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Eco-Friendly Design and Sustainability Assessments of
Fibre-Reinforced High-Strength Concrete Structures Automated
by Data-Driven Machine Learning Models
Xia Qin and Sakdirat Kaewunruen *

Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT, UK
* Correspondence: s.kaewunruen@bham.ac.uk

Abstract: In recent years, adding fibres into brittle concrete to improve ductility has gained momen-
tum in the construction industry. Despite the significant momentum, limitations do exist in design
and industrial applications, contributing to the complexity of shear behaviours in fibre-reinforced
concrete and the existing empirical models that can hardly provide a reasonable prediction, especially
for high-strength concrete applications. A critical review reveals that current research mostly focuses
on single eigenvalue analysis and pay less attention to the different synergetic effect of fibres on
high-strength concrete and normal-strength concrete. This study aims to fill the research gap by the
unprecedented use of reliable models for the prediction and evaluation of structural and sustainable
properties of high-strength fibre-reinforced concrete beams. To this end, this study establishes three
novel deep learning (ANN, BNN, and Xgboost) models for designing and optimising the shear
capacity of ‘high-strength’ fibre-reinforced concrete beams towards the circular economy. In addition
to introducing a new type of novel machine learning (BNN) model, which is capable of structural
design and takes into account complex design features, our study also enhances sustainability by
reducing greenhouse gas (GHG) emissions. The novel prediction models unprecedentedly elicit
flexural capacity, structural stiffness, carbon emission, and price, together with the shear strength
for high-strength fibre-reinforced structures. Firstly, this study focuses on multiple parameters for
forecasting high-strength fibre-reinforced concrete beams. In addition, the models provide more
comprehensive insights into the design and manufacture of high-strength steel fibre-reinforced con-
crete structures in a more environmentally friendly manner. With the help of the proposed models, it
will be more cost-benefit and time-efficient for the researchers to obtain the optimum design with
the consideration of both structural and sustainable performance. The established models exhibit
excellent prediction accuracy, and the Bayesian neural network (BNN) is found to have the best
performance: R2 is 0.937, MSE is 0.06 and MAE is 0.175 in shear strength prediction; R2 = 0.968, MSE
is 0.040, and MAE is 0.110 in flexural capacity prediction; R2 is 0.907, MSE is 0.070, and MAE is 0.204
in shear stiffness prediction; R2 is 0.974, MSE is 0.022, and MAE is 0.063 in carbon emission prediction;
and R2 is 0.977, MSE is 0.020, and MAE is 0.082 in price prediction.

Keywords: high-strength concrete; sustainable development analysis; machine learning; fibre-
reinforced concrete beams; structure analysis

1. Introduction

At present, high-strength concrete has been widely used in bridges, dams, high-rise
buildings, and tunnels due to its superior performance in improving mechanical properties
and economic benefits compared with normal-strength concrete [1]. Nevertheless, many
engineers still do not thoroughly understand the behavioural differences among concrete
classes, and the weakness of high-strength concrete cannot be ignored. High-strength
concrete is more brittle than normal-strength concrete, and its limited ductility affects shear
and flexural capacities [2]. In practice, there has been attempts to add artificial or natural
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fibres into all kinds of concrete, to not only improve the tensile strength of concrete but
also strengthen part of the function of steel rebars in concrete [3]. Fibres include glass fibre,
polymer fibre, basalt fibre, and steel fibre [4–7], of which industrial steel fibre, as the most
popular one, has been generally used in suit applications.

Adding steel fibres to high-strength concrete can significantly improve the material
properties in terms of tensile strength, flexural strength, toughness, ductility, and resistance
to cracking and dynamic loading [8–10]. Previous laboratory tests showed that the addition
of steel fibres resulted in the greatest increase in shear strength and ductility of reinforced
concrete beams. Amin, et al. [11] pointed out that the use of a sufficient percentage (1–2%)
of steel fibres can transform the brittle shear mechanism into a ductile flexural mechanism,
which could further allow substantial energy dissipation. However, aiming to increase the
performance of concrete, especially in improving strength, ductility, and durability, the use
of cementitious materials in high-strength concrete is obliged to be increased compared to
that of normal-strength concrete. According to the report by Luo, et al. [12], the combination
of reinforced steel rebars and concrete contributes 65–75% of total carbon emissions in
buildings, and that percentage will be increased in higher buildings. In this context, the
more efficient use of materials with the aspect of structural design and sustainable design
optimized for total cost and carbon footprint is essential.

In contemporary structural designs, to identify the shear behaviours and practical
application of steel fibre in fibre-reinforced concrete beams, some empirical equations
have been proposed based on experimental results and theoretical analysis. However,
most studies tend to focus on the normal-strength fibre-reinforced concrete beam, while
ignoring the synergetic effect between fibres and concrete, which changes with increasing
compressive strength. Hence, Khuntia, et al. [13], Al-Ta’an, et al. [14], and Ashour, et al. [15]
each proposed the calculation formula for high-strength fibre-reinforced concrete beams.
Since the current empirical or semi-empirical formulations are developed based on narrow
datasets, it is reasonable to develop a data-driven model for predicting shear strength of
high-strength fibre-reinforced concrete beams.

Recently, machine learning (ML) techniques have witnessed massive research atten-
tion in civil fields such as structural design, concrete mixing, and material sciences [16].
Moreover, strong predictive and generalisation capabilities enable artificial intelligence (AI)
models to find the latent relationship between key inputs and outputs. Zhang, et al. [17]
used the Artificial Neural Network (ANN) model to predict the fly ash-based concrete,
while Mangalathu, et al. [18] applied the Boosting Machine (Xgboost), which was de-
veloped based on the decision tree-based models, to predict failure mode of reinforced
concrete shear walls. Moreover, Sandeep, et al. [19] reviewed the application of different
machine learning models in predicting the shear strength of steel fibre-reinforced concrete
beams. To be specific, the accuracy of ML-based algorithms mainly depends on the quantity
and quality of the database used, and ANN, Xgboost, and RF models are observed to be
depicting better performance for shear strength prediction [19]. This study tends to adopt
different types of ML models to predict the performance of high-strength fibre-reinforced
concrete beams in structural design and sustainable development, namely, ANN, Xgboost,
and BNN.

After a brief review, we found that the most relevant studies focus on the normal
strength concrete and single eigenvalue prediction (shear strength). In this context, this
study focuses on using ML techniques to solve three key problems, which have not been
identified: (a) high-strength concrete beams, (b) multi-parameters of structural performance,
and (c) sustainable evaluation. Accordingly, this paper aims to demonstrate the feasibility
of predicting the sustainable and structural performance of high-strength fibre-reinforced
concrete beams by using the most popular ML models. To the author’s knowledge, there
are no ML models focusing on the sustainable and structural analysis and design for
high-strength concrete structures. All previous studies have placed an emphasis only on
low-to-moderate-strength concrete. To fill this knowledge gap, this paper tends to provide
a detailed analysis involving three algorithmic models. In addition, the main objective of
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this paper is to build a comprehensive analysis system for sustainable structural design
and analysis, via ML models, to predict the performance of high-strength fibre-reinforced
beams with the aspect of shear strength, flexural capacities, stiffness carbon emission, and
cost budgets.

2. Literature Review

As described in the part of the introduction, an increasing number of engineers turned
to the application of ML techniques in infrastructure analysis, mainly due to the low
predicting effect of the traditional approaches, such as analytical models and finite element
models, in predicting the structural performance. For example, Hoang [20] evaluated
the system-level seismic response of concrete frame via locally weighted least-squares
support vector machines for regression (LWLS-SVMR) models, and Feng, et al. [21] applied
adaptive boosting (AdaBoost) algorithm in the classification of the bearing capacity of RC
columns. Except for the structural analysis, the investment budget and environmental
impact estimation are also attracted more attention in recent years. Yan, et al. [22] focused
on the investment estimation of prefabricated concrete buildings based on the Xgboost
technology, and Reddy, et al. [23] predicted the energy consumption with the Deep Neural
Networks (DNN) model. After a brief review, we found that there are two key parameters
considered mostly in the research field of using ML models in infrastructure application
analysis: structural and sustainable performance.

Steel fibre-reinforced concrete beams are known for their enhanced post-cracking
behaviour and energy absorption compared to plain concrete. The application of steel
fibre in the construction industry has been increasing over the past three decades, and the
field applications of steel fibre are airport runways, tunnel linings, bridge structures, and
protective structures, to name a few. Because of the random distribution of steel fibre in
concrete, the structural analysis with the traditional approaches is not reliable and has low
prediction accuracy. In this context, many researchers have focused on using ML to predict
the shear capacity of steel fibre-reinforced concrete beams with different ML models. Table 1
reviews the current studies about using ML models to predict the structural performance
of steel fibre-reinforced concrete beams. Accordingly, Qian, et al. [24] developed several
ML models to predict the flexural strength of ultra-high performance concrete and revealed
that the gradient boosting (GB) algorithm is superior in precision with a low error rate.
Similarly, Kang, et al. [25] consider two key parameters for steel fibre-reinforced concrete:
compressive strength and flexural strength, and revealed that the Xgboost models have
good prediction in the concrete performance. In addition, Table 1 also provides an overview
of the relevant papers that focus on the shear strength prediction. The Gradient boosting
regression tree model developed by A Shatnawi [26] showed better prediction ability than
other proposed models. Similarly, Jesika Rahman [27] developed eleven ML models for the
shear strength prediction and suggested using Xgboost, which outperformed the rest of the
developed models.

Table 1. Overview of relevant published paper.

Scholar ML
Methodology Best Predicting Ability Beam Properties for

Prediction

Research related to Steel Fibre-reinforced
Concrete Beams

Qian, Sufian, Hakamy, Farouk
Deifalla and El-said [24] SVR, MLP, Gradient boosting

R2 of 0.91 with
Testing Datasets with

Gradient boosting model

Flexural strength prediction of
ultra-high-performance

concrete

Pakzad, et al. [28]
MLR, KNN, SVR, RF, GB,
Xgboost, AdaBoost, ANN,

and CNN.

R2 of 0.928 with
Total Datasets with CNN

model

Compressive strength
prediction
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Table 1. Cont.

Scholar ML
Methodology Best Predicting Ability Beam Properties for

Prediction

Kang, Yoo and Gupta [25] MLR, KNN, SVR, RF, GB,
Xgboost.

RMSE of 3.6144 with
Total Datasets with Xgboost

model

Compressive and flexural
strength prediction

Research related to Steel Fibre-reinforced
Concrete Beams with Shear Strength Prediction Number of Datasets

Alzabeebee, et al. [29] Evolutionary polynomial
regression analysis

R2 of 0.93 with
Testing and Training Datasets

235

Jesika Rahman [27] AdaBoost, CatBoost, Xgboost,
ANN, SVR, et al.

R2 of 0.739 with
Testing Datasets with Xgboost

model
507

A Shatnawi [26] Gradient boosting regression
tree

R2 of 0.969 with
Training Datasets

330

Shahnewaz and Alam [30] Genetic Algorithm R2 of 0.9 with total datasets 358

Kara [31] Genetic Programming AAE of 11.39 101

Adhikary and Mutsuyoshi
[32] Neural Networks SEM of 0.33 85

Yaseen [33] M5, RF, and ELM
R2 of 0.87 with

Testing Datasets with ELM
model

112

Note: AAE is the average absolute error and SEM is the standard error of mean.

2.1. Knowledge Gap

According to the Table 1, the current researchers focus on using different type of ML
models to predict the shear capacity of steel fibre-reinforced concrete beams. However, the
predicting ability of some current studies is not high enough, the R2 of testing dataset is only
0.739 in the research of Rahman, Ahmed, Khan, Islam and Mangalathu [27]. This is mainly
due to the random datasets and without consideration of the difference between the high-
strength concrete and normal-strength concrete datasets. Moreover, based on the existing
research, it can be seen all research focuses on predicting the shear capacity of beams
only. The simple evaluation of the shear strength of the steel fibre beam is an incomplete
evaluation method, and it cannot explain the performance of beams in a comprehensive
way. For a better understanding of beams, both the structural performance (flexural, shear
capacity, and stiffness) and the material impact (investment budget and environmental
impact) should be considered. Thus, several types of features related to structure and
sustainability should be included. Therefore, to fill the gaps in this research field, this
paper uses ML models to predict steel fibre-reinforced concrete beams with multiple
features. This study mainly focuses on the several structural features of high-strength
concrete and conducts an environmental and budgets assessment of fibre-reinforced beams
to facilitate designers and researchers to balance between structural and sustainable design.
Sections 2.1.1, 2.1.2 and 2.1.3 described the difference with the previous related studies
specifically.

2.1.1. High-Strength Concrete

Due to the wide application of ML models in predicting concrete performance, simi-
larly, there are several shear predicting models have been proposed. However, the proposed
formula focused on normal-strength concrete mostly. The difference between high-strength
and normal-strength concrete beams can be revealed in three aspects. (A) The concrete
performance: According to the introduction by El-Sayed, et al. [34], the high-strength con-
crete members exhibit different mechanical behaviours from the normal-strength concrete.
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Compared with normal-strength concrete, the increased compressive strength of HSC
makes it more brittle and less resistive to crack opening and propagation [35], which means
that the design equations for the structure with normal-strength concrete to be applied on
high-strength concrete will lead to unconservative design. (B) The structural performance:
Ashour, Hasanain and Wafa [15] demonstrated that the shear strength rigidity increased
with increased compressive strength of the concrete. For the aspect of microstructure
analysis in reinforced concrete beams, the application of high-strength concrete ensures
similar strength between aggregate and concrete matrix. In that case, the contribution of
aggregate interlock will be reduced due to the tendency of cracks to pass through instead of
around the aggregates. Regarding the fibre performance, Boulekbache, et al. [36] compared
the performance of steel fibre with high-strength concrete and normal-strength concrete
and revealed that the addition of fibre will increase the improving efficiency of the bond
characteristics.

According to Figure 1, the highest percentage of high-strength concrete beams in the
published datasets have only 24.7%, and the maximum number of high-strength concrete
beams is 71, which can hardly describe the shear performance of high-strength concrete
beams. The dataset used in this study was sourced from published literature, and there is a
total of 171 100% high-strength concrete beams gathered following an extensive review of
pervious published work. The details of collected datasets are illustrated in Appendix A.
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2.1.2. Structure Analysis

According to Eourcode 2, shear capacity is only one part of structural design. For
a better understanding of the failure behaviours of concrete beams, flexural capacity
and stiffness should be highlighted in the formula design and result analysis. It is well
known that flexural performance plays an essential role in the structure design, and the
contribution of additional fibre in the beam will be significant, as described by the result
comparison between shear strength and flexural capacity. In the structural design, the
stiffness of concrete beams plays an important role in the seismic performance of the
whole structure mainly due to its significant effect on the determination of fundamental
period, displacements, ductility factor, and distributed internal forces of structures [37].
In this study, there is a total of 171 high-strength beams, and three key structural design
characteristics of beams: shear strength, flexural capacity, and stiffness, will be predicted
by three ML methods.
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2.1.3. Sustainable Development Analysis

Nowadays, growing attention has been given to an increasing number of issues related
to sustainable structure design and full life-cycle assessments for building construction
and material usage efficiency. In addition, as one of the most widely used structure
types, reinforced-concrete structures should be given attention to as part of sustainable
development analysis in this evolving paradigm, since they contribute 65–75% of total
carbon emissions during the construction reported in [12]. For a better understanding
of optimum design between structural performance and material cost of high strength
of fibre-reinforced beam as well as an adverse effect on the environment, an individual
database focusing on shear strength, flexural capacity, shear stiffness carbon emission, and
cost must be created, to develop a better model for balancing the structural performance
and sustainable development.

3. Research Methods
3.1. Equations Proposed in Published Literature

Since the use of steel fibre reinforcement helps to improve the tensile strength and
toughness after cracking, and the tensile strength provided by steel fibre can potentially
reduce or eliminate the stirrup reinforcement in the structure, there is an increasing trend to
add the steel fibre in practical application [38]. However, most design criteria and formulas
are developed based on the test results of normal-strength concrete. Song and Hwang [39]
revealed that as the compressive strength increases, the synergy effect on fibres, cement,
and aggregates would change, so that the equations used for normal-strength concrete
could no longer be used to predict the mechanical properties of high-strength concrete. In
this context, three formulas were proposed for individual high-strength fibre-reinforced
concrete beams, and an empirical formula proposed based on the gene expression models
will be described.

3.1.1. Formula Proposed by Khuntia et al.

Khuntia, Stojadinovic and Goel [13] proposed a simple analytical shear prediction
model based on the ACI committee 381 [40]. The shear capacity of the steel fibre-reinforced
beam can be divided into two parts: (1) The shear strength provided by concrete: vc (2) The
shear strength provided by fibre: v f , vc, and v f can be expressed simply by the following
equations:

vc = 0.167
√

fck (1)

v f = AβτVf
l f

d f
(2)

In the second equation, A is a nondimensional constant of 0.41; β is the fibre coefficient,
which is taken as 1 for hooked or crimped steel fibre as suggested by Narayanan and
Darwish [41]; τ is the bond stress, equal to 0.68

√
f ′c . In this case, the shear contribution of

the fibres v f can be expressed as:

v f = AβτVf
l f

d f
= 0.41× 0.68×

√
fck ×Vf

l f

d f
= 0.28

√
fckVf

l f

d f
(3)

v f rc can be shown as:

v f rc = (0.167α + 0.28Vf
l f

d f
)
√

fck (4)

α is introduced as the arch action factor, equal to 2.5 d/a. The formula proposed by
Khuntia, Stojadinovic and Goel [13]. The authors used a simplified equation that focuses
on both normal- and high-strength steel fibre-reinforced beams. In addition, the prediction
results have been verified.
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3.1.2. Formula Proposed by Al-Ta’an et al.

Al-Ta’an and Al-Feel [14] collected the experimental results from 89 steel fibre-reinforced
concrete beams, focusing on six parameters: (1) The compressive strength of concrete,

(2) Shear span ratio (a/d),: (3) Volume of fibres(v f ), (4) Aspect ratio of fibre(
l f
d f

), (5) Fi-

bre types, and (6) Reinforcement ratio (ρ). [14] put forward the formula on the basis of
regression analysis of 89 experimental results. Moreover, they emphasised the effect of
interfacial bonding stress and suggested that an average value of 4.15 MPa could be used
in the formula.

v f rc = (1.6
√

fck + 960ρ1
d
a

e + 8.5βVf
l f

d f
)/9 (5)

e is a dimensionless factor, which can be calculated by the following equations:
e = 1.0 when a/d > 2.5
e = 2.5 d/a when a/d < 2.5
The expressions based on variable test beams and regression analysis are more accurate

than other formulations.

3.1.3. Formula Proposed by Ashour et al.

Ashour, Hasanain and Wafa [15] developed a shear capacity formula based on re-
gression analysis, with a focus on the shear capacity contribution of concrete compressive
strength and shear span ratio:

v f rc =

(
2.11

√
fck + 7Vf

l f

d f

)
d
a
+ 17.2ρ

d
a

For a/d > 2.5 (6)

v f rc =

[(
0.7
√

fck + 7Vf
l f

d f

)
d
a
+ 17.2ρ

d
a

](
2.5

a
d

)
+ 0.41τVf

l f

d f
For a/d < 2.5 (7)

This formula shows good prediction ability on their test beams for both normal-
and high-strength concrete beams while underestimating the contribution of fibre to the
prediction results of low reinforcement ratio (<0.37%) beams and the experiment.

3.1.4. Formula Proposed by Kara

Kara [31] developed an empirical formula based on gene expression models, in which
a total of 101 beams were selected for data-driven analysis. The formula is as follows:

v f rc =

(
ρld

c0c1(
d
a )

)3

+
F1d0.25

c2
+

c3
0.5
√

fck

(d)0.5 (8)

In this formula, c0= 3.324, c1 = 0.909, c2 = 2.289, and c3 = 9.436. The formula proposed
by Kara [31] is more accurate than other formulations based on more than 101 datasets and
ML models. However, the formula focuses on both normal- and high-strength concrete
with limited datasets.

According to the proposed model in Table 2, the most relevant parameters for shear
capacity are (a) Compressive strength of concrete, (b) Shear span ratio, (c) Volume of
fibres (d) Aspect ratio of fibre, (e) Fibre types, and (f) Reinforcement ratio. Although
some researchers attempted to use formulas to show the effect of steel fibre in improving
the shear strength with experiments, due to the various types of fibre and limited tested
beams, the classical models about the shear capacity of fibre-reinforced concrete are less
reliable and relatively conservative. In this study, the shear capacity of high-strength steel
fibre-reinforced beam is investigated through research available. Moreover, three new
ML models are proposed and verified to quantitively describe the shear capacity of steel
fibre-reinforced concrete, with consideration to the eight key parameters and adding the
effect of dimension factor (size of cross-section) served as the input parameters.
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Table 2. Overview of the proposed formula.

Authors Formulas

Khuntia et al. [13] v f rc = (0.167α + 0.28Vf
l f
d f
)
√

fck

Al-Ta’an et al. [14] v f rc = (1.6
√

fck + 960ρ1
d
a e + 8.5βVf

l f
d f
)/9

Ashour et al. [15]
v f rc =

(
2.11

√
fck + 7Vf

l f
d f

)
d
a + 17.2ρ d

a for a/d>2.5

v f rc =
[(

0.7
√

fck + 7Vf
l f
d f

)
d
a + 17.2ρ d

a

](
2.5

a
d

)
+ 0.41τVf

l f
d f

for a/d<2.5

Kara I F [31] v f rc =

(
ρl d

c0c1(
d
a )

)3
+ F1d0.25

c2
+

c3
0.5
√

fck

(d)0.5

3.2. Machine Learning Models

With the increasing demand for accurate and effective prediction methods of concrete
mechanical properties, ML models have been extensively adopted in relevant research. For
instance, ML techniques help to find the relationship between key input parameters and
results without complicated mechanics derivation, usually with higher precision and lower
variation. The most powerful ML methods, namely, ANN, Xgboots, and BNN, are to be
analysed and compared in this paper.

3.2.1. ANN Model

As a well-known mathematical model, Artificial Neural Network (ANN) is inspired
by the biological neural network system of the human brain, which has been widely used
in the prediction of concrete mechanical properties [42]. The structure of the ANN model,
similar to that of a human neural network, consists of input layers, hidden layers, and
output layers [43]. The adaptive weight coefficient (w) plays an important role in the
calculation process, which ensures the transfer of information from the input layer to the
output layer. Equation (9) aims to describe the correlation between the inputs and weight
coefficient [44]:

netj = ∑n
i=1

(
wij × xi + bj

)
(9)

In this formula, netj is the unit that computes the total weighted input; xi is the unit
of the previous layer; wij is the weight of the connection between the previous layer and
the current layer; and bj is the bias of the current layer. In this study, the hidden layers are
setted as (100, 20, 20).

3.2.2. Xgboost Model

The Boosting Tree algorithm is developed on the basis of the decision trees, which
perform well in terms of statistical learning. Extreme gradient boosting (Xgboost), pro-
posed by Chen and Guestrin [45], is chosen for its high accuracy and low risk of overfitting,
with the application of a boosting algorithm. Moreover, the Xgboost model shows bet-
ter performance when being applied in small datasets [45], which can be expressed as
follows [46]:

ft(xi) = ωq(xi)
(10)

ŷi
(T) = ŷi

(0) + ∑T
t=1 ft(xi) (11)

In brief, the main calculation process of Xgboost is an accumulation of iterative results
after T times, as shown in Equations (11) and (12), where i is the number of samples; T is
the number of decision trees, and i the final predicted value of the ith sample in the decision
tree with number T. The function represents the calculation formula of the ith sample in the
T decision tree. Equation (8) is the weight vector corresponding to the leaf node, which is
a function of the feature vector mapped to the leaf node of the decision tree. For a better
prediction ability, the number of 500 trees, 0.1 learning rate, and 0.01 gamma are selected in
the Xgboost model.
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3.2.3. BNN Model

Similar to ANN models, the Bayesian Neural Network (BNN) simulates the data
process in the human brain. However, the objective of BNN models is to infer a posterior
distribution p(w|D) over the weight(w) of the model after observing the data’s most
probable parameter values in the Bayesian framework. In addition, the neural learning
process is assigned a probabilistic interpretation, which is given by the following formulas
for data preparation:

S(w) = βED + αEw (12)

Ew(w) =
∑m

i=1 w2
i

2
(13)

where m is the total number of parameters in the network. α and β are termed hyper-
parameters (regularization parameters). The second step is to achieve the prior beliefs of
Bayes theorem to influence posterior beliefs (p((w|D, α, β, A)), which states that:

p((w|D, α, β, A) =
p((D| w, β, A)p((w| α, A)

p((D| α, β, A)
=

p((D| w, β, A)p((w| α, A)∫
p((D| α, β, A)p((w| α, A)

(14)

where the p((w| α, A) is the prior and the p((D| α, β, A) =
∫

p((D| α, β, A)p((w| α, A) is the
evidence, the probability distribution p((D| w, β, A) called likelihood, which represents the
uncertainty on the datasets and simulates the side-effect of noise process. The building code
of BNN models is based on the Torchbnn, and the hidden layers are settled as (50,100,100).
The prior 0.01 and weight 0.1 are selected in this study.

3.3. Data Preparation

The data used in this paper are gathered from published literature, in which a total of
171 beams are selected for data analysis. A total of 171 beams are selected for the prediction
of the shear strength and flexural capacity, while 118 beams are selected to predict stiffness.
According to ACI 363, concrete with a compressive strength of 55 MPa or higher can be
defined as high-strength concrete. In this paper, to ensure the continuity and breadth of the
datasets, a few beams with compressive strength lower than 55 MPa are also included in
the database. Table 3 summarises the basic parameters and information of the datasets as
well as the details, as shown in Table A1.

Table 3. Overview of the datasets.

Parameters Title 2 Title 3

Compressive Strength
MPa 53.4 112

Fibre Content % 0 3
Longitudinal Ratio % 0.37 4.78

Shear Span 1 3.77
Cross Section
(W × D) mm 100 × 135 600 × 887

Fibre Type Hooked, Crimped and Plain

3.4. Sustainable Development Analysis

Currently, much attention has been paid to an increasing number of issues related
to sustainable structure design and full life-cycle assessments for building construction
and material usage efficiency. Moreover, as one of the most widely used structure types,
reinforced-concrete structures should be paid attention to as part of sustainable devel-
opment analysis in this evolving paradigm, since they contribute 65–75% of total carbon
emissions during the construction described in [12]. For a better understanding of optimum
design between structure performance and material cost of high-strength of fibre-reinforced
beam as well as an adverse effect on the environment, an individual database focusing
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on shear strength, flexural capacity, shear stiffness carbon emission, and cost must be
created, to develop a better model for balancing the structural performance and sustainable
development.

To develop ML models, this study uses the Scikit-Learn and Torchbnn codes based on
Python modules. The datasets are divided into two parts, 70% for the training dataset and
30% for the test dataset. Furthermore, the statistical standardisation method is adopted to
normalise the inputs and outputs, with the purpose of improving the learning efficiency
of the ML model. Data standardisation is the distribution of attributes between a mean of
zero and a standard deviation of one (unit variance), expressed as the following formula:

ŷ =
y− µ

σ
(15)

where µ is the mean value and σ is the standard deviation of the datasets. To identify the
predictive accuracy of each ML model, three common metrics used are R-Squared (R2),
Mean Absolute Error (MAE), and Mean Squared Error (MSE). R2 represents the ratio of the
variance in the dependent variable from the independent variables, which aims to evaluate
the correlation between inputs and outputs. Moreover, the higher predicting ability of the
model can be evaluated when the R2 is close to 1; MAE is the mean of the absolute value of
the error, which is commonly used to measure the accuracy of predicted values; MSE is
the mean of the squared value of the error, which is used as a default metric to evaluate
the performance of most regression algorithms. MSE was used to identify the percentage
of outliers in datasets. The higher MSE received, the more outliers were included in the
datasets, mainly due to the squaring part of the function magnifying the error [47]. Different
from the function of MSE that was used to highlight outliers in datasets, MAE aims to
provide a generic and comprehensive performance measure for the models because its
smooths out all the errors of possible outliers [48]. Normally, lower MSE and MAE values
indicate better predicting ability of the models. The formulas of these statistical criteria are
illustrated below:

R2 = 1− ∑N
i=1 (yi − ŷ)2

∑N
i=1 (yi − y)2 (16)

MAE =
1
N ∑N

i=1|yi − ŷ| (17)

MSE =
1
N ∑N

i=1 (yi − ŷ)2 (18)

where y is the averaged value, ŷ is the predicted value and yi is the actual value. In
addition to the output of shear strength, to provide a comprehensive analysis of shear
strength design based on Eurocode 2, the flexural capacity and stiffness of high-strength
fibre-reinforced concrete beams have been added as outputs using the same datasets, which
are to be compared with each other. For a better understanding of the working principle of
the proposed approach, Figure 2 was built.
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4. Research Analysis
4.1. Predicting the Shear Strength

There are three well-established ML models were employed to predict the shear
strength of high-strength concrete beams investigated in this chapter. Table 4 compares the
statistical results of different ML models used to predict the shear strength, while Figure 3
graphically shows the comparison between predicted values and experimental values
for the three models with total datasets. The light purple points and lines represent the
experimental values with total datasets, while the green lines show the predicted values..
Furthermore, to better understand the deviation between the predicted value and the actual
value, the error value is plotted on the secondary axis.

Table 4. Prediction results of shear strength.

Models

Results Train Test Total

R2 MSE MAE R2 MSE MAE R2 MSE MAE

Xgboost 0.996 0.003 0.035 0.852 0.024 0.062 0.858 0.111 0.112

ANN 0.980 0.015 0.026 0.894 0.052 0.095 0.927 0.059 0.070

BNN 0.994 0.005 0.046 0.895 0.059 0.097 0.968 0.029 0.074
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Depending on the reported statistical results in Table 3, the ANN model shows the
better performance in predicting shear strength than other models, where R2 (0.981, 0.888,
and 0.949), MSE (0.017, 0.095, and 0.044), and MAE (0.102, 0.226, and 0.151) for the training,
test, and total datasets, respectively. However, most models used to predict shear strength
can achieve reasonable R2 (>0.86) with the total dataset. For the training phase, the Xgboost
model has the highest prediction accuracy, with the highest R2 value (0.992) and lowest
MSE (0.008 MPa). However, the Xgboost models show lower prediction ability than ANN
and BNN models with the use of total datasets according to statistical criteria. That is due
to the Xgboosts models having better predicting ability in applying simple normalization
to the tabular data. However, if there is a lot of noisy information in the datasets, neural
networks will outperform. As for shear strength prediction on all datasets, the three models
achieve high R2 values of 0.869, 0.949 and 0.937 for Xgboost, ANN, and BNN, respectively.
As shown in Figure 3, the prediction error of the ANN model ranges from 0.002 MPa
to 2.307 MPa. Nonetheless, 80.7% of prediction errors are lower than 0.5 MPa, 16.4% of
prediction errors fall between 0.5 and 1 MPa, and only 3% of errors are above 1 MPa. It
is noteworthy that all three models achieve excellent prediction results (although ANN
performs better), suggesting that each model can identify the underlying patterns in the
training data.
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4.2. Predicting the Flexural Capacity

According to the structural design of Eurocode 2, the flexural capacity plays an
important part in the design to avoid shear failure. To provide a comprehensive design
presentation, the flexural capacity is introduced as another output, which is calculated by
Response 2000 developed by Bentz E. C at the University of Toronto [49]. Three models,
identical to those for predicting shear strength, are used to predict flexural capacity. Table 5
compares the different prediction results of three models, and Figure 4 shows the prediction
errors of the ML prediction models with total datasets.

Table 5. Prediction results of flexural strength.

Models

Results Train Test Total

R2 MSE MAE R2 MSE MAE R2 MSE MAE

Xgboost 0.996 0.003 0.035 0.852 0.024 0.062 0.858 0.111 0.112

ANN 0.980 0.015 0.026 0.894 0.052 0.095 0.927 0.059 0.070

BNN 0.994 0.005 0.046 0.895 0.059 0.097 0.968 0.029 0.074
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Generally, all models perform well in predicting flexural capacity. To be specific, the
BNN model shows better prediction performance than other models, in which R2 is 0.968,
MSE is 0.029, and MAE is 0.074; while the worst one is the Xgboost model, where R2 is
0.858, MSE is 0.111, and MAE is 0.112. However, all models show that the R2 of training
effects is higher than 0.9. For the Xgboost model, the prediction results are very close to
the actual results in the training dataset, with an MAE of 0.003. When comparing the BNN
and Xgboost models, it is obvious that the former one offers the higher level of prediction
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accuracy, with R2 above 0.9 for the total dataset. Moreover, the Xgboost model shows
good performance in the training process but weak in the testing process, which is due to
the noisy information in the datasets. As shown in Figure 4, the BNN and ANN models
generally minimize the error. The most prediction errors are below 50 N·m: 91.2% for the
BNN model, 87.7% for the Xgboost model, and 91.8% for the ANN model.

4.3. Predicting the Shear Stiffness

To better understand the shear analysis, the load displacement is applied in most
experiments. In addition, the gradient of the load–deflection relationship is an indicator of
beam stiffness [50], suggesting that the slope of the curve represents the relative stiffness
of the structure. To provide a comprehensive design presentation, the shear stiffness
established from the load–displacement curve is introduced as an output. A total of 117
beams including the outputs of shear stiffness are used as the datasets. Table 6 shows the
results of the three ML models, and Figure 5 graphically depicts the ML models with total
datasets.

Table 6. Prediction results of shear strength.

Models

Results Train Test Total

R2 MSE MAE R2 MSE MAE R2 MSE MAE

Xgboost 0.989 0.010 0.072 0.821 0.131 0.197 0.714 0.288 0.352

ANN 0.985 0.015 0.097 0.765 0.440 0.519 0.869 0.161 0.228

BNN 0.949 0.046 0.155 0.881 0.080 0.215 0.907 0.070 0.204
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Table 6 shows the prediction results of the shear stiffness of high-strength concrete
beams with different models. For the three algorithms, the prediction and experimental
results of the training set are relatively close. Specifically, the accuracy of the BNN model
characterised by R2 of the total database is still the highest, followed by the ANN and
Xgboost models. Analysis of the training set reveals that the Xgboost models perform well
in finding the potential relationship between inputs and outputs, while the generalisation
ability of the Xgboost model drops sharply in testing datasets. Figure 5 compares the
evaluation and experimental results of the three models, showing similar changing trends.
However, when comparing the prediction performance of total datasets, R2 of the BNN
model is 0.907, similar to that of the training and testing sets; while R2 of the Xgboost total
dataset is only 0.714, suggesting that the Xgboost model is better to describe the potential
relationship of a given database, but its generalisation ability is poor. The mean error
distributions are 5.2 kN/mm (ANN), 8.05 kN/mm (Xgboost), and 4.65 kN/mm (BNN),
respectively. Moreover, only a few of the calculated errors are larger than 10 kN/mm,
which are 9.8% (ANN), 26.8% (Xgboost), and 7.69% (BNN).

4.4. ML Models versus Proposed Formulas

This section compares the prediction abilities of ML models adopted in this paper and
equations used in previous studies. There are three equations proposed by experimental
results and one equation calculated by ML models for comparison purposes. A scatter plot,
as one of the informative graphical presentations, is used for examining the aptitude of
prediction models in this study. Figure 6 illustrates the comparison between the prediction
values and the experimental results of the prediction formula. In addition, a statistical
comparison between ML models and proposed formulas is summarised in Table 7.
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Table 7. Prediction results of different formulas and models.

Kara Al-Ta’an Ashour Khuntia ANN Xgboost BNN

SD 0.449 0.368 0.366 0.457 0.113 0.139 0.187
Mean 1.181 0.876 0.879 0.697 1.011 0.973 1.025

CV 38.037 42.016 41.602 65.584 11.141 14.333 18.28
AAE 0.375 0.238 0.274 0.434 0.151 0.223 0.103
χ 0.9299 0.8403 0.9579 1.5153 0.9716 1.0044 0.9579

Note: SD is the standard deviation, CV is Coefficient of Variation, and the AAE is the Average Absolute Error.

To identify the performances of models and empirical equations, several ideal condi-
tions are considered, such as mean, average absolute error, standard deviation, and the
χ factor (inversed slope of linear least square regression of the predicted capacity versus
experimental capacity). Among them, a value of χ greater than 1.00 indicates that the
formula underestimates the shear capacity; whereas a value of χ smaller than 1.00 suggests
that the model overestimates the shear capacity. Moreover, the minimum value of AAE
illustrates that the developed model has reached a satisfactory level of accuracy. As seen
from Figure 6, the χ factor of formulas developed based on Ashour models is closer to 1.00,
showing better prediction ability than Kara’s empirical equations, which used the gene
expression ML models. That is because there are many normal-strength concrete beams
used in the datasets of Kara, and Kara formulas focus on both high- and normal-strength
beams, which makes it challenging to determine the impact of compressive strength in
improving the shear capacity. The AAE value obtained from the Ashour formula is the
lowest among all the formulations in previous research. Of the previously proposed formu-
lations, the equations developed by Ashour give the most accurate predictions represented
by the χ factor of 0.9579; whereas the equations proposed by Khuntia exhibit the poorest
performance, with the χ value of 1.5153 and a high AAE value of 43.4%. A possible reason
is that the proposed formulas are developed according to their own experimental results,
which are limited and fail to describe the effect of dimension. To highlight the predictive
abilities of ML models, three ML models (ANN, Xgboost, and BNN) are compared with the
proposed formulas. The details are shown in Figure 6, and the results are summarised in
Table 7.

The upper left figure shows the prediction results of Kara I F formula, the upper right
picture shows Al-Ta’an formula, the lower left figure shows Ashour formula, and the lower
right figure shows Khuntia formula. In Figure 6, the model developed on the basis of the
Xgboost model shows a χ value of 1.0044, closer to 1, while the corresponding values of SD,
COV, and AAE are 0.10, 10%, and 5%, respectively. Despite Xgboost models showing less χ
value than other models, the previous study has shown that R2 value still lower than neural
network models due to its poor generalisation ability. Moreover, when comparing the ANN
and BNN models, the BNN models showed better generalisation ability and outperform
with noisy information, which have χ value (0.9579) higher than ANN models (0.9299) and
have minimum AAE value (0.103). All ML models in this paper show better performance
than empirical equations when being compared with the equations in previous research.
Presently, there are still some gaps between the Ashour formula and the models adopted
in this paper, mainly due to the limited datasets. After comparing Figures 6 and 7, for
a comprehensive analysis, the BNN model shows better performance than other models
in this study, which not only has good performance in beam performance prediction but
also outperforms with noisy information. Therefore, a conclusion can be drawn that the
proposed model based on the BNN algorithm outperforms all other ML methods proposed
in this paper, as well as the models reviewed in the existing studies.
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5. Sensitivity Analysis with Shapley Additive Explanations (SHAP)

For a better understanding of the potential relationship between each input and
output, the Shapley Additive Explanations (SHAP) technique, one of the in-depth ML
model explanations, is used in this study. The SHAP explanation is developed based
on game theory, which explains each instance prediction ability by calculating all input
features. To evaluate the importance of different inputs, the φj( f ) is used to assign a weight
against the summation of the contribution of the input features of the output features across
all potential [51]. Equation (19) aims to describe the expression for φj( f ).

φj( f ) = ∑S⊆{x1,...,xp}/{xj}
|S|!(p− |S| − 1)!

p!

(
f
(

S t
{

xj
})
− f (S)

)
(19)

where the S is the features subset, xj is the input j, and p is the number of input variables
models.

In this method, the predicting ability of each input can be evaluated by quantifying
the estimation errors. To describe original model f (x), the explanation models g(x′) with
inputs xj is used in Equation (20)

f (x) = g
(
x′
)
= φ0 +

M

∑
i=1

φix
′
i (20)

where M is the number of inputs features and φi is the no information constant.
In this study, the SHAP method was applied to the model built by BNN models

because of BNN models’ optimized performance against other models. Figure 8 describes
the SHAP values with shear strength, flexural capacity, and shear stiffness with BNN
predicting models.
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Figure 8. SHAP explanation models. The upper left figure shows the shear strength prediction of the
BNN model, the upper right picture shows the flexural predicting BNN model, and the lower figure
shows the shear stiffness predicting BNN model.

Based on the absolute value of SHAP for the shear strength predicting BNN model,
the importance of the input variables can be ordered as: Shear Span > Longitudinal Ratio >
Dimension Factors > Fibre Factors > Compressive Strength for the shear strength prediction.
Similarly, the shear span shows the highest potential relationship with shear stiffness.
However, the longitudinal ratio is higher than other input parameters that play key roles in
the prediction of stiffness, indicating that amount of steel rebars in the reinforced-concrete
structure is the crucial factor affecting the stiffness. The top two SHAP values to predict
flexural are width and depth, which highlight the role of dimension in the prediction of
flexural strength. In contrast, the SHAP parameters related to fibre effects, such as fibre
type, fibre content, and aspect ratio, are ranked after 5th. It can be seen clearly that stiffness
is most sensitive to longitudinal ratio, fibre factor, and compressive strength, suggesting
that stiffness is determined by the synergetic effect between concrete, fibres and steel rebar.

6. Sustainability Assessments

Nowadays, the balance of sustainable development and structural performance in
the life cycle of the building structure is one of the most important elements affecting
sustainable structural design. The previous section developed three reliable ML prediction
models for structural design, and this section continues to evaluate the prediction ability of
ANN, BNN, and Xgboost models in carbon emissions and cost budget prediction. Moreover,
it is beneficial for the future designer to obtain the optimum design and save time for a
better understanding of balancing the structural performance and sustainable development
design based on the two types of ML prediction models proposed in this study.
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6.1. Greenhouse Gas Emission and Cost Budgets

Cement is the most widely used construction material worldwide, and there are more
than 4 billion tons of cement produced with a rapid increase, which intends to meet an
increasing need in construction. However, the greenhouse gas (GHG) emissions from the
increasing need for cement in construction will result in notable environmental impacts
worldwide, which should not be ignored. In this context, we will discuss how to improve
the efficient use of cement in concrete, which plays an important role in the stage of
structural design and the mitigation of GHG emission, and Table 8 described the GHG
emission and price with different raw materials.

Table 8. Per-unit of GHG emissions and price with different raw materials.

Constituents of Concrete GWP/kg CO2 eq Price/$/kg Resource

Basic Concrete
Composition

Ordinary Portland Cement 0.884 0.125 Anderson and
Moncaster [52]

Coarse Aggregates 0.00429 0.0099 Ouellet-Plamondon
and Habert [53]

Fine Aggregates, Sand 0.0024 0.0099 Ouellet-Plamondon
and Habert [53]

Water 0.00015 0.0016 Ouellet-Plamondon
and Habert [53]

Supplementary Materials

Silica Fume 0.00313 0.5 Ouellet-Plamondon
and Habert [53]

Blast Furnace Slag 0.0329 0.05 Kim, et al. [54]

Superplasticizer 0.749 25 Ouellet-Plamondon
and Habert [53]

Steel Fibre 2.2 1 Qin and Kaewunruen
[55]

Steel Rebar 0.72 0.56536 Özdemir, et al. [56]

In this study, there is a total of 161 beams used for the carbon emission prediction.
According to previous studies, the carbon emission during their transportation from the
suppliers to the company is limited [57]. In that case, the focus of the study is total GHG
emissions expressed as the sum of the emissions during the production of the raw materials
of the beams with different shear spans. There are two steps to evaluate the GHG emission
of collected beams, and the first is to identify the GHG emission of fibre-reinforced concrete
mix per cubic meter. The carbon emission of concrete (Ec) is calculated as the sum of the
carbon footprints of substances and activities associated with the production of concrete
raw materials according to Equation (21).

Ec = Σ(We × m)
[
kg CO2 emission/m3

]
(21)

where We is the GHG emission factor, and m is the unit of substance per m3. After that,
the total carbon emission of reinforced-concrete beams (Et) can be calculated based on
Equation (22) according to the collected data on the dimensions of beams.

Et = [Ec (1− ρ ) + Esρ] bdL
[
kg CO2 emission/m3

]
(22)
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where ρ is the longitudinal ratio, b is the width of the cross-section, d is the depth of
the cross-section, and L is the shear span. The reference sources of GHG emission of
the raw materials were mainly collected from published literature, which is shown in
Table 8. The price of each raw material is collected from Statista with open access. Similar
to the calculation of the carbon footprints, the cost budges can be calculated based on
Equations (21) and (22).

6.2. Results Analysis

Figure 9 and Table 9 show the estimated and experimental results of GHG emission
using BNN, ANN, and Xgboost models. The BNN model shows more satisfactory results
than other models, with R2 being 0.974 for total datasets. Out of all the error values, 77.1%
are under 5 CO2 eq, 4.3% are above 10 CO2 eq, and 18.6% are between 5 and 10 CO2 eq.
The R2 and error values of the Xgboost model for GHG emission prediction have lower
precision compared to the other ensemble models, in which 65.2% are under 5 CO2 eq.,
17.4% are above 10 MPa, and 17.4% are between 5 and 10 MPa for the GHG carbon emission
predicting models. The performance of the ANN model also shows good prediction ability
based on the performance indices.
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Table 9. Prediction results of GHG emission.

Models

Results Train Test Total

R2 MSE MAE R2 MSE MAE R2 MSE MAE

Xgboost 0.999 0.001 0.020 0.894 0.023 0.050 0.970 0.025 0.067

ANN 0.980 0.011 0.030 0.971 0.005 0.056 0.954 0.035 0.070

BNN 0.986 0.002 0.042 0.981 0.017 0.053 0.974 0.022 0.063

Table 10 indicates the predictive ability in the corresponding index of R2, MSE, and
MAE among the ANN, BNN, and Xgboost models. Figure 10 depicts the errors and data
comparison between prediction and experimental results in forecasting the cost budgets of
high-strength steel fibre-reinforced concrete beams. Xgboost gives maximum MAE and
MSE errors as compared to BNN and ANN models. In comparison with the Xgboost model,
the ANN and BNN models show higher prediction accuracy during the testing phase, with
R2 being 0.980 and 0.981, respectively. This is because both ANN and BNN models are
neural network models, which are good at the identification of noisy information and have
better generalisation ability than Xgboost model. Overall, the BNN model performed better
than other models. The accuracy obtained by the BNN model is R2 of 0.977, MSE of 0.020,
and MAE of 0.082.
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Table 10. Prediction results of Cost budget.

Models

Results Train Test Total

R2 MSE MAE R2 MSE MAE R2 MSE MAE

Xgboost 0.999 0.001 0.019 0.852 0.043 0.077 0.973 0.023 0.080

ANN 0.981 0.009 0.024 0.980 0.002 0.035 0.943 0.039 0.056

BNN 0.989 0.018 0.053 0.981 0.002 0.042 0.977 0.020 0.082

6.3. Sensitivity Analysis

Figure 11 shows the SHAP values point plot of BNN prediction models that orders
inputs based on their importance to output. Normally, the higher values of these inputs
result in higher SHAP values, which correspond to a higher potential relationship with
output. For both cost budget and GHG emission prediction, the dimension factors, depth
and width, and shear span are the most important features in the model. Cement, super-
plasticiser, and longitudinal ratio are the next three most important features for both GHG
emission and cost budget models, respectively. Specifically, cement has a greater impact on
the model of GHG emission than cost budget prediction. In fact, the number of steel rebars
and cement are the main parts of beams, and the pre-unit GHG emission and price are
also the first and third ranks according to Table 7. However, the superplasticiser has lower
SHAP values than other features, which means the addition of superplasticiser reduces
GHG emission and cost budgets. This is because the concrete performance can achieve
a significant improvement with a limited addition of the admixture, but the total price
and the GHG emission are the smallest part of high-strength steel fibre-reinforced concrete
beams. In the previous study, the fibre factor contributes to the improvement of the shear
capacity of beams significantly. However, according to Figure 11, the fibre content ranked at
the end of all features. These results imply that the addition of fibre in concrete can hardly
be expected for the increase in cost budgets and GHG emissions. This also suggested that
increasing the addition of fibre in reinforced-concrete beams is a good way to balance both
structural performance and sustainable development.
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7. Discussion of Findings

This study demonstrated that using ML models can provide highly reliable results
for the prediction of structural and sustainable performance on the basis of collected
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experimental result datasets. In the authors’ opinion, the proposed models in this study
contribute to both structural design and sustainable analysis, which is a new and original
achievement for the systematic design of structures.

It can be derived through the discussion in this study that the use of ML models for the
evaluation of structure performance is beneficial for researchers to acquire accurate results
and improve the design efficiency. Three well-established ML models were employed in
this study for validation of the structural and sustainable performance of high-strength
fibre-reinforced concrete beam prediction, including BNN, ANN, and Xgboost. Depending
on the reported statistical results in this study, the Xgboost models performed well during
the training phase and obtained high values of R2 and the lowest values of MAE and RMSE.
However, XgBoost models are prone to overfitting [58]. The BNN and ANN models show
better performance than Xgboost models during the testing phase, and BNN models have
higher comprehensive predicting performance than other models in the prediction phase of
five key structural and sustainable performance indicators. Similar results are shown in the
work by Fissha, et al. [59], which showed that the BNN models outperformed traditional
neural networks with noisy datasets.

Another interesting finding is a key parameter, fibre content, in both structural and
sustainable performance prediction. The fibre content is beneficial to improve the structural
performance, especially in the aspect of shear capacity, which is a common consensus [38].
However, the addition of fibre will not be increasing the GHG emission and cost budgets
of beams sharply. In this context, based on the aid of models proposed in this study, it will
be more easily for civil designers to find the balance point between structural performance
and sustainable development, improving the efficiency of obtaining the optimum fibre
content and achieving cleaner production.

For a better understanding of how to use the proposed ML models to obtain a sustain-
able and structural design, there are two assumed case study proposed.

7.1. Structural Design

After a brief review, the experimental and numerical study published in 2021 by
Tahenni, et al. [60] will be used to evaluate how ML models support engineering design
and how to formalise engineering knowledge. There are five high-strength steel fibre-
reinforced concrete beams built in this study, with details shown in Table 11.

Table 11. Beam details from the Tahenni, Bouziadi, Boulekbache and Amziane [60].

Concrete Compressive
Strength Fibre Content Aspect Ratio Shear Force (kN) Shear Stiffness

(kN/mm)

HSC 65 0 - 30.81 18.19

FRHSC-1-60 64 1 65 46.28 18.51

FRHSC-1-85 60 2 80 50.82 22.18

FRHSC-2-60 63.1 1 65 46.87 20.06

FRHSC-2-85 65 2 80 52.5 22.85

Beam Information

Cross Section 100 × 150 mm

Shear Span Ratio 2.2

Longitudinal
reinforcement ratio 1.16%

In the study of Tahenni et al. [39], the experimental results were compared with
proposed non-linear finite element models (FEM). FEM is a powerful tool that can provide
an excellent predicting ability to complex systems in engineering with its advantage in
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efficiency, accuracy, versatility, and visualization. In this study, the prediction result from
BNN models was used to compare with FEM, and the results are shown in Table 12.

Table 12. Predicting results compared between FEM and BNN models.

Models

Results Shear Strength (MPa) Shear Stiffness (kN/mm)

HSC FRHSC-
1-60

FRHSC-
1-85

FRHSC-
2-60

FRHSC-
2-85 HSC FRHSC-

1-60
FRHSC-

1-85
FRHSC-

2-60
FRHSC-

2-85

Exp 2.33 3.51 3.85 3.55 3.98 18.19 18.51 22.18 20.06 22.85

FEM - 3.34 3.83 - - - 18.11 20.85 - -

Exp/FEM - 1.05 1.00 - - - 1.02 1.06 - -

BNN 2.93 3.30 3.64 3.63 4.02 17.11 18.62 24.37 19.37 29.44

Exp/BNN 0.80 1.06 1.06 0.98 0.99 1.06 0.99 0.91 1.04 0.78

According to Table 12, compared with the FEM, the ML methods show similar pre-
dicting ability. However, the limitation of FEM in efficiency, time consumption, and cost
makes it hard to be widely used to support the structural design. With a similar predicting
ability, data-driven methods can efficiently process large amounts of data quickly and
accurately. Based on the few key features and limited time consumption, reliable predicting
results can be provided by ML models for engineers to justify the structural performance
compared with FEM. Overall, applying ML in structural design can lead to a more efficient
and cost-effective approach that is better optimized for safety.

7.2. Sustainable Design

Some beams in the bridge that need to be replaced are assumed, and the max loading
applied in the mid of beams is 550 kN. The cross-section of the beams is a width of
300 mm, the depth is 550 mm. The design concrete strength is C60, the shear span is
1500 mm, the longitudinal ratio is 1%, and the partial factors are 1.2. Assuming the
designer prefer not to change the current cross-section design and would like to use a more
environmentally friendly way to design the beams, the proposed models in this study can
support sustainable design perfectly.

Figure 12 demonstrates the sustainable and structural design proceeds of high-strength
fibre-reinforced concrete beams with the aid of proposed ML models. According to
Figure 12, the first step is to propose several reasonable concrete mixes. Because of the
design strength is C60, three collected concrete mixes from published literature about C60
are shown in Table 13.

In the quantitative assessment, Table 13 shows the structural and sustainable perfor-
mance indicators with the optimal developed BNN model. In accordance with the same
table, the concrete mix proposed by Li has the lowest GHG emissions, and the cost budget
is cheaper than the rest of the mixes. This is due to the addition of slag that replace sparts of
cement. Moreover, due to the limited use of cement, the total cost of the beams is cheaper.

The next step is to use the ML models to predict the structural performance. According
to the assumed information, the maximum load in the mid of the beam is 550 kN, and
the shear strength can be calculated by using the half of peak load (shear force) divided
to the area of the cross-section. In that case, the maximum shear strength is 1.83 Mpa.
After multiplying it by the partial factors of 1.2, the result is equal to 2.2 Mpa. According
to Table 14, most of the designs with fibre concrete higher than 1% can meet the design
requirement, and the structural performance of the mix design from Gao is higher than
other designs. However, this study concluded the design provided by Li with the fibre
content of 1% is the optimal concrete mix design. This is because Li’s design leads to
sustainable development and lower price than other concrete mixes.
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Table 13. C60 steel fibre-reinforced concrete mix.

Mix From Cement Water Sand Gravel Fibre Content SP Slag SF

Gao, et al. [61] 529 164 646 1110 0, 0.5%, 1% and 1.5% 6.348 - -

Zheng, et al. [62] 451.8 164 660.8 1078.2 0, 0.5%, 1%, 1.5%
and 2% 4.9 - -

Li, et al. [63] 400 164.3 557.2 1099.5 0, 0.5%, 1% and 1.5% 7.2 25 105

Note: The unit of the parameters are kg/m3.

Table 14. Predicted results of assumed study.

Fibre
Content

Shear
(MPa)

Flexural
(N·m)

Stiffness
(N/mm) 103

Carbon Emission
(kg CO2 eq)

Cost
($) Ranking

Gao, Huang,
Yuan and Gu

[61]

0 1.46 863.98 34.16 237.96 111.85

3
0.5 1.91 964.11 35.21 240.53 113.69
1 2.38 1070.57 39.55 243.06 115.51

1.5 3.04 1163.95 42.24 245.56 117.32

Zheng, Wu,
He, Shang,

Xu and Sun
[62]

0 1.25 744.42 27.05 220.13 100.33

2
0.5 1.73 832.17 28.77 222.68 102.16
1 2.21 1038.90 31.86 225.20 104.00

1.5 2.75 1108.79 35.25 227.70 105.84
2 3.49 1112.13 38.64 230.20 107.70

Li, Xue, Fu,
Yao and Liu

[63]

0 1.44 897.17 34.12 226.82 89.25

1
0.5 1.89 1051.47 35.20 229.34 91.12
1 2.36 1088.22 39.56 231.84 92.99

1.5 2.99 1130.04 41.66 234.34 94.85
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It is widely recognized that the reality beam design can be more complex than this
assumed case study. However, it is evident that significant time can be saved and it
is possible for designers to work on multiple designs simultaneously. Because of the
complexity of fibre-reinforced concrete beams, especially with the high-strength concrete
mix, the traditional empirical and semi-empirical formulas should not be encouraged
in future. The data-driven ML models can provide more accuracy and are faster than
traditional formula design. Moreover, the results of GHG emissions and cost budgets can
be seen and compared directly with the aid of proposed ML models. In the future, with the
increasing of the datasets, more properties of high-strength fibre reinforcement concrete
beams can be evaluated at the same time.

7.3. Future Scope

A review of the recently published papers reveals that an increasing number of re-
searchers are focusing on adapting the ML models to solve the structural engineering
problems. Most of proposed ML models are more reliable than traditional formulas. How-
ever, most of ML models are developed for specific structure parameter, and there are very
limited studies that discuss and evaluate two or more parameters in using ML models to
predict structural performance. As a consequence, this study coupled machine learning to
propose novel data-driven models that enable the prediction of the three key parameters
related to structural performance and two parameters related to sustainable development.
The proposed model is a reliable design method for designers or civil engineers to effec-
tively maintain the balance between structural reliability and environmental sustainability.
However, the current datasets are focused on the three key structural parameters only,
and the aspect of durability has not been identified. Further work should pay attention
to updating the datasets about the corrosion rate or chloride penetration, shrinkage, and
creep. Moreover, most of the current ML models are black-box systems, which make it
difficult to apply them with current design standards and integrate them for further designs.
Future studies should expand the range of predicting parameters and experimental results
based on current datasets and develop new ML algorithms that are easily interpretable,
which can facilitate the updates to the current design standards. In addition, this study
considered the sustainable design with the aspect of GHG emission and cost budget. For a
better understanding of how to implement these models in the practical application, it is
suggested that future researchers should focus on the development of ML model systems
related to durability, fatigue resistance, and in-suit applications.

8. Conclusions

In this paper, three ML models are adopted to predict the shear strength, flexural
capacity, and stiffness of high-strength concrete beams, and they are further compared with
three empirical equations and an ML prediction formula. The prediction capabilities of the
ML models are evaluated based on criteria such as R2, MSE, and MAE. It is found that all
proposed models show outstanding prediction abilities in terms of shear strength, flexural
capacity, and stiffness. Moreover, this study also evaluated the sustainable performance
of high-strength fibre-reinforced concrete beams with the same proposed ML models, for
which it is a time-saving and cost-efficient method for engineers to achieve a balance
between the sustainable design and structure design. In addition, the following key
conclusions can be drawn from the results of this paper:

• A strong correlation coefficient R2 ≥ 0.89 is observed for the training, testing, and
validating datasets of three ML models (ANN, Xgboost, and BNN). The comparison
analysis illustrates that the BNN model performs better than the other ML models,
with the highest predicted R2 of flexural capacity and shear stiffness, and the second
higher predicted R2 of shear strength. The BNN model has been proven to have good
prediction ability than traditional neural network.

• When comparing the error analysis of the models’ training phase, the Xgboost model
has the lowest statistical errors and the highest R2, followed by the ANN and BNN
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models. However, the Xgboost model shows poorer performance in testing datasets,
indicating its poor generalisation ability.

• In terms of the proposed empirical equations, the Ashour formula developed on the
basis of regression analysis shows the best prediction ability with χ of 0.9579. However,
the ML models proposed in this paper has the best shear strength prediction ability,
where χ is 0.9716, 1.0044, 0.9579 for ANN, BNN and Xgboost models, respectively.

• In the section of sensitivity analysis, the longitudinal ratio and shear span show the
strongest potential relationship with shear strength prediction. In contrast to the shear
strength prediction, stiffness is sensitive to the synergetic effect among concrete, steel
rebar, and fibre effect. In addition, the dimension effect exerts the greatest influence
on the prediction of flexural capacity.

• This study proposed two models for the prediction of GHG emissions and cost bud-
gets, which revealed that the fibre content has limited effect on the increase in GHG
emissions and cost budgets. A strong correlation coefficient R2 ≥ 0.94 is observed for
the training, testing, and validation datasets of three ML models (ANN, Xgboost, and
CNN), and NN models outperform the other models. In this context, increasing the ad-
dition of fibre in the structure is a good way to balance both sustainable development
and structure performance.

• Based on the proposed models in this study, the optimum design with the consider-
ation of both structural and sustainable performance can be easily calculated. This
study aimed to apply the ML models to real-world application. To achieve this, two
studies were conducted, which revealed that the proposed ML models can be used to
replace some function of FEM and evaluate the sustainable performance of concrete
mixes. With the aid of the proposed models, it will be beneficial for researchers to
improve design efficiency and support the strategy of sustainable development.

• The proposed models mainly focus on the structural performance and sustainable
ability. As described in the section of discussion, the study did not address the
resistance of corrosion resistance, fatigue, and the freeze-thaw cycle. Further works
should focus on the durability and fatigue properties of high-strength fibre-reinforced
concrete beams and expand the current datasets.
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Appendix A

Table A1. Datasets.

Author Number of
Beam

Compressive
Strength

MPa

Fibre Content
%

Longitudinal
Ratio %

Shear
Span

Cross Section
(W × D) mm Fibre Type

Ashour,
Hasanain and

Wafa [15]
18 92~101.32 0.5~1.5 0.37~4.58 1, 2, 4, 6 125 × 215 Hooked

Yoo and Yang
[64] 3 62.3 0.75 1.5 2, 4, 6

300 × 420
450 × 648
600 × 887

Hooked

Manju, et al. [65] 6 82~83.8 0.5~1.5 1 1.5, 2.5 185 × 220 Hooked

Tahenni, et al.
[66] 16 63.1~65 0~3 1.16~1.5 2.2 100 × 135 Hooked

de Lima Araújo,
et al. [67] 1 58.87 1 1 1.5 370 × 350 Hooked

Kwak, et al. [68] 9 62.6~68.6 0~0.75 1.5 2, 3, 4 125 × 212 Hooked

Alzahrani [69] 6 61.6~73 0~0.75 1.46 3 200 × 350 Hooked

Singh and Jain
[70] 9 53.4~64.6 0.75~1.5 2.67 3.49 150 × 253 Hooked

Vamdewalle and
Mortelmans [71] 16 108.5~112 0~0.75 1.87 1.75, 2.5,

3.5, 4.5 200 × 300 Hooked

Cho and Kim
[72] 14 54.3~89.9 0~2 1.3~2.9 1.05 120 × 167.5 Hooked

Narayanan and
Darwish [73] 20 57.3~65.8 0.25~3 2~5.72 2, 2.5, 3 130 × 130 Crimped

Shin, et al. [74] 13 80 0~1 3.59 2, 3, 4.5, 6 100 × 175 Plain

Noghabai [75] 17 72~93.3 0.5~1 2.87~4.47 2.77~3.33

200 × 180
200 × 235
200 × 410
300 × 570

Plain and
Hooked

Uomoto, et al.
[76] 4 54 1.5 2.2 1.5~2.5 182 × 182 Plain

Hwang, et al.
[77] 3 58~88 0.5~1 4.78 3 100 × 165 Hooked

Li, et al. [78] 11 62.6 1 1.1~3.3 1~3 63.5 × 102 Crimped

Adebar, et al.
[79] 2 54.1~54.8 0.4~0.75 2.14 1.63 150 × 560 Hooked

Cohen and
Aoude [80] 1 59.4 0.5 1.52 3.77 125 × 212 Hooked

Pansuk, et al.
[81] 2 109.2~110.9 0.75 3.48 2.75 200 × 273 Hooked
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