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Abstract
We consider two approaches to study non-reversible Markov processes,
namely the hypocoercivity theory and general equations for non-equilibrium
reversible–irreversible coupling; the basic idea behind both of them is to split
the process into a reversible component and a non-reversible one, and then
quantify the way in which they interact. We compare such theories and provide
explicit formulas to pass from one formulation to the other; as a bi-product
we give a simple proof of the link between reversibility of the dynamics and
gradient flow structure of the associated Fokker–Planck equation. We do this
both for linear Markov processes and for a class of nonlinear Markov process
as well. We then characterise the structure of the large deviation functional
of generalised-reversible processes; this is a class of non-reversible processes
of large relevance in applications. Finally, we show how our results apply to
two classes of Markov processes, namely non-reversible diffusion processes
and a class of piecewise deterministic Markov processes (PDMPs), which
have recently attracted the attention of the statistical sampling community. In
particular, for the PDMPs we consider we prove entropy decay.
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1. Introduction

The study of non-reversible Markov processes has attracted the attention of the mathematics
and physics communities for several decades; while significant progress and more understand-
ing has been brought by a large body of research, it is fair to say that several important ques-
tions regarding non-reversibility still remain unanswered. Non-reversible Markov processes
are fundamental models in non-equilibrium statistical mechanics, for example in the study of
so-called open systems [48], see e.g. the vast literature on heat baths [21, 30], and in collisional
kinetic theory, prominently in connectionwith the study of the Boltzmann equation, in its many
forms and simplifications [49, 52, 53]. More recently, the observation that non-reversible pro-
cesses might enjoy favourable properties in terms of speed of convergence to equilibrium, has
attracted also the statistical sampling community to further investigations in this field, so that
the applications-driven need to produce increasingly high performing algorithms has played
an important role in pushing forward the theory of non-reversible processes [2, 4, 17, 41],
with particular reference to the class of piecewise deterministic Markov process (PDMPs)
[11, 23–26, 51].

In this paper we use the word reversible to refer to stochastic processes which are time-
reversible, i.e. for any T > 0 the process {Xt}t∈[0,T] and its time-reversed {XT−t}t∈[0,T] have
the same distributions (on the space of continuous paths); because of this time-symmetry,
reversible processes give rise to partial differential equations (PDEs) associated with symmet-
ric (i.e. formally self-adjoint) operators [45]. However we point out that the term ‘reversible’
is used with very different meanings throughout the literature, and certainly across the strands
of research that we use in this paper; so, to avoid confusion, we clarify matters in section 2.4.

The theory of reversible processes is by far more settled than its non-reversible counterpart,
and this is true both of probabilistic and of analytic/functional analytic approaches. Nonethe-
less conceptual frameworks for the analysis and modelling of non-reversible phenomena do
exist; in this paper we consider two of them, the hypocoercivity theory (HT), initiated by Herau
[31] and then made systematic by Villani [52], and general equations for non-equilibrium
reversible–irreversible coupling (GENERIC), whose first complete exposition can be found
in [40]. The premise and purpose of these two theories is quite different: the HT is from its
inception a functional analytic theory aimed at studying exponentially fast convergence to
equilibrium for non-reversible processes; GENERIC was born in the physics and engineering
community, as a framework to help applied scientists model reversible (dissipative) and non-
reversible (conservative) contributions to a given dynamics, and only later evolved into a more
mathematised theory, by hands of [33, 37, 38], and references therein, which also significantly
pushed it forward. One of the main purposes of this paper is to observe that the formulations
of such theories, which can look quite different from the outset, are indeed complementary
and substantially equivalent, in the sense that we can provide formulas to pass from one for-
mulation to the other, and we do so in sections 3 and 4; we also give examples to show how
this fact can be exploited in practice.
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To give more background on these two theories let us start with a toy example. Consider
the second order Langevin equation, that is, the evolution

dxt = vtdt, dvt =−∂xV(xt)dt− vtdt+
√
2dWt , (1)

where (xt,vt) ∈ R2 (for simplicity), W t is one dimensional standard Brownian motion, the
potential V : R→ R is smooth, confining (i.e. V(x)→∞ as |x| →∞) and grows at least quad-
ratically at infinity. Under these conditions the process (1) admits a unique invariant measure,
namely the measure with density µ : R2 → R given by

µ(x,v) =
1
Z
e−V(x)e−

v2

2 , (2)

where Z is a normalisation constant. To the SDE (1) one can associate two PDEs, namely the
Kolmogorov equation (KE), describing the evolution of so-called observables, i.e. of quantities
of the formE( f(xt,vt)|(x0,v0) = (x,v)), for any given f ∈ Cb(R2)3, and the Fokker–Planck (FP)
equation, describing the evolution of the law of the process; in the case of the diffusion (1) such
equations take, respectively, the form

∂tut(x,v) = Lut := v∂xut− ∂xV(x)∂vut− v∂vut+ ∂2
vut , u0(x,v) = f(x,v) , (3)

and

∂tρt(x,v) = L ′ρt :=−v∂xρt+ ∂xV(x)∂vρt+ ∂v(vρt)+ ∂2
vρt , ρ0 = Law(x0,v0), (4)

respectively, where L is the operator defined on smooth functions g : R2 → R as

Lg := v∂xg− ∂xV(x)∂vg− v∂vg+ ∂2
vg ,

usually referred to as the generator of the system, and ′ denotes (formal) adjoint in L2(R2) :=
{f : R2 → R :

´
R2 |f(x,v)|2dxdv<∞}; the operator L ′ is also called the FP operator (we will

give more context on these equations in section 2).
The evolution (1) can be split into a Hamiltonian component, namely

dxt = vtdt, dvt =−∂xV(xt)dt ,
plus an Ornstein–Uhlenbeck (OU) process

dvt =−vtdt+
√
2dWt .

The generator of the Hamiltonian dynamics is the Liouville operator B := v∂x− ∂xV(x)∂v; this
operator is antisymmetric in L2

µ(R2) := {f : R2 → R :
´
R2 |f(x,v)|2µ(x,v)dxdv<∞}. Because

of this antisymmetry, along the flow generated byB, the L2
µ-norm is conserved (see section 2.2).

The generator of the OU process is instead the operator LOU =−v∂v+ ∂2
v ; by setting A= ∂v,

we haveLOU =−A∗A, where ∗ denotes adjoint in L2
µ, so thatA∗ =−∂v+ v. Therefore, overall,

equation (3) can be written in the by now classic (linear) hypocoercive form

∂tut = But−A∗Aut . (5)

While B is antisymmetric in L2
µ, trivially, the operator A∗A is symmetric in L2

µ; moreover,
along the flow generated by −A∗A, the L2

µ- norm is dissipated, see again section 2.2. Writing
the dynamics in the above form, is the starting point of the HT and it serves the purpose of
emphasising the splitting of the dynamics into its symmetric/dissipative and antisymmetric/-
conservative parts. Once the dynamics has been cast in the form (5), dissipation of the L2

µ-norm

3 Here and throughout Cb(Rd) denotes the set of functions f : Rd → R which are continuous and bounded.
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along the flow generated by L becomes trivial to show, at least if one is not after a rate. The
aim of the HT is to determine sufficient conditions on A and B such that dissipation towards
the steady state µ is exponentially fast.

The setting of GENERIC is, in principle, analogous, however the theory is more adapted to
workingwith the FP formulation of the dynamics; informally (precise definition in section 2.3),
we say that the evolution (4) is in GENERIC form4 if it can be written in the form

∂tρt =Wρt−Mρt

(1
2
dS(ρt)

)
, (6)

where W is some operator, S is a real-valued functional, dS is the functional derivative of S
(i.e. an appropriate derivative of S with respect to its argument ρ, see section 2 ) and, for every
fixed ρ,Mρ is a symmetric positive semidefinite operator (in L2); we furthermore require that
the following orthogonality condition should hold:

(W(ρ),dS(ρ)) = 0, (7)

where (·, ·) denotes scalar product in L2. The FP equation (4) can be cast in GENERIC form,
upon choosingW=−B, i.e. takingW to be the opposite of the Liouville operator, and further-
more choosing S to be the relative entropy of the system,

Sµ(ρ) =

ˆ
ρ(x,v) log

(
ρ(x,v)
µ(x,v)

)
dxdv

(2)
=

ˆ (
ρ(x,v) logρ(x,v)+V(x)ρ(x,v)+

v2

2
ρ(x,v)

)
dxdv , (8)

so that dSµ(ρ) denotes the variational derivative (Frechet derivative) of S with respect to ρ
(and then calculated in ρ), namely

dSµ(ρ) = logρ+ 1+V(x)+
v2

2
;

and, finally, by taking for each ρ, the operator Mρ (acting on a function f ) to be defined as

Mρ( f) :=−2∂v [ρ∂vf] .

It is easy to show that, for each ρ fixed, Mρ is a symmetric operator in L2, see section 2.3. By
observing that the Liouville operator B is antisymmetric in L2 as well, one can see that the
decomposition (6) is in spirit analogous to the decomposition (5). The orthogonality condition
ensures that the relative entropy Sµ is dissipated along the flow.

In view of the discussion that will follow it is important to point out that the second
addend of equation (6), i.e. the part of the equation that can be cast in the form Mρ(dS(ρ)),
is the so-called gradient-flow part of the equation, see [1, 32, 33, 38], more details on
this in section 2. Hence the decomposition (6) can also be viewed as a splitting into a
symmetric/dissipative/gradient-flow part and a antisymmetric/conservative/non-gradient flow
component. As a bi-product of this discussion, we have the following: the generatorLOU of the
OU process is symmetric in L2

µ and associated to the dissipative/reversible part of the dynam-
ics; its dual, L ′

OU, which, using (4), coincides with −Mρ(dS(ρ)), is symmetric in L2 and is
associated to the gradient flow part of the dynamics.

This is no coincidence and it is indeed a specific instance of a well-known ‘meta-theorem’,
substantiated by the work of Onsager and Machlup [39] as well as by e.g. [6, 34, 35, 47],

4 To be precise, (6) is the pre-GENERIC form of the equation; pre-GENERIC is a more general formulation than
GENERIC, we will recall the difference between such formulations in section 2.
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according to which reversibility and gradient flow structure are related. One way of expressing
and understanding this meta-theorem is as follows: consider a stochastic particle system made
(for simplicity) of i.i.d. particles, suppose the process describing each particle is reversible and
that the particle system converges to a deterministic limit, in the sense that the empirical meas-
ure associated with the particle system converges to a (deterministic) measure which satisfies a
deterministic evolution equation. Then such a deterministic equation is in gradient flow form.
This meta-theorem, expressed in this form, was settled into an actual theorem in [38], for a
large class of reversible processes. This was done by going through a large deviation principle
(LDP) for the particle system. The reason why LDPs enter the picture is quite profound: it
turns out that the form of the large deviation functional (LDF) appearing in the LDP is directly
related to the gradient flow structure and indeed that it determines it. More specifically, if we
know the form of the LDF then we can findM (and S), see section 5 and [38] for precise state-
ments. Note that typically every gradient flow evolution can be written in gradient flow form in
more than one way, i.e. one can find several pairsM and S to write the same equation in gradi-
ent flow form; so if the objective is to link reversibility and gradient flow structure, the LDP
helps ‘select’ one such gradient flow structure. This fact, i.e. the fact that the LDP ‘selects’
one gradient flow form, is not in contradiction with the fact that the deterministic equation
can be written in gradient flow form in more than one way: given a deterministic evolution,
this evolution can be realised as limit of various particle systems (e.g. the particle system need
not be i.i.d.). Two different particle systems that converge to the same deterministic limit will,
in general, undergo different fluctuations and hence, assuming they both satisfy a LDP, such
LDPs will correspond to different LDFs, which are then associated with different gradient flow
structures [47]. This connection between evolutions with gradient flow structure and revers-
ibility was then extended to a connection between evolutions in GENERIC form and ‘non-
reversibility’ in [38], again making use of LDPs. In note 4 we elaborate on pros and cons of this
approach.

In view of our toy example it should be possible to state and prove the relation between
reversibility and gradient flow structure without making use of LDPs. In this paper we state
the mentioned ‘meta-theorem’ as follows: assuming a given Markov process has a unique
invariant measure µ, if the generator of the process is symmetric in L2

µ (which is equivalent to
the process being reversible, see section 2.4) then the associated FP operator is in gradient-flow
form. This allows us to prove this statement without making explicit use of LDPs.

1.1. Main results

We are now in a position to start explaining the main contributions of this paper, section by
section. After introducing setting and notation in section 2, in section 3 we compare HT and
GENERIC—more precisely, we compare linear HT and so called Wasserstein pre-GENERIC,
see sections 2 and 3 for precise statements and definitions. We show that if the KE associated
with a given Markov process can be cast in the hypocoercive form (5) then the correspond-
ing FP equation can be written in the form (6), and the orthogonality condition (7) holds as
well. We emphasise that the orthogonality condition for the FP evolution is implied by the
hypocoercive structure of the KE, without extra assumptions, see note 3.2 on this point. In
particular, we provide explicit formulas to pass from one formulation to the other (i.e. given
A and B, we give formulas to obtain W,M and S, and viceversa). On a practical level, hav-
ing such ‘conversion formulas’ at hand allows one to leverage results on the KE and poten-
tially use them to produce results (almost for free) on the FP evolution, and viceversa. Since
equations in GENERIC form dissipate relative entropy, a simple example of how one can
produce results by exploiting such connection is the following: if the KE is in hypocoercive
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form (5) then relative entropy is dissipated along the corresponding FP equation; see again
note 3.2.

More importantly from a conceptual standpoint, thework in section 3 provides a simple con-
nection between ‘non-reversibility’ and GENERIC structure; hence, by comparing the sym-
metric part of both formulations, it provides a simple proof of the fact that reversibility gives
rise to gradient flow structure, i.e. of the meta-theorem we mentioned above, see note 3.2.

The results of section 3 only refer to Markov processes generated by linear5 Markov oper-
ators, which are typically simple to cast in the form (5). As we have already pointed out, the
form (5) is simply a symmetric–antisymmetric splitting (in L2

µ), where the symmetric part is
required to have a certain form, i.e. the form −A∗A. In section 4, we relax this assumption on
the generator of the dynamics and produce analogous results to those in section 3 , this time
simply splitting the generator into its symmetric and antisymmetric part (again, symmetric and
antisymmetric in L2

µ) and assume that the symmetric part is linear, while the antisymmetric
part is allowed to be non-linear. While the main result of section 4 is inspired by techniques
used in large deviation theory, and in particular the approach of the proof is quite different
from the one used in section 3, again no explicit use of LDP is made. On this matter of linear
vs non-linear generators, we point out that GENERIC, in the way we present it in section 2
(which is a slight modification of the presentation in [33]), is perfectly well adapted to include
both linear and nonlinear dynamics. The hypocoercive form (5) is instead typically only used
for linear evolutions. Extensions of the HT to non-linear generators certainly exist, see e.g.
[52, part III]. For purposes different from those of this paper it would be important to compare
such non-linear formulations of HT with GENERIC; this will be subject of future work. For
the time being we point out that, remarkably, the same orthogonality condition (7) which plays
an important role in GENERIC, is also explicitly used in Villani’s memoir (see [52, remark
38]) to simplify verification of some of the (many) assumptions needed there.

Coming back to LDPs, in view of the fact that in the reversible case the gradient flow
structure prescribes the form of the LDF (and viceversa), it is natural to ask whether a similar
connection can be established in the non-reversible case. For this reason, in section 5, we
consider generalised-reversible processes, which are a class of non-reversible processes, and
we characterise the form of the LDF of generalised reversible processes. The only other result
in this spirit which we know of is contained in [33], see also [8, 55, 56] and a recent preprint
[62] for similar works in this direction for some other non-reversible processes (but these
papers employ a different decomposition, namely decomposing fluxes/forces instead of the
generator, and do not make connections to the HT).

Finally, in section 6 we show how the results of this paper can be applied to diffusion pro-
cesses, section 6.1, and to a class of PDMPs, section 6.2, the so-called Hamiltonian Piecewise
Deterministic Markov Chain Monte Carlo processes (Ham-PD-MCMC). We consider diffu-
sion processes for purely expository purposes, to show in a simple setting how to use the results
of this paper, but all the results of section 6.1 are known already, though perhaps not in the
perspective in which we present them here. The PDMPs considered in section 6.2 are consid-
erably less standard; while the HT for Ham-PD-MCMC has already been developed e.g. in
[3], to the best of our knowledge GENERIC has not been applied to such processes yet. So,
we first cast Ham-PD-MCMC in pre-GENERIC form and then we show that such dynamics
constitute an example for which the orthogonality condition (7) does not hold, and yet one is
able to show entropy decay.

5 Here by linear we mean linear in the sense of McKean; i.e. the coefficients of the operator L can be nonlinear in
the state-space variable, as long as the action of the operator on functions is linear.

1622



Nonlinearity 36 (2023) 1617 M H Duong and M Ottobre

To summarise, the paper is organised as follows: in section 2 we first clarify our setting,
notation and standing assumptions (section 2.1); we then give a concise exposition of the HT,
gradient flows and GENERIC, in sections 2.2 and 2.3. We also point out that, while GENERIC
is usually formulated on manifolds, we rephrase it here in a function space setting, mostly
for ease of comparison with HT. Besides this small modification, the content of section 2 is
well-known. In section 3 we investigate the relation between hypocoercive and GENERIC
formulation of the dynamics in the case in which the generator L is linear. The content of this
section and of all subsequent sections (with the exception of section 6.1) is new, to the best of
our knowledge. In section 4 we relax the class of generators for which it is possible to establish
this connection and consider a class of non-linear operators. In section 5 we characterise the
structure of LDFs of generalised-reversible Markov processes. Finally, in section 6 we apply
the results of this paper to two classes of Markov processes, namely diffusion processes and
PDMPs. Overall, because this paper makes use of the work of two very different communities,
we have tried to make it as self-contained as possible.

2. Background: hypocoercivity and GENERIC

In this section we recall the main facts about the HT and GENERIC.

2.1. Setup, notation and preliminaries

Both the HT and GENERIC address the study of (stochastic) dynamics, more precisely of their
associated Kolmogorov and/or FP PDEs. Unless otherwise stated, all the stochastic processes
{Xt}{t⩾0} considered in this paper will be time-homogeneous Markov evolutions with finite
dimensional state space; to fix ideas we will assume that the state space is Rd. We recall that
the semigroup Pt associated with the Markov process {Xt}{t⩾0} is defined on the set of func-
tions f : Rd → R which are continuous and bounded by (Pt f)(x) := E[f(Xt)|X0 = x]. Given f,
(Pt f)(x) is a real- valued function of (t,x) ∈ R+ ×Rd; by Ito formula, such a function solves
a differential equation of the form

∂tu(t,x) = Lu(t,x), u(0,x) = f(x), (9)

whereL is an appropriate operator (e.g. a second order differential operator in the case in which
Xt is a diffusion process), called the Kolmogorov operator of the process Xt; correspondingly,
the differential equation (9) is called the KE associated with Xt. The dual equation, i.e. the
equation

∂tρ(t,x) = L ′ρ(t,x), ρ(0,x) = ρ0(x), (10)

where L ′ is the (formal) L2-adjoint of L, is referred to as the FP equation associated with
Xt and it describes the evolution of the law of Xt. A measure µ on Rd is invariant for Pt (or,
equivalently, invariant for Xt) iff

ˆ
Rd

(Pt f)(x)µ(x)dx=
ˆ
Rd

f(x)µ(x)dx for every f ∈ Cb(Rd) . (11)

There are various ways of specifying the domain of the (typically unbounded) operator
L. If there exists an invariant measure then the semigroup extends to a strongly continuous
semigroup on L2

µ; in this case L is the generator of such a semigroup and we take as a domain
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forL the domainD2(L) ofL viewed as generator ofPt in L2
µ, see [29, definition 1.5]6. One can

show that (11) is equivalent to (see [29, section 1.2])
´
(Lf)(x)µ(x)dx= 0 for every f ∈ D2(L).

In short, this can be written as

L ′µ= 0 . (12)

For simplicity, we make the following standing assumptions, which will hold throughout
the paper, unless otherwise specified:

Hypothesis 2.1. Standing assumptions:

[SA.1] All the probability measures which we consider have a density with respect to the
Lebesgue measure and, with abuse of notation, we denote the measure and its density
with the same letter, i.e. µ(dx) = µ(x)dx.

[SA.2] We only consider ergodic Markov processes, i.e. the underlying process Xt admits a
unique invariant measure, µ, which has a (smooth enough) density with respect to the
Lebesgue measure.

[SA.3] We assume that L ′ and the initial datum ρ0 are such that the FP equation (10) admits
strictly positive classical solutions, which additionally belong to L2(Rd)∩L1(Rd)7.

[SA.4] The operator L is the generator of a strongly continuous contraction semigroup on a
Hilbert space H (which will typically be L2

µ).

Let us motivate the above assumptions and point out explicitly what they imply.

• Under assumptions [SA.1] and [SA.2], equation (12) has a unique classical solution; without
loss of generality, we can then assume µ(x)> 0 for every x ∈ Rd and we shall do so through-
out. This will allow us to consider the equation solved by the function h(x, t) = ρ(x, t)µ(x)−1,
which we call the modified Kolmogorov equation (m-KE)—we will be more precise on the
relation between KE, FP equation and m-KE in note 2.1 below. Let us also recall that if µ is
the unique invariant measure for the semigroup then it is an ergodic measure. If L is linear
and the semigroup is stochastically continuous [10, section 2.1] this implies that the kernel
of the operator L in L2

µ is made only of functions which are µ-a.s. constant8.
• In general, the solution of the m-KE and of the FP equation do not lie in the same space;

it is usually more natural to study the KE or the m-KE in the weighted space L2
µ :=

L2
µ(Rd;R) := {f : Rd → Rs.t.

´
f 2(x)µ(dx)<∞}, and the FP equation in L2 := L2(Rd;R)

(or in L2 weighted with an appropriate polynomial or, better yet, simply in measure-space,
see for example [52, section 2.4]). For this reason we introduce two Hilbert spaces of

6 We clarify that we are abusing notation by denoting by L both the Kolmogorov operator and the generator of the
semigroup, as these two objects only formally coincide; indeed the former is just a formal expression given by the
Itô formula and most complications in this context arise precisely from trying to reconcile the two objects, i.e. from
finding appropriate domains of definition see [5, chapters 1 and 3] for details.
7 Note that typically FP type equations preserve positivity, see [7].
8 The fact that L1= 0 follows simply by the Hille-Yoside theorem. Viceversa, the ergodicity of the measure is
equivalent (see [10, theorem 3.2.4]) to either one of the following statements: (a) if f ∈ L2

µ then Pt f= f ⇒ f=
constant, µ− a.s.; (b) if f ∈ D2(L), thenLf= 0 ⇒ f= constant, µ− a.s.. To see that statement (a) and (b) are equi-
valent use [29, equation (1.1.6)] and recall that the domain of the generator is dense in L2

µ.
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real-valued functions, (H,‖ · ‖,〈·, ·〉) and (Z,((·)),(·, ·)), to be thought of as L2
µ and L2,

respectively. In particular, unless otherwise specified, (·, ·) will denote L2 scalar product (or
duality pairing, we will specify which in context, when needed). For the KE and the m-KE
we do not necessarily restrict to considering classical solutions and, since we assume that
L generates a strongly continuous contraction semigroup in L2

µ, the semigroup itself is the
solution in L2

µ of the KE.
• Technical matters about Kolmogorov and FP equations are often quite involved (see e.g.

[5, chapter 3]) and are better treated on a case by case basis; GENERIC is unsurprisingly
plagued by the same problems (see e.g. [18, remark 1.1] and references therein). In this
paper we do not restrict to a particular class of Markov processes (e.g. we do not restrict
to diffusion processes); on the contrary, we would like to include a broad range of Markov
dynamics (see examples in section 6) and at the same time we want to avoid encumbering
the exposition with excessive technicalities. For this reason, we assume the existence of an
appropriate set V which, unless otherwise stated, is dense both in D2(L)∩D2(L∗) and in
the space Cl: = { positive classical solutions of the FP equation which live in L2 ∩L1 }.
In practical examples V can often be taken to be the set of (positive) Schwartz functions;
this way we can perform all our calculations on V . In this sense—i.e. in the sense that we
only work on V—some calculations in this section and the next will be somehow formal.
We flag up now and we will come back to this (see note 2.3.1) that even doing this does
not completely solve the problem for GENERIC and some remarks will be necessary. In the
examples of section 6 we will give indications on the correct functional framework.

For any operator or functional, say T , D(T ) denotes a domain of definition of T 9 and we
will use interchangeably T h and T (h) to denote the action of T on an element h ∈ D(T ).
Moreover, for any function f(t,x) depending on both time and space, the notations ft(x) and
f(t,x) will be used interchangeably. With this in mind we clarify the relation between the FP
equation, the KE and the m-KE.

Note 2.2 (relation between KE, m-KE and FP equation). Suppose that the Kolmogorov
operator L in (9) is of the form

L= B+ Ã,

where B and Ã are linear operators with B antisymmmetric in L2
µ(Rd) and Ã symmetric in

L2
µ(Rd). We also assume that B enjoys the chain and product rule. Let ρt be the solution of the

FP equation associated with the process, ∂tρt = L ′ρt , and set ρt = htµ. Then the function ht
solves the m-KE, namely

∂tht = Lht, where L= (−B+ Ã) . (13)

To see the above it suffices to show what follows:

L ′(htµ) = µ(Lht). (14)

Indeed if (14) holds, we then have

∂tρt = µ∂tht = L′ρt = L′(htµ) = µLht ,

9 When we want to refer to a specific domain we will do so, see e.g. the difference between D2 introduced earlier in
this section and Db, used in section 5. Otherwise D generically denotes a set on which the operator is well defined.
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which directly implies (13). To show (14), notice that for every f,h ∈ V , we haveˆ
B′(hµ)(x)f(x)dx=

ˆ
h(x)µ(x)(Bf)(x)dx=−

ˆ
f(x)(Bh)(x)µ(x)dx,

and, similarly, ˆ
Ã′(hµ)(x)f(x)dx=

ˆ
h(x)µ(x)(Ãf)(x)dx=

ˆ
f(x)(Ãh)(x)µ(x)dx,

which imply

B ′(hµ) =−µBh and Ã ′(hµ) = µÃh , (15)

from which (14) follows, as L ′ = B ′ + Ã ′. Note that, from (14) one can formally see that
in this setting µ is a solution of L ′µ= 0 if and only if the kernel of L contains constants.
In short,

L ′µ= 0⇔ L1= 0, (16)

where 1 denotes the function identically equal to one.

We recall that if S is a functional on the Hilbert space (Z (·, ·),((·))), S :D(S)⊆Z → R,
the (directional) Gateaux derivative of S at h in the direction g ∈ Z is given by

(dS(h),g) = d
dϵ

S(h+ ϵg)
∣∣∣
ϵ=0

. (17)

The Frechet derivative of S at h is the linear functional dS(h) mapping g into the directional
derivative of S at h in the direction g. When S is defined on the whole Hilbert spaceZ then, for
each fixed h, one can view dS(h) as an element of Z and on the LHS of (17) the notation (·, ·)
is an actual scalar product. This is easier to see in finite dimensions. If Z is finite dimensional,
i.e. if Z = Rd and f : Rd → R, then the Frechet derivative of f coincides with the differential
and it will be denoted, as customary, by∇f. In this case, for each x ∈ Rd,∇f(x) ∈ Rd while the
map ∇f : Rd → Rd may be viewed as an element of Zd := {u= (u1, . . .,ud) : uj ∈ Zfor allj}.
However in practical examples, for our choice of the infinite dimensional space Z (typically
Z = L2) it is almost never the case that S is defined on the whole of Z and, for fixed h ∈ Z ,
dS is not in Z but in a bigger space. In this case the scalar product of L2 (Z) will only act as
a formal duality pairing, see section 2.3.

We will use interchangeably the notation ∇· and div for the divergence of a Rd-valued
function. The Euclidean norm of Rd will be denoted by | · |.

2.2. Hypocoercivity

In this section we fix H := L2
µ(Rd), where µ is assumed to be the only invariant measure of

the process with generator L, FP operator L ′ and modified Kolmogorow operator L. We say
that a Markov evolution is in linear hypocoercive form if its generator L is linear and can be
written in the form

L= B−A∗A, (18)

where A : V → (L2
µ)

d and B : V → L2
µ are linear operators, A obeys the chain rule, B is anti-

symmetric in L2
µ, i.e. B

∗ =−B, and obeys both chain and product rule. We recall that under our
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standing assumptions kerL= {constants}. Because A∗ denotes adjoint in L2
µ, A

∗A is neces-
sarily symmetric in L2

µ.
10

If L is of the form (18) the m-KE (13) takes the form

∂tht =−(B+A∗A)ht . (19)

Let us look at the two parts of the dynamics: along the flow generated by −B, i.e. along the
solution of the equation ∂tft =−Bft, the norm is conserved; indeed, since B is antisymmetric
in L2

µ, 〈Bf, f〉= 0 for every f ∈ V , hence

∂t‖ ft‖2 =−2〈Bft, ft〉= 0.

On the other hand, along the flow generated by −A∗A, the norm is dissipated:

∂t‖ ft‖2 =−2〈ft,A∗Aft〉=−2‖Aft‖2 ⩽ 0 . (20)

Overall, with similar calculations, the L2
µ- norm of ht is dissipated:

∂t‖ht‖2 =−2‖Aht‖2 ⩽ 0 . (21)

For later comparisons with GENERICwe observe that this formalism does not imply the exist-
ence of any conserved quantity. Note that if the generator is in hypocoercive form then

kerL= kerL= kerA∩ kerB , (22)

see [52, proposition 2].
We gather in the next lemma some straightforward facts which will be useful later on.

Lemma 2.3. With the notation introduced so far, let W : V → L2
µ be a linear operator such

that W and W
′
satisfy the chain and product rule (e.g. a first order differential operator) and

both W
′
and W∗ are well-defined on V .

(a) If W ′µ= 0,11 then

W′h=W∗h=−Wh, for every h ∈ V,

i.e. W is antisymmetric both in L2 and in L2
µ;

(b) If the generator is in hypocoercive form (18) and kerL= {constants} then B ′µ= 0. By
using point i), if both B and B

′
satisfy chain and product rule, this implies B ′ = B∗ =−B

and hence also Bµ= 0.

Proof of lemma 2.3. To prove (a), we first prove thatW ′h=W∗h for every h ∈ V; trivially, if
W ′µ= 0 then for every f,g ∈ Vˆ

Rd

(Wf)(x)g(x)µ(x)dx=
ˆ
Rd

f(x)(W∗g)(x)µ(x)dx

=

ˆ
Rd

f(x)W′(gµ)(x)dx=
ˆ
Rd

f(x)(W′g)(x)µ(x)dx .

10 We clarify that A should be thought of as a d—dimensional vector of operators A= (A1, . . .,Ad), e.g. A=∇=
(∂x1 , . . . ,∂xd ). We also adopt the same understanding as in [52], namely A∗A is a short notation for A∗A=

∑d
1A

∗
i Ai.

11 Here we are implicitly assuming that µ is smooth enough that the operator W
′
can be applied to µ.
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We now showW∗ =−W (on V) by proving that 〈Wg,g〉=
´
(Wg)(x)g(x)µ(x)dx= 0 for every

g ∈ V . Indeed:

〈Wg,g〉= 1
2

ˆ
Rd

[W(g2)](x)µ(x)dx=
1
2

ˆ
Rd

g2(x)(W′µ)(x)dx= 0 ,

which concludes the proof of (a). As for (b), if L1= 0, by (22), B1= 0 as well, hence

0=
ˆ
Rd

(B1)µ(x)g(x)dx=−
ˆ
Rd

µ(x)(Bg)(x)dx=−
ˆ
Rd

(B′µ)(x)g(x)dx , for every g ∈ V,

where the first equality comes from using B∗ =−B.

An example which notoriously satisfies the assumptions of the above theorem is the
Liouville operator B discussed in the introduction, which is indeed antisymmetric both in L2

and in L2
µ, with µ the Boltzmann distribution.

Note 2.4. The aim of the HT [31, 52] is to study exponentially fast decay to equilibrium when
the operator L is not coercive in the L2

µ norm, but it is instead coercive in a modified norm.
In the HT writing the splitting (18) is only a starting point, and for this reason we refer to
equations driven by operators in the form (18) as being in linear hypocoercive form; however
for the sake of clarity we emphasise that the fact that the operator L is in the form (18) does
not mean per se that it is hypocoercive (see [52, section 3] for a definition of hypocoercive
operator) and hence that exponentially fast decay holds, as further quantitative assumptions
on A and B are needed to that end. In this paper we compare primarily the structure of the
involved equations, so we do not make any such quantitative assumptions. Understanding the
meaning of such assumptions in the context of GENERIC will be the object of future work.

2.3. Gradient flows, GENERIC and pre-GENERIC

The classical formulation of GENERIC is on manifolds [33] (and this is perhaps a more
insightful way of understanding the theory). Here, to compare more easily with the HT, we
start by reformulating GENERIC and pre-GENERIC in a function-space setting and we work
on V ⊆ Z , where again Z is to be thought of L2, although the scalar product of L2 will often
only act as a formal duality pairing. We make remarks on why this is the case and on how
this formulation compares with the classical one on manifolds throughout the paper, see in
particular note 2.3.1 and note 5.2.

2.3.1. Quadratic gradient flows. Let {ρt}t⩾0 ⊂ V and S : V → R. An evolution equation of
the form

∂tρt =−Mρt

(1
2
dS(ρt)

)
(23)

is a (quadratic) gradient flow if for each ρ ∈ V s.t. ρ> 0,Mρ :D(Mρ)⊇ V → V is a symmetric
and positive semidefinite operator, i.e.

(Mρ(h),g) = (h,Mρ(g)), and (Mρ(g),g)⩾ 0 ∀h,g ∈ V , (24)

S is Frechet differentiable and dS(ρ) ∈ D(Mρ) for every ρ ∈ V . If Mρ(·) =−2div(ρ∇·),
then (23) is a Wasserstein gradient flow, see [1]. If we can write Mρ as

Mρ(·) = 2A ′(ρA(·)) (25)
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for some operator A and L2-dual A
′
, then we say that (23) is a generalised Wasserstein gradi-

ent flow. Note that the operator Mρ in (25) is symmetric and positive definite (we show this
explicitly after (47)); moreover, when A=∇ we recover Mρ(·) =−2div(ρ∇·).

As a consequence of the gradient-flow structure, the entropy S is dissipated along the
solution of (23):

dS(ρt)
dt

= (dS(ρt),∂tρt) =−
(
dS(ρt),Mρt

(
1
2
dS(ρt)

))
⩽ 0 , (26)

having used the positivity ofMρ. We emphasise the analogy between the above calculation and
the one in (20). Finally, there is no natural conserved quantity associated with the flow (23).

Note 2.5. IfZ was a general manifold (as in [33, 38]) instead of a Hilbert space andS : Z → R
then, by definition (17) of variational derivative, dS(ρ) ∈ T∗ρZ , where T∗ρZ is the cotangent
space of Z at ρ, and Mρ : T∗ρZ → TρZ , where TρZ is the tangent space of Z at ρ, for every
ρ ∈ Z . (Note that any Hilbert space Z is a Hilbert manifold and both T∗ρZ and TρZ are iso-
morphic to Z .) This approach is somehow neater and, as we said, possibly more insightful.
The difficulty here becomes to first identify the correct manifold Z and then describe expli-
citly TZ and T∗Z . This is not straightforward when e.g.Z = { finite positive Borel probability
measures}, see [38, section 3]. Further issues then arise when introducing dissipation poten-
tials, as we will do in the next subsection on gradient flows, as such functionals are then typ-
ically not defined on the whole tangent and cotangent space. To avoid these complications we
simply work on a very good set, where everything is well posed. However also this approach
needs some extra comments, as it is clear from the example we gave in the Introduction, where
(dS(ρ))(x,v) = logρ+V(x)+ 1+ v2/2, that the function dS(ρ) does not belong to L2 but for
example it belongs to L2

µ instead. In that example all would work by choosing D(Mρ) to be
the set of smooth functions in L2

µ. Hence in (24) or in (26) the scalar product of L2 acts only as
a formal pairing, in the sense that, upon making a good choice of D(Mρ), all the integrations
implied by the formal L2 scalar product make sense and this is how we will understand them
throughout (including in the expressions (27) and (28) below).

2.3.2. Gradient flows. To introduce a more general (non-quadratic) notion of gradient flow,
let us first give the definition of dissipation potential. For every ρ ∈ V let ψ(ρ; ·) :D(ψρ)⊆
V → R and let ψ⋆(ρ; ·) :D(ψ⋆

ρ)⊇ V → R denote its Legendre transform, namely

ψ⋆(ρ;ξ) = sup
v
{(v, ξ)−ψ(ρ;v)} . (27)

We recall that, given a convex12, lower semicontinuous function F, not taking the value −∞,
we have F⋆⋆ = F, see [22, propositions 3.1 and 4.1] for details. Under such assumptions on ψ,
we have

ψ(ρ;v) = sup
ξ
{(v, ξ)−ψ⋆(ρ;ξ)} , (28)

i.e. ψ⋆⋆ = ψ (at least on a good enough set of functions). We will use interchangeably the
notation ψ(ρ;v) and ψρ(v) (same for ψ⋆). We say that the pair ψ,ψ⋆ is a pair of dissipation
potentials if both ψ and ψ⋆ are strictly convex, continuously differentiable13 and

ψ(ρ;0) = ψ⋆(ρ;0) = 0, for all ρ ∈ V . (29)

12 We say that a function F is convex if F(λξ1 +(1−λ)ξ2) ⩽ λF(ξ1)+ (1−λ)F(ξ2) for all λ ∈ [0,1].
13 This assumptions can be relaxed. If ψ⋆ is not differentiable, we can substitute its derivative by its convex subdif-
ferential, see [37, section 2.5].
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The functions ψ and ψ⋆ are symmetric if ψ(ρ;v) = ψ(ρ;−v) and ψ⋆(ρ;ξ) = ψ⋆(ρ;−ξ), for
every ρ,v, ξ. We recall that, by the definition of Legendre transform, i.e. by using (27) and (28),

ψ(ρ;0) = 0 ⇔ infψ⋆(ρ; ·) = 0⇒ ψ⋆(ρ; ·)⩾ 0, (30)

ψ⋆(ρ;0) = 0 ⇔ infψ(ρ; ·) = 0⇒ ψ(ρ; ·)⩾ 0. (31)

A gradient flow with respect to a functional S : V → R and dissipation potentials ψ,ψ⋆ is
an evolution equation of the form

∂tρt = dξψ⋆

(
ρt;−

1
2
dS(ρt)

)
. (32)

Equivalently, one can show (see [33, section 2.1]) that an evolution equation ∂tρt = G(ρt)
(where G :D(G)⊇ V → V is an operator) is a gradient flow with respect to S,ψ,ψ⋆ iff

ψ(ρt;G(ρt))+ψ⋆

(
ρt;−

1
2
dS(ρt)

)
+

1
2
(G(ρt),dS(ρt)) = 0 . (33)

To clarify the notation in the above, on the RHS of (32) dξ is the Frechet derivative of ψ⋆(ρ;ξ)
with respect to its second argument (then calculated at −dS(ρ)/2). As we will always regard
ψ⋆(ρ;ξ) as a function of ξ for every ρ fixed, we could have dropped the subscript ξ, which is
there both for clarity and to keep closer to tradition.

If Z = Rd (which, strictly speaking, is not allowed by our setup, as we assumed that Z is a
space of real-valued functions) and ψ⋆

ρ(ξ) =Mξ · ξ, where M is a symmetric positive definite
matrix, then (32) boils down to (23), hence the name quadratic gradient flow for (23).

A calculation analogous to (26) – this time exploiting the convexity of ψ⋆14 rather than the
positivity of M—allows again to show that the entropy S is dissipated along the flow.

2.3.3. Pre-GENERIC. LetW :D(W)⊇ V → V be an operator and S and ψ⋆ as above. Then
an evolution equation of the form

∂tρt =W(ρt)+ dξψ⋆
ρt

(
−1

2
dS(ρt)

)
(34)

is said to be a pre-GENERIC flow (with respect to W,S,ψ,ψ⋆) if the following degeneracy
condition is satisfied:

(W(ρ),dS(ρ)) = 0 for all ρ ∈ V . (35)

Equivalently (see appendix B) the evolution equation ∂tρt = G(ρt) is a pre-GENERIC flow
(with respect to W,S,ψ,ψ⋆) iff (35) holds and

ψ(ρt;G(ρt)−W(ρt))+ψ⋆

(
ρt;−

1
2
dS(ρt)

)
+

1
2
(G(ρt), dS(ρt)) = 0 . (36)

Note 2.6. Some comments on the above definition

(a) If the gradient flow part of (34) is quadratic, i.e. if the evolution is given by

∂tρt =W(ρt)−Mρt

(
1
2
dS(ρt)

)
, (37)

14 We recall that if F is convex and continuously differentiable then (x− y)(dF(x)− dF(y)) ⩾ 0 for every x,y.
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still appended with the condition (35), then we talk about quadratic pre-GENERIC; if
the flow is quadratic pre-generic with Mρ given by (25), then we talk about generalised
Wasserstein pre-GENERIC.

(b) If (34) and (35) hold, then S decays along the flow. However, if the purpose is to have
entropy dissipation, then (35) can be replaced with the following dissipativity condition

(W(ρ),dS(ρ))⩽ 0 for all ρ ∈ V . (38)

Also from the point of view of the equation structure, one can dispense with the orthogon-
ality condition (35) at the price of modifying (36). Indeed one can see (see appendix B)
that the flow ∂tρt = G(ρt) is of the form (34) if and only if

ψ(ρt;G(ρt)−W(ρt))+ψ⋆

(
ρt;−

1
2
dS(ρt)

)
+

1
2
(G(ρt)−W(ρt), dS(ρt)) = 0 . (39)

However entropy decay does not necessarily hold if (39) holds in place of (36)–(35). If (39)
is appended with the dissipativity condition (38) then the entropy functional does decrease
along the flow. Indeed, using the non-negativity of ψ and ψ⋆ (see (30) and (31)), (39)
and (38), one has

1
2
d
dt
S(ρt) =

1
2
(ρ̇t,dS(ρt)) =

1
2
(G(ρt),dS(ρt))

=−ψ(ρt,G(ρt)−W(ρt))−ψ∗
(
ρt,−

1
2
dS(ρt)

)
+

(
W(ρt),

1
2
dS(ρt)

)
⩽ 0 .

Hence S is a Lyapunov functional of the dynamics.
(c) Since ψ⋆ is assumed to be symmetric and ψ is its Legendre dual, then also ψ is symmetric.

2.4. The many meanings of the word ‘reversibility’

It is rather unfortunate that the word ‘reversible’ is used by different communities with substan-
tially opposite meanings. This misunderstanding becomes particularly confusing in the con-
text of this paper, so we make some clarifications but refer the reader to [36, 45] for complete
statements and proofs. A continuous-time stochastic process {Xt}t⩾0 is called time-reversible
or simply (microscopically) reversible if its law is invariant under time-reversal, i.e. if for every
fixed T > 0 the process {Xt} and the process {XT−t} have the same distributions on the space of
continuous paths. Intuitively, this can be interpreted as follows: the process is time-reversible
if by watching a movie of the process run forwards and then backwards, we would not be able
to distinguish the two. The process is stationary if for every τ ∈ R the process {Xt} and the
process {Xt+τ} have the same finite dimensional distributions. A time-reversible process is
stationary but the converse is not true in general. Importantly to our purposes, a stationary dif-
fusion process with invariant measure µ is reversible if and only if its generator is self-adjoint
in L2

µ (see [45, theorem 4.5]) i.e. iffˆ
Rd

f(x)(Lg)(x)dµ(x) =
ˆ
Rd

g(x)(Lf)(x)dµ(x), for every f,g,∈ D2(L). (40)

When the above holds we also say that µ satisfies detailed balance with respect to L. If L
generates a strongly continuous contraction semigroup, by the Lumer–Phillips theorem [46,
section 1.4] it is negative as well hence, with a calculation completely analogous to the one
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leading to (21), one can see that reversible dynamics are dissipative. However in the acronym
GENERIC-general equations for non-equilibrium reversible–irreversible coupling—the term
‘reversible’ refers to a different property, enjoyed in particular by Hamiltonian dynamics,
which are certainly non-reversible according to the definition we have given above. Indeed,
Hamiltonian dynamics are associated with the antisymmetric part of the evolution and hence
they are conservative. A simple example can be given by considering planar rotations (which
are Hamiltonian dynamics), for which one can distinguish whether the process is running for-
wards or backward in time by looking at the verse of rotation. In the acronym GENERIC
the term ‘reversible’ refers to flows ϕt on R2d, ϕt : R2d → R2d, which enjoy the following
property:

(ϕt)
−1(x,v) = ϕ−t(x,v) = (F ◦ϕt ◦F)(x,v), where F(x,v) = (x,−v) ,

while the word ‘irreversible’ alludes to the macroscopic irreversibility of the dynamics, i.e. to
dissipativity. We will avoid using the word ‘reversible’ at all, but when we do we will mean it
in the sense of microscopic time-reversibility.

3. Relating linear hypocoercivity and Wasserstein pre-GENERIC

3.1. From linear hypocoercivity to Wasserstein pre-GENERIC

Suppose the m-KE is in linear hypocoercive form (19), with both B and B
′
obeying chain and

product rule. In this section we show that, if this is the case, then the FP equation for ρt = htµ
is in Wasserstein pre-GENERIC form (37) with entropy functional S(ρ) given by the relative
entropy Sµ(ρ) of ρ with respect to µ, i.e.

S(ρ) = Sµ(ρ) :=

ˆ
Rd

log

(
ρ(x)
µ(x)

)
ρ(x)dx, (41)

and

Mρ(ξ) = 2A ′(ρAξ), W(ρ) =−Bρ, (42)

where the operators A and B in the above are as prescribed by the hypocoercive structure (19).
Indeed, if the m-KE is in the form (19) then

∂tρt = µ∂tht =−µ(B+A∗A)ht =−µB(ρt/µ)−µA∗A(ρt/µ). (43)

For the first term in (43), using the fact that the kernel of L is made of constants and the first
equality in (15), we get

−µB(ρt/µ) =−µBht = B′(htµ) =−Bρt ,

hence

µB(ρt/µ) = Bρt . (44)

For the second term in (43), we can see that for every f ∈ V one has
ˆ
Rd

µ(x)[A∗A(ρ/µ)](x)f(x)dx=
ˆ
Rd

[A(ρ/µ)](x)(Af)(x)µ(x)dx

=

ˆ
Rd

[A ′(A(ρ/µ)µ)](x)f(x)dx; (45)
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using the fact that A satisfies the chain rule, we can further express the inner integral in (45)
as follows

A(ρ/µ) = (ρ/µ)A(log(ρ/µ)) .

Substituting the above back into (45) we then getˆ
Rd

µ(x)[A∗A(ρ/µ)](x)f(x)dx=
ˆ
Rd

A′ [ρA(log(ρ/µ))] (x)f(x)dx , for every f ∈ V.

Now notice that if S is as in (41) then dS(ρ) = log(ρ/µ)+ 1. Again by using the fact that
kerL= {constants} and (22), we have A1= 0, hence A(dS(ρ)) = A(log(ρ/µ)), from which
we deduce

µA∗A(ρ/µ) = A ′(ρA log(ρ/µ)) = A ′ [ρA(dS(ρ))] =Mρ

(
1
2
dS(ρ)

)
. (46)

Putting together (43), (44) and (46), we have therefore obtained

∂tρt = L′ρt =−Bρt−A′(ρA(dS(ρ)))

=Wρt−Mρt

(
1
2
dS(ρt)

)
.

To show that the above is a pre-GENERIC systemwe still need to verify that the degeneracy
condition (35) holds; to this end, using the chain rule for B, B1= 0 and B∗ =−B= B ′ (which
follows from lemma 2.3), we haveˆ
Rd

(Bρ)(x)[dS(ρ)](x)dx=
ˆ
Rd

(Bρ)(x)[log(ρ(x)/µ(x))+ 1]dx

=−
ˆ
Rd

µ(x)[B(ρ/µ)](x)dx−
ˆ
Rd

ρ(x)B1dx

=−
ˆ
Rd

(B∗µ)(x)ρ(x)/µ(x)dx=
ˆ
Rd

(Bµ)(x)ρ(x)/µ(x)dx= 0 .

(47)

It remains to check that M is symmetric and positive semidefinite. In fact,

(Mρξ,ξ) = 2(A′(ρAξ), ξ) = 2
ˆ
Rd

ρ(x)[(Aξ)2(x)]dx⩾ 0, for every ξ ∈ V,

as ρ> 0 (standing assumption [SA.3]). Similarly, for every ξ1, ξ2 ∈ V , we have

(Mρξ1, ξ2) = 2
ˆ
Rd

[A′(ρAξ1)](x)ξ2(x)dx= 2
ˆ
ρ(x)(Aξ1)(x)(Aξ2)(x)dx= (Mρξ2, ξ1) .

3.2. From Wasserstein pre-GENERIC to linear hypocoercivity

Recalling that µ is the unique invariant measure of the underlying process Xt, we now assume
that the FP equation is in pre-GENERIC form (35)–(37), with S(ρ) = Sµ(ρ) as in (41) andW
is an operator on V such that bothW andW

′
are defined on V and obey the chain and product

rule; because W
′
obeys the product rule, the kernel of W

′
contains constants, i.e. W ′1= 0.

Assuming that that FP equation is of the form (37) means that the FP operator L ′ is precisely
given by

L′ρ=Wρ−Mρ

(
1
2
dS(ρ)

)
.
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With this premise, we will show that the dual of L ′, i.e. the Kolmogorov operator L,15 can
be written in linear hypocoercive form L= B−A∗A. In particular we will show that W

′
is

antisymmetric in L2
µ and it is related to the operator B appearing in the hypocoercive form by

W ′ = B while Mρ is related to A through the relations (49) and (50) below.
We start by showing that W

′
is antisymmetric. To this end, from the degeneracy condi-

tion (35) we have

0= (W(ρ),dS(ρ)) =
ˆ
Rd
ρ(x) [W ′(log(ρ/µ))](x)dx+

ˆ
Rd
ρ(x)(W ′1)dx=

ˆ
Rd

ρ(x)
µ(x)

(Wµ)(x)dx;

(48)

since the degeneracy condition (35) holds for every ρ ∈ V , this impliesWµ= 0. Using lemma
2.3 we conclude that B=W ′ is antisymmetric in L2

µ. Let us notice that by setting B=W ′ we
also have B1= 0.

Regarding the gradient-flow part, because Mρ is symmetric and positive definite for every

ρ> 0 fixed, one can find a square root of Mρ, i.e. an operator M1/2
ρ such that (M1/2

ρ ) ′M1/2
ρ =

Mρ; guided by the calculation in the previous subsection, we assume that one such square
root16 can be written in the form

M1/2
ρ (ξ) :=

√
2ρA(ξ), (49)

for some operator Awhich does not depend on ρ (let us point out that any Itô diffusion belongs
to this category, see section 6.1, and that expressions analogous to the above also appear in
[50]). With this choice, we have (M1/2

ρ ) ′(ξ) =
√
2A ′(

√
ρξ), so that

Mρ(ξ) = (M1/2
ρ ) ′(M1/2

ρ (ξ)) = 2A ′(ρA(ξ)). (50)

If A obeys the chain rule then, with calculations completely analogous to those in the previous
subsection, one finds that if ρt solves (37) and all of the above assumptions are satisfied, then
the m-KE for ht = ρt/µ can be written in the form (19).

To conclude, recall that the fact that the kernel of L is only made of constants is a con-
sequence of ergodicity, see section 2.1. However, in this setup this can anyway be recovered
from the structure of the equations. Indeed, because Wµ= 0 and µ is an invariant measure,
i.e. a stationary solution of (37), it follows that Mµ(dS(µ)) = 0; if this is the case then, since
dS(µ) = 1, for every g ∈ V one has

0= (Mµ(dS(µ)),g) = (M1/2
µ (dS(µ)),M1/2

µ (g)) =
ˆ
(A1)(Ag)µ=

ˆ
(A∗A1)gµ,

which implies 1 ∈ ker(A∗A). Because ker(A∗A) = kerA, one has A1= 0. This, together with
the fact that B1=W ′1= 0 implies L1= L1= 0.

Note 3.1. A couple of observations on sections 3.1 and 3.2.

• The calculation in (47) shows that, in the framework of section 3.1, i.e. if the generatorL is in
linear hypocoercive form, the degeneracy condition (35) is ultimately a consequence of the
antisymmetry in L2

µ of B and of B1= 0, which implies Bµ= 0 (by lemma 2.3). Viceversa,
in section 3.2 the degeneracy condition implies Wµ= 0 (hence Bµ= 0 as well), but it does
not seem to imply W ′1= B1= 0 directly.

15 We are implicitly assuming that (L ′) ′ = L, at least on V , similarly for B and W.
16 As is well known, the square root operator is not unique.
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• On a practical level one can see the content of these subsections as giving explicit formulas
to go from linear hypocoercivity to pre-GENERIC formulation and viceversa. The potential
advantage is that one could obtain some results almost for free; for example, suppose a
particular equation is known to have hypocoercive form. Using section 3.1 one can then
write it in pre-GENERIC form and hence obtain relative entropy dissipation. An indeed
a Corollary of the content of section 3.1 is the following: if the generator L is in linear
hypocoercive form, then the relative entropy is dissipated along the flow of the associated
FP equation.

• When B= 0, a straightforward consequence of section 3.1 is the following: if the generator
of the process is self-adjoint in L2

µ, which is equivalent to the underlying process being
reversible, the FP operator is in gradient flow form. In this sense the content of section 3.1
can be seen as providing a simple proof of the link between reversibility and gradient flow
structure.

4. Relation between pre-GENERIC and symmetric–antisymmetric
decomposition

In section 3 we worked with linear Markov generators in hypocoercive form (18). In this
section we slightly relax the class of Markov generators we consider; we work again under
the standing assumptions of hypothesis 2.1 but this time we simply split the generator L as
follows

L= La+Ls, (51)

where Ls and La are, respectively, the symmetric and anti-symmetric parts in L2
µ of L. We

will assume that Ls is linear, but no such assumption will be needed for La. Moreover, we
do not explicitly assume that Ls should be of the form −A∗A, as in section 3.17 With the
splitting (51) in mind, for every ρ ∈ V we consider the following Hamiltonian functional
H (ρ; ·) :D(Hρ)→ R,

H (ρ;ξ) :=

ˆ
Rd

e−ξ(x)
(
Leξ
)
(x)ρ(x)dx

=

ˆ
Rd

e−ξ(x)
[
(La+Ls)e

ξ
]
(x)ρ(x)dx=: Ha(ρ;ξ)+Hs(ρ;ξ), (52)

where, for every ρ ∈ V , Hs(ρ; ·) :D(Hs,ρ)→ R, Ha(ρ; ·) :D(Ha,ρ)→ R,

Ha(ρ;ξ) :=

ˆ
Rd

e−ξ
(
Lae

ξ
)
dρ, Hs(ρ;ξ) :=

ˆ
Rd

e−ξ
(
Lse

ξ
)
dρ, (53)

and D(Hρ) is the set of functions ξ such the integrand in (52) makes sense and the integral
in (52) is finite (similarly for D(Hs,ρ),D(Ha,ρ)). We will also make the following technical
assumption.

Assumption 4.1 For every ρ ∈ V , D(Hs,ρ) is such that for any ξ, ξ̄, ξ̃ ∈ D(Hs,ρ), ξ+ γξ̄ ∈
D(Hs,ρ) for any γ ∈ (0,1) and the integral

17 We note that for less than regularity issues related to the domain of the adjoint operator and for the potential practical
difficulty of finding A, any non-negative symmetric operator can be written in the form −A∗A. But this might not be
easy in practice and indeed this is inconvenient for the PDMPs we study in section 6.2.
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ˆ
Rd

e−ξ(x)αξp(x)
[
Ls(βξ̄

peξ̃)
]
(x)ρ(x)dx

is finite, for any p ∈ {1,2},α,β ∈ {0,1}.

The above assumption is easily satisfied in practice, as in examples D(Hs,ρ) will typically
contain functions that grow polynomially while ρ decays exponentially fast at infinity. Finally,
before stating our main theorem, we recall (see (36)) that the FP equation ρ̇t = L ′(ρt) is in
pre-GENERIC form with respect to (S,ψ,ψ⋆,W) if and only if

ψ(ρt;L ′(ρt)−W(ρt))+ψ⋆

(
ρt;−

1
2
dS(ρt)

)
+

1
2
(L ′(ρt),dS(ρt)) = 0 (54)

and the orthogonality condition (35) holds.
With this in mind, the purpose of theorem 4.1 below is to show that if the symmetric–

antisymmetric decomposition (51) holds for the generator then the FP equation can be written
in pre-GENERIC form, and vice versa. The theorem also provides a constructive way to pass
from one formulation to the other.

Theorem 4.1. With the notation introduced so far, the following holds:

• From symmetric–antisymmetric decomposition of the generator to pre-GENERIC struc-
ture of the FP equation. Let L be the generator of a time-homogeneous Markov process
with unique invariant measure µ and consider a symmetric–antisymmetric splitting of L as
in (51) where we assume that Ls is a linear operator. Given L, we consider Hs as in (53)
and assume that Hs(ρ; ·) is convex and once Frechet differentiable in the second argument,
for every ρ. For every ρ ∈ V we then let Ψ⋆(ρ; ·) :D(Hs,ρ)→ R be the functional

Ψ⋆(ρ;ξ) = Hs

(
ρ;

1
2
dSµ(ρ)+ ξ

)
−Hs

(
ρ;

1
2
dSµ(ρ)

)
, (55)

where Sµ is the relative entropy between ρ and µ. Suppose Ls1= 0 and let assumption 4
and the following orthogonality condition hold,

(L ′
a(ρ),dSµ(ρ)) = 0 for every ρ ∈ V . (56)

Then the FP equation ρ̇= L ′(ρ) is a (Sµ,Ψ,Ψ
⋆,L ′

a) pre-GENERIC flow. That is, the oper-
ator Ls is associated with the gradient flow part of the dynamics, i.e.

L ′
sρ= dξΨ⋆

(
ρ;−1

2
dSµ(ρ)

)
(57)

and the flow generated by L ′ can be written as

∂tρt =W(ρt)+ dξΨ⋆

(
ρt;−

1
2
dSµ(ρt)

)
, with Wρ= L ′

aρ. (58)

• From pre-GENERIC form of the FP equation to symmetric–antisymmetric splitting of
the generator. Vice versa, suppose that there exist ψ,ψ⋆,W and S ∈ C1 such that the FP
equation ρ̇t = L ′(ρt) is a (S,ψ,ψ⋆,W) pre-GENERIC system; that is, suppose
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∂tρt = L ′ρt =W(ρt)+ dξψ⋆

(
ρt;−

1
2
dS(ρt)

)
, (59)

with W and S such that (W(ρ),dS(ρ)) = 0 for every ρ ∈ V . Let

H̃ (ρ;ξ) := ψ⋆

(
ρ;ξ− 1

2
dS(ρ)

)
−ψ⋆

(
ρ;−1

2
dS(ρ)

)

and assume that H̃ is convex and H̃ (ρ;0) = 0 for every ρ ∈ V . Assume moreover that L̃ ,
the Legendre transform of H̃ , is twice differentiable at the point (µ;0). Then the operator
L−W ′ is symmetric with respect to L2

µ and

L= (L−W′)+W′

constitutes a symmetric–antisymmetric decomposition of L.

Proof. We first show that Ψ⋆ defined in (55) is a dissipation potential, i.e. that it is non-
negative, symmetric, convex in the second argument and attains its minimum at 0. In fact,
the convexity of Ψ⋆ follows immediately from the convexity of Hs. We will show in note 5.3
(take F to be the identity there) that the symmetry in L2

µ of Ls implies

Hs

(
ρ;

1
2
dSµ(ρ)+ ξ

)
= Hs(ρ;

1
2
dSµ(ρ)− ξ), (60)

which in turn implies the symmetry of Ψ⋆. From the definition of Ψ⋆, equation (55), we have

Ψ⋆(ρ,0) = 0 and dξΨ⋆(ρ;ξ) = (dξHs)

(
ρ;

1
2
dSµ(ρ)+ ξ

)
,

thus,

dξΨ⋆(ρ;0) = (dξHs)

(
ρ;

1
2
dSµ(ρ)

)
and dξΨ⋆

(
ρ;−1

2
dSµ(ρ)

)
= (dξHs)(ρ,0).

To clarify notation, the RHS of the above formulas is the Frechet derivative of Hs with respect
to its second argument, calculated at 1

2dSµ(ρ) and 0 respectively. By taking the derivative with
respect to ξ on both sides of (60) and then letting ξ= 0, we get

dξΨ⋆(ρ;0) = (dξHs)

(
ρ;

1
2
dSµ(ρ)

)
= 0.

Using the convexity and differentiability of Ψ⋆, we have

Ψ⋆(ρ;ξ)⩾Ψ⋆(ρ;0)+ (dξΨ⋆(ρ;0), ξ) = 0, for every ρ,ξ .

We have thus proved that Ψ⋆ is a dissipation potential. Next we will establish (58). For every
ξ̄ ∈ D(Hs,ρ), we have

(dξHs(ρ;ξ), ξ̄) = lim
ε→0

Hs(ρ;ξ+ εξ̄)−Hs(ρ;ξ)

ε
=

ˆ
Rd

[
− ξ̄e−ξLse

ξ + e−ξLs(ξ̄e
ξ)
]
dρ.

(61)
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We postpone showing how the above expression is obtained and proceed with the main argu-
ment. From the above,

(dξHs(ρ;0), ξ̄) =
ˆ
Rd

[
− ξ̄(Ls1)+ (Lsξ̄)

]
dρ=

ˆ
Rd

(Lsξ̄)dρ= (L′
s(ρ), ξ̄),

where we have used Ls1= 0. From this, we deduce

L′
s(ρ) = dξHs(ρ;0) = dξΨ∗

(
ρ;−1

2
dSµ(ρ)

)
,

which is precisely (57). That is, L ′
s is in gradient flow form; using (33) and writing L ′

s(ρ) =
L ′(ρ)−L ′

a(ρ), we then have

Ψ
(
ρ;L′(ρ)−L′

a(ρ)
)
+Ψ⋆

(
ρ;−1

2
dS(ρ)

)
=

(
L′(ρ)−L′

a(ρ),−
1
2
dS(ρ)

)
(56)
=

(
L′(ρ),−1

2
dS(ρ)

)
,

which, is equivalent to (58) (see (36)). We are now only left with showing the limit (61). To
this end, for some θ = θ(x) ∈ (0,1) we have:

Hs(ρ;ξ+ εξ̄) =

ˆ
Rd

e−(ξ+εξ̄)
[
Ls(e

ξ+εξ̄)
]
dρ

=

ˆ
Rd

(
e−ξ − εξ̄e−ξ +

1
2
ε2(ξ̄(x))2e−ξ(x)−θεξ̄(x)

)
×
[
Ls
(
eξ + εξ̄eξ +

1
2
ε2(ξ̄(x))2eξ(x)+θεξ̄(x)

)]
dρ

=

ˆ
Rd

(
e−ξLse

ξ + ε
[
− ξ̄e−ξLs(e

ξ)+ e−ξLs(ξ̄e
ξ)
])

dρ+ ε2I

= Hs(ρ,ξ)+ ε

ˆ
Rd

[
− ξ̄e−ξLs(e

ξ)+ e−ξLs(ξ̄e
ξ)
]
dρ+ ε2I ,

where the term I gathers all the terms which are multiplied by a power of ε bigger or equal
than two. In view of assumption 4 all the integrals appearing in the above are finite, hence we
can take the limit ε→ 0 and obtain the result.

Now suppose that (59) holds true or, equivalently,

ψ(ρt;L ′(ρt)−W(ρt))+ψ⋆

(
ρt;−

1
2
dS(ρt)

)
+

1
2

(
L ′(ρt),dS(ρt)

)
= 0, (W(ρ),dS(ρ)) = 0 ∀ρ ∈ V.

(62)

By subtracting 1
2 (W(ρt),dS(ρt)) = 0 from the LHS of (62), we get

ψ(ρ;L ′(ρ)−W(ρ))+ψ⋆(ρ;−1
2
dS(ρ))+ (L ′(ρ)−W(ρ),

1
2
dS(ρ)) = 0. (63)

The above implies that the operator L ′ −W is a gradient flow. From [33, theorem 3.4] the
Hamiltonian H̃ is reversible with respect to S , i.e. H̃ (ρ;ξ) = H̃ (ρ;dS(ρ)− ξ) for every ξ.
This is equivalent to L̃ , the Legendre transform of H̃ , satisfying equality (73) (that is, the
relation [38, (2.6)]). This implies, by [38, theorem 3.3], to the fact that the operator (L ′ −W) ′

satisfies detailed balance with respect to µ. This concludes the proof.
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Note 4.2. Some comments on theorem 4.1.

• The first part of the theorem implies that if Ls is symmetric in L2
µ then L ′

s is in gradient flow
form. We prove this fact without making use of LDPs. It must be emphasised that we find
one possible gradient flow structure for L ′

s , the one that corresponds to using the relative
entropy as entropy functional. In other words the first part of the theorem says that we can
always look at L ′

s as a gradient flow for the relative entropy. It is this ‘a-priori choice’ of
entropy functional that allows one to bypass the use of LDPs. Avoiding the use of LDPs
makes proofs simpler, and this is particularly true in the linear case of section 3, where only
straightforward arguments are used. However it also conceals important physical considera-
tions (summarised in the introduction) which shed a more profound light on the microscopic
origin of the gradient flow structure.

• Condition (56) can be dropped by using the observation in note 2.3.3, point (b).
• In the proof of the second part of the theorem we used [38, theorem 3.3], which assumes the

validity of a LDP. However the proof of the specific implication of that theorem that we use
here does not require assuming the validity of a LDP.

• Suppose that Hs(ρ; ·) is differentiable. Then it is convex in the second argument, for every
ρ fixed, if and only if

Hs(ρ;ξ+ ξ̄)⩾ Hs(ρ;ξ)+ (dξHs(ρ;ξ), ξ̄) ,

for all functions ξ, ξ̄ in the appropriate domains. Let Γs be the carré du champ operator
associated to Ls, namely

Γs(ξ, ξ̄) :=
1
2

(
Ls(ξξ̄)− ξLsξ̄− ξ̄Lsξ

)
.

Then

Hs(ρ;ξ+ ξ̄) =

ˆ
Rd

(
e−ξLse

ξ + e−ξ̄Lse
ξ̄ + 2e−(ξ+ξ̄)Γs(e

ξ,eξ̄)
)
dρ(x),

Hs(ρ;ξ)+ (dξHs(ρ;ξ), ξ̄) =

ˆ
Rd

e−ξLse
ξ dρ(x)+

ˆ (
Lsξ̄+ 2e−ξΓs(e

ξ, ξ̄)
)
dρ(x).

Thus Hs is convex if and only if
ˆ
Rd

e−ξ̄
(
Lse

ξ̄ + 2e−ξΓs(e
ξ,eξ̄)

)
dρ(x)⩾

ˆ
Rd

(
Lsξ̄+ 2e−ξΓs(e

ξ, ξ̄)
)
dρ(x) for all ξ, ξ̄.

(64)

For diffusion processes, Ls and Γs satisfy the chain rule

Lsϕ(ξ) = ∂ξϕ(ξ)Lsξ+ ∂2
ξϕ(ξ)Γs(ξ,ξ) and Γs(ϕ(ξ), ξ̄) = ∂ξϕ(ξ)Γs(ξ, ξ̄),

thus

Lse
ξ̄ = eξ̄(Lsξ̄+Γs(ξ̄, ξ̄)), e−(ξ+ξ̄)Γs(e

ξ,eξ̄) = e−ξΓs(e
ξ, ξ̄) = Γs(ξ, ξ̄). (65)
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In this case the convexity condition (64) reduces to

ˆ
Rd

Γs(ξ̄, ξ̄)dρ(x)⩾ 0,

which is always true as Γs(ξ̄, ξ̄)⩾ 0 (see for instance [5, section 1.4.2]).

5. LDPs and generalised-reversibility

In this section we consider a particular class of non-reversible processes, the class of so-called
generalised-reversible processes, and we characterise the form of their large deviation rate
functional. To this end, in sections 5.1 and 5.2, respectively, we give a summary background
on generalised reversibility and LDPs, respectively. In section 5.3 we state and prove the main
result of this section, proposition 5.2.

5.1. Generalised reversibility

We start by briefly recalling the definition and main facts about generalised reversibility, more
details can be found in [36, section 2.2.1.2], but this definition goes back to at least the work
of Yaglom [54] (and for this reason generalised reversible processes are also called Yaglom-
reversible at times). Letµ be a probabilitymeasure onRd andF be an involutive transformation
(i.e. F = F−1) on Rd leaving µ invariant, that is,

µ(F(dx)) = µ(F−1(dx)) = µ(dx) . (66)

An Rd-valued time-homogeneous Markov process (X(t))t⩾0 is said to be generalised
reversible with respect to µ up to F iff whenever X(0) is distributed according to µ then
(X(t))t∈[0,T] and the time-reversed process (F(X(T− t)))t∈[0,T] have the same distribution (on
the space of continuous paths), for every fixed T > 0.

Let L be the generator of Xt. If F is smooth enough—in particular, if it is such that the
composition f ◦F belongs to the domain of L whenever f does, which we assume from now
on—one can see that Xt is generalised reversible up to F with respect to µ iffˆ

f(x)(Lg)(x)dµ(x) =
ˆ
(g ◦F)(x)[L( f ◦F)](x)dµ(x), ∀ f,g ∈ D2(L) . (67)

From the above it is clear that a generalised-reversible process is non-reversible in the sense
that the detailed balance equation (40) does not hold. However when F is the identity, the
above condition simply reduces to detailed balance. It is easy to see that if L is reversible up
to F with respect to µ18 then µ is an invariant measure for Xt (just take f≡ 1 in the above
and use the fact that constant functions belong to the kernel of L). Note that (67) can be
reformulated as

(L∗f)(x) = F#[L(F#f)](x) = (L(F#f))(F(x)), where F#f := f ◦F . (68)

Indeed, by a change of variable, we have

18 By this we mean that the process with generator L is reversible up to F with respect to µ.
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ˆ
g(x)F#[L(F#f)](x)dµ(x) =

ˆ
g(x)[L( f ◦F)(F(x))]dµ(x)

(66)
=

ˆ
g(F(x))[L( f ◦F)](x)dµ(x)

(67)
=

ˆ
f(x)(Lg)(x)dµ(x).

A typical example of generalised reversibility is the Langevin dynamics (xt,vt) of
equation (1), which is generalised reversible with respect to the measure µ in (2) up to the
velocity flip F : (x,v) 7→ (x,−v), see [36].

5.2. Feng-Kurtz approach to LDP of empirical measures

The functional setting of this subsection and the next is slightly different from the one we
used in previous sections; in particular throughout section 5 we drop our standing assumptions
hypothesis 2.1.

Let t ∈ [0,T] and {X(n)
t }{n∈N} be a sequence of time-homogeneous independent Markov

processes, each of themwith common state spaceRd andwith common generatorL :Db(L)→
Cb(Rd), where the domain Db of L is the set of functions f : Rd → R such that Lf ∈ Cb(Rd)19

and L is a linear operator. We assume that Db is large enough that if (67) holds for every
f,g,∈ Db then it also holds for every f,g ∈ D2.

The empirical process ρ(n) associated to {X(n)
t }n is defined by

ρ(n) : t 7→ 1
n

n∑
i=1

δX(i)(t), t ∈ [0,T] , (69)

where δ is the dirac delta. Denoting byP(Rd) the space of probability measures onRd, for each
t ∈ [0,T] and n ∈ N fixed, ρ(n)t is a random probability measure on Rd. Hence {ρ(n)(·)}n can
be viewed as a sequence of D([0,T];P(Rd))-valued random variables where D([0,T];P(Rd))
denotes the Skorohod space of paths from [0,T] to Rd. Suppose that ρ(n)(0), as a sequence
of P(Rd)- valued random variables, satisfies a LDP with a good rate function I0 : P(Rd)→
[0,∞) (see appendix A for basic definitions about LDPs). Then, under rather general con-
ditions (see [28, chapter 13] for non-degenerate diffusion processes, [9, 18] for degenerate
diffusion processes, [27, 38] for finite-state continuous time Markov chains or also [12]), the
empirical process satisfies a LDP in D([0,T];P(Rd)) of the form 20

Prob
(
(ρ

(n)
t )Tt=0 ≈ {ρ·}

)
n→∞∼ e−nIT({ρ·}), IT({ρ·}) := I0(ρ0)+

ˆ T

0
L (ρt; ρ̇t)dt, (70)

for some function L which is commonly referred to as the Lagrangian, for reasons that will
be clear in few lines. In the above and throughout the notation {ρ·} is to specify that we
are referring to the whole path {ρt}t∈[0,T] ⊂ P(Rd). If ρ(n)· satisfies the LDP (70) then the
functional L is convex in the second variable and

19 Let us recall that there are in general two approaches to defining the domain of a Markov operator: either one
defines it as the largest set where the operator can be seen as the generator of the associated Markov semigroup, and
this is substantially what we did in previous sections, or one defines it by fixing the image of L, which is what we do
here. We use the space of continuous and bounded functions here because it generates the narrow (weak) topology in
the space of probability measures, which is a natural topology for large deviation results in this section [12, 28].
20 The complete explanation of this popular short-hand notation is contained in appendix A.
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L (ρt; ρ̇t) = 0⇔ ρ̇t = L′ρt

where the FP-equation on the RHS of the above is to be understood on the space of probability
measures [38, proposition 3.1].

Feng and Kurtz [28] provide a formal method to calculate the large-deviation rate functional
L in a variety of scenarios; in our setting, i.e. in the case in which we consider LDPs for
empirical measures of i.i.d processes, such a method proceeds as follows: starting from the
generator L, we compute the so-called Hamiltonian H = H (ρ;ξ) = Hρ(ξ), as follows

H (ρ;ξ) :=

ˆ
Rd

e−ξ(x)
(
Leξ
)
(x)dρ(x) . (71)

For every ρ ∈ P(Rd), we regard H as a function H (ρ; ·) :Db(Hρ)→ R, where Db(Hρ)
consists of the set of functions ξ : Rd → R such that eξ ∈ Db(L) and the right hand side of the
above makes sense. Once the Hamiltonian is obtained, if ρ(n)· satisfies a LDP, the Lagrangian
L (ρ; ·) :Db(Lρ)→ R is found as the Legendre transform of H , namely

L (ρ;g) = sup
ξ∈Db(Hρ)

{
(ξ,g)−H (ρ;ξ)

}
, (72)

where in the above (·, ·) is a formal L2 scalar product.

Note 5.1. We emphasise that the approach of Feng and Kurtz gives a formal procedure to find
the large deviation rate functional L , however to make this procedure rigorous one needs to
verify many technical conditions; Feng and Kurtz [28] presents rigorous proofs of LDPs for
many Markov processes. Moreover, as one would expect, specifying the appropriate domains
of H and L is better done on a case by case basis, see e.g. [38, section 4.2]. Again to compare
with the presentation of this theory on manifolds, if Z is a manifold then, for every z ∈ Z ,
H (z; ·) : T∗zZ → R and L (z; ·) : TzZ → R.

Assuming that for every n ∈ N the process {X(n)
t }t⩾0 admits a unique invariant measure µ

(which is the same for every n ∈ N) and that the associated empirical process ρ(n) satisfies a
LDP of the form (70) with Lagrangian L , one of the main results of [38] can be informally
stated as follows (see [38, theorem 3.3] for a precise statement): the process X(n)

t is revers-
ible with respect to µ (in the sense that µ satisfies detailed balance (40)) if and only if the
Lagrangian L appearing in the LDP satisfies the following relation

L (ρ;g)−L (ρ;−g) = (dSµ(ρ),g), for every ρ ∈ P(Rd),g ∈ Db(Lρ), (73)

where Sµ(ρ) has been defined in (41). In the next subsection we show an analogous result for
the case in which the invariant measure µ is only reversible up to some transformation F .

5.3. Reversibility, generalised reversibility and LDPs

We keep working in the setting of section 5.2, i.e. {X(n)
t }t⩾0 is a sequence of independent

time-homogeneous Markov processes with common generator L; again suppose that for each
n ∈ N the process X(n)

t admits an invariant measure µ which is the same for every n. Consider
the map φ : D([0,T];P(Rd))→ D([0,T];P(Rd)) defined as

φ
(
{ρt}t∈[0,T]

)
= {F#ρT−t}t∈[0,T] , (74)

where we recall F#ρ denotes the push-forward of the probability measure ρ under a map
F : Rd → Rd, i.e. F#ρ(B) = ρ(F−1(B)) for every Borel set B⊂ Rd. We make the following
assumption.
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Assumption 5.1 Let F be an involutive, volume preserving transformation (i.e. |JF|= 1)21

on Rd leaving µ invariant and satisfying the following regularity assumptions: (a) F is
smooth enough so that the map φ in (74) is well defined (i.e. {F#ρT−t}t∈[0,T] belongs to
D([0,T];P(Rd)) if the path {ρt}t∈[0,T] does) and continuous; (b) if g ∈ Db(L ) (Db(H ),
respectively) then g ◦F ∈ Db(L ) (Db(H ), respectively).

Proposition 5.2. With the setting and notation introduced above, suppose that {X(n)(0)}n∈N
are i.i.d random variables, distributed according to µ; suppose the empirical process ρ(n)

associated with the sequence {X(n)(t)}n∈N satisfies a LDP on D([0,T];P(Rd)) with a good
rate function IT : D([0,T];P(Rd))→ [0,∞) given by

IT({ρ·}) = I0(ρ0)+
ˆ T

0
L (ρt; ρ̇t)dt, (75)

where I0 is the large deviation rate functional of {ρ(n)(0)}n, the empirical process at the initial
time. Let F : Rd → Rd be a transformation on Rd satisfying assumption 5.1. If for each n ∈ N
the process {X(n)(t)}t is reversible with respect to µ up toF then the LagrangianL appearing
in the LDP satisfies the following relation:

L (ρ;g)−L (F#ρ;−g ◦F) = (dSµ(ρ),g), for every ρ ∈ P(Rd),g ∈ Db(Lρ), (76)

where Sµ(ρ) is as in (41). Moreover, if dSµ(ρ) ∈ Db(Hρ), (76) is equivalent to the following
relation (expressed in terms of the Hamiltonian)

H (ρ;dSµ(ρ)+ ξ) = H (F#ρ;−ξ ◦F). (77)

If, additionally, the Lagrangian L is twice differentiable near (µ;0), then the converse state-
ment holds as well, i.e. (76) implies (67).

Proof. We build on the proof of [38, theorem 3.3]. Consider the map φ : D([0,T];P(Rd))→
D([0,T];P(Rd)) defined in (74). By the involutivity of F , φ is invertible and involutive, and
indeed the inverse map is given by

φ−1({ρt}t∈[0,T]) = {F#ρT−t}t∈[0,T] , for any {ρt}t∈[0,T] ∈ D([0,T];P(Rd)) .

Let ρ̃(n) be the empirical process associated with the process F(X(n)(T− t)), i.e.

ρ̃(n) : t 7→ 1
n

n∑
i=1

δF(X(i)(T−t)).

Using the identityˆ
Rd

f(y)(F#ρ)(dy) =
ˆ
Rd

f(F(x))ρ(dx),

which holds for every continuous and bounded f : Rd → R, one can see that ρ̃(n)· = φ(ρ
(n)
· ).

Since ρ(n)· satisfies a LDP with the rate functional IT, by the contraction principle [28, lemma
3.11]22, also ρ̃(n) satisfies a LDP with the rate functional Ĩ : D([0,T];P(Rd))→ [0,∞) given
by23

ĨT({ρt}t∈[0,T]) = I(φ({ρt}t∈[0,T])). (78)

21 Here |JF| denotes the determinant of the Jacobian of F .
22 It is in applying the contraction principle that we use the assumption that I is a good rate function.
23 Since φ is invertible, in the application of contraction principle we do not need to take an infimum over the pre-
image set
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Letting {̂ρt}t = φ({ρt}t), the above can be rewritten as

ĨT({ρt}t) = IT({̂ρt}t) = I0(ρ̂0)+
ˆ T

0
L (ρ̂t, ˙̂ρt)dt.

We claim that the following identity holds:

− ˙̂ρt(x) = (ρ̇T−t ◦F)(x) , for every x ∈ Rd . (79)

We will prove this claim below and for the time being we move on with the main
argument.

Note now that the generalised reversibility of the underlying particle systems implies that
I = Ĩ. This is because, by generalised reversibility, for each n, (X(n)(t))t∈[0,T] and the time-
reversed process (F(X(n)(T− t)))t∈[0,T] have the same distribution, for every fixed T > 0.
Hence,

prob
(
{ρ(n)t }t∈[0,T] ∈Θ

)
= prob

(
{ρ(n)t }t∈[0,T] ∈ φ(Θ)

)
,

for every open set Θ⊆ D([0,T];P(Rd)). From I = Ĩ and (78), for any curve {ρt}t ⊂
D([0,T];P(Rd)) we then have

I0(ρ0)+
ˆ T

0
L (ρt; ρ̇t)dt= I0(ρ̂0)+

ˆ T

0
L (ρ̂t; ˙̂ρt)dt

(79)
= I0(F#ρT)+

ˆ T

0
L (F#ρT−t;−ρ̇T−t ◦F)dt

= I0(F#ρT)+

ˆ T

0
L (F#ρt;−ρ̇t ◦F)dt .

Since {X(n)(0)}n are i.i.d. with distribution µ, according to Sanov’s theorem [13, theorem
6.2.10] we have I0(ρ0) = Sµ(ρ0). Thus,

Sµ(F#ρT)−Sµ(ρ0) =

ˆ T

0
[L (ρt; ρ̇t)−L (F#ρt;−ρ̇t ◦F)] dt. (80)

Differentiating the above with respect to T, we then get

(dSµ(F#ρT), ρ̇T ◦F) = L (ρT; ρ̇T)−L (F#ρT;−ρ̇T ◦F) .

Since {ρt}t is an arbitrary curve in D([0,T];P(Rd)), ρT is an arbitrary probability measure, as
is arbitrary the element ρ̇T ∈ Db(LρT), hence

(dSµ(ρ),g ◦F) = L (F#ρ;g)−L (ρ;−g ◦F),

for any ρ,g in the appropriate spaces, which is equivalent to (76). To conclude the proof of (76)
we just need to prove the claim (79). This can be seen from the following calculations

ˆ
˙̂ρt(x)f(x)dx=

d
dt

ˆ
ρ̂t(x)f(x)dx

=−
ˆ
ρ̇T−t(x)( f ◦F)(x)dx=−

ˆ
(ρ̇T−t ◦F)(x)f(x)dx,
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where the second equality follows from the definition of ρ̂t and having used the fact that F
is volume preserving. The convexity of L (implied by the LDP) now allows us to find the
relation (77) as follows:

H (ρ;dSµ(ρ)+ ξ) = sup
s
{(dSµ(ρ)+ ξ,g)−L (ρ;g)}

(76)
= sup

g
{(ξ,g)−L (F#ρ;−g ◦F)}

= sup
g
{(ξ,−g ◦F)−L (F#ρ;g)}

= sup
g
{(−ξ ◦F ,g)−L (F#ρ;g)}

= H (F#ρ;−ξ ◦F) .

Let us now prove the converse implication, i.e. that (76) implies (67). This can be done by a
modification of the proof of [38, theorem 3.3], so we do not repeat all the details but we just
explain the main steps. Standing the observations of [38, remark 3.4], let us define the function

a(ϵ1, ϵ2, . . . , ϵ6) = L ((1+ ϵ1ρ+ ϵ4ρ#)µ; L′((1+ ϵ2ρ+ ϵ3g+ ϵ5ρ# + ϵ6g#)µ)) ,

where ϵj ∈ R for every j ∈ {1, . . . ,6} and, just for the rest of this proof, we set g# = F#g,
similarly for ρ#. Since d2Sµ(µ)[g1,g2] =

´
Rd

dg1
dµ

dg2
dµ dµ, the statement that we want to prove

can be rewritten as

d2Sµ(µ)[µρ,L ′(µg)] = d2Sµ(µ)[µg#,L ′(µρ#)] . (81)

To prove the above we make two observations: firstly, by (76) (applied to the functions (1+
ϵ1ρ)µ and L ′((1+ ϵ3g)µ

)
), we have

a(ϵ1,0, ϵ3,0,0,0)− a(0,0,0, ϵ1,0,−ϵ3) = (dSµ((1+ ϵ1ρ)µ)),L ′(ϵ3gµ)) ; (82)

secondly, by the validity of the LDP, the function L ((1+ ϵ1ρ+ ϵ4ρ#)µ;L ′[(1+ ϵ1ρ+
ϵ4ρ#)µ] + h) attains its minimum when h= 0, hence

D3a(ϵ1, ϵ1,0, ϵ4, ϵ4,0) = 0 and D6a(ϵ1, ϵ1,0, ϵ4, ϵ4,0) = 0 . (83)

If we differentiate (82) with respect to ε3 and then with respect to ε1 (and then calculate both
derivatives in ϵ1 = ϵ3 = 0), we get

D13a(0, . . . ,0)+D46a(0, . . . ,0) = d2Sµ(µ)[ρµ,L′(gµ)] .

From (83) instead, we have

D13a(0, . . . ,0)+D23a(0, . . . ,0) = 0

D46a(0, . . . ,0)+D56a(0, . . . ,0) = 0 .

From the above we deduce

−D23a(0, . . . ,0)−D56a(0, . . . ,0) = d2Sµ(µ)[ρµ,L′(gµ)] .

If we calculate explicitly the two derivatives on the LHS of the above, we obtain

d2
ggL (µ,0)

(
(L′(gµ),L′(ρµ))+ (L′(µρ#),L′(µg#)) = d2Sµ(µ)[ρµ,L′(gµ)] ,

)
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where d2
ggL denotes the second derivative of L with respect to its second argument. The

LHS of the above expression remains unchanged upon swapping g with ρ# and ρ with g#,
hence (81). This concludes the proof.

Note 5.3. • In proposition 5.2 we started with assuming that the process {X(n)(t)}t is revers-
ible with respect to µ up toF and proved that, if this is the case, then the Lagrangian needs to
satisfy the relation (75). From the relation for the Lagrangian we then deduced property (77)
for the Hamiltonian. An alternative way of proceeding is to derive (77) directly from the
generalised reversibility condition (67) expressed in terms of the generator, starting from
the explicit formula of H in (71):

H (ρ,dSµ(ρ)+ ξ) = H

(
ρ, log

dρ
dµ

+ 1+ ξ

)
=

ˆ
Rd

e− log ρ(x)
µ(x)−1−ξ(x)L

(
elog

ρ
µ+1+ξ

)
(x)ρ(x)dx

=

ˆ
Rd

e−ξ(x)
(
Lelog

ρ
µ+ξ

)
(x)µ(x)dx

(66),(67)
=

ˆ
Rd

ρ(F(x))e(ξ◦F)(x)
(
Le−(ξ◦F)

)
(x)dx

= H (F#ρ;−ξ ◦F) .

Note that in the first equality we have used the linearity of L to take the constant e−1 out
of the argument of L. Once (77) is formally obtained, (76) can be derived from (77) as
follows (in the second equality below we use the fact that for any function f= f(ξ) one has
supξ f(ξ) = supξ f(ξ+ a), for any constant a)

L (ρ;g) = sup
ξ
{(ξ,g)−H (ρ;ξ)}

= sup
ξ
{(ξ+dSµ(ρ),g)−H (ρ;ξ+dSµ(ρ))}

= (dSµ(ρ),g)+ sup
ξ
{(ξ,g)−H (ρ;ξ+dSµ(ρ))}

(77)
= (dSµ(ρ),g)+ sup

ξ
{(ξ,g)−H (ρ ◦F ;−ξ ◦F)}

= (dSµ(ρ),g)+ sup
ξ
{(ξ ◦F ,g)−H (ρ ◦F ;−ξ)}

= (dSµ(ρ),g)+ sup
ξ
{(ξ,g ◦F)−H (ρ ◦F ,−ξ)}

= (dSµ(ρ),g)+ sup
ξ
{(−ξ,−g ◦F)−H (ρ ◦F ;−ξ)}

= (dSµ(ρ),g)+ sup
ξ
{(ξ,−g ◦F)−H (ρ ◦F ;ξ)}

= (dSµ(ρ),g)+L (ρ ◦F ;−g ◦F).

The observations in [38, remark 3.5] can be seen as a specific instance of the above calcula-
tions, in the case in which F is the identity.

• By combining theorem 4.1 and proposition 5.2, one can derive a gradient flow structure of the
FP equation ∂tρ= L ′ρ from a large deviation rate functional by computing the Hamiltonian
H from the LagrangianL appearing in the rate functional (75) then the dissipation potential
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Ψ⋆ from H using (55) (the entropy functional being the relative entropy). As shown in
[38] for a diffusion process with detailed balance, the resulting gradient flow structure is
precisely the (quadratic)Wasserstein gradient flow discovered by Jordan–Kinderlehrer–Otto
[57, 61] (cf (25)); while for a continuous time Markov chain with detailed balance, it is a
non-quadratic gradient flow (cf (32)), corresponding to the dissipation potential given by
[38, equation (4.6)]

Ψ⋆(ρ,ξ) =
1
2

J∑
i,j=1

√
ρiρjQijQji(cosh(ξj− ξi)− 1),

where Q= (Qij) ∈ RJ×J denotes the generator of the chain. This is not the gradient flow
structure for a (detailed balance) Markov chain found by Maas, Chow et al and Mielke
[58–60] (although the entropy functional being the same relative entropy, the dissipation
potential in these papers is quadratic), see also the Introduction for relevant discussion. In
section 6, we derive pre-GENERIC structures for non-reversible processes and PDMP pro-
cesses using (71) to directly compute the Hamiltonian from the generator.

6. Examples: diffusion processes and PDMPs

In this section we consider two classes of processes, diffusion processes and PDMPs,
sections 6.1 and 6.2, respectively. We will show how the theory developed in previous sections
can be applied to such classes of Markov evolutions and indicate assumptions under which the
functional framework of previous sections can be made rigorous.

6.1. Diffusion processes

We demonstrate how the results in sections 3 and 4 can be applied to diffusion processes. Let
b ∈ C1(Rd;Rd) be globally Lipschitz and σ ∈ C2(Rd;Rd×m) be uniformly elliptic.We consider
the following Ito diffusion process

dXt = b(Xt)dt+
√
2σ(Xt)dβt, X0 = x ∈ Rd , (84)

where (βt)t⩾0 is a standard Brownian motion in Rm. The generator of this process is given, on
suitably smooth functions u : Rd → R, by

(Lu)(x) = b(x) ·∇u(x)+D(x) :∇2u(x), (85)

where D(x) = σ(x)σ(x)⊤ and the notation ‘:’ denotes the Frobenius inner product of two
matrices. The FP equation associated to (84) is

(∂tρt)(x) = (L ′ρt)(x) = div(D(x)∇ρt(x)− b(x)ρt(x)). (86)

Assume that the process admits an invariant measure µ(dx) = µ(x)dx (simple sufficient con-
ditions for this can be found e.g. in [43]), which is necessarily unique and smooth in view of
our ellipticity assumption. We can also assume that µ is positive everywhere. By definition,
such an invariant measure satisfies

L ′µ= div(D∇µ− bµ) = 0. (87)

With this setup we can take V to be the set of (positive) Schwartz functions.
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6.1.1. Wasserstein pre-GENERIC and hypocoercive formulations. Let ht(x) = ρt(x)/µ(x).
Then h satisfies the hypocoercive m-KE (19) where (see [52, proposition 3])24

B := (b−D∇ logµ) ·∇, A := σ∇ and A∗g=−div(σ⊤g)− (∇ logµ,σ⊤g).

SinceB andA are derivations onRd, they satisfy both chain and product rules. Hence according
to section 3.1, the FP equation (86) can be written in the quadratic pre-GENERIC form (37)
with the entropy functional given by the relative entropy of ρ with respect to µ (see (41)) and
(see (42))

Wρ= B ′ρ= div
(
ρD∇ log(µ)− bρ

)
, (88)

Mρ(ξ) = 2A ′(ρAξ) =−2div
(
ρD∇ξ

)
. (89)

6.1.2. Pre-GENERIC formulation of the FPE from the symmetric–antisymmetric decomposition.
In this section, we will cast the FP equation (86) into the pre-GENERIC formulation (59)
using the symmetric–antisymmetric decomposition of the generator L (see (85)) and show
that this is the same as the quadratic pre-GENERIC structure (88) and (89) obtained from the
hypocoercive m-KE (19) in the previous section.

First, we find the symmetric and antisymmetric parts in L2
µ of L, using the relation

Lsϕ=
Lϕ+L∗ϕ

2
=

Lϕ+µ−1L′(µϕ)

2
,

where the second equality in the above follows from the following calculation

(φ,L∗ϕ) = 〈µ−1φ,L∗ϕ〉= 〈ϕ,L(µ−1φ)〉= (φ,µ−1L′(µϕ)).

The symmetric part Ls can be found explicitly

Lsϕ=
1
2

(
Lϕ+µ−1L′(µϕ)

)
= div(D∇ϕ)+D∇ϕ ·∇ logµ,

we have used standard calculations and the stationary condition (87) of µ to obtain the second
equality. The anti-symmetric part is then given by

Laϕ= Lϕ−Lsϕ= b ·∇ϕ−D∇ϕ ·∇ logµ.

The L2-dual operator L ′
s of Ls is

L ′
sρ= div(D∇ρ)− div(ρD∇ logµ) = div

[
ρD∇

(
log(ρ/µ)

)]
= div

[
ρD∇

(
dSµ(ρ)

)]
. (90)

Next, we find the HamiltonianH and its symmetric partHs fromL andLs (see (52) and (53)).
Using (65) we obtain

H (ρ;ξ) =

ˆ
e−ξLeξρ=

ˆ
e−ξ
[
eξ(Lξ+Γ(ξ,ξ))

]
ρ= (ξ,L ′ρ)+ (D∇ξ ·∇ξ,ρ). (91)

Similarly we get

Hs(ρ;ξ) =

ˆ
e−ξLse

ξρ= (ξ,L′
sρ)+ (D∇ξ ·∇ξ,ρ).

24 See the discussion after (18) on the notation A∗A.
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Having obtained Hs, we now calculate ψ⋆ using (55)

ψ⋆(ρ;ξ) = Hs

(
ρ;ξ+

1
2
dSµ(ρ)

)
−Hs

(
ρ;

1
2
dSµ(ρ)

)
= (ξ,L′

sρ)+ (D∇(dSµ(ρ)) ·∇ξ,ρ)+ (D∇ξ ·∇ξ,ρ)

= (ξ,L′
sρ)−

(
ξ,div

[
ρD∇(dSµ(ρ))

])
+(D∇ξ ·∇ξ,ρ)

= (D∇ξ ·∇ξ,ρ),

where we have used (90) to obtain the last equality. The Frechet derivative of ψ⋆ with respect
to its second argument is given by

dξψ⋆(ρ;ξ) =−2div(ρD∇ξ),

which is equal to Mρ(ξ) in (89). Finally, we have

Wρ= L′
aρ= div(ρD∇ logµ− bρ),

which is the same as (88). Hence, the pre-GENERIC formulation (59) of the FP equation
obtained from the symmetric–antisymmetric decomposition of the generator is the same
as the quadratic pre-GENERIC structure (88) and (89) obtained from the hypocoercive
m-KE (19).

6.1.3. Kinetic FP equation. We now consider the kinetic FP equation mentioned in the Intro-
duction demonstrating proposition 5.2. This equation is not elliptic but we can still take V to
be the set of Schwartz functions, see [52]. We recall that the operator L for the kinetic FP
equation is given by (here in multidimensional setting)

(Lξ)(x,v) = v ·∇xξ−∇V(x) ·∇vξ− v ·∇vξ+∆vξ = J∇H ·∇ξ+ divp
[
ρ∇p

(
dSµ(ρ)

)]
,

where Sµ is the relative entropy (8) and

J :=

(
0 I
−I 0

)
, H(x,v) := V(x)+

1
2
|v|2.

The kinetic FP equation is a special case of (84) with

b(x,v) =

(
v

−∇V(x)− v

)
, σ =

(
0 0
0 I

)
.

The operator L is reversible with respect to dµ(x,v) = Z−1e−(V+ 1
2 |v|

2)dxdv up to F(x,v) =
(x,−v) [36]. According to (91), the Hamiltonian H :D(H )→ R is given by

H (ρ,ξ) =

ˆ
(Lξ+ |∇pξ|2)ρ= (L ′ρ,ξ)+ (|∇pξ|2,ρ). (92)

We now verify directly the relation (77) using (92). In fact, the LHS of (77) is

H (ρ;dSµ(ρ)+ ξ) = (L′ρ,dSµ(ρ)+ ξ)+ (|∇p(dSµ(ρ)+ ξ)|2,ρ)

=
(
−J∇H ·∇ρ+ divp

[
ρ∇p

(
dSµ(ρ)

)]
,dSµ(ρ)+ ξ

)
+
(
|∇p(dSµ(ρ)+ ξ)|2,ρ

)
=−(J∇H ·∇ρ,ξ)+ (∇p(dSµ(ρ)) ·∇pξ,ρ)+ (|∇pξ|2,ρ).
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The RHS of (77) is

H (F#ρ;−ξ ◦F) = (L′(F#ρ),−ξ ◦F)+ (|∇p(−ξ ◦F)|2,F#ρ)

= (J∇H ·∇(F#ρ), ξ ◦F)+
(
∇p
(
dSµ(F#ρ)

)
·∇p(ξ ◦F

)
,F#ρ)

+ (|∇p(ξ ◦F)|2,F#ρ)

=−(J∇H ·∇ρ,ξ)+
(
∇p(dSµ(ρ)) ·∇pξ,ρ

)
+(|∇pξ|2,ρ).

ThusH (ρ;dS(ρ)+ ξ) = H (F#ρ;−ξ ◦F) as expected. Finally, we recall that theGENERIC
structure of generalised Langevin equations has been studied in [19].

6.2. Hamiltonian-PDMPs

APDMP {zt}t⩾0 on some state space say Z is a continuous-time stochastic process that evolves
as follows: between random times (usually called random events), it evolves according to a
deterministic dynamics described by anODE; random events happen at a rateλ(z); if before the
random event the value of the process was zt−, when the random event takes place the process
jumps to a new position selected according to a Markov kernel Q(zt−; ·) so that zt ∼ Q(zt−; ·);
the new position zt is then used as the new initial condition to start again the ODE evolution.
More precisely, a PDMP is described by three ingredients:

(a) an ODE with drift F : Z→ Z, namely

dzt
dt

= F(zt)

where F is a nice enough function to ensure at least that the Cauchy problem for this ODE
is well-posed for every initial datum in Z;

(b) a rate function λ : Z→ R+;25

(c) a family of Markov kernelsQ on Z; that is, for every z ∈ Z,Q(z; ·) is a Markov kernel on Z.

With this notation in place, the generator of the dynamics is given by

(Lf)(z) = b(z) ·∇z f(z)+λ(z)
ˆ
Z
[f(z ′)− f(z)]Q(z,dz ′) (93)

for sufficiently smooth functions f : Z→ R. The associated FP operator L ′ is

(L ′ f)(z) =−∇z · (b(z)f(z))−λ(z)f(z)+
ˆ
Z
λ(z ′)f(z ′)Q(z ′,z)dz ′ , (94)

having assumed for simplicity that the kernel Q(z;dz ′) has a density which, with abuse of
notation, we call Q(z,z ′)dz ′. Clear references on the matter are [26, 51]. In particular in
[26] it is shown how some very popular sampling algorithms are of the above form, with
Z= {(x,v) ∈ Rd×{−1,1}d}, Z= Rd×{some discrete set} or Z= Rd×Rd. The latter case
is the one we will be considering in our example and we will denote z= (x,v) a point
in Rd×Rd.

25 Because of the way the rate function will be employed, we will have that the probability of an event taking place
in the interval [t, t+ δ] is precisely λ(zt)δ+ o(δ).
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A classical example which belongs to this setup is the so-called Andersen thermostat (see
[32, IIA-Sec2]) which, from a sampling perspective, is the Hybrid Monte Carlo algorithm
(see [44] and [14, 42] for related Hamiltonian samplers). The Andersen thermostat can be
understood as follows: suppose we want to sample from the measure µ defined in (2), or, more
precisely, from its multidimensional version,

µ(x,v) = e−V(x)e−|v|2/2 , (95)

where the normalisation constant has now been included in the potential V : Rd → R. One way
of doing so is to employ a deterministic Hamiltonian dynamics, i.e. a dynamics with generator

LH f := v ·∇x f(x,v)−∇xV(x) ·∇vf(x,v)

which is just the Liouville operator associated with the Hamiltonian H : Rd×Rd → R26

H(x,v) = V(x)+ |v|2/2. This dynamics preserves µ but it is clearly not ergodic on Z; however
it can be modified by resampling the momentum variable according to a standard Gaussian on
Rd, π0 ∼N (0, Id), where Id is the d-dimensional identity matrix. The resulting dynamics is
the Andersen thermostat, which evolves according to the following generator:

LATf := LH f+LQ f (96)

where

(LQ f)(x,v) := λr
[
(Q̃ f)(x,v)− f(x,v)

]
with the constant λr > 0 being the rate at which the momentum variable is resampled and

(Q̃ f)(x,v) :=
ˆ
Rd

f(x, ξ)dπ0(ξ) .

The dual L ′
Q of LQ is often referred to as the BGK collision operator, see [16]; the dual of LAT,

L ′
AT, is given by

L′
AT =−LH+L′

Q

with L ′
Q as in lemma 6.2 below; such an operator can be put in pre-GENERIC form (34) (see

[32, 33]) by setting W( f) =−LH f and using the dissipation potential

ψ⋆
f (ξ) =

λr
(2π)d

˚
dxdvdv′ [cosh(ξ(x,v′)− ξ(x,v))− 1]e−

|v|2+|v′|2
4

√
f(x,v)f(x,v′)

and the relative entropy Sµ( f) in (41) as entropy functional; for µ as in (95), Sµ( f) becomes

S( f) = Sµ( f) =
¨

dxdvf(x,v) log

(
f(x,v)
µ(x,v)

)
(41)
=

¨
f log fdxdv+

¨
f

(
V(x)+

|v|2

2

)
dxdv . (97)

In particular, −LH corresponds to the ‘non gradient-flow’ part of the dynamics, while, with
ψ⋆ and Sµ as in the above, L ′

Q is in gradient flow form:

L ′
Q f= dξψ⋆

(
f;−dSµ( f)

2

)
. (98)

26 This is a classical finite-dimensional Hamiltonian function, i.e. here we do not use the word Hamiltonian with the
same meaning as for the functional H introduced in equation (71).
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It is straightforward to verify that the degeneracy condition (35) is satisfied, i.e.

(W( f),dSµ( f)) = (−LH f,dSµ( f)) = 0 (99)

so that the entropy (97) is dissipated along the Andersen thermostat flow ∂tft = L ′
AT ft.

Note 6.1. We note now in passing that if in the expression (97) one replaces the potential V(x)
with any other (suitable) function of x only, V̂= V̂(x)27 then the representation (98) still holds,
and LAT can still be cast in pre-GENERIC form (34), but the degeneracy condition (99) holds
iff ∇xV̂(x) =∇xV(x), coherently with the fact that the dynamics converges to the measure µ.

6.2.1. Casting Hamiltonian PD-MCMC in pre-GENERIC form. If the Hamiltonian flow is too
complicated to simulate numerically, one may wish to use an auxiliary potential Ṽ(x) and the
associated Liouville operator

(L̃H f)(x,v) := v ·∇x f(x,v)−∇xṼ(x) ·∇vf(x,v) .

However the generator L̃H+LQ does not preserve µ (it preserves µ̃= e−Ṽ(x) ×π0(v) instead).
To correct for this bias one can introduce a further jump process, which restores the invariance
of µ. The resulting dynamics is a so-called Hamiltonian PD-MCMC, see [51, section 2.4],
with generator given by

Lf(x,v) = (L̃H f)(x,v)+ (LQ f)(x,v)+ (LR f)(x,v) (100)

where

(LR f)(x,v) := λ̃(x,v)[f(x,RŨx v)− f(x,v)],

Ũ(x) = V(x)− Ṽ(x) and

λ̃(x,v) := (v ·∇xŨ)+, RŨx := v− 2(v ·∇xŨ)

‖∇xŨ‖2
∇xŨ. (101)

As customary, in the above c+ denotes the positive part of c ∈ R and · is just scalar product in
Rd. For future use we also set

a(x,v) = (v ·∇xŨ) . (102)

The rate of decay to equilibrium in L̂2
µ := {f ∈ L2

µ :
´
fdµ= 0} for the dynamics generated

by (100) can be studied via hypocoercive techniques; this has been done in detail in [3] (see
also references therein). Using [3, theorem 1]28 one can show the following: if the potential
V(x) satisfies assumption H.1 in [3] and the auxiliary potential Ṽ is such that29

|∇xṼ(x)|⩽ b(1+ |∇xV(x)|), for some b> 0,

then there exist constants C,c> 0 such that

‖etLf‖L2
µ
⩽ Ce−ct‖f‖L2

µ
, for every f ∈ L̂2

µ .

27 Suitable in the sense that the integral in (97) still makes sense.
28 The generator we are studying is a particular case of the generator L2 defined in [3, equation (3)].
To obtain our generator from L2 in [3] take m2 = 1,λref(x) = λref,F0(x) =∇xṼ,F1(x) =∇xŨ,K= 1,n1(x) =

∇xŨ/∥∇xŨ∥,λ1(x,v) = λ̃(x,v),(B1 f)(x,v) = f(x,RŨx ) and (Πvf)(x,v) = (Q̃ f)(x,v). In doing so bear in mind that
their U0 is our Ṽ and their U is our V.
29 This is to satisfy [3, assumption H.2 (c)].
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Note that the functional framework for PDMPs is rather involved, and partly still to be
developed as generators of PDMPs do not enjoy smoothing properties [3, 20]. However, it has
been shown in [3] that, under the above assumptions the operator L generates a strongly con-
tinuous contraction semigroup in L2

µ and that the set C2
b (of bounded functions with bounded

derivatives up to order two) is a core forD(L)∩D(L∗), hence throughout this section we will
assume that L and L∗ act on such a set. As domain for L ′ (and all dual operators) we will
instead consider the set V of positive Schwartz functions.

Lemma 6.2. The L2 and L2
µ (formal) adjoint of the generator L in (100) are given,

respectively, by

L′ = L̃′
H+L′

R+L′
Q

L∗ = L̃∗
H+L∗

R+L∗
Q ,

where

(L ′
Q f)(x,v) = λrπ0(v)

(ˆ
f(x,w)dw

)
−λrf(x,v) ,

(L ′
R f)(x,v) = λ̃(x,v)[f(x,RŨx v)− f(x,v)]− (v ·∇xŨ)f(x,R

Ũ
x v)

= (−(v ·∇xŨ))+f(x,R
Ũ
x v)− λ̃(x,v)f(x,v) (103)

and

L̃′
H =−L̃H , L∗

R = L′
R .

Moreover,

L∗
Q = LQ and L̃∗

Hf=−L̃H f+(v ·∇xŨ)f .

Proof of lemma 6.2. We show how to calculate L ′
R, the rest is obtained with similar

calculations: ˆ
dxdv(LR f)(x,v)g(x,v) =

ˆ
dxdv λ̃(x,v)[f(x,RŨx v)− f(x,v)]g(x,v) .

Nowmake change of variable v ′ = RŨx v and then observe that transformation RŨx v is involutive,
so that RŨx v

′ = v, and the Jacobian of the transformation is -1. We will also use below the
identity

a(x,RŨx v) = (RŨx v ·∇xŨ) =−(v,∇xŨ) =−a(x,v) .

With this in mind,ˆ
dxdv(LR f)(x,v)g(x,v) =

ˆ
λ̃(x,v)f(x,RŨx v)g(x,v)dxdv−

ˆ
λ̃(x,v)f(x,v)g(x,v)dxdv

=

ˆ
λ̃(x,RŨx v

′)f(x,v′)g(x,RŨx v
′)dxdv′ −

ˆ
λ̃(x,v)f(x,v)g(x,v)dxdv

=

ˆ
(−(v ·∇xŨ))+f(x,v)g(x,R

Ũ
x v)dxdv−

ˆ
λ̃(x,v)f(x,v)g(x,v)dxdv .

This gives the second expression for L ′
R. The first is found by observing that (−c)+ = c− =

c+ − c, for every c ∈ R. To find the expression for L∗
R one also needs to use

|v|2 =
∣∣∣RŨx v∣∣∣2 , for every v ∈ Rd. (104)
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Using the above lemma, the symmetric and antisymmetric parts (in L2
µ) of the operator (100)

are

(LSf)(x,v) =
L+L∗

2
f(x,v)

= (LQ f)(x,v)+
1
2
((a−(x,v))+ a+(x,v))

[
f(x,RŨx v)− f(x,v)

]
(105)

and

(LAf)(x,v) =
L−L∗

2
f(x,v) = (L̃H f)(x,v)+LJAf , (106)

where

LJAf :=
1
2
a(x,v)

[
f(x,RŨx v)− f(x,v)

]
, (107)

and, for the sake of clarity, we iterate that a+(x,v) and a−(x,v) are, respectively, the positive
and negative parts of the function a(x,v).We now come to show that the operatorL ′ = L ′

A+L ′
S

can be put in pre-GENERIC form (34). To this end, let

SV̂( f) =
¨

dxdv f(x,v) log f(x,v)+
¨

dxdv f(x,v)

(
V̂(x)+

|v|2

2

)
, (108)

and note that, when V̂(x) = V(x) the above entropy functional coincides with Sµ. Then the
following holds.

Proposition 6.3. Let L be the generator of the Hamiltonian PD-MCMC introduced in (100).
Then, for any potential V̂= V̂(x) such that the second addend of (108) is integrable, the oper-
ator L ′ can be written in the form

L ′ρ= W̃(ρ)+ dξψ̃⋆

(
ρ;−

dSV̂(ρ)
2

)
(109)

where W̃(ρ) = L ′
Aρ and, for every ρ ∈ V , ψ̃⋆ (ρ;ξ) = ψ⋆ (ρ;ξ)+ ψ̂⋆ (ρ;ξ) with ψ⋆ as in (98)

and ψ̂⋆ given by

ψ̂⋆(ρ;ξ) :=
1
2

¨
dxdv(a+ + a−)(x,v)

√
ρ(x,RŨx v)ρ(x,v)

[
cosh

(
ξ(x,RŨx v)− ξ(x,v)

)
− 1
]
,

(110)

is positive and convex (in the second argument).

Before moving on to the proof, let us point out that the above proposition is not making any
statements about the degeneracy condition (35); we will comment on the validity (rather, non
validity) of such a condition in note 6.2.3 below.

Proof of proposition 6.3. Let us start by decomposing the operator LS:

LSf= LQ f+LJSf

where

(LJSρ)(x,v) =
1
2
(a(x,v)+ + a(x,v)−)

[
ρ(x,RŨx v)− ρ(x,v)

]
.
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Therefore L ′
S = L ′

Q+LJS as L ′
JS = LJS; then, by (98) and note 6.2, to show (109) one just

needs to observe the following

(LJSf)(x,v) = dξψ̂⋆

(
f;−

dSV̂( f)
2

)
. (111)

To see that the above holds, let us first calculate the variational derivative of ψ̂⋆: for every
η ∈ V ,(
dξψ̂⋆(ρ;ξ),η

)
=

d
dt
ψ̂⋆(ρ;ξ+ tη)

∣∣∣
t=0

=
1
2

ˆˆ
(a+ + a−)(x,v)

√
ρ(x,RŨx v)ρ(x,v)sinh

(
ξ(x,RŨx v)− ξ(x,v)

)
×
(
η(x,RŨx v)− η(x,v)

)
dxdv.

Wewant to calculate the above expression at ξ =− 1
2dSV̂(ρ). In particular we need to calculate

the difference

ξ(x,RŨx v)− ξ(x,v) =−1
2

(
dSV̂(ρ)(x,v)−dS(ρ)(x,v)

)
.

It is in doing so that one can see that the specific choice of potential V̂ does not matter, as the
potential is cancelled in the difference. Indeed, since

dSV̂(ρ)(x,v) = logρ(x,v)+ V̂(x)+
|v|2

2
+ 1 ,

from (104), we have

−1
2

(
dSV̂(ρ)(x,R

Ũ
x v)−dSV̂(ρ)(x,v)

)
= log

(√
ρ(x,v)

ρ(x,RŨx v)

)
.

Therefore, using the identity (a+ + a−)(x,v) = (a+ + a−)(x,RŨx v), we obtain(
dξψ̂⋆(ρ;−1

2
dS(ρ)),η

)
=

1
4

ˆ
(a+ + a−)(x,v)ρ(x,v)

(
η(x,RŨx v)− η(x,v)

)
dxdv

− 1
4

ˆ
(a+ + a−)(x,v)ρ(x,R

Ũ
x v)
(
η(x,RŨx v)− η(x,v)

)
dxdv

=
1
2

ˆ
(a+ + a−)(x,v)ρ(x,v)

(
η(x,RŨx v)− η(x,v)

)
dxdv

=
1
2

ˆ
(a+ + a−)(x,v)

(
ρ(x,RŨx v)− ρ(x,v)

)
η(x,v)dxdv ,

which is the desired result.

6.2.2. Relation to section 4. In proposition 6.3 the functional ψ̃⋆ appeared as an ansatz. We
show here that ψ̃⋆ does indeed coincide with the dissipation potential that we would obtain
using the procedure of section 4, theorem 4.1 in particular. First calculate the Hamiltonian

Hs(ρ;ξ) :=

¨
e−ξ(x,v)(LSe

ξ)(x,v)ρ(x,v)dxdv

=

¨
e−ξ(x,v)(LQe

ξ)(x,v)ρ(x,v)dxdv+
¨

e−ξ(x,v)(LJSe
ξ)(x,v)ρ(x,v)dxdv .
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For general purposes, for every ρ ∈ V , one can take Dρ(Hs) to be the set of smooth functions
which grow at most quadratically in v and at most like V(x) in the space variable x. We work
on the second addend of the above, which will give ψ̂⋆; applying a similar procedure to the
first addend gives ψ⋆.

Ĥs(ρ;ξ) :=

¨
e−ξ(x,v)(LJSe

ξ)(x,v)ρ(x,v)dxdv

=

¨
e−ξ(x,v) 1

2
[a+(x,v)+ a−(x,v)]

[
eξ(x,R

Ũ
x v) − eξ(x,v)

]
ρ(x,v)dxdv .

We want to show that (55) holds for this example, i.e. that the following identity holds:

ψ̂⋆(ρ;ξ) = Ĥs

(
ρ;ξ+

1
2
dSV̂( f)

)
− Ĥs

(
ρ;

1
2
dSV̂(ρ)

)
=

¨
1
2
[a+(x,v)+ a−(x,v)]

[
eξ(x,R

Ũ
x v)−ξ(x,v) − 1

]√
ρ(x,v)ρ(x,RŨx v)dxdv .

Indeed, by observing that the above integral does not change under the change of variable
v ′ = RŨx v, one can easily see that the above does indeed coincide with the expression for ψ̂⋆

given in (110).

6.2.3. Relative entropy dissipation for Hamiltonian PD-MCMC. We now want to show that
the entropy functional Sµ decays along the flow, so from now on we pick V̂(x) = V(x) in the
representation (109).

Note 6.4. Within the pre-GENERIC framework, entropy decay is implied by either the
degeneracy condition (35) or the dissipation condition (38). In our case the latter condition
would read

(L ′
A f,dSµ( f))⩽ 0 . (112)

Let us calculate explicitly the LHS of the above. The operator L ′
A, i.e. the L

2 adjoint of the
operator LA defined in (106), is

(L′
A f)(x,v) =−L̃H f+L′

JA

where

L′
JA =−1

2
a(x,v)

[
f(x,RŨx v)+ f(x,v)

]
.

Because

−(L̃H f,dSµ( f)) =
ˆ
a(x,v)f(x,v)dxdv ,

and

(L′
JA f,dSµ( f)) =

ˆ
(L′

JA f)(x,v) log f(x,v)dxdv,

(the above coming from the fact that LJA(V+ v2

2 + 1) = 0, where we recall that LJA is defined
in (107)) one has

(dSµ( f),L′
A f) =

ˆ
a(x,v)f(x,v)dxdv+

ˆ
(L′

JA f)(x,v) log f(x,v)dxdv ,
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or, more explicitly,

(dSµ( f),L ′
A f) =

ˆ
a(x,v)f(x,v)dxdv +

1
2

ˆ
a(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv (113)

=

ˆ
a(x,v)f(x,v)dxdv − 1

2

ˆ
a(x,v)[f(x,RŨx v)+ f(x,v)] log f(x,v)dxdv .

(114)

We can now make some observations on (112)

• Using the expression (113), we can see that the inequality (112) does not hold as a functional
inequality, in the sense that it does not hold for every f (in an appropriate class, to which
the counterexample which we are about to exhibit should belong). This is easy to see in one
dimension: if d= 1 then RŨx v=−v; if we choose f to be in product form, more specifically,
f(x,v) = e−V̄(x)πc(v) where πc(v) is a Gaussian with mean c ∈ R and variance σ, V̄ is such
that e−V̄ is normalised in space and V, Ṽ such that ∇xŨ(x) = 1, then a(x,v) = v and

(dSµ( f),L′
A f) =−c3

σ
,

which can have any sign. We note that in order to show entropy decay one needs not
prove (112) for every f, it is sufficient to prove (112) only along the flow, but we have not
been able to do so.

• Finally, we observe that (112) holds (with equality) for every function f which is reflection
invariant, i.e. such that f(x,RŨx v) = f(x,v). Indeed if this is the case then the second addend
in (113) vanishes. For the first, notice that by a change of variables

ˆ
a(x,v)f(x,v)dxdv=−

ˆ
a(x,v)f(x,RŨx v)dxdv ,

which implies

ˆ
a(x,v)

(
f(x,v)+ f(x,RŨx v)

)
dxdv= 0 for every f;

by writing f(x,v) as f(x,v) = ( f(x,v)+ f(x,RŨx v))/2+( f(x,v)− f(x,RŨx v))/2 one then has

ˆ
a(x,v)f(x,v)dxdv=

ˆ
a(x,v)

f(x,v)− f(x,RŨx v)
2

dxdv for every f . (115)

This suggests that if the flow preserves the invariance of the profile f under reflections
then (112) is true along the flow, assuming f 0 is reflection invariant.

In view of these observations, we prove entropy decay in a different way.

Proposition 6.5. Consider the Hamiltonian PD-MCMC with generator L as in (100) and let
µ be the measure on R2d defined in (95). Then the relative entropy Sµ decreases along the
solution of the FP equation ∂t ft(x,v) = (L ′ ft)(x,v).
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Proof. In order to prove entropy decay we need to show the following

dSµ( ft)
dt

= (dSµ( ft),L′
S ft)+ (dSµ( ft),L′

A ft)⩽ 0.

Because L ′
S = L ′

Q+LJS from (98) and (111) we already know

(dSµ,L′
S f)⩽ 0 for all f;

more specifically, thanks to the convexity of the functionals ψ⋆ and ψ̂⋆, we know that both(
dSµ( f),L ′

Q f
)
⩽ 0 (116)

and

(dSµ( f),LJSf)⩽ 0 . (117)

Hence, we know(
dSµ( f),L′

Q f
)
=

ˆ
log f(L′

Q f)dxdv+λr

ˆ
f

(
1− v2

2

)
dxdv⩽ 0

and

(dSµ( f),LJSf) =
1
2

ˆ
|a(x,v)| log f

[
f(x,RŨx v)− f(x,v)

]
dxdv

=
1
2

ˆ
|a(x,v)| log

(
f(x,RŨx v)
f(x,v)

)
f(x,v)dxdv⩽ 0

and we want to prove the inequality
ˆ

log f(L ′
Q f)dxdv+λr

ˆ
f

(
1− v2

2

)
dxdv+

1
2

ˆ
|a(x,v)| log

(
f(x,RŨx v)
f(x,v)

)
f(x,v)dxdv

+

ˆ
a(x,v)f(x,v)dxdv+

1
2

ˆ
a(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv⩽ 0 . (118)

In view of (116) and (117), it is sufficient to prove the following inequality, namely

1
2

ˆ
|a(x,v)| log

(
f(x,RŨx v)
f(x,v)

)
f(x,v)dxdv+

ˆ
a(x,v)f(x,v)dxdv

+
1
2

ˆ
a(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv⩽ 0 . (119)

To this end start by observing that, using (115), the above is equivalent to

1
2

ˆ
|a(x,v)| log

(
f(x,RŨx v)
f(x,v)

)
f(x,v)dxdv+

1
2

ˆ
a(x,v)

[
f(x,v)− f(x,RŨx )

]
dxdv

+
1
2

ˆ
a(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv⩽ 0 . (120)

In turn, by writing a= a+ − a− and |a|= a+ + a− and observing that for every function g
one has ˆ

a−(x,v)g(x,v) =
ˆ
a+(x,v)g(x,R

Ũ
x ),
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(120) is equivalent to
ˆ
a+(x,v)

[
f(x,v)− f(x,RŨx )

]
dxdv+

ˆ
a+(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv⩽ 0 . (121)

The above is now easy to prove; indeed, since logu⩽ u− 1, we have
ˆ
a+(x,v)f(x,v) log

f(x,RŨx v)
f(x,v)

dxdv⩽
ˆ
a+(x,v)

[
f(x,RŨx )− f(x,v)

]
dxdv

which is precisely (121).
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Appendix A. Basic facts about large deviations

The notation in this appendix is independent of the notation in the rest of the paper. Let (X, d)
be a metric space, {χn}n∈N be a sequence of X-valued random variables and I : X→ [0,∞]
be a lower semicontinuous function. The sequence {χn}n∈N satisfies a LDP with rate function
I if the following two conditions are satisfied (see [28, chapter 1]):

• for every open set A⊆ X

liminf
n→∞

1
n
logP(χn ∈ A)⩾− inf

x∈A
I(x)

• for every closed set B⊆ X

limsup
n→∞

1
n
logP(χn ∈ A)⩽− inf

x∈B
I(x) .

The rate function I is said to be a good rate function if for every a ∈ [0,∞) the set {x :
I(x)⩽ a} is compact. A short-hand notation to express the above is

Prob
(
χn ≈ χ

)
n→∞∼ e−nI(χ) .

Appendix B. Some observations about the definition of pre-GENERIC

For completeness we show here that the definition (34) of pre-GENERIC is equivalent to (36).
To this end let us consider the function

φ(ρ;g) := φρ(g) = ψρ(g−W(ρ))+ψ⋆
ρ

(
−1

2
dS(ρ)

)
+

1
2
(g,dS(ρ)) .

We look at the above as a function of g, for every ρ fixed andwewant to prove thatφz(g) = 0 iff
g=W(z)+ (dξψ⋆

z )
(
− 1

2dS(z)
)
. To this end note that the function φ is the sum of two strictly

convex functions plus a linear function and it is therefore strictly convex (in g). Moreover, by
the Young–Fenchel inequality we have

1
2
(g,dS(ρ))⩽ ψρ(g)+ψ⋆

ρ

(
1
2
dS(ρ)

)
,
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so that, using the symmetry of ψ⋆ and the orthogonality condition (35), φ is positive as well
and it attains its minimum (zero) iff dgφρ(g) = 0. Now,

dvφρ(g) = dψρ(g−W(ρ))+
1
2
dS(ρ) = 0

⇔ g=W(ρ)+ (dgψρ)
−1

(
−1

2
dS(ρ)

)
⇔ g=W(ρ)+ (dξψ⋆

ρ)

(
−1

2
dS(ρ)

)
,

having used the fact that ψρ = ψρ(g) and ψ⋆
ρ = ψ⋆

ρ(ξ) are Legendre dual of each other, hence
(dvψρ)

−1 = dξψ⋆
ρ .

Note B.1. In absence of the orthogonality condition (35) one can observe that the following
condition holds

ψρ(v−W(ρ))+ψ⋆
ρ

(
−1

2
dS(ρ)

)
+

1
2
(v−W(ρ),dS(ρ)) = 0

if and only if v=W(ρ)+ (dξψ⋆
ρ)
(
− 1

2dS(ρ)
)
. To see this, just consider the function

φ̃ρ(g) = ψρ(g−W(ρ))+ψ⋆
ρ

(
−1

2
dS(ρ)

)
+

1
2
(g−W(ρ),dS(ρ)) ,

which is again convex and positive by Young–Fenchel inequality. The rest of the reasoning is
identical to the one done above.
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