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1.  Introduction
1.1.  Background

Accurately propagating satellite orbits requires knowledge of the forces acting on the satellite. For satellites in low 
Earth orbit (less than 1,000 km), forces include terrestrial gravity, solar radiation pressure, lunar and solar gravity 
and drag caused by the atmosphere (Eshagh & Najafi Alamdari,  2007). The drag force increases dramatically 
as a satellite's altitude decreases and becomes significant below approximately 600 km (Fortescue et al., 2011). 
However, there are large uncertainties in modeling the magnitude of the drag acting on a satellite. To do so requires 
an understanding of the thermospheric mass density, winds and the satellite's ballistic coefficient. The largest contri-
bution to error in the forecasting of satellite positions is specification of thermospheric density (Mehta et al., 2018), 
although for tumbling or complex geometries, the errors in the ballistic coefficient can be a substantial contribution.

Currently a variety of mathematical models are used to provide estimates of the density. Empirical models are 
often used by satellite operators. They are fitted to measurements of thermospheric parameters; however such 
measurements are sparse. In particular, there are very few measurements between 100 and 250  km because 
balloons cannot reach these heights and satellites re-enter too quickly for any long term study. Fabry-Perot Inter-
ferometers can be used to measure wind between 220 and 600 km (Titheridge, 1995) and meteor radars can 
measure wind, as well as temperature and pressure, between 80 and 100 km (John et al., 2011; Reid et al., 2018).

Physics-based models solve the equations which describe the physical processes in the thermosphere. Initially 
the atmospheric density, wind and temperatures are generally provided by empirical models, but a “spin-up” time 
is used for the results to stabilize. The spin-up time can be reduced in subsequent model runs by using previous 
output from the model. Neutral and ion species production is then calculated via chemical reaction equations and 
using solar X-rays and EUV conditions. Ion transportation and recombination are also considered. The initial 
and boundary conditions, as well as proxies for solar activity, are the main drivers for the models. There are a 
number of approaches to modeling the physics of the thermosphere, which rely on different numerical methods 
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densities. A variety of algorithms for constructing the model weights for the MMEs are described and have 
been implemented including: performance weighting, independence weighting, and non-negative least squares. 
Using both empirical and physics-based models, compared against in situ Challenging Minisatellite Payload 
(CHAMP) observations, the skill of each MME weighting approach has been tested in both solar minimum 
and maximum conditions. In both cases the MME performs better than any individual model. A non-negative 
least squares weighting for the MME on a set of bias corrected models provides a 68% and 50% reduction in the 
mean square error compared to the best model (Jacchia-Bowman 2008) in the solar minimum and maximum 
cases, respectively.

Plain Language Summary  Combining multiple models of the neutral upper atmosphere 
(thermosphere) can lead to the cancellation of errors and improved short-term forecasts of the environment. In 
this paper a number of different methods for creating these “multi-model ensembles” (MMEs) are investigated, 
varying how the different models in the comparison are weighted and combined. Using both statistical and 
first-principles models and compared to observations from the Challenging Minisatellite Payload (CHAMP) 
satellite, the skill of each MME approach has been tested in both solar minimum and maximum conditions. 
In both cases the MME performs better than any individual model. The best performing combination makes 
a 68% reduction in the mean square error compared to the best individual model at solar minimum and a 50% 
improvement at solar maximum.

ELVIDGE ET AL.

© 2023. The Authors. Space Weather 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Multi-Model Ensembles for Upper Atmosphere Models
S. Elvidge1  , S. R. Granados1  , M. J. Angling2  , M. K. Brown1  , D. R. Themens1  , and A. G. Wood1

1Space Environment and Radio Engineering Group (SERENE), University of Birmingham, Birmingham, UK, 2In-Space 
Missions Ltd, Alton, UK

Key Points:
•	 �Multi-model ensembles (MMEs) are 

used to reduce the error in specifying 
the thermosphere

•	 �The MME performs better than any 
individual model in all test scenarios

•	 �A non-negative least squares 
weighting for the MME reduces the 
error by 68% at solar minimum and 
50% at solar maximum

Correspondence to:
S. Elvidge,
s.elvidge@bham.ac.uk

Citation:
Elvidge, S., Granados, S. R., Angling, 
M. J., Brown, M. K., Themens, D. R., 
& Wood, A. G. (2023). Multi-model 
ensembles for upper atmosphere models. 
Space Weather, 21, e2022SW003356. 
https://doi.org/10.1029/2022SW003356

Received 22 NOV 2022
Accepted 28 FEB 2023

10.1029/2022SW003356
RESEARCH ARTICLE

1 of 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2846-0730
https://orcid.org/0000-0002-4512-212X
https://orcid.org/0000-0002-8160-787X
https://orcid.org/0000-0002-5043-1330
https://orcid.org/0000-0003-2567-8187
https://doi.org/10.1029/2022SW003356
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022SW003356&domain=pdf&date_stamp=2023-03-16


Space Weather

ELVIDGE ET AL.

10.1029/2022SW003356

2 of 12

(Augenbaum, 1984; Bott, 1989; Purnell, 1976), and thus exhibit different levels of complexity and use a variety 
of inputs. Model developer choices about the solver and the selection of boundary conditions leads to differences 
in the outputs from models.

1.2.  Multi-Model Ensembles

A multi-model ensemble (MME) is a combination (usually weighted) of individual models (Murray,  2018; 
Thompson,  1977). Ideally the models should have independent errors and the improved performance of the 
MME arises from the errors partially canceling (Hagedorn et al., 2005). Tracton and Kalnay (1993) showed the 
utility of MMEs in one of the first operational MME weather forecasts, and also demonstrated skill in longer-term 
forecasts. Elvidge (2014) and Elvidge et al. (2016) demonstrated for the first time the skill from using MMEs for 
upper atmosphere forecasts. The result has been further demonstrated by combining the four Utah State Univer-
sity Global Assimilation of Ionospheric Measurements (USU-GAIM) models (Schunk et al., 2016).

A key question when using an MME is how the models should be combined. Elvidge et al. (2016) used both an 
equal weighting scheme and a scheme where the weights were the inverse of the mean square error (MSE) of the 
models used to create the MMEs. That work showed that 6 hr forecasted densities of the thermosphere had a 60% 
reduction in the root mean square error when using an MME. To further investigate MMEs in the thermosphere 
Elvidge et al. (2016) recommended that:

•	 �A “training” data set should be used for the weighting scheme rather than the testing data set
•	 �More variety of weighting methods should be included
•	 �Longer test scenarios should be used to reduce the uncertainties in the statistics.

This work addresses those recommendations.

2.  Method
2.1.  Observations

This work uses data from the Challenging Minisatellite Payload (CHAMP) satellite (Reigber et  al.,  2002). 
CHAMP was operational from July 2000 to September 2010. During this time the CHAMP orbit degraded from 
an altitude of 454 to 296 km due to atmospheric drag. One of its primary missions was to precisely measure the 
terrestrial gravity field which required a very accurate accelerometer. Thermospheric total mass densities have 
been estimated from the CHAMP accelerometer data (Sutton, 2009). This is the data set as was used in Elvidge 
et al. (2016); however, since that study, the CHAMP drag coefficient and surface area has been re-analyzed using 
higher fidelity satellite geometry models and more advanced drag coefficient estimation (Mehta et al., 2017). 
This has resulted in a 20% reduction of the estimated densities. This work uses the re-analyzed data, but it should 
be noted that the empirical models JB2008 and DTM-2013 are fitted with the older data (see Section 3).

The CHAMP data has a high sampling rate along its orbit (10 s). However, the local solar time varies by only a 
few seconds every orbit. Therefore, over the course of a month, CHAMP would only sample approximately 2.8 hr 
of local solar time (Häusler et al., 2010). Even so, structures in the neutral density such as traveling atmospheric 
disturbances and the midnight density maximum can be seen (Emmert, 2015). However the limit of the data 
coverage does impact the overall assessment of this method. The accelerometer-derived neutral density observa-
tions have an estimated mean error of 10.6% (Sutton, 2008).

2.2.  MME Weighting Methods

In this paper the performance of six different weighting schemes that can be used to combine models are tested. 
These are equal weights (EW), performance weights (PW), PW with bias removed (PWB), Reliability Ensemble 
Averaging (REA), Independence Weighting (IW), and Non-Negative Least Squares Regression (NNLS). Each 
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scheme is described in the following sections. In each case the MME is formed as a weighted combination of the 
input models:

𝑀𝑀(𝑥𝑥𝑥 𝑥𝑥) =

𝑁𝑁
∑

𝑘𝑘=1

𝑅𝑅𝑘𝑘(𝑥𝑥𝑥 𝑥𝑥)𝑍𝑍𝑘𝑘(𝑥𝑥𝑥 𝑥𝑥),� (1)

where M(x, t) is the MME for each point x at time t, Rk(x, t) is the weight for each model k which could also vary 
in time and space, Zk(x, t) is each model output, and N is the number of models.

2.2.1.  Equal Weighting

Constructing appropriate model weights can be difficult given small sample sizes and available data (Kharin & 
Zwiers, 2002). As such it has been argued that the only way to generate a good MME for small data sets is by 
taking the ensemble mean (Hagedorn et al., 2005). Though simple, this method has been shown to produce good 
results in the thermosphere (Elvidge et al., 2016) and more broadly in climatology (Barnston et al., 2003; Palmer 
et al., 2004; Weisheimer et al., 2009). The MME weights are given by:

𝑅𝑅𝑘𝑘 =
1

𝑁𝑁
.� (2)

2.2.2.  Performance Weights

A performance weighting scheme uses a measure of model skill to weight the models so that the best performing 
model (against a representative data set) has the highest weight. The performance weighting used in this work is 
a modified version of that described by Rozante et al. (2014). It uses the MSE as the skill measure to weight the 
models. The weights then have the value:

�� =
∑�

�=1 MSE�

MSE�
,� (3)

where

MSE� =
∑��

�=1

(

� �
� −��

)2

��
,� (4)

where 𝐴𝐴 𝐴𝐴 𝑖𝑖

𝑘𝑘
 is a model prediction in the training period, X i is a data point in the training period and Np is the number 

of points.

2.2.3.  Performance Weights With Bias Removed

Some models show a good amount of skill in terms of the correlation, showing that they model the thermospheric 
response well. However, the MSE may still be large, and a reason for this can be model biases. The bias is the 
difference of the average density of each model in the training period and the average density of the data set:

𝐵𝐵𝑘𝑘 =

∑𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑌𝑌 𝑖𝑖

𝑘𝑘
−𝑋𝑋𝑖𝑖

𝑁𝑁𝑁𝑁
,� (5)

so that

𝑌𝑌
′
𝑖𝑖

𝑘𝑘
= 𝑌𝑌

𝑖𝑖

𝑘𝑘
− 𝐵𝐵𝑘𝑘� (6)

and

�� =
∑�

�=1 MSE′
�

MSE′
�

,� (7)

where
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MSE′
� =

∑��
�=1

(

� ′�
� −��

)2

��
,� (8)

If the bias from the training data is removed before MSEs are taken, a potentially better representation of model 
skill can be achieved. The MSE of an unbiased model is equal to the variance, so this is effectively a variance 
weighting. The bias is then pre-removed from the validation data set before averaging the models. This assumes the 
bias does not change between testing and validation, which for a short time should be a reasonable  approximation.

2.2.4.  Reliability Ensemble Averaging

Elvidge et  al.  (2016) suggested the use of REA to estimate the ensemble weights. REA is used in terrestrial 
weather climatology to infer the unknown future performance of the model from its previous performance and in 
comparison to the other model's predictions (Giorgi & Mearns, 2002). The weighting process involves calculating 
the following quantity:

𝑅𝑅
𝑗𝑗

𝑘𝑘
= min

⎛

⎜

⎜

⎜

⎝

1,

{

[

𝜖𝜖

𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑘𝑘)

]𝑚𝑚
[

𝜖𝜖

𝑎𝑎𝑎𝑎𝑎𝑎
(

𝐷𝐷
𝑗𝑗

𝑖𝑖

)

]𝑛𝑛}

[

1

𝑚𝑚𝑚𝑚

]

⎞

⎟

⎟

⎟

⎠

.� (9)

The 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝑘𝑘
 are weights per model k and validation point j, the ϵ are estimations of the data set's variability which 

could be the range or the standard deviation of the data (a constant value of 1 × 10 −12 was used in this work as an 
estimation), Bk is the bias of the model calculated against previous data, 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝑘𝑘
 are distances from the models to the 

weighted multi-model average, �̃ � , given by

�̃ � =
Σ���

��
�
�

Σ���
�

,� (10)

and m and n allow for separate weightings of the bias and the distances (usually m = n = 1 (Giorgi & Mearns, 2002)). 
This is a circular definition since Rk is defined in terms of the distance from �̃ � in Equation 9 so an iterative proce-
dure is used to find the weights and is usually complete within a few cycles. The weights are calculated using 
Equation 9 then a new average is calculated using Equation 10 until a weight reaches a value of one (Giorgi & 
Mearns, 2002). This could be useful in storm time when little is known about the storm. It relies on the model 
average which, a better estimate of a model's reliability than its prestorm bias.

2.2.5.  Independence Weighting

Model independence is a critical requirement for an MME to work (Elvidge, 2014). It may be the case that a set 
of models are not independent and share a lot of their structure with each other. The “independence weighting” 
approach aims to take this into account. To determine the level of independence between models first each has its 
bias removed. Ideally this de-biased time series should have Gaussian errors and the covariance between different 
independent model errors would be zero. In practice often these errors do have some covariance. A covariance 
matrix of these errors, for each of the different bias corrected models is constructed, and weights are produced 
based on the variance between model and data, and the amount of covariance between the models (Bishop & 
Abramowitz, 2013):

𝑅𝑅𝑘𝑘 =
𝐀𝐀

−1
𝟏𝟏

𝟏𝟏𝑇𝑇𝐀𝐀−1𝟏𝟏
,� (11)

where 1 is a vector of all 1's and A is the model difference covariance matrix. This system can produce 
negative weights which is meaningless. So the method is adjusted to give only positive weights (Bishop & 
Abramowitz, 2013):
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𝑅̃𝑅𝑘𝑘 =
𝑅𝑅𝑇𝑇

𝑘𝑘
− 𝟏𝟏

𝑇𝑇
min(𝑅𝑅𝑘𝑘)

1 − 𝑘𝑘min(𝑅𝑅𝑘𝑘)
.� (12)

A consequence of this is that one model always has zero weight, and is therefore excluded from the weighting. 
This method allows the use of different versions of the same model since independence is no longer a concern, 
potentially allowing similar models of the different versions/generations and formulations to be used.

2.2.6.  Non-Negative Least Squares

Non-Negative Least Squares is a simple constrained regression which does not allow the coefficients to become 
negative. Specifically it finds the coefficients Rk such that

argmin
𝑅𝑅𝑘𝑘

‖𝑍𝑍𝑘𝑘𝑅𝑅𝑘𝑘 −𝑀𝑀‖

2

2
subject to𝑅𝑅𝑘𝑘 ≥ 0� (13)

where ‖ ⋅ ‖2 is the Euclidean norm (Bro & De Jong, 1997). The regression is performed on the training data set.

3.  Models
In this paper six models have been used to create the MME. Three of the models: NRLMSISE-00 (Picone 
et  al.,  2002), the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM) (Qian 
et  al.,  2014) (version 1.95 was used in Elvidge et  al.  (2016) whilst version 2.0 is used here) and the Global 
Ionosphere-Thermosphere Model (GITM) (Ridley et  al.,  2006) (updated since then) were used in Elvidge 
et al. (2016) (refer to that paper for a brief description of the models, or to the references for a detailed description). 
GITM and TIE-GCM were both run at 5° × 5° resolution. Additionally the Coupled Thermosphere-Ionosphere 
Plasmasphere Electrodynamics (CTIPe) (Codrescu et al., 2012; Millward et al., 1996), Jacchia-Bowman 2008 
(JB2008) (Bowman et al., 2008) and the Drag Temperature Model 2013 (DTM-2013) (S. Bruinsma, 2015) are 
used in this paper. A summary of the differences between the empirical models used in this work are shown in 
Table 1 of Emmert (2015) whilst Table 2 of the same paper highlights the difference between the physics-based 
models.

3.1.  CTIPe

The Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics model (CTIPe) has been developed at 
the National Oceanic and Atmospheric Administration (NOAA). It is a physics-based model with a fixed reso-
lution of 18 cells in longitude, 90 in latitude and 15 vertical pressure levels. These values are due to the smaller 
scales of spatial variation in latitude compared to longitude. The model assumes hydrostatic equilibrium (as 
TIE-GCM from Elvidge et al. (2016) does). As well as F10.7, CTIP uses hemispheric power in 12 min intervals. 
The model was run on request at the Community Coordinated Modeling Center (CCMC) website and automati-
cally interpolated to CHAMP paths on the website (Codrescu et al., 2012).

3.2.  JB2008

Jacchia-Bowman 2008 (JB2008) has been developed by Space Environment Technologies (SET) and is an empir-
ical thermospheric density model (Bowman et al., 2008). It is based on the previous JB2006 and the original 
Jacchia diffusion equations (Bowman et al., 2008; Jacchia, 1977). The model uses four solar proxies (computed 
from in-orbit sensors) as well as disturbance storm time index (Dst) data (a measure of geomagnetic activity) 
(Tobiska et al., 2009). The model has been validated using derived density data from satellite drag on a range of 
satellites been 175 and 1,000 km.

3.3.  DTM-2013

The Drag Thermosphere Model 2013 (DTM-2013) is a semi-empirical model which describes thermospheric 
temperature, density, and composition. The model has been developed by the Centre National d'Etudes Spatiales 
(CNES) and has a long development history starting with DTM-78 (Barlier et al., 1978). DTM derives its densi-
ties and temperatures from satellite drag data and was the first model to include the high-accuracy accelerom-
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eter data from the CHAMP and GRACE satellite missions (S. L. Bruinsma 
et al., 2004). Recent developments of the model include GOCE satellite data 
from 270 km to improve specification of the lower thermosphere and use of 
F30 (30 cm radio flux) instead of the F10.7. These updates have shown to 
increase the performance of the model with regards to specifying thermo-
spheric density (S. Bruinsma, 2015). It uses am instead of ap for modeling 
geomagnetic storm modeling.

4.  Test Scenarios
4.1.  Solar Minimum Scenario

The test scenario used in this work is an extension of the first test scenario 
in Elvidge et al. (2016), a 20 days long run from 18 August 2009 (Elvidge 

et al. (2016)'s test scenario started on 28 August 2009). The MME weighting schemes which require training, are 
trained on the 20 day period before this (from July 29). The test scenario time period contains one geomagnetic 
storm, Figure 1, and during the rest of the month the geomagnetic conditions are quiet.

The F10.7 only varies between 67 and 76 flux units. The extremely low solar minimum of 2008–2009 presents a signif-
icant modeling challenge since the F10.7 values have been shown to not represent the correct thermospheric conditions 
(Bilitza et al., 2017; Solomon et al., 2010). However at solar minimum, internal, and external dynamics, rather than 
solar drivers, dominate the evolution of the thermospheric densities. It is expected that the greatest differences between 
the tested models will be evident at these times (Elvidge et al., 2016). A sample timeseries of a physics-based and 
empirical model and the data for this period is shown in Figure 2. Recall that the average mean error of the observations 
is approximately 10.6% (Sutton, 2008), which is shown as error bars around the CHAMP data points. Whilst the errors 
are not insignificant they are smaller than the differences between the models. The fast periodicity of the data is due to 
the CHAMP satellite completing one orbit every 90 min and each point being 15 min apart.

4.2.  Solar Maximum Scenario

The second test scenario is a typical 30 days solar maximum period from 2002, using a 30 days training window. 
The F10.7 varies between 135 and 240, with some significant spikes in ap (Figure 3).

5.  Results
5.1.  Introduction

The various upper atmosphere models, and the different MME approaches (whose weights are calculated on 
the training periods) have been run for the test scenarios. These forecasts are compared to the derived CHAMP 
neutral densities which have an estimated mean error of 10.6% (Sutton, 2008), and whilst these results cover 
month long scenarios that only represents approximately 2.8 hr of local solar time coverage (Häusler et al., 2010). 

Table 1 
Labels in the Modified Taylor Diagrams

MME Abbreviation

Equal EW

Performance weighting PW

Performance weighting with bias subtracted PWB

Reliability ensemble averaging REA

Non-negative least squares NNLS

Independence weighting IW

Table 2 
Weighting of the Different Models in 2009

NRLMSISE-00 JB2008 DTM2013 TIE-GCM GITM CTIPe

Equal weighting 0.17 0.17 0.17 0.17 0.17 0.17

Performance weighting 0.12 0.47 0.19 0.08 0.10 0.04

Performance weighting with bias subtracted 0.24 0.25 0.21 0.07 0.11 0.12

Reliability ensemble averaging a – – – – – –

Non-negative least squares 0.10 0.10 0.35 0.11 0.21 0.13

Independence weighting 0.00 0.00 0.59 0.04 0.28 0.09

 aWeights vary over time.
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The models are compared using modified Taylor diagrams (Elvidge et al., 2014). To read such a diagram (e.g., 
Figure 4): the radial distance of a data point from the origin is the models normalized standard deviation (here 
they are normalized by the standard deviation of the observation), and the azimuthal angle corresponds to the 
correlation between the model and observation. The dashed line (marked with a star) shows the normalized 
standard deviation of the observation (i.e., unity). The dotted lined semicircles, originating from the intersection 
of the observed standard deviation (dashed line) and the horizontal axis, show contours of the standard deviation 
of the model error. Finally, the (normalized) MSE between the model and observation time series can be found 
by adding, in quadrature, the standard deviation of the model error and model bias (model minus observations) 
which is shown by the color bar. The normalization factors have been included in the top right of the diagram and 
can be used to revert any factor to its original value.

Figure 2.  Sample timeseries of neutral density from the solar minimum scenario for CHAMP (blue, with error bars shown in 
black), TIE-GCM (orange) and JB2008 (green).

Figure 1.  ap (blue) and F10.7 (red) for the test scenario and training period which runs from 29 July to 8 September 2009. 
Training period is before 18 August (black line), values after this are used for validation. The large spike in ap is associated to 
a geomagnetic storm.
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5.2.  Solar Minimum Scenario

Figure  4 shows a modified Taylor diagram of the solar minimum test 
scenario. It can be seen that TIE-GCM and CTIPe have large positive biases 
and normalized standard deviations greater than 1 compared to the CHAMP 
observations. Whilst the other physics-based model, GITM, underestimates 
the range of observations (normalized standard deviation significantly less 
than 1) and is negatively biased.

TIE-GCM and GITM have a lower correlation to the data than the empirical 
models, whilst CTIPe is similar. NRLMSISE-00 has a large positive bias and 
variance although with a moderately better correlation than TIE-GCM. DTM 
performs similarly to NRLMSISE, but with a slightly smaller bias. Overall 
JB2008 performs the best of any individual model. Of the MME approaches, 
the simple equally weighted ensemble leads to a greater correlation with the 
data compared to any individual model and accurate variance. It is a common 
theme for thermospheric models to overestimate the neutral density, but 
GITM here has a low bias which improves the bias of the equally weighted 
ensemble. REA and PWB have near-zero biases due to the bias correction, 
this shows that the biases in these models varies over timescales longer than a 
month. The non-negative least squares and independence ensembles perform 
similarly to the others but with a lower variance. The model with the highest 
MSE is TIE-GCM at 2.80 × 10 −24, and the lowest is JB2008 with an MSE 
of 5.35 × 10 −25, significantly lower than all the others in this regime. Of the 
MMEs the highest MSE is equal weighting with an MSE of 1.03 × 10 −24 and 
the lowest is the non-negative least squares with an MSE of 1.73 × 10 −25. The 
maximum drop in MSE therefore is 94%, and a 68% from the best model.

Figure 3.  ap (blue) and F10.7 (red) for the test scenario and training period which runs from 1 August to 30 September 
2002. The training period is before 31 August (black line), values after this are used for validation. The large spikes in ap are 
associated to geomagnetic storms.

Figure 4.  Modified Taylor Diagram for 20 days from 18 August 2009 with 
20 days training period. Data from the CHAMP satellite. The diagram shows 
the correlation to the data, normalized standard deviation, and bias. The label 
expansions are shown in Table 1.
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The weightings of each model, for the different schemes used here, are shown in Table 2. After removing 
the bias the weights allocated to NRLMSISE-00 become higher and the weights for JB2008 become lower. 
The regression and independence weightings both favor the physical models more heavily at the expense of 
JB2008.

5.3.  Solar Maximum Scenario

Figure 5 shows a modified Taylor diagram for the individual models and MME results for the solar maximum 
test scenario. The empirical model performance is superior. GITM again has a high bias and variance along with 
CTIPe.

The MSE of JB2008 is 4.53 × 10 −25 and the worst model is GITM with an MSE of 2.62 × 10 −23. The physics 
models generally performed worse here than in the 2009 solar minimum test. GITM has a positive bias and a 
greater than 1 normalized standard deviation in contrast to the solar minimum test scenario when it is less than 
1 and negatively biased. In this case TIE-GCM has a negative bias, again in contrast to 2009. TIE-GCM also has 
a small correlation, implying it had trouble producing the correct features in the neutral density field, whereas 
GITM produced a very high correlation. The best MME was again a non-negative least squares with an MSE 
of 2.35 × 10 −25, while the equally weighted ensemble had an MSE of 3.28 × 10 −24. The highest improvement 
is 99%, and the improvement from JB2008 is 49%. The weightings are shown in Table 3. It can be seen that the 
physics-based models are weighted less heavily than the empirical models. NRLMSISE-00 is weighted more 
heavily than in the non-negative least squares. The equally weighted MME did not have a lower MSE than the 
best performing model in either circumstance.

Figure 5.  Modified Taylor Diagram for 30 days validation from 31 August with 30 days training period. Data from the 
CHAMP satellite. The diagram shows the correlation to the data, normalized standard deviation, and bias. The timeseries 
have not been binned.
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6.  Conclusions
MMEs have been shown to improve the MSE of upper atmosphere forecasts. They rely on a spread of values 
around the true value to approximate it. Upper atmosphere models tend to be biased and for satellite predictions 
this is the most important statistical parameter, since the bias leads to a consistent deviation away from the true 
satellite track. Models (and MMEs) therefore need some kind of bias correction. Efforts like HASDM (Storz 
et al., 2005) where the biases of a thermospheric model are corrected by data assimilation can reduce them to near 
zero, and lead to vastly improved satellite prediction capabilities. However MMEs offer an opportunity to de-bias 
the model output simply, without the need for a computationally expensive data assimilation system, and can be 
used during forecasts where data is unavailable. A number of different MME methodologies have been described 
and compared here which can broadly be used throughout space weather (not just in the context of thermospheric 
density specification). If deploying such a system in an operational setting we would recommend that weights are 
calculated on a “rolling” 1-month basis (if not using REA which, by definition, varies over time).

This paper has investigated the recommendations of Elvidge et al. (2016) to improve our understanding of the use of 
MMEs in the thermosphere. Training datasets have been used to calculate the individual model weights, and a greater 
variety of weighting schemes have been used. The testing scenarios have also been extended to reduce the uncertainties 
in the statistics. In both the solar maximum and minimum test scenarios the MME performs better than any individual 
model compared in this study, within the confines of only using CHAMP data. Whilst many of the MME weighting 
methods perform similarly, overall a non-negative least squares weighting on bias corrected models gives the largest 
reduction in error. In the solar minimum case this is a 68% reduction in the MSE from the best individual model 
(Jacchia-Bowman 2008 [JB2008]) and a 50% reduction in the solar maximum case, again compared to JB2008.

Data Availability Statement
The CHAMP data were collected from http://tinyurl.com/densitysets as provided by Mehta et al. (2017). TIE-GCM 
is developed by NCAR and is available at http://www.hao.ucar.edu/modeling/tgcm/tie.php. NRLMSISE-00 was 
developed by NRL and is available via the Community Coordinated Modeling Center (CCMC) at https://kauai.
ccmc.gsfc.nasa.gov/instantrun/msis/. GITM was developed by Aaron Ridley at the University of Michigan 
and is available at https://github.com/aaronjridley/GITM. CTIPe was developed at NOAA and was run via the 
“runs-on-request” system on CCMC https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=CTIPe. JB2008 
is provided by Space Environment Technologies from https://sol.spacenvironment.net/jb2008/code.html and 
finally DTM-2013 was provided by Dr. Sean Bruinsma, CNES, Space Geodesy Office. DTM-2020 is available 
from https://github.com/swami-h2020-eu/mcm.
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