an abundant source of cells for regenerative
medicine with minimal risk of complications, putting
them at an advantage over bone marrow and embry-
onic stem cells [8]. It has been more than twenty years
since Gronthos et al. [9] coined the term dental pulp
stem cells (DPSC) and successfully demonstrated their
mesenchymal stem cells (MSCs) properties. DPSCs are
members of dental mesenchymal stem cells (DMSCs),
which with high multi-lineage differentiation potential,
offer an exogenous alternative to osteoblasts and other
slow or non-regenerating cells [10]. Also, DPSCs’ capac-
ity to retain stemness after cryopreservation would allow
for long-term preservation and upscale production [10].
While SHED is reported to have a higher differentiation
yield, it produces an almost equivalent degree of bone
regeneration to hDPSC [11]. hDPSCs/SHEDs are already
studied in pre-clinical studies for healing of bone-related
diseases or surgical interventions that require grafting,

included but not limited to implant placement for miss-
ing teeth [12], healing of alveolar bone loss by periodon-
titis [13] and bone fracture [14].

The scaffold, another important component for tis-
sue engineering, facilitates the regenerative process by
providing a mechanical supporting network that holds
recruited stem cells in place and allows growth factor
attachment enabling regeneration. The degree of suc-
cess of bone regeneration largely depends upon the stem
cells and their incorporation with the scaffold materials
and recruiting growth factors. Various organic and inor-
ganic scaffold materials have been used in bone regenera-
tion in vitro and in vivo so far, with a varying degree of
success depending upon the type of stem cells used and
scaffold’s ability to provide stem cells with a compatible
home [15].

After 22 years of the first discovery of DPSCs, this is
the high time to evaluate the efficacy of DPSCs/SHED on
bone regeneration in the in vivo (animal) system to help
scientists and clinicians make informed decisions for set-
ting up clinical trials on bone regeneration therapy. This
systematic review and meta-analysis aimed to synthesise
the evidence of bone regeneration efficacy of DPSCs and
SHED pre-seeded with different scaffolds used in animal
bone defect models.

Methodology

Guidelines and protocol registration

This systematic review and meta-analysis were regis-
tered through the international prospective register of
systematic reviews (PROSPERO, Registration number—
CRD42021274976) following PRISMA 2020 flow dia-
gram and guideline [16].

Data sources and searches

A customised electronic search of scientific articles was
carried out in the PubMed, PubMed—MEDLINE (Ovid),
Scopus, EMBASE (Ovid) and Web of Science databases
until 30 April 2022 without applying restrictions on the
publication date. Articles containing the following key-
words (Free text, or, MeSH terms), separately and in
combination, were used: ‘Dental Pulp Mesenchymal Stem
Cells (Free text), DPSC (Free text), Dental Pulp Stem cells
(Free text), SHED (Free text), Stem cells from human
exfoliated deciduous teeth (Free text), Bone Regeneration
(MeSH term), Bone regenerations (MeSH term), Osteo-
regeneration (Free text), Osteoregeneration (Free text),
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Guided—bone regeneration, Scaffold (MeSH term), Scaf-
folds (MeSH term), Scaffold Matrix (MeSH term), Scaf-
fold/Matrix (MeSH term), Scaffold for bone regeneration
(MeSH term), Scaffolding (MeSH term), Scaffoldings
(MeSH term), Bone substitute (MeSH term), Bone sub-
stitute material (MeSH term), Bone substitutes (MeSH
term), Bone augmentation material (Free text), Alloplas-
tic material, Bone graft, xenograft, Allograft, Ceramics,
Autograft’ These keywords were also searched without
MeSH in PubMed-MEDLINE. An example of the search
strategy is included in Additional file 1. Following this
search strategy, all titles and abstracts retrieved were
evaluated against the exclusion criteria.

Eligibility criteria

Types of Studies

All studies published in English up to 30 April 2022,
which also had been original in vivo (animal) studies
using bone defect models, were eligible for this review.
Any studies that did not specifically use the keyword
‘scaffold’ yet used a scaffold, bone substitute and bone
augmentation materials were also included.

The exclusion criteria were studies that did not con-
tain the search keywords (“Data sources and searches”
section), articles written in languages other than Eng-
lish, studies that presented non-original full-text articles,
including updates, reviews, systematic reviews, meta-
analyses or case reports, studies that did not evaluate the
bone regeneration and studies in which dental pulp stem
cells were not used. Additionally, any articles that did not
have their full text freely accessible were excluded. The
review is limited to in vivo studies on animals; hence,
ex vivo, in vitro, in silico only and human clinical trials
were excluded.

Types of participants
All animal varieties/types were included in this review,
irrespective of species, sex and age.

Furthermore, the included studies must have used the
stem cells from human adult dental pulp (hDPSC) or
human exfoliated deciduous teeth (SHED) as a source
of human mesenchymal stem cells (hMSCs) for bone
regeneration.

Types of interventions

Studies with no scaffold were excluded. Studies that used
hDPSCs/SHED + scaffold as the experimental group and
scaffold-only (cell-free) as the negative control were the
primary criteria to be included in the meta-analysis.

Outcome measures
Studies that used either % BV/TV or BV (mm?) or bone
mineral density or BMD (mg/cm?®) or % bone formation
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or new bone formation (mm?) or osteogenic marker
expression or a combination of two or more of the unit
to measure the bone regeneration capacity of the DPSCs/
SHED incorporated with the scaffolds were included.

Study selection

Following PRISMA protocol, the inclusion and exclusion
criteria were applied in two phases. The initial screen-
ing was based on the title and abstract of the articles and
performed in Rayyan, the systematic reviews web app
(https://www.rayyan.ai/). Also, any duplicated articles
were excluded from the review at this stage. This was
followed by a full-text screening of the eligible manu-
scripts for final inclusion, which was performed on End-
Note reference management software. In each phase,
two researchers conducted assessments independently.
Discrepancies were resolved through discussion and
consensus between the observers. In addition, reviewers
reported the reason for each excluded article, labelled
as; bone regeneration, In vitro, human clinical study, no
DPSC/SHED, no scaffold, no human DPSCs, DPSCs/
SHED not incorporated with the scaffold (cell-free scaf-
fold) as the test sample, use of extracellular vesicles (EVs)
and lack of correct characterisation.

Data extraction process

Qualitative data were extracted by two independent
reviewers from the full text of included literature, which
was then categorised by the first author, year, scaffold
types, stem cells origin (hDPSC or SHED), species of ani-
mals, total number of animals, type of bone defects, bone
formation evaluation technique, criteria for bone regen-
eration measurement, the healing period in weeks and
the concluding remarks of the included study. Similar to
the previous stage, the observers resolved discrepancies
through discussion and consensus.

Any relevant quantitative data from the tables, text
or figures were also extracted. In case data were not
reported or unclear, the authors were contacted by email
(maximum two attempts; 2 weeks follow up period after
the first message). If an outcome was measured at mul-
tiple time points, data from the last time point were
included. In cases where data from the authors were not
received, they were extracted from graphs using Plot-
Digitizer software. If any data was presented as SEM,
they were converted to SD by multiplying the SEM by
the squared root of the N (number of samples). In case
of more than 1 type of scaffold is used in any study, scaf-
folds were labelled as small English letters (a, b, c) in the
data extraction table, and the same letters were added
after the author’s name and publication year in the meta-
analysis corresponding the same scaffolds.
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Quality assessment and risk of bias

The 49 studies included in this review were assessed inde-
pendently by two reviewers using the modified version of
the ‘CAMARADES checKlist for study quality [17]. Two
components were altered to compensate for blinded
implant/insertion of scaffolds (component 3) and the
use of anaesthetic on the animal model where necessary
throughout the study (component 6). Each ‘yes’ qualified
for the score ‘1, while ‘no’ or ‘unclear response’ carried no
weight (i.e. score 0). The risk of each article was judged as
‘high’ for scoring 0 to 3, ‘medium’ for scoring between 4
and 6, or ‘low’ for scoring 7 to 10, according to their total
score value (out of 10). For this assessment, the institu-
tions’ names and journal titles were blinded; the only
visible identifiers were the first author’s surname and
publication year. Also, any discrepancies were resolved
via discussion and consensus between the reviewers.

Data synthesis and statistical analysis

The standardised mean difference (SMD) was calculated
with a 95% confidence interval (CI) to estimate over-
all bone regeneration in the experimental group (dental
pulp stem cells + scaffold) compared to the control group
(scaffold-only). All the analyses and plots were generated
by using comprehensive meta-analysis software.

Publication bias and heterogeneity

To visually examine publication bias, we constructed a
funnel plot displaying the SMD versus standard error.
Heterogeneity between studies was assessed using the I
statistic (*>75% indicating substantial heterogeneity) in
addition to using Cochran’s Q test to identify the signifi-
cance of heterogeneity.

Subgroup and sensitivity analysis

In subgroup analyses, we subgrouped the studies based
on the units used and estimated the mean difference
(MD) with 95% CI to estimate overall bone regenera-
tion in the experimental group (DPSCs/SHED + scaffold)
compared to the control group (scaffold-only). In sensi-
tivity analyses, firstly, we used the leave-one-out method
to explore whether any single study has an influence on
the main outcome. Secondly, for the meta-analysis, we
excluded the high risk of bias studies to observe whether
any low-quality study influences the overall outcome.
Thirdly, we excluded small studies with less than ten sam-
ples to see whether small studies have any effect on the
main outcome.

Results

Study selection and PRISMA flow diagram

If any study did not analyse and describe the result of
‘DPSC/SHED +scaffold’ in bone regeneration compared
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to ‘scaffold-only, regarded as a ‘wrong outcome’ Stud-
ies that are not original full-text articles, including
updates, reviews, systematic reviews, meta-analyses or
case reports, were regarded as ‘wrong publication type.
Lack of full-text articles was regarded as the ‘reports not
retrieved’ and if any study did not use any mesenchymal
stem cell characterisation method or report any charac-
terisation result, was regarded as a ‘lack of correct char-
acterisation. There were 2 phases of screening processes:
the first was only abstract screening, from which some
articles did not fully meet the exclusion criteria because,
for example, it was not clear in the abstract whether they
had used any scaffold or whether they were in vitro stud-
ies only and required reading of the full text; hence, they
were included in the first phase. Some of those articles
were excluded later, during the full-text screening phase.
This made some of the articles excluded for ‘no scaffold’
and ‘in vitro study’ in the second phase as well (Fig. 1).
Forty-nine articles were included in the systematic review
after the full-text screening (Table 1).

Study characteristics

Biocompatibilities of the scaffold materials were con-
firmed by in vitro studies in all the included studies.
Studies were included only in which dental pulp stem
cells were characterised properly in vitro before implant-
ing in the in vivo animal model. Six different animal
species were used: the most used species was rat (23
articles), followed by mice (18 articles), rabbit (3 arti-
cles), dog (2 articles), sheep (2 articles) and swine (1 arti-
cle). Various bone defect and bone regeneration models
were used, including different sizes of calvarial bone
defects (16 articles), subcutaneous implantation (11 arti-
cles), alveolar bone defect (6 articles), cranial defect (5
articles), mandibular defect (5 articles), mid-diaphyseal
defect (2 articles) and iliac defect, periodontal fenestra-
tion defect, cleft-mimicking defect and intraperitoneal
diffusion model, 1 article each. hDPSCs were used in 33
articles, and SHEDs were used in 16 articles in the range
of 5x10*-2x 10 initial transplantation number. Various
time frames were used to observe the bone regeneration
capacity of the scaffold + stem cell groups in various ani-
mal models. Most commonly, 8 weeks was used as the
endpoint to analyse the potential of the scaffold for bone
regeneration (21 articles) (Table 1).

Different units for outcome measures (bone regenera-
tion) were used in different studies, such as % BV/TYV,
BV (mm?), BMD (mg/cm?), % bone formation, new bone
formation (mm?) and osteogenic marker expression. The
reliability of a method to measure % BV/TV, BV (mm?3),
BMD (mg/cm?®), % bone formation and new bone for-
mation (mm?) depends on several factors, including the
type of measurement being performed, the equipment
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Identification of studies via databases and registers ]

Fig. 1 PRISMA flow diagram for systematic review [18]

Records removed before screening:

Duplicate records removed (n= 2)

Records marked as ineligible by automation tools (n = 0)
No Abstractavailable (n =1)

Records removed for other reasons (n = 0)

Total Records excluded (n = 655)

+  Wrong Study Design (n = 482)
No Bone regeneration (n=128)
In Vitro (n = 112)
Human Clinical Study (n = 13)
No DPMSC (n = 145)
No Scaffold (n = 48)
Used non-human DPSCs (n = 32)
Used Cell-free Scaffold (n = 3)
Incorporation of Extra-vesicles (EVs) (n =1)

*  Wrong Publication Type (n = 160)

*  Wrong Outcome (n = 13)

Reports not retrieved (n =6)

Conference presentation/abstracts (n = 3)
Foreign language (n = 2)

Full-text not Freely Accessible (n=1)

Total Reports excluded(n = 34)

Used Cell-free Scaffold (n =11)

No scaffolds(n = 2)

No human DPSC (n = 12)

In-Vitro Study (not clear in abstract) (n = 7)

Lack of correct Characterisation of stemcells (n = 2)

—
Records identified from :
=
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O
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e
(n=83)
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i Studies included in review
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© Reports of included studies
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o

being used and the experience of the operator. Micro-
CT scanning is a common method for measuring % BV/
TV, BV (mm?), BMD (mg/cm?®) and other bone regenera-
tion parameters. Micro-CT scanners can provide highly

accurate and precise measurements, but the quality of the
results can depend on the resolution of the scanner, the
type of sample being measured and the experience of the
operator. Histomorphometry is a method for measuring
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% bone formation and new bone formation (mm?) in
bone tissue formation. This involves staining and examin-
ing thin sections of bone tissue under a microscope. The
accuracy and precision of histomorphometric measure-
ments can depend on the quality of the staining and the
experience of the operator.

It is possible to estimate the volume/density/percent-
age of truly formed bone or bone-like tissues by DPSC/
SHEDs application by both micro-CT and histological
or histomorphometric analysis. All the included papers
used any one or both techniques to estimate the newly
formed bone. In the micro-CT analysis, black-and-white
tomogram images can be converted into equal density
pseudocolour images and the boundary between bone/
residual graft can be calibrated. For example, Zhu et al.
[65] defined tissues with CT values between 700 and
2000 Hounsfield unit (Hu) as the new bone. Tissues with
CT values more than 2000 Hu were defined as the resid-
ual graft/scaffold after calibration. In histology or histo-
morphometric analysis, bone or bone-like tissues and
residual graft/scaffold are distinguished and quantified by
applying suitable staining reagents such as Masson’s Tri-
chrome and related image analysis software, respectively.
The volume/density/percentage of new bone formation
by DPSCs/SHEDs in both analyses can be calculated
by subtracting the residual graft/scaffold from the total
defect area.

It has been suggested that the mesenchymal stem
cells (MSCs) such as BMSC, DPSC and SHED have an
immunomodulatory effect as well as reducing the reac-
tion of the transplant onto the host. Human MSCs can
secrete bioactive factors that can inhibit T-cells which
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helps to establish a regenerative microenvironment
in the defect area [66, 67]. Based on this concept, 21
studies in this systematic review used non-immuno-
suppressed animals-13 of them reported no inflamma-
tory reactions, 3 of them reported mild inflammatory
reaction and 5 of them did not report information on
the inflammatory reaction. On the other hand, 27 stud-
ies used immunodeficient animals-7 of them reported
no inflammatory reactions, only 1 study reported mild
inflammation in the defect site and 19 studies did not
report the information on the inflammatory reaction
(Fig. 2).

Detailed information on the inflammatory reaction in
response to human DPSCs/SHED in animal defects is
listed in Additional file 2.

Due to the lack of quantitative data such as for oste-
ogenic marker expression [13, 25, 30, 32, 41, 42, 46,
48, 49, 53-55, 58] and new bone formation [33], lack
of ‘scaffold-only negative control’ data [11, 45, 50, 60],
missing SD/SEM [38, 40] and less than 2 articles for
each outcome measure [35, 36], only 27 articles out of
49 were qualified in the meta-analysis. Detailed reasons
of why 22 articles were excluded from the meta-analy-
ses can be found in Additional file 3. In the meta-anal-
ysis, only 4 different outcome measures (unit for bone
regeneration) were qualified, most commonly % bone
formation (13 articles, 15 test conditions), followed by
bone mineral density (mg/cm?) (6 articles/test condi-
tions), % BV/TV (5 articles, 7 test conditions) and new
bone formation (mm?) (3 articles, 4 test conditions).

Inflammatory reaction in response to human DPSC/SHED in

Not reported (1) 1

animals

Immunodeficient animal (27) -1 19
Non-immunosuppressed animal (21) _ 3 5

H No inflammation

Mild inflammatory reaction

10 15 20 25 30

Number of studies

Not reported

Fig. 2 Inflammatory reaction in response to human DPSC and SHED in animals
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Quality assessment and risk of bias

Assessment of risk of bias and quality for included stud-
ies were assessed using the CAMARADES tool and listed
in Table 2. Only 4 studies out of 49 (8%) reported sample
size calculations. 29% of the included studies (14 stud-
ies) also reported randomisation of the experimental and
control group allocation. Only 3 studies (6%) reported
the blinded implantation or insertion of the experimen-
tal and control group. However, 76% of included studies
did not assess the outcome blindly or failed to report the
blinded assessment. In conclusion, 20% of studies were
scored as low risk, 70% were at medium risk, and only
10% were scored as high risk of bias (Table 3).

Overall effect by outcome measurement unit

Overall, bone regeneration was significantly higher
(p<0.0001) in experimental group (dental pulp stem
cells +scaffold) compared to control group (scaffold-
only) (SMD: 1.863, 95% CI 1.121-2.605). The effect is
1.863, representing quite a large effect where the experi-
mental group tends to have larger scores than the con-
trol group. However, the effect is almost entirely driven
by the % bone formation group (SMD: 3.929, 95% CI
2.612-5.246) while %BV/TV (SMD: 2.693, 95% CI
— 0.001-5.388) shows a marginal effect and both BMD
(SMD: 0.918, 95% CI — 0.536-2.373) and new bone for-
mation (mm?) (SMD: 0.500, 95% CI — 0.759-1.760)
shows no effects. % bone formation group shows a highly
significant effect (p <0.0001) where scaffold + dental pulp

Table 2 The Collaborative Approach to Meta-Analysis and
Review of Animal Data from Experimental Studies (CAMARADES)
tool (released in 2004)

Major components Response options

1. Sample size calculation Yes No Unclear
2.Random allocation to treatment or control Yes  No  Unclear
3. Blinded implant/insertion of scaffold* Yes No Unclear
4. Blinded assessment of outcome Yes No Unclear
5. Appropriate animal defect model Yes  No  Unclear
6. Use of anaesthetic on animal model where Yes No Unclear
necessary throughout the study*

7. Statement of control of temperature* Yes No Unclear
8. Compliance with animal welfare requlations ~ Yes ~ No  Unclear
9. Peer-reviewed publication Yes No Unclear
10. Statement of potential conflict of interests Yes  No  Unclear

*can be modified by user when using in another animal models
Yes=1 score

No and unclear=0 score

Total scores (out of 10): Quality

7 to 10: low risk

4 to 6: medium risk

1 to 3: high risk
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stem cells group regenerate bone more than the scaffold-
only control group, and there is a significant difference
between the groups (p<0.0001). % BV/TV group also
shows a marginally significant (p=0.045) effect on bone
regeneration by the scaffold+dental pulp stem cells
group compared to the scaffold-only group and has a sig-
nificant difference between the groups (p =0.05) (Fig. 3).

Subgroup analysis by outcome measurement unit

The amounts of bone defect at tO and new bone forma-
tion at t1 were defined as total volume (TV) and bone
volume (BV), respectively. The bone regeneration rate
was determined as a percentage of BV/TV using the fol-
lowing formula.

Regenerated bone rate (%BV/TV)
_ Regenerated bone volume at t1 (BV)

Bone defect volume at t0 (TV)
Regenerated bone volume at t1
= Bone defect volume at t0 — Bone defect volume at t1

x 100

Unstandardised random effect analysis of the % BV/TV
group alone shows no significant effects in bone regener-
ation by the scaffold + dental pulp stem cells (MD: 9.983,
95% CI — 2.759-22.725, p=0.125) (Fig. 4).

Bone tissue density/bone mineral density is the amount
of bone mineral in bone tissue. The BMD values were
normalised to bone tissue adjacent to the defect and
used as an indicator of the quality of regenerated bone
in reference to healthy tissue. Unstandardised random
effect analysis of the BMD (mg/cm?) group alone shows
no significant effects on bone regeneration by the scaf-
fold + dental pulp stem cells (MD: 0.149, 95% CI — 0.543—
0.841, p=0.672). The analysis also shows very high
heterogeneity; that is, the effects wildly vary between
studies (Fig. 5).

The percentage of newly formed bone was calculated
using the following equation:

% New bone = (Area of regenerated bone/
Area of created defect) x 100

Unstandardised random effect analysis of the % bone
formation group alone shows highly significant effects in
bone regeneration by the scaffold + dental pulp stem cells
(MD: 17.580, 95% CI 14.257-20.904, p<0.0001) com-
pared to the control. On average, the experimental group
(scaffold + dental pulp stem cells) scores were almost 18
points higher than the control group scores (Fig. 6).

Unstandardised random effect analysis of the new bone
formation mm? group alone shows no significant effects
in terms of bone regeneration by the scaffold+den-
tal pulp stem cells (MD: 0.015, 95% CI — 0.213-0.243,
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References 1 2 3 4 5 6 7 8 9 10 Score Quality
Annibali [19] 0 0 0 0 1 1 0 1 1 0 4 Medium risk
Annibali [20] 0 1 1 1 1 1 0 1 1 1 8 Low risk
Ansari [21] 0 0 0 0 1 0 0 1 1 0 3 High risk
Asutay [22] 0 0 0 1 1 1 1 1 1 1 7 Low risk
Bakopoulou [23] 1 0 0 1 1 1 0 1 1 0 6 Medium risk
Behnia [24] 0 0 0 1 1 1 1 1 1 0 6 Medium risk
Bressan [25] 0 0 0 0 1 1 1 1 1 1 6 Medium risk
Campos [26] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Colorado [27] 0 0 0 1 1 1 1 1 1 0 6 Medium risk
Colpak [28] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
da Silva [29] 1 1 0 1 1 1 1 1 1 1 9 Low risk
Fahimipour [30] 0 0 0 0 1 0 1 1 1 1 5 Medium risk
Fang [31] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Fu [32] 0 0 0 0 1 0 0 0 1 1 3 High risk
Ghavimi [33] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Gongalves [34] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Gutiérrez-Quintero [35] 0 1 0 0 1 1 0 1 1 1 6 Medium risk
Hiraki [36] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Huang [37] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Jahanbin [38] 0 1 0 0 1 1 1 0 1 0 5 Medium risk
Jin [39] 0 1 0 0 1 1 0 1 1 1 6 Medium risk
Kang [40] 0 0 0 1 1 1 0 1 1 1 6 Medium risk
Kawanabe [41] 0 0 0 0 1 0 0 0 1 0 2 High risk
Kunwong [42] 0 0 0 0 1 0 0 1 1 1 4 Medium risk
Kuo [43] 0 0 0 0 1 1 0 1 1 0 4 Medium risk
Kwon [44] 0 1 0 0 1 1 0 1 1 1 6 Medium risk
Liu [45] 0 0 0 0 0 0 0 1 1 1 3 High risk
Man [46] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Maraldi [47] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Mohanram [48] 0 0 0 0 1 0 0 1 1 1 4 Medium risk
Nakajima [11] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Niu [49] 0 0 0 0 1 1 0 1 1 0 4 Medium risk
Novais [50] 0 1 0 0 1 1 1 1 1 1 7 Low risk
Petridis [51] 0 0 1 1 1 1 1 1 1 1 8 Low risk
Pisciotta [52] 0 0 0 0 1 0 0 1 1 1 4 Medium risk
Prabha [53] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Prahasanti [54] 0 1 1 0 1 0 1 1 1 1 7 Low risk
Prahasanti [55] 0 1 0 0 1 1 0 1 1 1 6 Medium risk
Saha [56] 0 0 0 1 1 1 0 1 1 1 6 Medium risk
Salgado [57] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Saskianti [13] 1 1 0 1 1 1 1 1 1 1 9 Low risk
Saskianti [58] 0 0 0 0 1 0 0 1 1 0 3 High risk
Seo [59] 0 0 0 0 1 1 0 1 1 0 4 Medium risk
Serano-Bello [60] 1 1 0 0 1 1 1 1 1 1 8 Low risk
Vater [61] 0 1 0 1 1 1 0 1 1 1 7 Low risk
Wongsupa [62] 0 1 0 0 1 1 0 1 1 1 6 Medium risk
Xavier Acasigua [63] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Zhang [64] 0 0 0 0 1 1 0 1 1 1 5 Medium risk
Zhu [65] 0 1 0 1 1 1 0 1 1 1 7 Low risk
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Std meanLower Upper

Outcome Measures Study . o PE Std mean difference and 95% CI
difference limit limit

% BVITV Annibali 2013a -0.396 -1.907 1.115

% BVITV Annibali 2013b -1.786 -3.188 -0.384

% BVITV Annibali 2013c -1.922 -3.635 -0.209

% BVITV Ansari 2017 12.841 7.078 18.604 -T—

% BVITV Jin 2019 5.036 2.504 7.567 -

% BVITV Wongsupa 2017 6.752 2.610 10.893 S

% BVITV Zhu 2021 3.599 2.104 5.095 -

% BVITV 2.693 -0.001 5.388

BMD(mg/cm?3 Huang 2019 7.503 1.947 13.060 —

BMD(mg/cm3 Saha 2019 -0.954 -2.286 0.379

BMD(mg/cm?3 Vater 2022 -0.437 -1.265 0.390

BMD(mg/cm3 Annibali 2014 0.246 -0.958 1.450

BMD(mg/cm? Asutay 2015 2.971 1.700 4.242 o

BMD(mg/cm3 Zhang 2020 1.100 -0.815 3.015

BMD(mg/cm?®) 0.918 -0.536 2.373

% bone formation Bakopoulou 2019 12.320 7.263 17.377 ——

% bone formation Behnia 2014 1.942 0.261 3.623 -

% bone formation Campos 2019 0.896 -0.293 2.084 ™

% bone formation Colpak 2019 13.325 9.987 16.662 el

% bone formation da Silva 2022 3.079 1.247 4.912 —_—

% bone formation Kuo 2015a 4,583 1.536 7.631 —

% bone formation Kuo 2015b 1.781 -0.110 3.672 -

% bone formation Kuo 2015¢c 3.548 0.981 6.116 —

% bone formation Kwon 2015 9.466 5.136 13.797 —

% bone formation Maraldi 2013 2.373 0.755 3.991 il

% bone formation Petridis 2015 0.951 0.167 1.734

% bone formation Pisciotta 2012 4.579 1.942 7.216 ——

% bone formation Salgado 2020 1.110 -0.379 2.599

% bone formation Seo 2008 7.286 4.159 10.412 ——

% bone formation Xavier Acasigua 2014 2.149 0.592 3.706 i

% bone formation 3.929 2.612 5.246

New bone formation mm?2 Colorado 2022 1.377 -0.001 2.756

New bone formation mm?2 Fang 2017 2.815 0.050 5.580

New bone formation mm?2 Goncalves 2016a -0.111 -1.244 1.021

New bone formation mm?2 Goncalves 2016b -0.744 -1.914 0.426

gew blclme formation mm?2 2222 -2;/22 ;ggg A

vera . . .
-20.00 -10.00 0.00 10.00 20.00
Groups Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Number Point Standard

Group Studies estimate error Variance  Lower limit Upper limit Zvalue P-value Q-value df (Q) P-value Isquared
Fixed effect analysis
1:% BV/TV 7 0.727 0.363 0.132 0.016 1.438 2.005 0.045 74.054 6 0.000 91.898
2:BMD 6 0.378 0.268 0.072 0.146 0.903 1414 0.157 30.456 5 0.000 83.583
3: % bone 15 2.152 0.224 0.050 1.714 2.591 9.623 0.000 103.212 14 0.000 86.436
4: New bone 4 0.213 0.347 0.120 0.466 0.893 0.616 0.538 9.026 3 0.029 66.763
Total within 216.748 28 0.000
Total between 36.998 3 0.000
Overall 32 1.115 0.142 0.020 0.837 1.392 7.874 0.000 253.745 31 0.000 87.783
Mixed effects analysis
1:% BV/TV 7 2.693 1.375 1.890 -0.001 5.388 1.959 0.050
2: BMD 6 0.918 0.742 0.551 0.536 2373 1.237 0.216
3: % bone 15 3.929 0.672 0.451 2612 5.246 5.847 0.000
4: New bone 4 0.500 0.643 0.413 0.759 1.760 0.778 0.436
Total between 15.936 3 0.001
Overall 32 1.863 0.378 0.143 1.121 2.605 4922 0.000

Fig. 3 Overall effect by bone regeneration measurement unit
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Mean Difference: %BV/TV Only

Page 19 of 32

Std mean Lower Upper

Outcome Measures Study . . = Std mean difference and 95% ClI
difference limit limit
% BVITV Annibali 2013a -3.560-17.025 9.905
% BVITV Annibali 2013b -14.020-23.336 -4.704 ——
% BVITV Annibali2013c ~ -12.790-22.316 -3.264 ——
% BVITV Ansari 2017 58.600 52.943 64.257 7
% BV/TV Jin 2019 16.550 12.476 20.624 L
% BVITV Wongsupa 2017 12.050 9.194 14.906 [ |
% BVITV Zhu 2021 9.060 6.734 11.386 [ |
% BVITV 9.983 -2.759 22.725
-50.00 _ -25.00 0.00 25.00 50.00
Groups Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Number Point Standard
Group Studies estimate error Variance  Lower limit Upper limit Z-value P-value Q-value df (Q) P-value I-squared
Fixed effect analysis
1:9% BV/TV 7 13.251 0.781 0.610 1.721 14.781 16.971 0.000 330.174 6 0.000 98.183
Random effects analysis
1:9% BV/TV 7 9.983 6.501 42,266 2.759 22725 1536 0.125
Fig. 4 Subgroup effect analysis of the % BV/TV group
Mean Difference: BMD Only
Outcome Measures Study Std mean Lower UpPer  st4 mean difference and 95% CI
difference limit limit
BMD (mg/cm?3) Huang 2019 282.750 208.893 356.607 L
BMD (mg/cm?3) Saha 2019 -49.000 -114.013 16.013
BMD (mg/cm?3) Vater 2022 -24.320 -69.812 21.172
BMD (mg/cm?3) Annibali 2014  63.550 -246.215 373.315
BMD (mg/cm?3) Asutay 2015 0.160 0.113 0.207
BMD (mg/cm?3) Zhang 2020 0.110 -0.069 0.289
BMD (mg/cm?) 0.149 -0.543 0.841
-50.00 -25.00 0.00 25.00 50.00
Groups Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Number Point Standard
Group Studies estimate error Variance  Lower limit Upper limit Z-value P-value Q-value df (Q) P-value l-squared
Fixed effect analysis
2: BMD 6 0.157 0.023 0.001 0.111 0.202 6.734 0.000 59.988 5 0.000 91.665
Random effects analysis
2: BMD 6 0.149 0.353 0.125 -0.543 0.841 0423 0.672

Fig. 5 Subgroup effect analysis of the bone mineral density (mg/cm?) group
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Mean Difference: % Bone Formation Only
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Std mean Lower Upper

Outcome Measures Study difference limit limit Std mean difference and 95% CI

% bone formation Bakopoulou 2019 9.470 8.600 10.340 .

% bone formation Behnia 2014 30.490 8.73352.247 i

% bone formation Campos 2019 9.700 -2.695 22.095 +——

% bone formation Colpak 2019 10.550 10.001 11.099 .

% bone formation da Silva 2022 34.280 20.481 48.079 -+

% bone formation Kuo 2015a 35.800 23.300 48.300 +—a—

% bone formation Kuo 2015b 8.800 0.89116.709 ——

% bone formation Kuo 2015¢ 12.600 6.917 18.283 -

% bone formation Kwon 2015 47.000 40.846 53.154 = |

% bone formation Maraldi 2013 13.520 6.458 20.582 -

% bone formation Petridis 2015 8.380 1.834 14.926 -

% bone formation Pisciotta 2012 30.000 20.920 39.080 i

% bone formation Salgado 2020 3.760 -0.934 8.454 o

% bone formation Seo 2008 32.460 27.418 37.502 E 3

% bone formation Xavier Acasigua 2014  7.610 3.221 11.999 L 3

% bone formation 17.580 14.257 20.904 O

-50.00 -25.00 0.00 25.00 50.00
Groups Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Number Point Standard

Group Studies estimate error Variance  Lower limit Upper limit Z-value P-value Q-value df (Q) P-value I-squared
Fixed effect analysis
3: % bone 15 10.659 0.230 0.053 10.209 11.110 46.385 0.000 272.450 14 0.000 94.861
Random effects analysis
3: % bone 15 17.580 1.696 2.876 14.257 20.904 10.367 0.000

Fig. 6 Subgroup effect analysis of % bone formation group

p=0.897). The analysis also shows very high heterogene-
ity, that is, the effects wildly vary between studies (Fig. 7).

Effect of scaffold on bone regeneration in response

to human DPSC/SHED

Different types of scaffolds were used by the included
studies in this meta-analysis. To analyse the effect of scaf-
fold types in bone regeneration, we grouped all the scaf-
fold into 4 groups: 1. collagen-containing scaffold group,
2. hydroxyapatite (HA)-containing scaffold group, 3.
both (collagen- and HA-containing scaffold) and 4. other
(non-collagen- and non-HA-containing scaffold). Over-
all, different scaffold groups have significant differences
on bone regeneration in combination with DPSC/SHED
irrespective of the outcome measure used (MD: 1.442,

95% CI 0.743-2.142, p <0.001). Collagen-containing scaf-
fold regenerate new bone 3 times higher (MD: 2.992,
95% CI 1.249-4.736, p<0.001), HA-containing scaf-
fold regenerate new bone almost 2.5 times higher (MD:
2.471, 95% CI 0.705-4.238, p<0.001), and ‘other group’
regenerate new bone 3 times higher (MD: 3.275, 95%
CI 1.608-4.943, p<0.001) in combination with human
DPSC/SHED compared to all the other groups (Fig. 8 and
Additional file 4).

Unstandardised random effect analysis of the % BV/TV
outcome measure among different scaffold groups has
shown that only collagen-containing scaffolds regenerate
bone almost 10 times higher (MD: 9.740, 95% CI 2.368—
17.111, p<0.001) in combination with human DPSC/
SHED compared to all the other groups (Additional file 5
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Mean Difference: New Bone Formation Only

Std mean Lower Upper

Outcome Measures Stud . . P Std mean difference and 95% CI
y difference limit limit
New bone formation mm? Colorado 2022 41.960 4.196 79.724
New bone formation mm? Fang 2017 2139 0.650 3.628
New bone formation mm? Goncalves2016a  -0.010 -0.112 0.092
New bone formation mm? Goncalves2016b  -0.060 -0.151 0.031
New bone formation mm? 0.015 -0.213 0.243
-1.00 -0.50 0.00 0.50 1.00
Groups Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Number Point Standard
Group Studies estimate error Variance  Lower limit Upper limit Z-value P-value Q-value df (Q) P-value I-squared
Fixed effect analysis
4: New bone 4 -0.033 0.035 0.001 -0.101 0.035 -0.955 0.339 13.452 3 0.004 77.698
Random effects analysis
4: New bone 4 0.015 0.116 0.014 -0.213 0.243 0.130 0.897
Fig. 7 Subgroup effect analysis of new bone formation (mm?) group
Std mean Lower Upper . o
Scaffolds Study difference  limit limit Std mean difference and 95% CI
Both (collagen+HA) Salgado 2020 1.110 -0.379 2.599
Both (collagen+HA) Goncalves 2016a -0.111 -1.244 1.021
Both (collagen+HA) Goncalves 2016b -0.744 -1.914 0.426
Both (collagen+HA) -0.005 -0.988 0.977
Collagen-containing scaffold Annibali 2013a -0.396 -1.907 1.115 p—
Collagen-containing scaffold Jin 2019 5.036 2.504 7.567 ———
Collagen-containing scaffold Zhu 2021 3.599 2.104 5.095 —l—
Collagen-containing scaffold Vater 2022 -0.437  -1.265 0.390 -
Collagen-containing scaffold Annibali 2014 0.246  -0.958 1.450 i
Collagen-containing scaffold Behnia 2014 1.942 0.261 3.623 e
Collagen-containing scaffold Colpak 2019 13.325 9.987 16.662
Collagen-containing scaffold Maraldi 2013 2.373 0.755 3.991 ——
Collagen-containing scaffold Pisciotta 2012 4.579 1.942 7.216 ——
Collagen-containing scaffold Fang 2017 2.815 0.050 5.580
Collagen-containing scaffold 2.993 1.249 4.737
Hydroxyapatite-containing scaffold Annibali 2013c -1.922 -3.635 -0.209
Hydroxyapatite-containing scaffold Wongsupa 2017 6.752 2.610 10.893
Hydroxyapatite-containing scaffold Asutay 2015 2.971 1.700 4.242 el
Hydroxyapatite-containing scaffold Campos 2019 0.896 -0.293 2.084 [——
Hydroxyapatite-containing scaffold da Silva 2022 3.079 1.247 4.912 |
Hydroxyapatite-containing scaffold Seo 2008 7.286 4.159 10.412
Hydroxyapatite-containing scaffold Colorado 2022 1.377 -0.001 2.756 —a—
Hydroxyapatite-containing scaffold 2.472 0.705 4.238 i
Other (non-collagen non-HA scaffold) Annibali 2013b -1.786  -3.188 -0.384
Other (non-collagen non-HA scaffold) Ansari 2017 12.841 7.078 18.604 —
Other (non-collagen non-HA scaffold) Huang 2019 7.503 1.947 13.060
Other (non-collagen non-HA scaffold) Saha 2019 -0.954 -2.286 0.379 =
Other (non-collagen non-HA scaffold) Zhang 2020 1.100 -0.815 3.015 ——
Other (non-collagen non-HA scaffold) Bakopoulou 2019  12.320 7.263 17.377 —
Other (non-collagen non-HA scaffold) Kuo 2015a 4.583 1.536 7.631 —_—
Other (non-collagen non-HA scaffold) Kuo 2015b 1.781 -0.110 3.672 1l
Other (non-collagen non-HA scaffold) Kuo 2015c 3.548 0.981 6.116 ——
Other (non-collagen non-HA scaffold) Kwon 2015 9.466 5.136 13.797
Other (non-collagen non-HA scaffold) Petridis 2015 0.951 0.167 1.734 —r—
Other (non-collagen non-HA scaffold) Xavier Acasigua 2014 2.149 0.592 3.706 e
Other (non-collagen non-HA scaffold) 3.276 1.609 4.943 —~—
Overall 1.442 0.743 2.142 L 4
-10.00 -5.00 .00 10.00

Fig. 8 Overall effect of scaffold types on bone regeneration in animal models in response to human DPSC/SHED



Namjoynik et al. Stem Cell Research & Therapy ~ (2023) 14:132

and Additional file 6). Analysis of the BMD group has
shown that scaffold types does not have any significant
effect on bone regeneration (Additional file 7and Addi-
tional file 8). Analysis of the % new bone formation group
has shown that collagen-containing scaffolds regenerate
new bone 18 times higher (MD: 18.80, 95% CI 9.310-
28.40, p<0.001), HA-containing scaffolds regenerate
new bone almost 26 times higher (MD: 25.872, 95% CI
11.650—40.095, p<0.001) and the ‘other’ scaffold group
regenerate new bone 18 times higher (MD: 18.004, 95%
CI 8.959-27.049, p<0.001), in combination with human
DPSC/SHED compared to all the other groups (Addi-
tional file 9and Additional file 10). This suggests HA-con-
taining scaffolds have larger effect on bone regeneration
compared to other type of scaffolds. Analysis of the new
bone formation (mm?) group has shown the significant
effect of the collagen-containing and HA-containing
scaffold on bone regeneration. However, as only 1 study
is included in each group true effect cannot be validated
for the outcome measure—new bone formation (mm?)
(Additional file 11and Additional file 12).
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Bone regeneration capacity of different animal species
in response to human DPSC/SHED
There is a significant difference on bone regeneration
among species in response to human DPSC/SHED irre-
spective of the outcome measure used (MD: 2.268, 95%
CI 1.573-2.962, p<0.001). In particular, rats regener-
ate new bone 2 times higher (MD: 2.007, 95% CI 1.038—
2.977, p<0.001), swine regenerate new bone almost
3 times higher (MD: 2.975, 95% CI — 1.329-4.620,
p<0.001), mice regenerate new bone 2.5 times higher
(MD: 2.489, 95% CI 0.476—4.501, p <0.05) and dog regen-
erate new bone almost 2 times higher (MD: 1.942, 95% CI
0.261-3.623, p<0.05) in response to human DPSC/SHED
compared to other species (Fig. 9 and Additional file 13).
Unstandardised random effect analysis of the % BV/
TV outcome measure among different species has
shown that rats ((MD: 16.550, 95% CI 12.476-20.624,
p<0.001) and rabbits (MD: 12.050, 95% CI 9.194-
14.906, p<0.001) regenerate bone significantly higher
in response to DPSC/SHED (16 times and 12 times,
respectively) compared to other species (Additional
file 14and Additional file 15). Animal species have

Std mean Lower Upper

Species Study . . e Std mean difference and 95% CI
difference limit limit
Dog Behnia 2014 1.942 0.261  3.623 ——
Dog 1.942 0.261 3.623 ——
Mice Annibali 2013a -0.396 -1.907 1.115 —_—
Mice Annibali 2013b -1.786 -3.188 -0.384 —_—
Mice Annibali 2013c -1.922 -3.635 -0.209 —
Mice Ansari 2017 12.841 7.078 18.604 —
Mice Zhu 2021 3.599 2.104 5.095 —
Mice Vater 2022 -0.437 -1.265 0.390 -1
Mice Bakopoulou 2019 12.320 7.263 17.377 —_—
Mice Salgado 2020 1.110 -0.379 2.599 T
Mice Seo 2008 7.286 4.159 10.412
Mice 2.489 0.476 4.501
Rabbits Wongsupa 2017 6.752 2.610 10.893 =
Rabbits Zhang 2020 1.100 -0.815 3.015 -1
Rabbits 3.615 -1.890 9.120 e ——
Rats Jin 2019 5.036 2.504 7.567 I —
Rats Huang 2019 7.503 1.947 13.060
Rats Saha 2019 -0.954 -2.286 0.379 o
Rats Annibali 2014 0.246 -0.958 1.450 -1
Rats Asutay 2015 2.971 1.700 4.242 —
Rats da Silva 2022 3.079 1.247  4.912 ——
Rats Kwon 2015 9.466 5.136 13.797
Rats Maraldi 2013 2.373 0.755 3.991 —
Rats Petridis 2015 0.951 0.167 1.734 —
Rats Pisciotta 2012 4.579 1.942 7.216 —
Rats Xavier Acasigua 2012.149 0.592 3.706 _
Rats Colorado 2022 1.377 -0.001 2.756 [
Rats Fang 2017 2.815 0.050 5.580
Rats Goncalves 2016a -0.111 -1.244 1.021 -
Rats Goncalves 2016b -0.744 -1.914 0.426 -
Rats 2.007 1.038 2.977 -
Sheep Campos 2019 0.896 -0.293 2.084 T
Sheep Colpak 2019 13.325 9.987 16.662 by
Sheep 7.008 -5.170 19.187
Swine Kuo 2015a 4.583 1.536 7.631 -_—
Swine Kuo 2015b 1.781 -0.110 3.672 [l
Swine Kuo 2015c 3.548 0.981 6.116 e
Swine 2.975 1.329 4.620 —~—
Overall 2.268 1.573 2.962 4
-10.00 -5.00 0.00 5.00 10.00

Fig. 9 Overall effect of different animal species on bone regeneration in response to human DPSC/SHED
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non-significant effect in BMD (Additional file 16 and
Additional file 17). Analysis of the % new bone forma-
tion group has shown that swine regenerate new bone
almost 18 times higher (MD: 17.912, 95% CI 5.450-
30.375, p<0.001), sheep regenerate new bone 10 times
higher (MD: 10.548, 95% CI 10.00-11.096, p <0.001),
dog regenerate new bone 30 times higher (MD: 30.490,
95% CI 8.733-52.247, p<0.001), rats regenerate new
bone 23 times higher (MD: 23.200, 95% CI 8.923-
37.477, p<0.01) and mice regenerate new bone 15 times
higher (MD: 15.115, 95% CI 1.882-28.348, p<0.001) in
response to human DPSC/SHED compared to other
species (Additional file 18and Additional file 19). This
suggests that dog have the highest bone regenerating
capacity among all animal species analysed. Analysis of
the new bone formation (mm?) group has shown that
animal species (rats only) does not have any significant
effect in bone formation (Additional file 20and Addi-
tional file 21).
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Effect of the site of defect on bone regeneration

in response to human DPSC/SHED

Overall, different bone defect models have significant
differences on bone regeneration (MD: 0.892, 95% CI
0.465-1.319, p<0.001) in response to human DPSC/
SHED. However, only calvarial defect (MD: 2.743, 95%
CI 1.472-4.017, p<0.001) and mandibular defect (MD:
2.709, 95% CI 1.488-3.930, p <0.001) have shown signifi-
cantly higher bone regeneration in response to human
DPSC/SHED compared to other sites of defects, irre-
spective of the outcome measure used (Fig. 10 and Addi-
tional file 22).

Unstandardised random effect analysis of the %bone
formation group only has shown the significant differ-
ences in bone regeneration among different bone defect
models (MD: 10.562, 95% CI 10.562-11.106, p <0.001).%
bone formation in mandibular defect is almost 20 times
higher (MD: 19.825, 95% CI 8.380-31.30, p<0.001), in
calvarial defect is 20 times higher (MD: 20.127, 95% CI
5.465-34.790, p<0.01) and in cranial defect is 30 times
higher (MD: 30.020, 95% CI 9.214-51.20, p<0.001), in
response to human DPSC/SHED compared to other
defects (Additional file 23 and Additional file 24).

Group by Study name Statistics for each study
Bone_Defect_Model std diff Lower
in means limit
Bilateral Iliac defect Colpak 2019 13.325 9.987
Bilateral Tliac defect 13.325 9.987
Calvariae cranial defect Fang 2017 2.815 0.050
Calvariae cranial defect 2.815 0.050
Calvarial defect Wongsupa 2017 6.752 2.610
Calvarial defect Zhu 2021 3.599 2.104
Calvarial defect Huang 2019 7.503 1.947
Calvarial defect Saha 2019 -0.954 -2.286
Calvarial defect Asutay 2015 2.971 1.700
Calvarial defect da Silva 2022 3.079 1.247
Calvarial defect Petridis 2015 0.951 0.167
Calvarial defect Seo 2008 7.286 4.159
Calvarial defect Xavier Acasigua 2014 2.149 0.592
Calvarial defect Colorado 2022 1.377 -0.001
Calvarial defect 2.744 1.472
Cranial defect Annibali 2013a -0.396 -1.907
Cranial defect Annibali 2013b -1.786 -3.188
Cranial defect Annibali 2013c -1.922 -3.635
Cranial defect Annibali 2014 0.246 -0.958
Cranial defect Kwon 2015 9.466 5.136
Cranial defect Maraldi 2013 2.373 0.755
Cranial defect Pisciotta 2012 4.579 1.942
Cranial defect 1.222 -0.673
Mandibular defect Jin 2019 5.036 2.504
Mandibular defect Zhang 2020 1.100 -0.815
Mandibular defect Behnia 2014 1.942 0.261
Mandibular defect Kuo 2015a 4.583 1.536
Mandibular defect Kuo 2015b 1.781 -0.110
Mandibular defect Kuo 2015¢ 3.548 0.981
Mandibular defect 2.709 1.488
Middiaphyseal defect Vater 2022 -0.437 -1.265
Middiaphyseal defect -0.437 -1.265
Middiaphysial defect Campos 2019 0.896 -0.293
Middiaphysial defect 0.896 -0.293
Periodontal fenestration defect Goncalves 2016a -0.111 -1.244
Periodontal fenestration defect Goncalves 2016b -0.744 -1.914
Periodontal fenestration defect -0.417 -1.231
Subcutaneous implantation Ansari 2017 12.841 7.078
Subcutaneous implantation Bakopoulou 2019 12.320 7.263
Subcutaneous implantation Salgado 2020 1.110 -0.379
Subcutaneous implantation 8.463 -0.588
Overall 0.892 0.465

Std diff in means and 95% CI

Upper
limit
16.662
16.662

5.580
5.580
10.893
5.095
13.060
0.379
4.242
4.912
1.734
10.412
3.706
2.756
4.015
1.115
-0.384
-0.209
1.450
13.797

AVAYA

3.991
7.216
3.118 =
7.567
3.015 —
3.623
7.631
3.672
6.116
3.930
0.390
0.390
2.084
2.084
1.021
0.426
0.396
18.604

17.377

2.599 -

—
—
e
17.515 —
1.320 <

-10.00 -5.00

Fig. 10 Overall effect of the site of defect in animal on bone regeneration in response to human DPSC/SHED
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Out of 27 included papers, 25 experimental groups
used DPSC, and 7 experimental groups used SHED with
the scaffold for bone regeneration (Additional file 25,
Additional file 26, Additional file 27, Additional file 28,
Additional file 29and Additional file 30). DPSC group
had an overall effect of 2.512 (95% CI 1.534-3.490)
and SHED had an overall average effect of 2.774 (95%
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CI 0.815-4.734), meaning no difference on the effect
between DPSC and SHED (Additional file 31).

Sensitivity analysis

Using the leave-one-out method, no single study was
identified as a remarkably influential study and remov-
ing any single study did not alter neither outcomes nor

Effect on outcome of removing individual studies

Std diffin means (95% Cl) with study removed

Study name

Lower Upper
Point limit limit
Annibali 2013a 2660 1782 3538
Annibali 2013b 2689 1830 3548
Annibali 2013c 2690 1.828 3.551
Ansari 2017 2.367 1529 3.204
Jin 2019 2453 1595 3.312
Wongsupa 2017 2.442 1.587 3.297
Zhu 2021 2498 1631 3365
Huang 2019 2459 1604 3314
Saha 2019 2677 1804 3.550
Vater 2022 2684 1794 3574
Annibali 2014 2653 1763 3.543
Asutay 2015 2532 165 3409
Zhang 2020 2603 1724 3482
Bakopoulou 2019 2.344 1510 3.177
Behnia 2014 2576 1696 3.457
Campos 2019 2633 1.740 3.527
Colpak 2019 2.163 1382 2945
da Silva 2022 2.526 1654 3.399
Kuo 2015a 2481 1618 3.344
Kuo 2015b 2579 1701 3.458
Kuo 2015¢ 2511 1643 3379
Kwon 2015 2378 1535 3220
Maraldi 2013 2559 1680 3438
Petridis 2015 2665 1744 3586
Pisciotta 2012 2474 1611 3336
Salgado 2020 2613 1.728 3.499
Seo 2008 2389 1543 3235
Xavier Acasigua 2024670 1.688  3.451
Colorado 2022 2607 1.719 3.49%4
Fang 2017 2537 1667 3.407
Goncalves2016a 2.666 1.778 3.554
Goncalves2016b 2.676 1.799 3.554
2541 1686 3395
-10.00

[TTTRT R RRTTERES T RReRURn T oo

5.00 0.00 5.00 10.00

Fig. 11 Sensitivity analysis—Ileave-one-out method. This figure looks at whether any individual studies were unduly influential by rerunning the
analysis with that single study removed. This time, each row represents the overall effect that was found when the named study is not included. The

overall effect is barely altered by the removal of any one study
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heterogeneity remarkably (Fig. 11). Excluding the low-
quality study (Ansari 2017), the results did not alter sig-
nificantly either (data not shown). When the effect is
calculated using only studies with 10 or more samples,
the effect size increases somewhat from 1.8 to 2.7. Only
looking at the larger studies has increased the observed
effect significantly to a standardised mean difference of
2.740 compared with the original of 1.863 (p<0.0001),
meaning the effect of the experimental (scaffold +den-
tal pulp stem cells) group in bone regeneration is greater
than control (scaffold) groups (Fig. 12). Therefore, these
sensitivity analyses indicate that the results generated in
this meta-analysis are robust and reliable.

Publication bias

The funnel plot is to explore the possibility of publica-
tion bias affecting the results. Overall, the plot exhibits
no obvious asymmetry representing a lack of remarkable
publication bias (Fig. 13).

Discussion

All the scaffolds were biocompatible and were tested
in vitro along with DPSCs or SHED prior to their use in
the animal bone defect model. Irrespective of the types
or composition of the scaffolds and different outcome
measures used for bone regeneration, DPSCs/SHED-
incorporated scaffolds enhanced the amount of bone
regeneration highly significantly compared to the cell-
free scaffold (p<0.0001). In the subgroup analysis, we
grouped all the included studies according to the out-
come measure units, animal species, scaffold groups,
site of defects and two types of dental pulp stem cells:
adult DPSCs and SHED. In the outcome measure sub-
group analysis, dental pulp stem cells incorporated with
the scaffolds in the % bone formation group significantly
increased, and in the % BV/TV, BMD-mg/cm?, new bone
formation-mm? group, it shows no significant difference
in bone regeneration in comparison with the scaffold-
only control. Dogs and hydroxyapatite-containing scaf-
folds have the highest % new bone forming capacity in
response to human DPSC/SHED. The non-significant
effect of the scaffold with dental pulp stem cells in bone
regeneration in the % BV/TV, BMD and new bone for-
mation-mm? group can partly be explained by the higher
mean difference between the studies and low number
of sample sizes in each group. The variable mean differ-
ences in our analyses, in case of %BV/TV, BV (mm3),
BMD (mg/cm3), % bone formation and new bone for-
mation (mm2), may represent the differences in terms
of study design and treatment protocol (i.e. bone defect
models, scaffold types and animal species used). In addi-
tion, a considerable heterogeneity was observed which
also may represent the variable mean differences across
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the included studies. Besides, studies with smaller sam-
ple sizes or weaker study designs may have contributed
to the smaller treatment effects than studies with larger
sample sizes or stronger designs. These factors altogether
may have affected the overall mean differences between
the intervention and control groups across the included
studies. % BV/TV have only 70 samples (7 studies), bone
mineral density (mg/cm®) have 74 samples (6 studies),
and new bone formation (mm?) have only 38 samples (4
studies). In total, 181 samples were tested in the % bone
formation group (15 studies) in the meta-analysis. Using
a smaller sample size than the ideal undermines the inter-
nal and external validity of the results. Thus, sample size
calculation is essential in designing a study for methodo-
logical and ethical reasons. In this meta-analysis, only 2
papers reported the sample size calculations. The impor-
tance of sample sizes was further confirmed when studies
with less than 10 samples were excluded in the sensitiv-
ity analysis and showed a highly significant (p <0.0001)
increase in the effect of the scaffold +stem cell group in
bone regeneration from 1.863 to 2.740.

Dental stem cells were first isolated and character-
ised from the dental pulp of the adult permanent teeth
(DPSC) and subsequently from the dental pulp of decid-
uous teeth (milk teeth) (SHED) [68]. SHED has been
reported to exhibit a higher proliferation rate, differen-
tiation potential and increased mineralisation capac-
ity in vivo compared to DPSCs due to their origin from
a more immature subpopulation than permanent teeth
[69]. However, Nakajima et al. (2018) reported that SHED
and human DPSC transplantation in the mice bone defect
model exhibited nearly the same quantity of new bone
formation [11]. In this meta-analysis, the scaffold + DPSC
group and the scaffold+SHED group also show no dif-
ference in effect on bone regeneration. This observation
is the first evidence in synthesising the data published on
the role of DPSC and SHED in bone regeneration in ani-
mal models. This meta-analysis shows the evidence that
the DPSCs and SHED play vital roles in bone regenera-
tion irrespective of the type of scaffold used. The purpose
of using human DPSC/SHED in the animal bone defect
model is to explore their bone regeneration ability. In
this meta-analysis, it is evident that human DPSC/SHED
have successfully differentiated into bone forming cells
and regenerate bone in the animal defect areas more than
the cell-free group. This indicates that the formed bone
tissues are mostly donor-derived. Some studies also ana-
lysed the fate of the transplanted stem cells using human
mitochondrial antibody and have shown the presence
of human cells in the regenerated bone in animals [42,
52, 59]. However, all the studies have shown some bone
formation in the scaffold-only (cell-free) group meaning
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Std Diff Studies N = 10 Only

Std mean Lower Upper
Study name difference  limit limit Std mean difference and 95% CI
Annibali 2013b -1.786 -3.188 -0.384 _._
Ansari 2017 12.841  7.078 18.604 —_—
Jin 2019 5.036 2504 7.567 +
Zhu 2021 3.599 2104 5.095 _._
Saha 2019 -0.954 -2.286 0.379 _.. L
Vater 2022 -0.437 -1.265  0.390
Annibali 2014 0.246 -0.958  1.450
Asutay 2015 2.971  1.700 4.242 _._
Bakopoulou 2019 12.320  7.263 17.377 —_—
Campos 2019 0.896 -0.293  2.084 . .._
Colpak 2019 13.325  9.987 16.662
da Silva 2022 3.079 1247 4912 +
Kwon 2015 9.466  5.136 13.797 —
Maraldi 2013 2.373  0.755  3.991 +
Petridis 2015 0.951 0.167 1.734 ...
Seo 2008 7.286  4.159 10.412 B
Xavier Acasigua 2014 2149 0592 3.706 +
Colorado 2022 1.377 -0.001  2.756 _._
Goncalves 2016a -0.111  -1.244  1.021 _._
Goncalves 2016b -0.744 -1.914  0.426 _.. L
2740 1.628 3.851 ‘
-10.00 -5.00 0.00 5.00 10.00
Model Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity
Model Sdes  estmate emor  Variance Lowerlimt Upperlimit  Zwalue  Palue Quale (@  Pualue  lsquared

Fixed
Random

20
20

1.039
2.740

0.160
0.567

0.025
0.322

0.726
1.628

1.352
3.851

6.512
4.831

0.000
0.000

207.505 19 0.000 90.844

Fig. 12 Sensitivity analysis-removing small studies. Studies with sample sizes equal to or more than 10 were included to analyse the changes in

effect



Namjoynik et al. Stem Cell Research & Therapy ~ (2023) 14:132

Page 27 of 32

Funnel Plot of Standard Error by Std diff in means
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Fig. 13 Funnel plot. The observed data are represented by hollow circles and diamonds. The large studies are at the top of the figure and are
indeed broadly evenly distributed on either side of the observed effect. Small studies are at the bottom of the figure and do seem to be biased
towards very large effect sizes, suggesting possible bias. The filled-in circles and diamonds represent replacing the hypothetical ‘missing’ studies
to see how the effect changes. The effect size drops but does not disappear, suggesting publication bias exaggerates effect size though does not

explain the effect entirely

host-derived bone formation occurred in some extent in
response to the scaffolds.

Impacted and unerupted wisdom teeth (3rd molar)
extraction is one of the most routine procedures in oral
surgery, and the extracted teeth can be recycled for den-
tal pulp stem cell extraction [70, 71]. SHED, the immature
MSCs are obtained from naturally exfoliated deciduous
teeth. Thus, teeth could offer unique, easily accessible
and non-invasive (particularly for deciduous teeth) stem
cell resources with limited legal and ethical concerns [72,
73]. Removal of autogenous grafts from other sites have
associated with morbidity, and the use of SHED or DPSC
may avoid those inconveniences. Moreover, contrary to
autologous bone grafts, SHED or DPSC can be multiplied
in vitro prior to their use in vivo to generate the suitable
number of cells for the tissue being restored. Applying
this principle could decrease or prevent issues associated
with the autogenous grafting method, such as the risk of
infection and the limited amount of tissue that can be
extracted from the donor site [74]. Furthermore, DPSC
and SHED are originated from the neural crest, which
makes them mostly compatible with the regeneration
and repair of neural crest-derived tissues, e.g. jawbone

[75, 76]. DPSCs have already attracted interest as an
alternative to improve the outcome of dental implants
[77]. Studies such as Alge et al. [78] and Stanko et al. [79]
also indicated that DPSCs are more proliferative, have a
higher percentage of stem cells and possess higher osteo-
genic potential than bone marrow stem cells (BMSCs),
which are still regarded as the gold standard for bone tis-
sue formation [77].

So far, researchers are investigating various approaches
to utilise stem cells for bone regeneration; but, in order
to exploit the full potential of stem cell therapy, the scaf-
fold should hold the stem cells at the implantation site
and maintain the essential characteristics of stem cells
such as self-renewal and stimulate them to differenti-
ate [80]. From this systematic review, it is observed that
out of 49 articles, only 4 articles provided evidence that
the scaffold +dental stem cell group did not enhance
the new bone formation compared to the scaffold-only
group. Annibali et al. [20] used three different types of
scaffolds, namely GDPB (Bio-Oss)+ Collagen, B-TCP
and Agarose +nanohydroxyapatite with DPSCs, and
all the scaffolds enhanced the new bone formation
alone. Gongalves et al. [34] revealed that polyester poly
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(isosorbide succinate-co-L-lactide) (PisPLLA)+ Colla-
gen + hydroxyapatite and poly (L-lactide) (PLLA)+ col-
lagen + hydroxyapatite alone could form new bone more
than the scaffold+SHED combination in rats. Jahanbin
et al. [38] used a collagen scaffold in combination with
DPSC, but collagen alone formed new bone more than
the combination with cells. Vater et al. [61] incorpo-
rated DPSC and BMSC into mineralised collagen matrix
in a rat bone defect model, but pre-seeding with either
of the cells did not enhance bone defect healing. The
author argued that the inability of the dental pulp stems
to enhance the new bone formation can be explained
by various factors such as: 1. the nature of the scaffolds
interfered with the stem cells osteogenic differentiation
in the microenvironment of the defect or 2. difficulty in
positioning the graft in the experiment wound or 3. the
created microenvironment was not optimal to generate
sufficient osteogenic activity or 4. the lack of appropriate
differentiation factors and most importantly, 5. the pres-
ence of pro-inflammatory mediators could regress the
osteogenic trend of the stem cells [20, 34, 38, 61]. There
are still challenges in designing an ideal scaffold which
not only should support the complex structure of bone
defects to guide bone tissue regeneration, but also, pro-
vide a porous microenvironment to employ biological
factors and stimulate dental pulp stem cell growth and
differentiation. However, with the evidence synthesised
in this meta-analysis, it is clear that the advent of bone
tissue engineering with the incorporation of osteogenic
capable dental pulp stem cells has certainly increased
scaffold effectiveness, increased new bone formation
and added further versatility in bone defect therapy. So
far, only three human clinical trials on bone regeneration
reported results with pre-seeded dental pulp stem cells
with the scaffold and showed evidence of a positive out-
come. D’aquino et al. (2009) reported a split-mouth-con-
trolled trial on 17 patients with socket preservation using
DPSCs pre-seeded on collagen sponge for 1 year. They
revealed that optimal vertical repair and complete resto-
ration of periodontal tissue in the mandible bone defect
were higher at the test site the control site [81]. Herndn-
dez-Monjaraz B et al. (2014) reported preliminary find-
ings of a case study on a patient with periodontal disease.
They pre-seeded SHED with collagen+ polyvinylpyr-
rolidone sponge and implanted it in the pre-molar area.
After 6 months, the patient exhibited a reduction in tooth
mobility, periodontal pocket depth and bone defect area
and an increase in bone mineral density [82]. Tanikawa D
et al. (2020) also reported the result of a case series on 6
cleft lip and palate patients. They also pre-seeded SHED
with hydroxyapatite—collagen sponge and grafted in the
maxillary alveolar defect. SHED therapy resulted in satis-
factory bone healing in this case series [83].
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We, however, acknowledge some limitations in this
systematic review and meta-analysis. Although most of
the included studies (90%) were either medium or low-
risk, only 6% reported the most important method to
avoid bias—the blinded implantation or insertion of
the experimental and control groups. This may increase
the substantial risk of misunderstanding the effect of
scaffold + dental pulp stem cells on bone regeneration.
Included articles differed in animal species, sex, bone
defect model and the healing time. Furthermore, we
found that the studies dealt with the regeneration of dif-
ferent bones by utilising different bone defect models
with different degrees of complexities, and there was lack
of homogenisation between studies in terms of the analy-
sis of new bone formation; therefore, the result obtained
cannot be standardised. Due to the heterogeneity of the
results, we were only able to analyse 27 articles out of 49,
grouped by 4 different units of bone regeneration anal-
ysis. However, we tried to reduce bias in the systematic
review by independent screening, data extraction, evalu-
ation of results and risk of bias evaluation by at least two
blind evaluators.

Conclusion

Since the discovery of dental pulp stem cells, this is the
first meta-analysis that synthesised the evidence of the
effect of dental pulp stem cells pre-seeded with the scaf-
fold on bone regeneration in animal models. This study
also revealed strong evidence of an increase in new bone
formation in response to the ‘dental pulp stem cells and
scaffold’ combination therapy. The increase in the age-
ing population and traumatic injury creates a massive
socioeconomic and healthcare burden, resulting in a
prime need for bone tissue [84, 85]. As the current gold
standard therapies for healing bone defects, autografts
suffer from restricted supply and injury at the donor site;
however, the tissue engineering approach of incorporat-
ing dental pulp stem cells with the biocompatible scaf-
fold could meet the rising demand for clinically relevant
bone tissue. The clinical trials and clinical applications
of dental pulp stem cells on bone regeneration are still
in their infancy due to the large gap in basic and trans-
lational research. Synthesised evidence from this meta-
analysis and a few published clinical trials indicate that
dental pulp stem cells would be a promising tool for
treating various bone diseases, and more clinical trials
should be conducted to evaluate the effectiveness of the
dental pulp stem cell-based therapy.

Abbreviations
hDPSC Human dental pulp stem cell
SHED Stem cells from human exfoliated deciduous teeth
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%BV/TV  Per cent bone volume/total volume
BMD Bone mineral density
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