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Fragility curves of buildings; a critical review and a 

machine learning-based study 
 

 

 

 

Abstract 
Fragility curves are one of the substantial means required for seismic risk assessment of 
buildings in the framework of performance-based earthquake engineering (PBEE). Driving 
fragility curves, however, needs an extensive analytical analysis which makes it time-
consuming and sometimes inaccurate due to errors. In this study, hence, machine learning 
(ML)-based models are proposed for predicting fragility parameters of structures namely 
dispersion, β, and median, µ. Firstly, a critical review on the analytical models proposed for 
deriving fragility curves is provided as well as ML-based models developed so far. Then, to 
achieve the research objective, a comprehensive database including 238 datasets from peer-
reviewed international publications is collected. It is then divided into training (85%) and 
testing (15%) sub-datasets for the purpose of training the models and assessing the results, 
respectively. The most effective parameters on the target outputs are defined as input variables 
including construction material, building plan area, building height, damage state, buildings’ 
period and soil classification. β and µ were estimated utilizing various ML-based techniques 
namely nonlinear regression, decision tree, random forest, KNN and ANN. The actual values 
and the values predicted by the proposed models are compared. Moreover, the models’ 
accuracy is assessed through performance metrics and Taylor diagram. The results 
demonstrated the high ability of the models for learning the relationship between inputs and 
outputs. According to the accuracy assessment, Decision tree and nonlinear regression were 
the most accurate models for predicting β and µ, respectively. A sensitivity study was also 
conducted by changing input variables and estimation equations are provided accordingly.  

 

Keywords: fragility curve, machine learning, Regression, Decision Tree, Random Forest, 
KNN, ANN, parametric study.  
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1. Introduction 

1.1. background 
Among various natural hazards, earthquakes cause a notable loss portion of life and likelihood 
and thus are recognised as the greatest threat to human beings [1, 2]. As a result, risk assessment 
is undoubtedly of high importance which could help humankinds in the sense of life and 
economics [3]. In this context, Performance-based Earthquake Engineering (PBEE) and 
potential failure mode analysis (PFMA) have been developed over the past years [4, 5]. PBEE 
is known as a process with quantitative measures as the output which reflect the response of 
structures under seismic loads [6]. One of the main issues in seismic risk analysis is various 
sources of uncertainties (e.g., randomness in ground motion, structural modelling related 
uncertainties, damage state, etc.) which is addressed by considering fragility curves in the 
PBEE framework [4, 7].  

1.2. Fragility curves definition  
Various definitions have been provided for clarifying the concept of fragility curves by 
researchers [8-13]. Simply stated, fragility is described as the probability of reaching or 
exceeding a specified damage measure (DM) under a given earthquake Intensity Measure (IM) 
for a structure [3, 8, 14]. In the viewpoint of mathematic, fragility curves could be expressed 
as Eq. 1 [765-main-good]. 

𝐹 = 𝑃 𝜃 ≥
𝑦

𝐼𝑀
= 𝑥             (1) 

where θmax is the maximum Engineering Damage Parameter (EDP), and y and x are the values 
of θmax and IM, respectively. The fragility curves could be drawn using lognormal distribution 
functions which are defined by two parameters: median (µ) and lognormal standard deviation 
(or dispersion, β). These parameters, therefore, are known as fragility curve’s parameters and 
could be estimated by the maximum likelihood method [4, 15, 16]. As a result, the fragility 
curves could be expressed as Eq. 2: 

𝐹 (𝐼𝑀) = Φ
ln(𝐼𝑀 𝜇⁄ )

𝛽
             (2) 

where Φ(.) is the standardized normal distribution function, µ is the logarithmic mean and β is 
the logarithmic standard deviation defining the lognormal distribution [12, 15].  

As could be figured out from the above-mentioned explanations, the chosen IM could affect 
fragility curve of a building significantly. A macroseismic IM does not lead to accurate fragility 
curves because (i) it can cause interdependency between the vulnerability and the IM itself 
because it is obtained from observation of earthquake consequences on buildings, and (ii) it is 
a subjective parameter which means that it is influenced by the sensitivity and judgment of the 
surveyor [12, 14]. Hence, parameters namely peak ground acceleration (PGA), peak ground 
velocity (PGV) and peak ground displacement (PGD) have been applied instead of macro 
seismic IMs [12]. Among these parameters, PGA is more common than others because of its 
simplicity for deriving fragility curves of complex buildings [17]. It should be also stated that 
different parameters could be used as EDP such as interstory drift ratio (IDR), ultimate rotation, 
etc. The most usual EDP, however, is IDR since it could reflect the structures’ damage state 
perfectly [14].  
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1.3. Review on the methods for deriving fragility curves  
fragility curves derivation is mainly based on incremental dynamic analysis (IDA). The output 
of IDA is a curve which reflects the relationship between the defined IM and EDP. IDA could 
be performed through five main steps: (a) modelling the structure by a Finite Element (FE) 
analysis software (e.g., OpenSees) in order to simulate nonlinear behaviour of the structure, (b) 
collecting a series of seismic records, (c) defining the IM (e.g., PGA) and EDP (e.g., drift ratio), 
(d) scaling seismic records in order to reach the collapse state, and (e) repeating step (d) for 
different earthquake records to reach an appropriate number of data for each damage state 
which reflects the building’s response accurately [8, 10, 18].  

Distribution of the obtained curves through the above-mentioned steps, intersected by a vertical 
line passing from each damage state will be a lognormal distribution with median (µ) and 
dispersion (β) which are used for deriving the fragility curve of the corresponding damage state. 
Fig. 1 displays the fragility curve derivation schematically.  

 

Figure 1. Schematically illustration of driving fragility curves [11] 

The method shown in Fig. 1 is recognized as the conventional method for generating fragility 
curves. Several novel approaches have been developed and presented in the last few decades 
as well. The fundamental concepts of these methods are summarized in Table 1. 

Table 1. A summary of the methods developed for deriving fragility curves. 

reference aim Methodology and outcomes 

P
ar

k 
et

 a
l. 

[8
] Evaluating seismic fragility of 

low-rise unreinforced masonry 
buildings 

A simplified spring model was presented for simulating the highly 
nonlinear dynamic behaviour of URM buildings. 

R
ot

a 
et

 a
l. 

[9
] 

Developing a methodology for 
driving fragility curves of 

masonry buildings 

Mechanical properties were considered as random variables with a 
reasonable value. The input variables were extracted through Monte 

Carlo method from the distributions. The probability distribution of the 
damage states was defined by pushover analysis. Novelty: unlike other 
studies, results of nonlinear stochastic analyses of a prototype building 
is used while simplified models of buildings and approximate analysis 

are generally considered by researchers. 
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C
ar

do
ne

 e
t a

l. 
[1

0]
 

Driving Fragility curves of RC 
buildings through a hybrid 

approach 

In HAZUS, fragility curves are developed using inelastic static analysis, 
in this study, however, fragility parameters are obtained by a hybrid 

method. Median values are predicted by comprehensive loss assessment 
analysis and dispersion values are evaluated according to the results of 

accurate inelastic dynamic analysis.  

A
lw

ae
li

 e
t a

l. 
[1

1]
 Proposing a new methodology 

for driving fragility curves with 
less computational efforts and 

time 

A novel record selection criterion and a fragility curve tolerance factor 
are provided for developing rigorous (refined) and less-demanding 

fragility relations for RC high-rise buildings.  

D
on

a 
et

 a
l. 

[1
9]

 

Developing a mechanics-based 
fragility model for Italian 
residential URM buildings 

A database including 500 building information was used to proposed a 
fragility model which was based on the classification of the buildings in 

terms of age and story numbers. The verification was made by 
simulating 2009 L'Aquila earthquake, proved the acceptable reliability 

of the model. 

Sa
nd

ol
i e

t a
l. 

[1
4]

 

Proposing a hybrid method for 
driving fragility curves of 

masonry buildings 

The innovative method is a combination of: (i) an expert judgment by 
classifying buildings in the viewpoint of construction age, structural 
typology, seismic behaviour and damage of buildings caused by the 

earthquakes, and (ii) numerical analysis results.  

B
ei

li
c 

et
 a

l. 
[2

0]
 

Developing out-of-plane fragility 
functions using probabilistic 

analysis and Monte Carlo 
simulation 

The study novelty was that, unlike other studies which consider demand, 
this study used the uncertainties in the capacity namely aspect ratio, 

level of In-Plane damage, position of the infill walls and type of masonry 
(solid or hollow units).  

C
ar

do
ne

 e
t a

l. 
[2

1]
  Generating collapse fragility 

curves for base-isolated RC 
buildings  

Fragility curves of RC building with either low- or high-seismic 
resistance systems retrofitted by different isolation systems are driven.  

 

The main aim of the recently developed models is to ease the process of deriving fragility 
curves by (i) proposing building simulation assumptions [8, 9], (ii) proposing simpler methods 
by combining simpler techniques [10, 14], (iii) using the assets of building classification in 
terms of age, structural typology, story numbers and seismic behaviour [14, 19], (iv) presenting 
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novel earthquake record selection [11] and (v) considering the uncertainties of capacity rather 
than those of demand [20]. Fragility curves of buildings with novel resisting systems (e.g., 
seismic isolators) have also been presented and discussed by researchers [21].  

1.4. Review on the application of ML-based techniques for generating fragility 
curves 

Due to complicated and time-consuming analysis required for IDA and fragility assessment, 
there has been an increasing interest in the implementation of quicker and simpler models for 
deriving fragility curves. Artificial Intelligence (AI) and Machine Learning (ML) have been 
increasingly applied by researchers in various fields [22-24] as well as structural and 
earthquake engineering [25-28]. 

During the last years, a few attempts have been made to apply ML-based techniques in the 
process of emerging fragility curves. A summary of the relevant studies is given in Table 2. 
The main objective of the studies listed in Table 2 is to boost the process of generating fragility 
curves by either making the process quicker [4] or reducing the uncertainty degrees of different 
parameters [15, 29]. As an example, maximum story drift was estimated through ML-based 
methods in the models proposed by Kiani et al [4] and Hwang et al. [7]. Jia and Wu [29]have 
also developed a novel model for predicting a dimensionless parameter which was used for 
obtaining failure probability. The most remarkable conclusion of the studies is that the results 
of the prediction models developed based on ML or Neural Network (NN) are in line with the 
results of the conventional method with an acceptable level of accuracy. More specifically, 
their evaluations have clarified that tree-based approaches (e.g., DT or RF) led to more accurate 
outcomes compared to other ML-based approaches (e.g., ANN) [7, 29].  

The notable issue with the proposed models, on the other hand, is their limitations including (i) 
being capable only for a specific building, and (ii) excluding the effective parameters (e.g., 
construction material, soil type, building’s location, etc.) in the prediction models. 
Accordingly, further studies are definitely required to provide a more generalized model for 
emerging fragility curves.  
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Table 2. Literature review on the application of ML-based models for obtaining fragility curves. 

reference aim methodology conclusions 
Predicted parameters 

(output) 
Limitations 

M
it

ro
po

ul
ou

 a
nd

 
P

ap
ad

ra
ka

ki
s 

[1
5]

 

Developing fragility curves based on 
neural network IDA predictions using 

Harmony search Optimization 
algorithm. 

(a) Analysing an 8-story regular plan and a 5-story irregular plan 
RC buildings in OpenSees, (b) considering Arias Intensity (IA), 
Characteristic intensity (IC ) and Cumulative Absolute Velocity 
(CAV) IMs reflecting respectively the amplitude, the frequency 

content and the duration of a strong ground motion were considered 
as inputs while spectral acceleration in different DSs defined as 

outputs (4 nodes), (c) considering SA and maximum inter-story drift 
ratio (MIDR) as IM and EDP, respectively, (d) predicting 

fundamental period spectral acceleration (seismic demand) by NN,  
(e) developing four limit state fragility curves, (f) examining the 

computational cost of the neurocomputing scheme.  

The obtained results with NN were in line 
with the results of the conventional 

method. 

Period spectral 
acceleration was 

predicted. 

(i) The results were limited to two 
buildings, (ii) Arias Intensity, 
Characteristic intensity and 

Cumulative 
Absolute Velocity IMs were 

considered as inputs while other 
parameters were not taken into 

account. 

K
ia

ni
 e

t a
l. 

[4
] (a) Application of Machine learning 

methods for deriving fragility curves, 
(b) evaluating influence of input 

uncertainties (i, e., GM variability), 
(C) investigating the influence of 

training samples' size on the results of 
classification techniques. 

(a) Modelling an 8-story steel special moment resisting frame with 
the period of 2.3s located in Los Angeles, US in OpenSees, (b) 

considering spectral velocity as IM, (c) considering as EDP in two 
groups (MIDR>0.03 rad and MIDR<0.03 rad), (e) predicting 

structure response in terms of Displacement Spectrum Intensity 
Ratio (DSIR) 

(i) RF, SVM and DT were the most 
accurate methods, (ii) lasso regression 
and Naïve Bayes were not affected by 

training sample size while QDA was the 
most sensitive method.  

 DSIR is predicted.  

(i) The results were limited to an 8-
story steel frame, (ii) only one limit 

state (MIDR=0.03) was 
considered), (iii) other input 

parameters including structural 
systems, damage measures, 

thresholds of structural 
responses, and sites were not 

considered. 

Ji
a 

an
d 

W
u 

[2
9]

 

Driving fragility curves of RC frame-
shear wall structures using ensemble 

Neural network. 

(a) Analysing a 4-story shear wall RC structure with a basic 
acceleration of 0.2 g located on Type II soil in China using 

SAP2000, (b) Considering MDIR and peak floor acceleration (PFA) 
as EDP and PGA as IM, (c) Defining four common damage states, 
(d) Defining 26 parameters reflecting GM and structure properties 

as inputs and an index (L) as output. 

The proposed ensemble ANN model 
predicted more accurate values in 

comparison to back propagation (BP), 
cascade BP and Alman ANN.  

a dimensionless 
parameter (L) was 

predicted which is used 
for calculating failure 

probability. 

(i) The results were limited to a 4-
story shear wall RC structure, (ii) 

parameters namely material, 
period, soil type, and location were 

not considered in the model.  

H
w

an
g 

et
 a

l. 
[7

] 

(a) Predicting seismic response and 
structural collapse of RC frames, (b) 

identifying different input variables on 
RC frames' seismic collapse. 

(a) Analysing a 4-story and an 8-story special moment resisting 
frame located on stiff soil in California using OpenSees, (b) 
Considering Sa and maximum story drift as IM and EDP, 

respectively, (c) using modelling-related parameters and ground 
motion intensity measures as input for predicting MSD in the first 

prediction model, (d) using MSD in addition to all the input models 
in the first part, as input for predicting survival-failure vector.   

(i) Influence of structural modelling 
uncertainties on seismic demand could be 

safely neglected at minor to moderate 
damage levels for low- to mid-rise RC 
frame buildings, (ii) extreme gradient 

boosting algorithm and tree-based 
techniques (dt and RF) led to more 
accurate results compared to other 

methods.  

Maximum story drift and 
collapse status were 

predicted. 

(i) The results were limited to 4- 
and 8- story RC frame buildings, 
(ii) parameters namely material, 

period, soil type, and location were 
not considered in the model. 
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2. Significance, novelty and methodology of the study 
Obtaining fragility curves is an inevitable key step in seismic risk assessment in the 
performance-based earthquake engineering which accounts for the uncertainties of risk due to 
seismic events. Deriving fragility curves, however, is generally time-consuming due to a huge 
amount of analytical analysis performed for IDA. Moreover, it needs powerful operating 
systems, particularly in the case of studying tall and complex buildings.  

Although a few innovative models have been developed so far (Table 2) [4, 7, 15, 29], they 
suffer from shortcomings which were mentioned in the previous section. More importantly, the 
models do not estimate fragility curves directly. Otherwise noted, they could be used for 
predicting neither IM or EDM. This means that the time-consuming analysis still needs to be 
performed even if the prediction models are applied.  

The main objective of this research, therefore, is to propose a prediction model for deriving 
fragility curves using regression- and ML-based techniques. The remarkable novelty of this 
paper is proposing models which output fragility curves’ parameters (β and µ) directly. In other 
words, the time-consuming IDA is eliminated and consequently the fragility curves could be 
obtained quickly by defining the inputs. Furthermore, all the parameters which are proved to 
have a strong effect on fragility curves are considered. More importantly, the proposed models 
are not limited to a specific building and could be utilized for any reinforced concrete (RC), 
steel or masonry buildings. 

Overall, the benefits of the proposed prediction models are: (i) predicting µ and β directly, (ii) 
eliminating time-consuming IDA, (iii) considering all the effective parameters and (iv) being 
generalized and therefore applicable for a huge number of buildings. 

To this aim, a comprehensive database is gathered and various ML-based methods including 
nonlinear regression (NLR), Decision Tree (DT), Random Forest (RF), K-nearest Neighbours 
(KNN) and Artificial Neural Network (ANN) are used to develop models for deriving fragility 
curves. The accuracy of the models is assessed through Taylor diagram and performance 
metrics and the most accurate model is introduced. Eventually, a parametric study is conducted 
to figure out the effect of input variables on the output parameters and prediction equations are 
provided accordingly. 

3. Data collection  
A database including 238 results of the fragility assessment of buildings was collected from 
peer-reviewed international publications [1-3, 8, 9, 12, 17, 18, 30-36]. It is worth mentioning 
that the reliability of the collected database was improved by removing outliers and incomplete 
datasets. It should be also explained that during the data collection, special attention was given 
to consider the parameters which affect fragility parameters significantly based on the literature 
results. As an example, Gaudio et al. [12] have proved that buildings’ height has a significant 
influence on its fragility while influence of its construction age could be neglected.  

Accordingly, the parameters considered as inputs for the prediction models are: construction 
materials (i. e., RC, steel and masonry), buildings’ plan area (m2), buildings’ height (m), lateral 
resisting system (i. e., shear wall, bearing masonry wall, bracing system or moment resisting 
frame-MRF), buildings’ location, damage state, buildings’ period, soil classification (e. g., 
rock). The output, on the other hand, are the fragility parameters: median (µ) and dispersion 
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(β). One of the parameters which could reveal if the input variables are defined appropriately 
is Pearson correlation coefficient and is defined as the ratio of x, y covariance, cov (x, y), to the 
production of their standard deviation (σxσy) as given in Eq. 3 [37, 38]: 

𝜌 , =
𝑐𝑜𝑣 (𝑋, 𝑌)

𝜎 𝜎
=

∑(𝑥 − �̅�)(𝑦 − 𝑦)

∑(𝑥 − �̅�) ∑(𝑦 − 𝑦)

              (3) 

Pearson coefficient of two parameters is a value in the range of (0,1). ρ≈1 reflects the high 
influence of the parameters on each other while ρ≈0 stands for the linear dependency of the 
parameters. It should be explained that Pearson correlation exhibits linear relationship between 
parameters, which means that ρ≈0 does not necessarily represent complete indecency of 
variables and they might have nonlinear dependency [39, 40]. Pearson correlation coefficients 
of the input variables, and β and µ are reported in Table 3 and Table 4, respectively. 

Table 3. Pearson correlation coefficients between input variables and β.  

 Material 
Plan area 

(m2) 
Height 

Resistant 
system 

Location State Code 
Period 

(s) 
Soil 
type 

Dispersion 

Material 1.000          

Plan area 
(m2) 

0.230 1.000         

Height (m) 0.420 0.555 1.000        

Resistant 
system 

-0.723 0.032 -0.137 1.000       

Location -0.491 -0.576 -0.340 0.335 1.000      

State 0.210 -0.364 -0.143 0.035 -0.015 1.000     

Code -0.369 -0.349 -0.267 0.445 0.870 0.070 1.000    

Period (s) 0.302 0.307 0.801 0.009 -0.036 -0.122 -0.007 1.000   

Soil type -0.169 -0.381 -0.135 -0.112 0.557 0.059 0.276 -0.082 1.000  

Dispersion 0.181 0.379 0.171 0.015 0.076 -0.067 0.235 0.105 0.047 1.000 

 

Table 4. Pearson correlation coefficients between input variables and µ. 

 Material 
Plan area 

(m2) 
Height 

Resistant 
system 

Location State Code 
Period 

(s) 
Soil 
type 

Median 

Material 1.000                   

Plan area 
(m2) 

0.230 1.000                 

Height (m) 0.420 0.555 1.000               

Resistant 
system 

-0.723 0.032 -0.137 1.000             

Location -0.491 -0.576 -0.340 0.335 1.000           

State 0.210 -0.364 -0.143 0.035 -0.015 1.000         

Code -0.369 -0.349 -0.267 0.445 0.870 0.070 1.000       

Period (s) 0.302 0.307 0.801 0.009 -0.036 -0.122 -0.007 1.000     

Soil type -0.169 -0.381 -0.135 -0.112 0.557 0.059 0.276 -0.082 1.000   

Median -0.184 0.024 -0.006 0.064 0.384 0.045 0.229 -0.039 0.609 1.000 

 

According to Tables 3 and 4, it could be claimed that plan area and building location have the 
highest linear influence on β and µ, respectively. Resistant system and height, on the other 
hand, exhibited the lowest linear dependency respectively on β and µ.  



Page 9 of 28 
 

Distribution of the input variable and output parameter(s) influence the applicability and 
generalization of prediction models; the broader range of input values is, the more general the 
model will be. On that account, it is tried to include the datasets which lead to a high range of 
values for each input. Distribution of the input parameters and outputs is demonstrated in Fig. 
2. The statistical characteristics including minimum, maximum, median, variance and standard 
deviation of the data are also given in Table 5. 

 

 
  

   

  

 

Figure 2. Distribution of the input and output parameters. 

 

Table 5. Statistical properties of the quantitative input and output parameters. 

 Minimum Maximum Mean Median Variance 
Standard 
deviation 

Plan area (m2) 53.29 1296.00 539.84 274.40 220402.62 469.47 

Height (m) 1.35 30.00 15.31 14.50 53.57 7.32 

Period (s) 0.08 2.60 0.72 0.48 0.49 0.70 

Dispersion (β) 0.11 0.84 0.45 0.42 0.03 0.17 

Median (µ) -4.56 11.70 0.39 0.30 4.16 2.04 

 

The database was divided into two sub-databases namely training (85%) and testing (15%). 
The former is used for training the models the relationship between the inputs and outputs and 
the latter is used for assessing the accuracy of the predicted values. Otherwise mentioned, the 
testing datasets are not used for training purpose while they are utilized for validity of the 
prediction models. 
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4. Prediction models 
The prediction models are developed in two parts in this study. In the first part models are 
presented to predict dispersion while median is estimated in the second part. Various 
techniques including NLR, DT, RF, KNN and ANN were used for proposing prediction 
models. An extensive definition of the methods could be found in the literature; therefore, they 
are introduced here briefly for the sake of shortness. 

4.1. Nonlinear regression (NLR) 
Simply stated, a regression-based model is a model which fits an equation to a set of data. The 
equation refers to a line which processes the least difference between the mean and each data. 
The obtained regression equation is known as linear and nonlinear when the fit line is a straight 
line and a curve, respectively. In the sense of mathematic, a regression model could be 
expressed as Eq. 4. When f is linear in θ, y will be linear while when f is nonlinear in θ, y will 
be a nonlinear regression model [25, 26, 41].  

𝑦 = 𝑓(𝑥 : 𝜃) + 𝜀                  (4) 

where f is the function showing the relationship between inputs and outputs, xi are the inputs, 
θ are the parameters and ε is a random variable error with mean=0 and standard deviation=σ. 
NLR generally yields more accurate predicted values than linear regression since it can fit a 
much wider range of curves (nonlinear relationship) between its variables [25, 42, 43]. 
Moreover, NLR finds the most reliable fit by minimizing the sum of squares of the distance 
between the actual and model prediction values (RSS), as given in Eq. 5 [44]: 

𝑅𝑆𝑆 (𝑃 , … , 𝑃 ) = ∑ 𝑒 ,         𝑒 = 𝑧 − 𝑔(𝑡 , 𝑃 , … , 𝑃 )             (5) 

where zi is the prediction values, g are the actual values and Pi are the parameters.  

4.2. Decision Tree (DT) 
A decision tree is a method which uses a tree-shape graph for moving a dataset sample to the 
most accurate target output based on its characteristics. DT could be used for solving both 
classification (finite set of values) and regression (continues values) problems [45, 46]. The 
process of predicting a value is schematically depicted in Fig. 3. The most assets of DT 
technique are: (i) being simple for understanding and interpreting, (ii) being independent of the 
nonlinear relation between parameters, and (iii) being flexible to be adopted to new scenarios 
[47, 48].  
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Figure 3. Schematic illustration of a DT prediction model. 

4.3. Random Forest (RF) 
In the simplest concept, RF consists of many decision trees and target output is predicted by 
considering either the average of the DTs’ predicted values or the most voted value [9t,10t]. 
To explain more precisely, RF is basically the combination of Bagging and Random selection 
of features by creating various decision trees. The most notable point about RF is that selecting 
training dataset for each tree is done through Bootstrap sampling and the feature which is 
chosen as the decision node is a random subset of the main dataset [49-51]. The above-
mentioned explanations are simply demonstrated in Fig. 4.  

 

Figure 4. A simplified illustration of a RF model. 

In order to find out the most efficient number of trees in our RF model, R2-score of various 
RFs with different numbers of trees was obtained (Fig. 5). As could be observed in Fig. 5, 96 
and 196 trees led to the highest accuracy of the RF models developed for predicting β and µ, 
respectively. 
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(a) (b) 

Figure 5. The most efficient number of trees in the RF models developed for predicting (a) β and (b) µ. 

4.4. K-Nearest Neighbours 
K-nearest Neighbours (KNN) is recognized as a non-parametric prediction method which 
means that the prediction process is not influenced by the relationship between input and output 
parameters [52]. Therefore, KNN is known as the simplest classification approach by data 
scientists. In this method, the data are plotted in a multi-dimensional space where the axis are 
the data’s features. When a new data is added to the space according to its characteristics, the 
average of its “K” nearest neighbours is the target output [53, 54]. As a result, the most effective 
parameter which could enhance the accuracy of predicted values is the number of nearest 
neighbours defined as “K”. Although some researchers have claimed that square root of the 
total number of datasets could be the most accurate K [53], it is generally obtained by trial-
and-error process. The best K values obtained for predicting β and µ are 3 and 4, respectively, 
as depicted in Fig. 6. 

  
(a) (b) 

Figure 6. Finding the most accurate K for the KNN models for predicting (a) β and (b) µ. 

 

4.5. Artificial Neural Network  
ANN is basically a combination of computation and mathematics which is inspired from the 
human brain by simulating the performance of the brain’s nervous system [54, 55]. The 
architecture of an ANN model consists of (i) input layers: the number of the nodes in this layer 
is equal to the number of model inputs, (ii) hidden layer(s) which might be considered to 
enhance the model accuracy, and (iii) output layers: like input layer, the number of nodes is 
determined based on the number of target outputs. The nodes are connected to each other by 
weights which are updated in each irritation in order to reach an acceptable estimated output 
[55, 56]. Other optional components which might be considered in an ANN model are: (iv) 
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bias values which could be defined for hidden and output layers and (v) activation functions 
which might be added to the weights in order to allow the ANN to account for nonlinear 
behaviour in the training dataset. Otherwise noted, an Ann model without an activation function 
can perform linearly with unreliable accuracy [56, 57]. An ANN model could be formulized as 
below: 

( )j ij iO f w I b         (5) 

Where Oj is the model output, wij is the associated weight which is updated in each epoch, Ii is 
input data and b is bias [25].  

Based on the above-mentioned definitions, number of hidden layers, number of nodes in each 
hidden layer and type of the activation function are the main factors which affect the 
performance of an ANN model significantly. These parameters are typically obtained through 
a trial-and-error process. The architecture of the ANN model developed for presenting β and µ 
is displayed in Fig. 7. It should be noted that rectified linear activation function or ReLu 
function was defined as the activation function in the models. 

 

Figure 7. The architecture of the ANN models developed in this study for predicting (a) β and (b) µ. 

5. Results 
The prediction models were developed by adjusting their characteristics using training sub-
databases. Then, the target outputs of both training and testing datasets were predicted by the 
models. The correlation between the predicted and actual values is shown in Fig. 8 and Fig. 9 
respectively for β and µ. 
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Training dataset Testing dataset 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 8. Correlation between actual and predicted values of β. 
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Training dataset Testing dataset 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 9. Correlation between actual and predicted values of µ. 

In order to figure out the accuracy of the models more precisely, each predicted value of β and 
µ is compared with its corresponding actual value as displayed in Fig. 10 and Fig. 11, 
respectively. 
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Figure 10. Comparing the predicted and actual values of β. 
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Figure 11. Comparing the predicted and actual values of µ. 

At the first glance on figures 7-10, it could be claimed that almost all the methods exhibited a 
high ability to learn the relationship between input variables and two target outputs. More 
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specifically, DT and NLR showed good correlation between actual and predicted values of β 
and μ in Figures 7(b) and 8(a). However, the models need to be assessed more precisely as 
presented in the next section. 

6. Accuracy assessment 
The accuracy of the prediction models proposed in this study is assessed through common 
performance metrics and Taylor diagram.  

6.1. Performance metrics 
The performance metrics which are commonly used for assessing accuracy of a model are Root 
of Mean Square Error (RMSE), Mean Absolut Error (MAE), Mean Absolute Percentage Error 
(MAPE) and R2-score. These parameters are calculated using Eq. (6-9).  

𝑅𝑀𝑆𝐸 =
1

𝑛
(𝑦 − 𝑦 )

.

     (6) 

𝑀𝐴𝐸 =
1

𝑛
|𝑦 − 𝑦 |    (7) 

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑦 − 𝑦

𝑦
     (8) 

𝑅 = 1 −
∑ ( 𝑦 − 𝑦 )

∑ ( 𝑦 − 𝑦 )
     (9) 

where y is the actual output, 𝑦 is the predicted output, n is the number of data records and 𝑦 is 
the mean of the dataset. Table 6 compares the performance metrics of all the models for 
estimating β and µ quantitatively. 

Table 6. Performance metrics of the developed models. 

 Dispersion prediction models Median prediction models 
 R2 RMSE MAE MAPE R2 RMSE MAE MAPE 

Nonlinear 0.87 0.06 0.05 11.83 0.92 0.51 0.35 157.93 

DT 0.91 0.05 0.04 11.27 0.91 0.60 0.38 26.78 

RF 0.83 0.07 0.05 12.23 0.76 1.06 0.50 42.49 

KNN 0.86 0.07 0.05 60.07 0.91 0.48 0.27 340.78 

ANN 0.84 0.06 0.05 13.49 0.90 0.59 0.38 31.81 

 

Regarding the values reported for the β-prediction models, it could be observed that the DT 
model processes the highest R2-score (91%) and hence is introduced as the most accurate 
model. The RF model, on the other hand, demonstrated the lowest reliability with R2=67%. 

Considering the models developed for predicting μ, it could be stated that the NLR, DT and 
KNN models exhibited similar accuracy (R2≈91%). ANN and RF, then, showed lower accuracy 
compared to other models.  
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It is worth mentioning that almost all the proposed models have an acceptable level of ability 
to learn the relationship between the inputs and outputs which reflect the high reliability of the 
ML-based methods for predicting fragility curves of buildings. 

6.2. Taylor diagram 
In order to compare the accuracy of the models more easily, they are compared in Taylor 
diagram shown in Fig. 12. It should be explained that Taylor diagram consists of three main 
parts: (i) horizontal and vertical axis which reflects standard deviation, (ii) circular curves 
centred at actual values which reflect RSME, and (iii) radial line which reflects R2-score. In 
other words, each model is plotted in a Taylor diagram by its standard deviation, RMSE and 
R2-score. The closest model to the actual value is known as the most accurate model [25, 58, 
59].  

  
(a) (b) 

Figure 12. Using Taylor diagram for comparing the models developed for predicting (a) β and (b) µ. 

Considering Diagrams illustrated in Fig. 11, and the above-mentioned explanations, the models 
DT and NLR are the closest model to the star point (actual values) and thus are introduced in 
as the most accurate models for predicting respectively β and µ, as concluded in the previous 
section.  

Overall, it could be clarified that a ML-based model combined of DT and NLR could be used 
for deriving fragility curves with a high level of accuracy. 

7. Sensitivity analysis 
In this section of the paper, the influence of buildings properties namely construction material 
(i.e., RC, steel and masonry), plan area, building height and period, and soil type on the fragility 
parameters is assessed. A two-story (6.20m height) masonry building located on soil type C 
(according to EC8 [60] soil classification) in L’Aquila, Italy is selected from the literature [] 
and considered as the reference dataset. Then, the above-mentioned characteristics are varied 
to generate a series of 26 datasets, as reported in Table 10. The first row of Table 10 represents 
the reference building which is used for assessing the influence of parameters’ variation on 
both β and µ. The material of the second and third building is changed to reinforced concrete 
and steel, respectively. Then, the plan area of the reference building is varied in the range of 
100-1000 m2 by the step of 100. The building height is also increased from 3m to 30 m by the 
step of 3. It should be noted that building period is influenced by its height and therefore the 
variation of either β or μ by changing building’s period is almost the same as that of changing 
building’s height. However, to figure out the effect of building period on the fragility 
parameters, it is varied according to height variation. Eventually, three soil classifications 
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including A (rock), B (stiff) and C (soft) are taken into account. Fragility parameters, β and µ, 
of the generated database are estimated by the prediction model developed using the Decision 
Tree model. It is worth explaining that the DT model is used for prediction because it showed 
a high accuracy (R2=0.91) for predicting both β and µ. The predicted values and their 
differences compared to the reference case is provided in Table 7. 

Table 7. Variation of β and µ by changing building’s properties and soil type.  

 Material Area (m2) Height (m) Period Soil type β (βi-β0)/β0 µ (µi-µ0)/µ0 

1 Masonry 220.00 6.20 0.12 C (soft) 0.38 0.00 1.34 0.00 

2 RC 220.00 6.20 0.12 C (soft) 0.74 0.95 6.59 3.92 

3 Steel 220.00 6.20 0.12 C (soft) 0.72 0.88 6.59 3.92 

4 Masonry 100.00 6.20 0.12 C (soft) 0.62 0.63 1.90 0.42 

5 Masonry 200.00 6.20 0.12 C (soft) 0.36 -0.07 1.90 0.42 

6 Masonry 300.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

7 Masonry 400.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

8 Masonry 500.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

9 Masonry 600.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

10 Masonry 700.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

11 Masonry 800.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

12 Masonry 900.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

13 Masonry 1000.00 6.20 0.12 C (soft) 0.37 -0.03 1.68 0.25 

14 Masonry 220.00 3.00 0.13 C (soft) 0.36 -0.07 1.90 0.42 

15 Masonry 220.00 6.00 0.21 C (soft) 0.42 0.11 2.27 0.69 

16 Masonry 220.00 9.00 0.29 C (soft) 0.24 -0.38 2.27 0.69 

17 Masonry 220.00 12.00 0.35 C (soft) 0.18 -0.54 2.27 0.69 

18 Masonry 220.00 15.00 0.42 C (soft) 0.18 -0.54 2.27 0.69 

19 Masonry 220.00 18.00 0.48 C (soft) 0.18 -0.54 2.27 0.69 

20 Masonry 220.00 21.00 0.54 C (soft) 0.18 -0.54 2.27 0.69 

21 Masonry 220.00 24.00 0.60 C (soft) 0.18 -0.54 2.27 0.69 

22 Masonry 220.00 27.00 0.65 C (soft) 0.18 -0.54 2.27 0.69 

23 Masonry 220.00 30.00 0.71 C (soft) 0.18 -0.54 2.27 0.69 

24 Masonry 220.00 6.20 0.12 A (rock) 0.45 0.18 2.43 0.81 

25 Masonry 220.00 6.20 0.12 B (stiff) 0.45 0.18 2.43 0.81 

26 Masonry 220.00 6.20 0.12 C (soft) 0.36 -0.07 1.90 0.42 
 

7.1. Influence of soil type and building properties on β  
Figure 13 displays the variation of β when soil type or building parameters change. In terms of 
construction material (Fig. 13a), it could be claimed that RC and steel structures with similar 
response, exhibited considerably higher dispersion than that of masonry buildings. As far as 
building geometry is concerned, it could be realized that by increasing both plan area and height 
of a building, dispersion alters notably. Fig. 13b, reveals that dispersion drops when building 
area is increased and then, it remains almost constant for larger areas (in this case study 200 
m2 with the height to area ratio of 3.1%). Roughly the same variation could be figured out that 
for building’s height variation according to Fig. 13c. More clearly, when the height increases 
from 3 (low-rise) to 6 (mid-rise), dispersion increases by 27.61%. Then, a sharp decrease is 
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observed for higher buildings with 6-12 m (high-rise) height. Dispersion of tall buildings (more 
than 12 m height in this study), however, remains approximately unchanged. Fig. 13d shows 
that the relationship between building’s period and dispersion is the same as that of building’s 
height, since period is directly affected by the building’s height as explained previously. Using 
the dispersion values predicted by the developed DT model and the quantitative building 
properties namely plan area (A, m2), height (H, m) and period (T, s), fitting curves are drawn 
as depicted by black dotted lines in Fig.13 b-d. Accordingly, the following equations are 
suggested for obtaining dispersion: 

𝛽 = 0.05083 × 10 𝐴 − 0.0007𝐴 + 0.5845  (10) 

𝛽 = 6 × 10 𝐻 − 0.0283𝐻 + 0.4708 (11) 

𝛽 = 1.268𝑇 − 1.425𝑇 + 0.5615 (12) 

Fig. 13e illustrates how soil type could affect dispersion. Based on this figure, it could be 
claimed that dispersion of the buildings located on soft soil (type C) possess lower dispersion 
compared to those located on either rock (type A) or stiff soil (type B). The same results have 
been reported in similar studies evaluating the effect of soil type on fragility parameters of 
buildings [17, 34]. 
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Figure 13. Influence of building properties and soil type on dispersion (β). 
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7.2. In fluence of soil type and building properties on µ  
The effect of building properties and soil type on median is demonstrated in Fig. 14. Just like 
β, median values of RC and steel structures are higher than that of the masonry building (Fig. 
14a). Furthermore, by increasing the building’s plan area, median value reduces notably first. 
Then, it remains almost the same for larger areas (300 m2 in this study), as displayed in Fig. 
14b. The median variation regarding soil type is also the same as that of dispersion; buildings 
on soil types A and B have higher µ in comparison to those on soil type C as depicted in Fig. 
14e. By increasing the building’s height or period, unlike dispersion variation, median values 
jump first (building height=6 m and height/area=2.73% in this study). Then after, it remains 
roughly constant for higher buildings representing mid- and high-rise buildings. The prediction 
equations suggested based on the estimated values and corresponding fitting curves are given 
in Eq. (13-15): 

𝜇 = 9.1667 × 10 𝐴 − 0.0011𝐴 + 2  (13) 

𝜇 = −9 × 10 𝐻 + 0.0376𝐻 + 1.937 (14) 

𝜇 = −2.1533𝑇 + 2.1531𝑇 + 1.775 (15) 
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Figure 14. Influence of building properties and soil type on median (µ). 
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8. Summary and conclusion 
Fragility curves are one of the crucial means which should be obtained for risk assessment of 
buildings in the PEER framework. The process of deriving fragility curves, however, is time-
consuming and complicated. These issues might increase inaccuracy of the fragility curves. 
Therefore, proposing a quick and error-free alternative approach for generating fragility curves 
has become one of the main researchers’ concerns in the field of structural and earthquake 
engineering. In this study, an attempt has been made to develop ML-based models for 
predicting fragility parameters of buildings and hence deriving fragility curves. To this end, 
totally 238 datasets are collected from peer-reviewed publications. They were then divided into 
training (85%) and testing (15%) sub-databases. Parameters which are proven to have the 
highest effect on fragility parameters are considered as the inputs for predicting dispersion (β) 
and median (µ) of fragility curves. Various ML-based prediction models namely NLR, DT, 
RF, KNN and ANN were developed. The predicted values were compared with the actual 
values and the accuracy of the models were assessed through common performance metrics 
and Taylor diagram. Eventually, a parametric study conducted and equations were presented 
for calculating fragility parameters. The main conclusions are: 

 Almost all the ML-based techniques showed a high ability to learn the relationship 
between input and output parameters. They could be therefore considered as a quick 
and accurate model for estimating fragility curves instead of time-consuming and 
inaccurate analytical analysis. 

 All the developed models for predicting β exhibited high reliability with R2-score≥0.83. 
The DT model with R2-score=0.91, however, was the most accurate model. 

 Among the models proposed for estimating µ, NLR processed the highest R2-score 
compared to other models and hence is introduced as the most accurate model. 

 Based on the study results, a hybrid ML-based model with the combination of DT and 
NLR is recommended for deriving fragility curves of buildings. 

 It is also worth mentioning that, unlike other studies carried out for developing models 
for obtaining fragility curves, the models of the present study have the following 
benefits: (i) generating fragility curves directly by estimating β and µ, (ii) considering 
significant parameters which influence fragility curves notably, and (iii) being 
generalized which means that they could be applied for RC, steel and masonry buildings 
with different heights and plan areas located on different soil types.  

 The parametric study on a case study illustrated that, (i) β and µ of RC or steel buildings 
were higher than that of the masonry building, (ii) β and µ of the buildings located on 
either rock or stiff soil were higher than those of the buildings located on soft soil, (iii) 
by increasing building plan area, β and µ reduced first (up to height/area ratio=3.1 and 
2.73%, respectively) and then remained almost constant, and (iv) increasing building 
height led to initial reduction and increase respectively in β and µ, while fragility curves 
of tall buildings remained unchanged. 
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