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A B S T R A C T   

Urban greenery is of great significance for sustainable urban development due to the diverse ecosystem services 
it provides. Assessing urban greenery can reveal its impact on urban areas and provide the evidence base for 
strategic urban forest management and planning, thereby contributing to sustainable urban development. Street 
View (SV) images are being used more frequently and widely for assessing urban greenery due to the advantages 
of providing new perspective and saving workload and research costs. In this paper, 135 peer-reviewed publi-
cations that employed SV to assess urban greenery between 2010 and 2022 are reviewed. Presently, the most 
widely applied area of SV-based urban greenery research is to extract the green view index. Although this has 
many potential applications for assessing ecosystem services, it has most often been used to date to identify the 
impact of street greenery on residents’ physical and mental health, activities, and well-being (i.e., cultural ser-
vices). In contrast, fewer studies have explored the other ecosystem services related to the greening. Overall, as 
an emerging urban environment research method, this review shows that there are still challenges in the uti-
lisation of SV images for assessing urban greenery applications. These include the insufficient spatial and tem-
poral coverage of SV images, low data collection accuracy and immaturity of suitable deep learning techniques 
on object identification. However, there is clear potential for these approaches to be developed to support a 
broader range of urban greenery studies that consider different ecosystem services and/or specific types of green 
infrastructure, for example, street trees.   

1. Introduction 

Developing sustainable cities and communities is one of the 17 sus-
tainable development goals proposed by the United Nations (UN, 2022), 
aiming to make urban areas more inclusive, safe, sustainable, and 
resilient. Urban areas need to have the ability to cope with disasters and 
climate change and minimise adverse impacts on the natural environ-
ment. Urban greenery is indispensable in developing sustainable cities 
due to its various Ecosystem Services (ES). In recent years, a growing 
number of studies have explored urban greenery’s role in sustainable 
urban development. For example, Mell (2009) used London as an 
example to discuss the positive effect of green infrastructure on urban 
regeneration and sustainable development from ecological, economic, 
and social perspectives. He highlighted how green infrastructures create 
liveable spaces, enhance social well-being and cohesion, and increase 
the city’s ability to control climate and manage water. Likewise, Vog-
hera and Giudice (2019) reviewed two study cases in France and Italy to 

illustrate the contribution of green infrastructure to regional sustain-
ability and resilience, including governing climate change, improving 
landscape quality, and increasing well-being. 

To better understand the contribution of greenery to urban sustain-
ability and to manage green infrastructure more effectively, assessments 
of urban greenery are increasingly necessary. Traditional methods for 
assessing urban greenery range from fieldwork for tree inventories (Ma 
et al., 2021), to exploring the normalized difference vegetation index 
(NDVI) - which uses remote sensing images to explore the density of 
green, leaf area index (LAI), or leaf area density (LAD) estimated by 
collecting fallen leaves or hemispheric photography (Nichol and Lee, 
2005; Wei et al., 2020). In recent years, many new and innovative 
technologies have since been developed to facilitate this assessment. 
Street View (SV) is one notable innovation and has established itself as a 
widely used urban greenery assessing tool. This article aims to critically 
review the application of SV in urban greenery assessment, the methods 
commonly employed, as well as discussing the limitations, and 
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application prospects of this technology. 

1.1. Urban greenery 

Urban greenery, i.e., vegetation in urban areas, includes street 
greenery (street trees, shrubs, grasslands), parks, gardens, and forests 
(Konijnendijk et al., 2006). Architectural components covered with 
vegetation that have become popular in recent years, such as green roofs 
and living walls, also belong to urban greenery (Liberalesso et al., 2020). 
These elements compose green infrastructure networks in urban areas 
(European Commission, 2012). 

Urban greenery provides a range of ES, i.e., non-material benefits 
people obtained from urban greenery (FAO, 2022), for urban residents 
and the urban environment. Cultural services provided by urban 
greenery, include the promotion of residents’ activities (Yang et al., 
2020), reduction of the morbidity of multiple physical diseases like 
obesity and heart diseases (Tsai et al., 2019; Nguyen et al., 2021), relief 
of anxiety and depression (Liu et al., 2019; Olafsdottir et al., 2020) and 
so on. Regulating services consist of carbon sequestration (Strohbach 
et al., 2012; Nowak et al., 2013), adjustment of urban micro-climate and 
mitigating urban heat island (Loughner et al., 2012), stormwater man-
agement (Berland and Hopton, 2014) and impact on air pollutants (Fujii 
et al., 2005; Dela Cruz et al., 2014; Viecco et al., 2018). In particular, 
urban greenery can influence the dispersion of air pollutants and 
thereby extend the distance between pollution source and human re-
ceptor, in order to reduce exposure (Ferranti et al., 2019; Pearce et al. 
2021). Urban greenery also offers supporting services, for example 
providing wildlife habitats and supporting urban biodiversity (Shack-
leton, 2016). 

Urban greenery assessments aim to understand the quantity, quality, 
and distribution of the greenery, and explore and quantify the ES it 
provides. Urban greenery can be assessed using various approaches. For 
example, NDVI quantifies the differences between near-infrared and 
visible red pixels in multispectral remote sensing images to estimate the 
plot’s vegetation density or vegetation health status. It is one of the most 
used methods in urban greenery research (Pettorelli et al., 2005). LAI 
and LAD are important parameters to measure the energy and mass 
exchange between vegetation and the atmosphere (Yan et al., 2019). 
Tree inventories are a type of asset register and are used to record in-
formation pertaining to urban trees, including quantity, location, spe-
cies, diameter at breast height (DBH), and tree height. Researchers can 
further explore the benefits and ES of urban greenery from the assess-
ment results. There are also a variety of methods used for the ES 
assessment and it is not unusual to combine approaches such as greenery 
indicators and other information related to benefits for correlation and 
regression analysis (Hillsdon et al., 2006). Other methods include 
exploring the environmental benefits of urban forests using tree in-
ventories and data of trees (Riondato et al., 2020) and modelling the 
impact of greenery on urban climate (Shashua-Bar and Hoffman, 2000). 

1.2. Street view (SV) 

SV images are photographs (including panorama photographs) taken 
from street level. They contain location information and can be mapped 
to create interactive and immersive landscapes (Alvarez León and 
Quinn, 2019). Researchers can bulk download these images through API 
interfaces for deeper analysis (Li, 2021). 

At present, Google is the largest provider of SV in the world. Google- 
owned SV images have covered more than 10 million miles of roads in 
83 countries in 2017, and this number is continually increasing (Raman, 
2017). Similar SV providers include Microsoft, Tencent or Baidu. Ser-
vices of the latter two are mainly provided in China as substitutes for 
Google in this country (Cheng et al., 2017). Moreover, crowdsourcing SV 
platforms that use photos with geographic coordinates taken and 
uploaded by ordinary users as image sources (e.g., Mapillary and 
OpenStreetCam) are also rapidly developing (Mahabir et al., 2020). 

Most SV images are taken by vehicle-mounted cameras. Typical SV 
collection equipment contains sub-cameras facing multiple orientations 
for stitching panorama pictures installed on the top of vehicles, slightly 
higher than the height of the human eye (≈2.5 m) (Anguelov et al., 
2010; Ringland et al., 2019). Similar components can also be used on 
tricycles, sleds, or backpacks to adapt to terrain that cars cannot reach 
(Tung, 2018) Fig. 1. 

SV allows the assessments of the urban environment from land and 
streets, and is an approach has unique advantages over aerial / satellite 
imagery. Firstly, results of urban environmental assessments using SV 
are also closer to human perception (Yang et al., 2009; Leslie et al., 
2010). Secondly, SV images cover the vertical dimensions of the 
urbanscape (Zhang et al., 2019). Thirdly, SV images contain detailed 
information of streets, especially small-size geographical objects (e.g., 
billboards and traffic signs) (Balali et al., 2015; Egli et al., 2019). Finally, 
the technology allows virtual assessing and automatic data collection. 
Compared with some traditional urban greenery assessing methods such 
as fieldworks for tree inventory creation and management, it reduces 
research time and workloads, and increases accessibility for users can 
study the urban greenery without having to physically visit the field site. 
Due to the above advantages, it is evident that studies of using SV as a 
tool for urban environmental research are on the increase (Biljecki and 
Ito, 2021). The application of SV covers a broad range of disciplines 
ranging from social and economic aspects (e.g. health research (Rzot-
kiewicz et al., 2018; Kang et al., 2020), built environment, and land use 
assessment (He and Li, 2021) and urban gentrification research (Ilic 
et al., 2019)). It also covers environmental aspects, like research on the 
urban natural environment and green infrastructure that this article will 
focus on (Biljecki and Ito, 2021; Cinnamon and Jahiu, 2021). 

This review focuses on how urban greenery has been assessed using 
SV as an innovative method of urban green infrastructure research. It 
considers new types of SV-derived information that cannot be obtained 
from traditional aerial and satellite photos, in particular information 
related to human perspectives such as Green View Index (GVI) and Sky 
View Factor (SVF)). 

2. Methods 

2.1. Literature searching and screening 

In order to systematically search for articles that used SV images in 
urban greenery research, this article refers to the PRISMA Statement 
proposed by Moher et al. (2009) (Fig. 2). We collected and screened 
literature using keyword searches on both the Web of Science and 
Google Scholar,. The following keywords were used for the searching: 

’street view’ or ’street image’ or ’street imagery’ or ’street-level 
image’ or ’street-level imagery’ or ’panoramic image’ 

and 

’greenery’ or ’greening’ or ’greenness’ or ’green space’ or ’green-
space’ or ’trees’ or ’vegetation’. 

After removing duplicates from the search results using the combi-
nations of above keywords, 611 articles were listed as the preliminary 
search results. All these articles were published before April 2022. 

Then, articles were screened for inclusion in this review by using the 
following criteria:  

1) Research articles published in English-language scientific journals.  
2) Articles that had concluded the peer-review process.  
3) Articles of empirical research  
4) Articles where SV images were used as a tool (or one of the tools) to 

assess or map urban greenery or further explore ES of urban green-
ery. SV data sources were limited to open source/commercial SV 
images (e.g. Google), while articles using street images captured by 
researchers themselves were excluded. Articles that use SV as one but 
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not the main method for data collection and analysis, are included in 
our review. 

Following these criteria, 135 articles were reviewed. 

2.2. Data analysis 

Basic information for each article was extracted, including year of 
publication, study location, urban greenery type, the method of urban 
greenery data collection, whether ES of urban greenery were researched, 
and if so, what kind of ES was explored. A qualitative review was also 

Fig. 1. A typical Google Street View panorama photo (52.4511985 N, 1.9379263 W) (Google Maps, 2021).  

Fig. 2. A flow chart showing the process of literature screening and reviewing.  
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conducted to ascertain the key findings and limitations of SV discussed 
within the articles. 

3. Result 

3.1. Overview 

SV is a new but increasingly popular tool for urban greenery 
research. The 135 articles included in this review were all published 
between 2010 and April 2022. Between 2010 and 2016, the total 
number of published articles on urban greenery research using SV was 
only 8. However, the number of publications increased rapidly after 
2017. In the five-year period from 2017 to 2021, the annual number of 
published articles was 6, 16, 18, 25, and 50 respectively (Fig. 3). 

Fig. 4 shows that the spatial distribution of studies on urban greenery 
using SV appears in clusters. Most studies were conducted in North 
America, East Asia (e.g., China, Japan, and South Korea), and Europe. 
Several Southeast Asian, South American, and Australian cities also have 
multiple research cases. In the Google SV coverage layer of this figure, 
‘Covered’ represents countries that Google-owned SV images covers 
most of cities, towns, and highways in the country, except limited 
remote regions; ‘Partly covered’ represents countries that Google-owned 
SV images covers limited cities, towns, and highways, and ‘Not covered’ 
represents countries without Google-owned SV images. The situation of 
uneven distribution of cities SV-based research conducted may relate to 
the spatial availability of SV images; SV-based urban greenery research 
is generally conducted where SV (represented by Google) coverage is 
high. China is a notable exception due to the limitation of accessing 
Google services. However, several local companies in this country do 
offer comparable SV services. 

GVI is the most common urban greenery metric extracted from SV 
images. About 82% of all reviewed articles involved quantitative studies 
of GVI, followed next by object identification (such as identification and 
location of trees) which account for 19% of all reviewed articles (Fig. 5). 

Deep learning based on neural networks is the most common method of 
extracting information from SV images, used in more than half of the 
reviewed articles. Since its first appearance in 2017, the number of cases 
using this technique has grown rapidly in the following four years (4 in 
2018, 11 in 2019, 20 in 2020, and 37 in 2021). Indeed, deep learning has 
become the most used method of extracting GVI and SVF in recent years, 
with some research also uses it to identify and locate objects such as 
trees (Xie et al., 2019; Laumer et al., 2020; Lumnitz et al., 2021). 

3.2. Information extraction and data collection 

This section reviews how researchers have collected information and 
data about urban greenery from SV images. Based on the principles of 
information extraction and the types of extracted data, approaches can 
be divided into two categories: pixel-based classification of SV images 
and geographical objects (mainly trees) identification (Fig. 6). 

3.2.1. Pixel-based classification 
SV raster images consist of pixels recording information of intensity 

of light in different wavelengths (red, green, and blue). Pixels reflecting 
various features (vegetation, buildings, sky, etc.) can be distinguished by 
differences in spectral information, similar to ‘geostatistical classifica-
tion’ for aerial and satellite images (Atkinson and Lewis, 2000). 

3.2.1.1. Green View Index (GVI). Originally proposed by Aoki et al. 
(1985), GVI is the most widely used metric for assessing urban greenery 
by SV. GVI is defined as the proportion of the visible green part of the 
entire field of view (i.e., the visibility of urban greenery) on a ground 
position (Yang et al., 2009). In Aoki et al., (1985), researchers measured 
the green colour proportion in street photos with a 28 mm focal dis-
tance. They found that this green view level had a high correlation with 
the human perception obtained from respondents’ on-site evaluation. 
Importantly, this means street-level photographs can accurately quan-
tify greenness in urban areas from human perspectives. More recent 
research compared GVI with NDVI (Tong et al., 2020), which shows that 
GVI focuses more on areas near streets (i.e., with high accessibility of 
residents) and can better reflect the actual green exposure status of 
residents (Ye et al., 2019). It is concluded that GVI is a better indicator of 
greenery particularly when correlating the relationship between 
greening and residents’ health or activities (Villeneuve et al., 2018; Yu 
et al., 2021). These studies embody the unique advantages of GVI as a 
new indicator in urban natural environment research. 

SV is a commonly used data source for GVI due to its approximate- 
human-eye perspective. GVI calculated from SV is based on the pro-
portion of pixels representing vegetation in a panorama SV image. 
However, there will be distortion when panorama images are flattened 
into planes. Therefore, in actual operation, non-panorama photos of four 
directions (e.g., true north, east, south, and west, or directions perpen-
dicular and parallel to the roads), instead of the entire panorama photo, 
will be selected for pixel extraction (Yang et al., 2009; Long and Liu, 
2017; Lu, 2019). In some improved research cases, the number of di-
rections is even higher, such as six (Dong et al., 2018), ten (Xia et al., 
2021a), and three vertical angles (upper, middle, and lower) in 6 di-
rections (18 directions in total) (Li et al., 2015). 

Therefore, the extraction of green pixels from vector images is a 
critical step of GVI calculation. Commonly used extraction methods can 
be divided into three categories (Table 1). Manual screening is the most 
traditional method, which screens green pixels by using the ‘magic 
wand’ tool of Photoshop (or similar) (Yang et al., 2009). Unsupervised 
classification is a common GVI extraction method in literature published 
before 2018. For example, Li et al. (2015) proposed an unsupervised 
classification method, which extracts the three bands (red, green and 
blue) of images to identify the pixels that the green colour dominates. 
Using MATLAB, some other studies conduct unsupervised classification 
based on the HSV (i.e., hue, saturation, value) colour model, which 

Fig. 3. (a) Total number of SV-based urban greenery studies each year and (b) 
number of SV-based urban greenery studies on each continent. A few studies 
did not specify the study site, so they are not counted in figure (b). 
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extracts pixels with the hue level between 60 and 180 (Long and Liu, 
2017) or between 75 and 170 (Dong et al., 2018). Finally, supervised 
learning has been increasingly widely used in recent years, which spe-
cifically includes support vector machine, backpropagation, and the 
more popular semantic image segmentation (including PSPNet, SegNet, 
and DeepLab) (Table 1). Among them, deep learning based on semantic 
segmentation is the most used method to extract GVI from SV images, 
especially after 2019. 71 articles (68 after 2019) used this method to 
extract GVI, underlining the development of deep learning technology as 
an important factor in the development of SV-based research. 

Following green pixel extraction, researchers can quantify and map 
the distribution of GVI in urban areas. A high-profile example of these 
approaches is ‘Treepedia’ which visualized the spatial distribution of 
GVI in 30 cities around the world (Abbati, 2019). Moreover, the 
outputted GVI data and maps has also led to further research. For 
example, comparative studies were carried out to analyze the difference 
in GVI distribution in different cities, and explore the influencing factors 
of GVI (Long and Liu, 2017; Xiao et al., 2021). The results show that 

landscape patterns may be an important driving factor. More essentially, 
local policy can influence the distribution of urban greenery. Li (2021) 
combined GVI and census data, whose result indicates the existence of 
green inequality in New York where populations of minorities usually 
live in communities with less greenery. Another example in Singapore 
embodies the role of GVI assessment in urban planning, which helps 
determine the priority of urban greening interventions of each street (Ye 
et al., 2019). 

3.2.1.2. Sky View Factor (SVF). SVF measures the proportion of the 
field of view of the sky at a ground position (Liang et al., 2017). SVF is 
one of the dominant factors affecting urban microclimate. A lower SVF 
usually means a greater height/width ration within the street canyon 
and therefore less available solar radiation, which helps reduce daytime 
street temperatures and improve residents’ thermal comfort (Sanusi 
et al., 2016). Although not a direct parameter of urban greenery, green 
elements, especially tree crown will form significant components of the 

Fig. 4. Cities as foci of SV-based urban greenery research. combining with Google Street View coverage in each country or dependencies (Google, 2022).  

Fig. 5. Different urban greenery characteristics extracted from SV images, and 
the proportion of corresponding articles in all 135 reviewed articles. 

Fig. 6. Different greenery data collecting methods, and the proportion of cor-
responding articles in all 135 reviewed articles. 
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non-sky hemisphere. 
Measurements of SVF are often obtained from fish-eye photography, 

including SV-based approaches (Al-Sudani et al., 2017; Miao et al., 
2020). SV-based SVF measuring is an extension of fish-eye photography 
methods, but it has a unique, and abundant, means of data collection 
and analysis. Similar to fisheye imagery, SV images can cover the entire 
field of view above the point of capture. Other approaches include the 
use of 3D vector database, or Digital elevation model (DEM) analysed 
via ray-tracing algorithms in a GIS (Gal et al., 2009; Kastendeuch, 2013). 
Both methods are comparable, but some studies found that the result of 
the photography method to be lower, and the difference between the 
result of the two methods are positively correlated with tree coverage 
(Gong et al., 2018; Li and Ratti, 2018). The fundamental reason for this 
difference is that the models frequently used by computational methods 
only contain building data but not trees. Thus, some researchers have 
defined the difference between the SVF measured by photographic and 
computational methods as a quantitative value for tree shading services 
(Li and Ratti, 2018; Li et al., 2021). 

Extracting sky pixels from SV images is a critical step in SVF 

measuring. In true colour SV images, sky pixels have unique properties 
(high lightness and/or blue hue). Researchers developed different 
methods for identifying and extracting sky pixels based on these prop-
erties (Table 2). Like GVI measuring, machine learning and classification 
(especially deep learning) is applied in most of the research cases we 
reviewed because of their advantages of high automatic level and 
accuracy. 

3.2.2. Object-based identification 
Object-based assessment is another way of urban greenery assess-

ment by using SV images. SV images are widely used for manual or 
automatic identification of street furniture (telegraph poles, traffic sig-
nals, signboards, etc.) in cities (Zhang et al., 2018; Campbell et al., 2019; 
Toaha et al., 2020). In urban greenery studies, this method is mostly 
used for tree identification and data collection, while other types of 
green infrastructures, such as gardens and parks, can also be assessed by 
SV. 

3.2.2.1. Virtual survey: tree inventories. In urban tree research, a widely 

Table 1 
Comparing of SV-based GVI measuring methods. This section focuses on the methods of data extraction, so the typical cases that appear in this table are not limited to 
articles included in the review.   

Typical cases Advantages Disadvantages 

Manual screening Yang et al. 
(2009)  

• High accuracy because of 
manual operation.  

• Can be used for verifying 
the results of machine 
learning.  

• Labour-intensive work, which needs a significant amount of time 
and workforce. 

Unsupervised 
classification 

RGB-based Li et al. (2015)  • Has a simple operation 
principle and is easy to 
operate.  

• Research time can be saved.  

• Classification accuracy is easy to be affected by external factors 
(light, weather situation, etc.Non-vegetation green pixels (e.g., 
green walls and traffic signs) are easy to be mis-identified  HSV-based Long and Liu, 

(2017) 
Dong et al. 
(2018) 
Zang et al. 
(2020) 

Supervised deep 
learning 

Support vector machine Yu et al. 
(2019)  

• Accuracy is higher than 
unsupervised classification.  

• Automated. Suitable for big 
data analysis  

• Requiring computer and coding knowledge of researchers  
• Large numbers of images are needed for machine learning to 

increase the accuracy Back-propagation Chen et al. 
(2019) 

Semantic image 
segmentation 

PSPNet Gong et al. 
(2018) 
Stubbings 
et al. (2019) 
Li (2021) 

SegNet Ye et al. 
(2019) 
Tong et al. 
(2020) 

DeepLab Xia et al. 
(2021a)  

Table 2 
Comparing of SV-based SVF measuring methods.   

Typical cases Advantages Disadvantages 

Edge 
detection 
algorithm 

Sobel Nice et al. (2020)  • Easy to operate  
• Has a relatively high accuracy (although lower 

than supervised leaning)  
• Suitable for batch analysis  

• Not suitable for scene with too many obstacles (e.g. 
electric wires, tree leaves and branches) (K-means 
clustering can be used for solving this problem)  

• Easy to mis-classify when the differences of spectral 
signatures of sky and buildings are small  

Canny Zeng et al. (2018) 

Mean-shift image 
segmentation 
algorithm 
+ unsupervised 
classification based on 
spectral signatures 

Li and Ratti (2018) 
Li et al. (2018)  

• Mean-shift image segmentation algorithm can 
help maintaining urban features’ integrity and 
avoid fragmented classification results.  

• Pixels with similar spectral characteristics are easily 
misclassified 

Supervised deep learning Liang et al. (2017); Gong et al. 
(2018); Li et al. (2021); Xia et al. 
(2021b); Kim et al. (2022)  

• High accuracy (when using enough samples for 
machine learning)  

• Has the highest automatic level, and suitable for 
big data analysis  

• Requiring computer and coding knowledge of 
researchers  

• Large numbers of training samples needed  
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used method is generating tree inventories, which count the number of 
urban trees and collect specific information about these trees (Mor-
genroth and Östberg, 2017). However, compiling and regularly updat-
ing tree inventories is labour-intensive. Although some researchers have 
introduced photographic methods (e.g., laser scanning) to reduce the 
workload of tree information collection (Calders et al., 2015; 2020), the 
research costs are high. SV has the advantages of wide spatial coverage, 
frequent updates (especially in major cities in the United States and 
Europe), and low cost. 

The tree parameter data collected by SV-based tree surveys is similar 
to that collected by traditional on-site surveys. In most cases the DBH 
and species (genus or species level) were measured or identified. Other 
information that can be collected includes the height and crown size of 
trees (Wang et al., 2018; Meunpong et al., 2019; Ulus et al., 2021), 
health situation, etc. (Berland et al., 2019). Data are collected by visual 
interpretation, generally by professionals or trained personnel to maxi-
mize accuracy. Moreover, Wang et al. (2018) tried to use standardised 
meters, such as fixed-width lanes and traffic lines, road curbs, and 
limewhite on trees (lime water brushed on tree trunks with a height of 
approximately 1.2 m, commonly used on street trees in Chinese cities to 
prevent pests and frost damage), to improve identification accuracy 
further. However, only the limewhite approach achieved a satisfactory 
result. Moreover, some manual identification results (e.g., species) can 
be used as training data for machine learning. With enough training 
data, fine-grained object recognition can be used to identify tree species 
based on the characteristics of different tree species, making automated 
SV image interpretation possible (Lumnitz et al., 2021). Studies that use 
machine learning to identify trees are reviewed in detail in the next 
section. 

Table 3 summarises the results of four case studies that use SV-based 
manual surveys to collect urban tree data to assess the performance of 
this method in practical application. All these studies use the on-site 
survey results as standards to compare with the SV assessing results. A 
horizontal comparison is not straightforward because the parameters 
that measure the accuracy or precision of the same tree data used in 
different research cases are not consistent. Indeed, Table 3 shows that 
the identification accuracy or precision of various parameters of trees 
varies significantly in different research cases. According to these cases, 
the performance of SV for manual identification of tree species is related 
to the urban tree species structure. Specifically, urban areas that contain 
tree species that have a simple structure have higher identification ac-
curacy, and certain species have significantly higher identification ac-
curacy than others (Berland et al., 2019). The precision of tree size data 
collection is related to the data collectors’ expertise level (Berland and 
Lange, 2017) and whether appropriate meters are used (Wang et al., 
2018). 

Apart from urban trees, SV-based virtual surveys have also been 
applied in assessments of other types of urban greenery. For example, 
elements related to urban greenery and plants, such as animal nests, are 

also objects that can be identified by SV (Rousselet et al., 2013). Some 
studies use SV for community and neighbourhood natural environment 
scoring, as a part of urban nature environment assessment (Clarke et al., 
2010; Wu et al., 2014). In these studies, virtual and on-site surveys 
showed high agreement on the rating items related to urban greenery, 
suggesting that virtual surveys can accurately conduct this type of 
assessment. 

3.2.2.2. Deep learning for automatic identification of objects. Although 
SV-based urban greenery manual identification saves research cost and 
time compared with on-site surveys, it still has a low automatic level, 
and regional-scale assessment is labour-intensive. Due to this disad-
vantage, some researchers explored the feasibility of identifying objects 
(mainly trees) by deep learning. 

Convolutional Neural Networks (CNN) are the main technique used 
for automatic tree detection used in all the deep learning cases reviewed. 
CNN-based methods also include methods derived and improved from 
CNN, such as Faster R-CNN for high-efficiency analysis (Laumer et al., 
2020), Mask R-CNN, which is modularized and with generality and 
flexibility (Lumnitz et al., 2021), and Part Attention Network for Tree 
Detection (PANTD) which can be used for detecting occluded trees (Xie 
et al., 2019). Based on machine learning with a significant number of 
images, CNN can automatically segment tree instances from SV images. 

However, compared with manual virtual surveys, the scope of 
application of deep learning is in its infancy. At present, most studies 
only segmented the objects of trees to collect primary data such as tree 
amount and locations. From the results of these cases, the detecting rate 
of trees can generally exceed 70% (Wegner et al., 2016; Branson et al., 
2018; Lumnitz et al., 2021), but the positioning accuracy in different 
studies varies significantly. For example, based on triangulation, Lum-
nitz et al. (2021) successfully located 93% of street trees in Vancouver, 
while the study of Laumer et al. (2020) correctly assigned coordinates 
for only 38% of street trees. The reasons for this difference, apart from 
study design, might be SV images properties (such as the distance be-
tween shooting locations and trees), urban environments, and tree 
properties (such as species structure). There are also some studies that 
focused on other tree information besides counting and localization. For 
example, Khan et al. (2021) used a Siamese Convolutional Neural 
Network (SCNN) to assess the health rate of eucalyptus; Branson et al. 
(2018) tried to identify the species of street tree and got an accuracy of 
more than 80%. This result is close to manual identification in the 
previous section, indicating that machine learning might have an 
identification ability comparable to humans. However, species identi-
fication accuracy is related to multiple factors like local tree species 
structure and SV image attributes, while there are currently only a few 
studies using deep learning to identify tree species. It means it cannot be 
sure whether deep learning can replace manual identification until more 
study cases are conducted in different cities. 

Table 3 
Performance of SV-based tree survey in four research cases.   

Agreement: 
Genus (%) 

Agreement: 
Species (%) 

Error: DBH 
(%) 

Error: Tree 
height (%) 

Error: Crown 
size (%) 

R2: 
DBH 

R2: Tree 
height 

R2: Crown 
size 

Meunpong et al. (2019) 100 99.7  32.1  24.4  49.4  0.6052  0.3314 0.311 
Berland et al. (2019) 84 67.15            
Wang et al. 

(2018) 
Lane width-related 
meter    

12  16  23  0.9387  0.8081 0.8019 

Tree limewhite-related 
meter    

9  14.8  23  0.9704  0.8854 0.8213 

Traffic line-width- 
related meter    

11.5  16  21  0.9577  0.8339 0.8609 

Road curb height- 
related meter    

14  18  25  0.9328  0.8292 0.8207 

Comprehen-sive 
meters    

8.5  13.5  20  0.9782  0.9028 0.8781 

Berland and Lange (2017) 90 66        0.8     
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3.3. Assessment of ecosystem services of urban greenery 

Due to urban greenery’s benefits and its promotion of sustainable 
urban development, assessing the ES of urban greenery is the major 
application of urban greenery assessment. Many study cases used urban 
greenery data extracted from SV images to assess three aspects of ES 
(regulating, culture, and supporting) of urban greenery. 

80 articles were found that explored the various ES of urban green-
ery. Among these articles, the association between the quantity of urban 
greenery and residents’ health and activity were explored the most (40 
of 80 studies). The cooling benefits of trees were discussed in 10 articles, 
which is the second most discussed topic. 

3.3.1. Regulating services 

3.3.1.1. Cooling. The impact of urban greenery on thermal environ-
ments, such as the cooling effects on street canyons, has been extensively 
demonstrated. In recent years, the application of SV assessed the impact 
of vegetation on the temperature of street canyons from some novel 
perspectives. For example, Kim et al. (2022) evaluated view factors of 
sky and trees to model the mean radiant temperature (MRT) of Seoul. 
This study qualitatively proved that areas with high tree density (tree 
view factor > 0.6) have relatively low MRT, but it did not quantify to 
what extent trees play a role in cooling. Li et al. (2022) evaluated the 
link between surface temperatures and the view indexes of three types of 
vegetation based on spatial regression. This qualitative research showed 
that the spatial distribution and mechanism of the cooling benefits of 
various urban greenery are different. For example, trees and grasses 
have the most obvious cooling effect in commercial areas and areas with 
dense roads and buildings, while shrubs have the greatest cooling effect 
in industrial areas. 

Most SV-based urban thermal environment studies focus on SVF and 
discuss the reduction of solar radiation by trees, which is the major 
mechanism of trees’ cooling effect in urban areas (Wang et al., 2016). 
For example, the studies of Li and Ratti (2018) and Li et al. (2018) 
showed that trees reduced 24.61% (whole urban area) and 18.52% 
(downtown) of SVF in Boston, while a research case in Harbin, China 
estimated an SVF reduction of 42.5% from trees (i.e., the average shade 
effectiveness of 56.3%). From these papers, it can be concluded that the 
impact of trees on street SVF varies widely across cities. The differences 
may come from factors such as the attributes of urban trees (e.g., species 
and size), roads (e.g., road width), and buildings. Moreover, Richards 
and Edwards (2017) proved that the reduction rate of solar radiation 
from urban trees in Singapore is approximately 8%. Apart from reducing 
solar radiation and SVF, a minor mechanism of urban greenery’s cooling 
effect is transpiration (Wang et al., 2016). However, no SV-based cases 
that explore this topic were found. 

3.3.1.2. Air pollution remediation. Only two articles were found that 
used SV to explore the effects of urban greenery on air pollutants. Using 
regression, Wu et al. (2020) demonstrated negative associations be-
tween GVI and air pollution data (NO2, two size ranges of particulate 
matter, PM2.5 and PM10, and air quality index) in three Chinese cities. 
The results show that all four air quality parameters are negatively 
correlated with GVI, which suggests there is a relationship between 
urban greenery and better air quality. Huang et al. (2022) explored the 
relationship between PM2.5, PM10 and urban morphological indicators 
including GVI and SVF, and developed predictive models. However, 
these studies did not specify whether the primary mechanism is direct 
pollutant removal by plants or aerodynamical impact, i.e. if the urban 
greenery is primarily influencing the dispersion of pollutants. 

3.3.2. Supporting services 
Urban greenery is an essential part of urban ecosystems, which 

provides habitat and food sources for animals. The quantity of urban 

greenery is a determining factor in the biodiversity level in urban areas. 
Using SV images, researchers can identify objects related to animals and 
habitats to assess the situation of urban biodiversity. For example, 
Rousselet et al. (2013) identified the nests of pine processionary moths 
and evaluated the quantity and distribution of this species. 

On the other hand, invasive species may damage the fragile original 
ecosystem in urban areas and adversely affect local biodiversity. In 
current studies, SV images are also used for species identification of 
urban plants (including woody and herbaceous plants) (Ulus et al., 
2021). This helps to understand the urban plant species structure, 
especially the proportion of invasive species, which contributes to 
determining the impact of invasive species on local ecosystems. 

3.3.3. Cultural services 

3.3.3.1. Health and activities. This review has highlighted that the 
relationship between urban greenery and residents’ health and activities 
is one of the most researched fields. The topics include the morbidity of 
physical diseases (e.g., obesity, asthma), mental health, traveling 
(walking time and propensity of walking or cycling), and indices related 
to physical activities like frequency and duration of exercise (jogging, 
cycling, etc. for leisure purposes). 

The methods used by these studies are similar. Firstly, GVI was used 
as an indicator of urban greenery without exception. Secondly, almost 
all the cases used regression to explore the link between urban greenery 
and health or activities. There are only two exceptions: correlation 
analysis used by Zang et al. (2020) and structural equation modelling 
used by Wang et al. (2021), which explored the influencing mechanisms 
of urban greenery for mental health. Most of the result of these studies 
supported that urban greenery (using GVI as an indicator) was associ-
ated with residents’ health and activities. Moreover, some studies 
compared SV-based assessing and NDVI, a traditional urban greenery 
method, which found that regression analysis results of the two ways 
were inconsistent. Associations are often easier to manifest in SV-based 
studies (Villeneuve et al., 2018; Helbich et al., 2019). It proved that 
SV-based assessment is closer to the actual situation of residents’ green 
space exposure. Finally, Wang et al. (2021) discussed the mechanism of 
urban greenery affecting mental health. The mechanism by which the 
quantity of greenery affects mental health is reducing harm (e.g., 
pollution removal), while high-quality green space can improve resi-
dents’ mental health through its restoring capacities (stress and life 
satisfaction) and building capacities (stress and life satisfaction). 

3.3.3.2. Environmental perception. Environmental perception refers to 
the feelings brought by environments, such as pleasure, happiness, and 
safety. Researchers can explore the role of urban greenery on perception 
by analysing the association between urban greenery data from SV and 
people’s feelings. For example, using a multilevel regression model, Jing 
et al. (2021) proved the effect of GVI in reducing residents’ fear of crime. 
SV images can also directly measure the human perception of urban 
environments. Using questionnaires that investigated people’s feelings 
on SV images, Quercia et al. (2014) proved the link between the quantity 
of greenery and the perception of beautiful, quiet, and/or happiness. 
Similarly, from SV image-based visual perceptual scores, Cheng et al. 
(2017) argued the association between attributes of streets and people’s 
feelings. The results showed that GVI has a positive association with 
perceptual scores, while the sky-openness index (a concept similar to 
SVF) is negatively associated with perceptual scores in the interval 
below 0.2. It shows the positive effect of urban greenery on improving 
human perception. On the other hand, a visual preference survey of 
cyclists shows that SV images with high-density trees tend to have lower 
preference levels because of their low visibility (Evans-Cowley and Akar, 
2014). It means greenery may also be a hindrance to safety. 
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4. Discussion 

4.1. Current state of the art 

Whilst urban greenery research based on SV does not have a long 
history, the development of deep learning techniques means the number 
of research articles in this field is increasing rapidly, especially in the 
past five years. Among these, the number of research exploring the ES of 
urban greenery increased from 2 in 2017–35 in 2020. This demonstrates 
the emergence and acceptance of SV as a tool to assess urban greenery 
for urban environmental research. 

4.1.1. Research advances enabled by SV 
Based on the reviewed articles, we found that due to its advantages, 

SV plays a unique new role in urban greenery research, helping topics to 
be explored that were previously challenging. We categorise this into 
three aspects: (1) The savings in research time, cost, and workload, (2) 
reflection on human’s perception and (3) ability to observe vertical 
profiles of urban greenery. 

The reduction of research time, cost, and workload make SV poten-
tially more promising than traditional research methods, both in pixel- 
and object-based studies. SV-based greenery measurement provides 
large-scale quantitative data, and this advance enables big-data analysis 
at the scale of cities or larger, for example across megacities or metro-
politan conurbations. Such large-scale analysis of the individual com-
ponents of urban greenery would not be possible using traditional 
methods, like the landscape simulation and visual character method 
introduced by Velarde et al. (2007) and Ode et al. (2009). SV also can be 
used to identify, count, and even measure objects, replacing relatively 
inefficient fieldwork (Wang et al., 2018; Berland et al., 2019). 

We believe that the advancement of methodology, in particular, the 
maturity of deep learning technology, is a major factor that lead to the 
above advantage of SV. This factor is particularly applicable to those 
pixel-based studies. Reflected in the number of articles, deep-learning- 
based studies accounted for most of the articles we reviewed (ca. 53% 
of the 135 studies). Since 2018, the number of studies on this method has 
grown exponentially. Deep learning has multiple advantages over 
traditional data analysis methods (Tables 1, 2). In recent years, the 
development of more advanced neural networks and the building of 
richer training sets (such as ADE20K and Cityscapes) have improved the 
accuracy of deep learning, allowing researchers to collect GVI and SVF 
data on a large scale rapidly. 

Second, SV’s new perspective reflects people’s eye-level greening, 
which is difficult to achieve with traditional urban greenery research 
methods. Among them, GVI, the most common greenery index collected 
by SV, is especially close to the greenness perceived by people in daily 
life (Yang et al., 2009). In contrast, traditional methods like NDVI based 
on top-down perspectives focus more on the area of green space but not 
people’s perceptions. For example, in the research case in Gothenburg, 
Sweden (Knez et al., 2018), it is difficult to notice the apparent differ-
ence in the green space area of the six sample areas by using remote 
sensing images. However, based on eye-level perspectives, obvious 
discrepancies are shown in the greenness perceived by residents. 

The close relationship between SV and perception has led to many 
studies exploring the relationship between GVI and indicators related to 
health and well-being. When comparing SV with traditional methods, 
we found that SV showed a stronger connection between greenery and 
well-being than traditional remote sensing measurements in many 
studies (Villeneuve et al., 2018; Helbich et al., 2019; Wang et al., 2021), 
which validate that SV may be able to better reflect greenness exposure 
of residents. But a few studies have results that do not fully support this 
conclusion (Helbich et al., 2021). The differences between cities may be 
a reason for this phenomenon. Still, more importantly, the defects of SV 
itself, such as the limitations of observing parks, private gardens, etc., 
may also affect its performance (see Section 4.2). 

In addition to measuring eye-level perception of greenness, SV can 

also be used to assess vertical profiles of urban greenery. This allows 
urban greenery to be considered alongside vertical profiles of other 
environmental parameters such as air quality and temperature, opening 
up exciting new areas for urban research such as understanding the role 
of trees in street canyons on solar radiation reduction and air pollutants 
dispersion. In particular, the effect of greenery on air quality has not 
been widely explored, and there is much potential for research in this 
area, related to the benefits and disbenefits of trees on air pollution 
concentrations. 

4.1.2. Emerging applications 
SV-based research plays an important role in sustainable urban 

planning, in particular assisting green infrastructure. For pixel-based 
data, many studies, like Dong et al. (2018), and Yu et al. (2019), use 
SV to identify those roads which have unsatisfactory levels of greenness 
at the human eye level. This helps prioritise planning decisions and 
green infrastructure investment. Moreover, these types of assessments 
can be combined with socioeconomic indicators in order to understand 
green inequality and environmental injustice (Li et al., 2015; Wang 
et al., 2021). 

Similarly, as object-based data, trees can be mapped to support urban 
forest monitoring, management, and planning (Beery et al., 2022). Yang 
et al. (2009) stated that planners could design green infrastructure 
reasonably by choosing location, size, and species of plants to maximize 
the visibility of greenness. However, due to the limits of survey methods, 
practical applications in this area are still uncommon (See Section 4.1.3 
for details). 

In addition to the practical application of urban greenery data from 
SV itself, the research on urban greenery’s ecosystem services also has 
been applied in urban planning field. Research on cultural services 
shows the ability of SV to perform in health-oriented urban planning. 
For example, SV have demonstrated a link between urban greenery and 
physical activities; as such information from SV can provide theoretical 
support and data reference for activity-friendly urban design (Anderson 
et al., 2017; Lu, 2019). 

Another application field is urban climate regulation, which is also 
based on pixel-based data. Although it is not clear whether the urban 
greenery data has been applied to urban design and climate improve-
ment, it is widely discussed in the ten reviewed articles on related topics 
that SV has the potential to provide reference to plan street trees so that 
they can effectively play the role of shading and cooling (Li et al., 2018; 
Du et al., 2020; Li et al., 2021). 

4.1.3. Current research gaps 
As we mentioned in Section 4.1.1, the development of methodology 

(deep learning) has led to the popularity of SV-based studies. However, 
deep-learning-based semantic segmentation is currently mainly used to 
measure the proportion of pixels in SV images (GVI and SVF). On the 
other hand, its application on object recognition, counting and mea-
surement (such as tree species recognition, tree crown size and DBH 
measurement) is rare. We analyse that due to the complexity of objects 
and background, segmentation of objects from SV images and counting, 
identifying species or measuring requires a larger amount of training 
than pixel-based data. Meanwhile, the relevant datasets used for 
training are far less than pixel-based semantic segmentation, further 
increasing the challenge of conducting such research (Branson et al., 
2018). 

The technical bottleneck of deep learning causes the homogeneity of 
SV-based research. The majority of the studies reviewed here (104/135) 
use pixel-based segmentation. In contrast, without enough support for 
deep learning, manual identification is still used in object-based 
research (Berland et al., 2019; Ulus et al., 2021). Although this 
method is less costly and time-consuming than traditional fieldwork, it is 
less common as it does not make full use of the cost advantage of SV like 
pixel-based data collection. 

In urban greenery ES research, most of the research focuses on the 
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impact of greenery on residents’ health and activity (i.e., cultural ser-
vices), which is a topic suitable for pixel-based data to explore. In 
contrast, there are limited studies of other ES provided by urban 
greenery, for example, some regulating services such as air quality and 
carbon sequestration and supporting services such as biodiversity. Only 
2 and 3 articles discuss air quality and supporting services, respectively, 
and no articles related to carbon were found. It may be because evalu-
ating these ES requires additional data on greenery beyond pixel-based 
segmentation, for example, the shape and size of trees or shrubs for 
exploring the role of trees in the dispersion of air pollutants (Jeanjean 
et al., 2017), species of trees and DBH for calculating their carbon 
sequestration and air pollutant removal (Nowak, 2020). 

These research gaps limit the practical application of SV in some 
aspects. In urban forest management field, due to the limited object- 
based data, the attempts to build inventories for street trees or to eval-
uate the health status of trees is just started, which are only being 
conducted in major cities with existing tree data as basis (Berry et al., 
2022). 

Assessment of the urban environment (such as air quality improve-
ment and carbon sequestration) and environmentally oriented planning 
is another major practical topic less addressed in SV-based urban 
greenery research. Although current SV research on air quality notes 
that the relationship between the vertical structure of street greenery 
and air quality can provide support for street planning (Wu et al., 2020), 
it does not elaborate on how these greenery data can support the plan-
ning, like how to determine the location for planting trees or shrubs, 
chooser inform tree species selection. SV can support research on carbon 
sequestration by urban greenery by providing greater understanding of 
the depth and volume of tree canopies, and tree health and species, 
thereby providing more accurate information to calculate the amount of 
carbon sequestration. Carbon sequestration is currently estimated by 
allometric growth equations and exiting tree data (object-based) 
(Nowak et al., 2013). As many cities have declared climate emergencies 
and have decarbonisation strategies, SV could provide invaluable data 
for calculating on a city scale the carbon sequestration delivered by 
existing urban greenery and thereby progress (or lack of progress) to-
wards city decarbonisation targets. However, we have not found any 
exploration in this field based on SV. 

4.2. Limitations 

As an innovative urban environment assessing tool, SV is becoming 
popular due to its increasingly ubiquitous availability. However, the 
approach still has disadvantages that limit its current application lead-
ing to homogeneity in the approaches and focus of current research. On 
the other hand, these limitations represent a research gap and oppor-
tunity for the future development of the field. 

4.2.1. Image availability 

4.2.1.1. Time availability. SV images availability for a location does not 
always cover every season. This is important in temperate environments 
where trees may be deciduous. This issue has been mentioned in many of 
the articles reviewed (Li et al., 2018; Ki and Lee, 2021). For example, 
some streets only have winter images. These streets often have to be 
excluded from analyses (Li et al., 2015). 

Moreover, the timeliness of SV images is related to the images’ up-
date frequency. Images are updated infrequently in some cities and 
streets, making changes in greenery (such as tree growth, death, 
migration, and replanting) unable to be considered. The time lag be-
tween an SV image and current conditions may also contribute to dif-
ferences between the virtual survey and the current situation. 

4.2.1.2. Spatial availability. SV services are widespread, but many cities 
remain unmapped. For example, Google SV images are densely 

distributed in North America and Europe (Fig. 4). It is also well- 
distributed in East Asia (except China, while China has local SV opera-
tors as alternatives to Google), Australia, and South America. However, 
in other regions, especially developing countries in Asia and Africa, the 
distribution of SV is relatively sparse. This explains why Fig. 4 shows 
that only a few SV-based urban greenery research cases conducted in 
areas except North America, East Asia, and Europe, which is that the 
spatial distribution of SV images limits the conducting of this kind of 
study. In addition, privacy laws hindered SV image taking in some 
countries (e.g., Germany), which results in a limited local distribution of 
SVs (only covering major cities and main streets), slow updates, and 
blurring of details in SV images (Geissler, 2011). 

Another aspect of the spatial availability limitation of SV is that most 
SV images only cover spaces near streets that cars can access. Streets are 
areas with a large flow of people and concentrate residents’ activities, so 
SV can better reflect pedestrians’ real green space exposure. However, it 
does represent a limitation as SV images cannot assess green infra-
structure outside SV’s field of view, including interiors of large parks 
and green spaces, green roofs, part of private gardens, etc. This situation 
suggests that SV is more suitable for studies focusing on street green 
infrastructures, like assessing street trees and evaluating their ES. It is 
also suitable for exploring residents’ relationships with urban greening 
(e.g., greening and effects on health). On the other hand, SV is less 
effective in comprehensive assessment of urban green infrastructure and 
research on specific types of green infrastructures (e.g., parks, urban 
forests, and green roofs) than traditional research methods such as NDVI 
and on-site surveys. 

4.2.2. Accuracy of extraction and identification 
The issue of accuracy exists in each type of SV-based assessment. In 

pixel-based information extraction (GVI and SVF), the classification is 
based on pixels’ attributes, resulting in pixels with similar hue and 
brightness easily classified into the same class, even though they may 
come from entirely different objects. For example, Larkin and Hystad 
(2019) demonstrated that their HSV-based GVI extraction method could 
not distinguish non-vegetation green pixels (e.g., traffic signs, green 
cars) from vegetation pixels. Another factor that causes misclassification 
is the weather, especially lighting conditions. Especially, SV images 
taken on sunny days may be partially overexposed (Lauko et al., 2020). 
Although the application of machine learning can reduce the rate of 
misclassification, the accuracy of machine learning is still lower than the 
actual situation. The result of Liang et al. (2017) shows that compared 
with manual extraction, The accuracy of SegNet for measuring SVF is 
between 80% and 99%. Chen et al. (2019) compared three GVI extrac-
tion methods (manual classification, PSPNet, and the Back 
Propagation-based method proposed in their study) and found that 
machine learning’s mean intersection over union (IoU) (PSPNet: 65.4; 
BP: 64.2) and mean absolute error (MAE) (PSPNet: 4.81; BP: 5.02) was 
higher than the results of manual extraction (IoU = 63.9; MAE = 4.78). 
Moreover, the accuracy of machine learning depends on the number of 
samples. Generally, a large number of learning samples (10 million) are 
required to make the performance of machine learning similar to actual 
human perception (Goodfellow et al., 2016), which is difficult to 
accomplish. 

The issue of accuracy also exists in object-based research. According 
to Table 3, the accuracy is still lower than on-site surveys. Various 
reasons cause this misidentification. Firstly, insufficient resolution of SV 
images makes small objects and details of trees (such as leaf shape, trunk 
colour, and texture, which are important information for judging tree 
species) difficult to identify. Secondly, factors such as perspective 
distortion, resolution, and inexperienced surveyors lead to errors in the 
measurement of object size (such as tree height and DBH). Wang et al. 
(2018) proposed that using tree limewhite with a known height as me-
ters can effectively improve the accuracy of size evaluation. This is a 
significant manual intervention. 

Some studies have tried to use deep learning to identify objects (like 
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trees) and information extraction (Laumer et al., 2020; Lumnitz et al., 
2021). However, there are not enough case studies to demonstrate the 
efficacy of the approach, especially when extracting relatively complex 
information such as species. Difficulties in extracting such information 
may be due to the complex and variable shape of objects (for example, 
each tree has different form and size), the low resolution of SV images, 
and insufficient training sets. This is a further factor leading to the ho-
mogenization of SV-based urban greenery research, and more 
species-specific studies are required to demonstrate the utility of SV 
images in this field. 

4.3. Opportunities for future research 

SV providers, represented by Google, are surveying in more cities 
and actively updating images in cities with SV services (Google, 2022). 
Moreover, bicycles and backpack cameras (panoramic camera that can 
be carried on the photographer’s back, for example, Google Trekker) are 
becoming popular (Tung, 2018), which means SV may cover interiors of 
parks and urban green spaces where cars are difficult to attend. With the 
SV’s time and spatial coverage and resolution increasing and the 
improvement of data extraction methods (e.g., the increase in the 
training sample of deep learning improves the accuracy), SV will have 
fewer limitations. It will be a handy tool for urban greenery assessment. 
Furthermore, the complementarity of SV and traditional research 
methods allow future comprehensive audits of urban greenery to 
combine multiple methods, like combining the advantages of SV in the 
vertical dimension and street greenness and the advantages of remote 
sensing images on the top-down perspective and the interior of the green 
space, to develop comprehensive urban greenery assessing strategies. 

The current deep-learning-based assessment of objects in urban 
greenery, especially street trees, is limited by technology, but represents 
an opportunity for future development of the field. At present, deep 
learning has been used to identify street furniture such as traffic signs 
and utility poles in SV images (Zhang et al., 2018; Campbell et al., 2019). 
With the augmentation of the training set of trees, this technique may be 
applied in tree research and management, for example, by building 
street tree inventories and mapping them. Tree information that can 
only be obtained through high-cost field surveys or virtual manual au-
dits at present, such as DBH, species, and tree canopy size, will also be 
obtained in a low-cost and fast manner. 

New urban greenery data can promote the diversification of ES 
research. In particular, regulating services represent a current research 
gap. For example, only two SV-based studies has discussed the air 
pollutant remediation of urban greenery, especially street trees, and this 
is a clear research gap. Street trees have much higher exposure to air 
pollution than other trees. Conducting city-scale research to explore the 
effect of street trees on air pollutants is valuable both conceptually, to 
develop the discipline, and practically, for urban environment decision- 
makers. Large-scale data collection based on deep learning can provide 
tree size information to simulate the impact of trees on air pollutant 
diffusion in street canyons in a 3D urban climate model. Species and 
DBH information can be used in numerical models, such as i-Tree Eco, 
for predicting the removal of air pollutants by street trees (Nowak, 
2020). Carbon storage and annual sequestration of trees can be esti-
mated using the biomass equation, which evaluates tree biomass and 
annual biomass increment from species, tree height, and DBH infor-
mation (Nowak et al., 2013). In addition, with the improvement of the 
accuracy of object and species identification, SV images can be widely 
used in urban biodiversity research. 

5. Conclusion 

SV is an increasingly used tool for assessing greenery and assessing 
ES’s in urban areas. Pixel-based GVI and SVF are the most common 
urban greenery data extracted by SV. With the development of deep 
learning and the increasing availability of training samples, the 

classification of SV image pixels is showing a trend of increasing accu-
racy and automation. These urban greenery data from SV have been 
applied on the management of urban green infrastructure and the 
research on green inequality. Furthermore, there have been many 
evaluation cases of GVI in ES of urban greenery. Particularly, the 
human-eye-like perspective of GVI makes it widely used in studies of 
cultural services related to residents, for example analysing the impact 
of urban greenery on residents’ health and well-being, as well as -ori-
ented urban planning. SVF is used in exploring the effects of urban 
greenery on urban climate, especially the effect of trees on reducing 
solar radiation and the cooling effect in street canyons. 

Limited by deep learning technique, object-based assessment is 
currently less common than pixel-based assessment, but has the poten-
tial to play an increasingly significant role in urban green infrastructure 
management and large-scale research on ES of urban greenery (espe-
cially street trees). Compared to traditional on-site surveys, it can collect 
tree information with less workload and time investment. Tree infor-
mation can also be used for assessing various ES, such as air pollutant 
removal and carbon sequestration. The urban-scale assessment and 
mapping of these ES are current research gaps, and we believe that with 
the help of deep learning techniques, the application of SV in these areas 
has a strong potential to fill these gaps, and will also play an important 
role in urban tree management and environment-oriented green infra-
structure planning. 

In conclusion, SV is a tool with unique advantages for urban greenery 
research. Urban greenery assessment based on SV is more accessible for 
modelling and reflecting people’s actual greenery exposure, and it can 
make highly efficient use of research time. However, this assessing 
method also has shortcomings, so it cannot completely replace tradi-
tional research methods like remote sensing (NDVI) and field surveys, 
and limits its current application on urban greenery’s ES assessment. 
The limitations include temporal and spatial availability, and the low 
accuracy due to factors such as image resolution, distortion, and re-
searchers’ experience. Moreover, the accuracy of deep learning for 
object-based research has yet to be proved. In the future, with image 
updates from SV providers and new images photographed for filling 
spatial and season gaps, as well as the improvement of image quality and 
machine learning models, SV will play an increasingly significant role in 
the assessment of urban greenery, especially greenery in proximity to 
roads such as street trees. 
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