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Abstract: In this paper we study the isomonodromic deformations of systems of dif-
ferential equations with poles of any order on the Riemann sphere as Hamiltonian flows
on the product of co-adjoint orbits of the truncated current algebra, also called gener-
alised Takiff algebra. Our motivation is to produce confluent versions of the celebrated
Knizhnik–Zamolodchikov equations and explain how their quasiclassical solution can
be expressed via the isomonodromic τ -function. In order to achieve this, we study the
confluence cascade of r +1 simple poles to give rise to a singularity of arbitrary Poincaré
rank r as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.

In loving memory of Igor Krichever
A great man and outstanding mathematician

Introduction

In this paper we study the theory of isomonodromic deformations for systems of differ-
ential equations with poles of any order on the Riemann sphere. Our initial motivation
was to generalise an observation by Reshetikhin that the quasi–classical solution of the
standard Knizhnik–Zamolodchikov equations (i.e. with simple poles) is expressed via
the isomonodromic τ -function arising in the case of Fuchsian systems [58]. Along the
way of pursuing the project of extending this to poles of any order, we have found a
number of interesting results, some of which were already known as folklore (i.e. either
done as very specific examples or not really proved in detail), others completely original.

The Knizhnik–Zamolodchikov (KZ) equations emerged in theoretical physics as
the system of linear differential equations satisfied by the correlation functions in the
two-dimensional Wess–Zumino–Witten model of conformal field theory associated to
a genus 0 curve [8,47]. In the case of g = glm , the KZ equations can be represented
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as a system of linear differential equations for a local section ψ of the trivial bundle
B × U (glm(C))⊗n → B over the base B given by the configuration space of ordered
n-uples of points in C, namely B := {(u1, . . . , un) ∈ C

n|ui �= u j for i �= j}:

dψ =
∑

i �= j

�i j dui − du j

ui − u j
ψ, (1)

where �i j ∈ End(U (glm(C)⊗n) is the extension of the non-degenerated symmetric
tensor

� ∈ glm(C) × glm(C) = End(glm(C))

acting by left multiplication on the i-th and j-th components of the tensor product
U (glm(C)⊗n) and trivially on the others. Geometrically one can think about (1) as a flat
Hitchin connection in geometric quantisation [36].

As proved by Reshetikhin in [58] (see also [31] where this result was explained in
terms of passing from Shrödinger to Heisenberg representation), the KZ equations can
be also viewed as deformation quantisation of the Schlesinger system [60] of non-linear
differential equations

d A(i) =
∑

i �= j

[A(i), A( j)]dui − du j

ui − u j
, (2)

controlling the isomonodromic deformation of a Fuchsian system on P
1,

dY

dλ
=

n∑

i=1

A(i)

λ − ui
Y, (3)

with n+1 simple poles u1, . . . , un,∞. These equations are multi-time non-autonomous
Hamiltonian systems with Hamiltonians

Hi : B × glm(C)n → C (4)

given by

Hi :=
∑

i �= j

Tr(A(i)A( j))

ui − u j
.

Interestingly, if we treat the quantities u1 . . . , un in the Hamiltonian as parameters rather
than times, these Hamiltonians form a family of autonomous Poisson commutingHamil-
tonians called Gaudin Hamiltonians. This simple observation has been key to several
efforts to introduce specific examples of confluent analogues of KZ: by first introducing
confluent analogues of Gaudin, then quantising them and finally generating the non-
autonomous versions. Let us give a summary of our understanding of these results here
below.

Themain idea for the quantisation of the Gaudin Hamiltonians was based on the stan-
dard point of view that for any finite dimensional Lie algebra g, the universal enveloping
algebra U (g) can be considered as a deformation of the symmetric algebra S(g) via the
Poincaré-Birkhoff-Witt map. One then defines the quantum enveloping algebra as

U�(g) = T (g)/(X ⊗ Y − Y ⊗ X − �[X,Y ]), X,Y ∈ g,
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by naturally extending the symmetrisation map to the map S(g)⊗n → U�(g)⊗n , and
then the functions Tr(A(i)A( j)) on g⊗n are transformed to �i j .

To define a quantisation of the Gaudin Hamiltonians it is necessary to describe the
Hilbert space of the quantum model as tensor product of some representations of g⊕n .
The quantised Hamiltonians Ĥi act on this Hilbert space and the quantum problem
consists in finding their spectrum, matrix elements and so on. Formulated rigorously,
the quantum Gaudin Hamiltonians generate a large commutative subalgebra in U (g)⊗n

which can be easily completed to a maximal commutative subalgebra. This subalgebra
is usually called Gaudin or Bethe subalgebra. The explicit formulae for the generators
(namely the quantum Hamiltonians) were obtained in [52,61].

In the case of g = glm, one can fix a co-vector μ ∈ g∗ and using the standard basis
of glm one can re-write the quantised Gaudin Hamiltonians as

Ĥi =
∑

j �=i

m∑

r,s=1

E (i)
rs E

( j)
sr

ui − u j
+

m∑

r,s=1

μ(Ers)E
(i)
sr , (5)

where E (i)
rs means Ers (as the element of standard basis in glm) considering in the i−th

tensor factor. We observe that even the case of regular μ ∈ g∗ (i.e. semi-simple, when
μ(Ers) = μrδrs with distinct μr ∈ C), the point ∞ is an order two pole. The case of
semi-simple but not regular μ was treated in [29].

The autonomous Gaudin model (5) can be generalised in two directions: by allowing
higher order singularities at the marked points ui ∈ C thus giving rise to Gaudin models
with irregular singularities in [30] or by taking an elementμ ∈ g∗ that is not semi-simple
(i.e. has non-trivial Jordan blocks). These two approaches were unified in the classical
and in the quantum cases in [63] where an analogue of the bispectral dynamical duality
of [26] between the models was proved.

The next important step consisted in deforming the quantum Gaudin Hamiltonian to
obtainKZ.Thiswas done in the case of the An root systembydeConcini andProcesi [21]
and generalised to any Lie algebra in [26,51]. More precisely, for any complex simple
Lie algebra g with a Cartan subalgebra h ⊂ g and a corresponding root system � ⊂ h∗,
Millson and Toledano-Laredo [51] introduced the following Casimir connection:

∇Cψ := dψ − �

2π i

∑

α∈�

Cα

dα

α
ψ, (6)

where for every α one takes the principal embedding of sl2 so that Cα = 〈α,α〉
2 (eα fα +

fαeα + 1
2h

2
α) is the Casimir in 3-dimensional subalgebra sl2,α with respect to the restric-

tion of the fixed non-degenerated ad−invariant bilinear form 〈−,−〉 on sl2,α and � ∈ C.

A special class of quantum connections with one irregular singularity of Poincaré rank
2 and several other simple poles appeared in [26] as dual to the standard KZ connection,
and in [12] was re-obtained as quantisation of Dubrovin’s system (without the skew-
symmetry condition). Dubrovin system was then generalised to simply laced Dynkin
diagrams in [11] and quantised in [57].

Confluent versions of the KZ equation, or in other words, KZ equations with irregular
singular points of arbitrary Poincaré rank were obtained for sl2 by Jimbo, Nagoya and
Sun [40], and previously in [7], where a quantum version of the fifth Painlevé equation
was given. In [30] a class of quantum integrable systems generalising the Gaudin model
was introduced by considering non-highest weight representations of any simple Lie
algebra. These Gaudin models with irregular singularities are expected to give rise to
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confluent KZ equations as the corresponding differential equations on conformal blocks.
Such KZ equations have not been explicitly written and one of the purposes of this paper
is to do this.

In order to achieve our aim, we first needed to find explicit formulae for the isomon-
odromic Hamiltonians and to introduce a nice set of Darboux coordinates. We have
succeeded in doing this for a class of isomonodromic connections which behave well
under confluence. Let us describe this class in some detail here. It is well known that
the isomonodromic deformation equations in the case of higher order poles have a co-
adjoint orbit interpretation on a current Lie algebra. In the case of the Painlevé equations,
Harnad and Routhier [33] produced finite-dimensional parameterisations by introduc-
ing suitable truncations of the current Lie algebra in this paper we call such truncated
current Lie algebras Takiff algebras1 for brevity (see Sect. 2 for the definition). Korotkin
and Samtleben [48] then conjectured the standard Lie–Poisson bracket on the Takiff
algebras and later Boalch proved that indeed these brackets are preserved by the Jimbo-
Miwa isomonodromic deformations [14]. In this paper, we unify these two approaches
to study connections as elements of the product of co-adjoint orbits in the Takiff algebra.
More precisely, we consider linear systems of ODEs with poles at u1, u2, . . . , un,∞ of
Poincaré rank r1, r2, . . . , rn, r∞ respectively, in the form

dY

dλ
= A(λ)Y, A(λ) =

n∑

i=1

ri∑

k=0

A(i)
k

(λ − ui )k+1
+

r∞∑

k=1

A(∞)
k zk−1, (7)

where A(λ) is an element of the phase space

M := Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞ , (8)

where Ô

ri stands for the co-adjoint orbit of the complex Lie group Ĝri corresponding to

the Takiff algebra of degree ri , for ri > 0, and for the standard Lie algebra g co-adjoint
orbit for ri = 0.

Following the ideology of [3], in Theorem 7, we show how to obtain the standard
Lie–Poisson bracket

{A(i)
k

⊗, A( j)
l } =

{
−δi j [�, A(i)

k+l ⊗ I] k + l ≤ ri
0 k + l > ri .

(9)

on our phase space (8) as Marsden–Weinstein reduction of the Poisson structure on

⊕n+1
i=1(T


glm)ri+1 = ⊕d
k=1T


glm,

obtained by endowing each copy of T 
glm with the canonical symplectic structure
dP∧dQ. Here d = ∑n+1

i=1 ri +n+1 denotes the degree of the divisor D of the connection
(7). The Marsden–Weinstein reduction is obtained by the additional first integrals given
by the moment maps of the inner group action by Ĝri as in formulae (47).

These coordinates (Q1, P1, . . . , Qd , Pd), that we call lifted Darboux coordinates,
were first introduced by Jimbo, Miwa, Mori and Sato in the case of linear systems of
ODEs with n simple poles and possibly a Poincaré rank one pole at ∞ [39]. Harnad
generalised these coordinates to allow rectangular m1 × m2 matrices and used them to
generalise Dubrovin duality [22] between two systems of linear ODEs: one of dimension

1 In fact, in this paper, we deal with the so-called generalised Takiff algebras, while the original definition
was only for degree 1 truncation.
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m1 and the other of dimensionm2 [32] and [66]. Similar coordinateswere also introduced
and partly used in the context of non-autonomous Hamiltonian description of Garnier-
Painlevé differential systems by Babich and Derkachov [5,6]. However in these latter
works, the authors restricted to the case of rational parametrisation of co-adjoint orbits
of Gln(C) and other semi-simple Lie groups and did not consider current Lie algebras.

Interestingly, using the lifted Darboux coordinates, we can describe all possible
isomonodromic systems with a fixed degree d of the divisor of the poles of the con-
nection (7) as Marsden–Weinstein reductions of different inner group actions on the
universal phase space ⊕d

k=1T

glm . These reductions give rise to symplectic leaves of

dimension (r1 + · · ·+rn +r∞ +n)(m2 −m). We explain how to produce the Darboux co-
ordinates, which we call intermediate Darboux coordinates, on such symplectic leaves.
In the case of the Jimbo-Miwa isomonodromic problems associated to the fifth, fourth,
third and second Painlevé equations the degree is always d = 4, the intermediate sym-
plectic leaves have always dimension 6 and are determined by the choice of 3 spectral
invariants giving a total dimension 9 for the Poisson manifold. This is the dimension of
the moduli space of SL2(C) connections with a given divisor D of degree 4 [49].

Remark 1. The problemof extending theRiemann-Hilbert symplectomorphism between
the de Rahm moduli space of meromorphic connections on a Riemann surface � with
non-simple divisor (a divisor of points that can have multiplicity> 1) and the analogous
of the Betti moduli space of representations of the fundamental group of�, namely with
the cusped character variety introduced in [15,16] is still open and is beyond the scope of
the current paper. However, the Darboux coordinate description of the de Rahm moduli
space achieved in this paper constitutes an important first step towards that goal.

Remark 2. It is worth mentioning here that the phase space (8) is not a moduli space
per se, however K. Hiroe and D. Yamakawa [34] showed that the sub-space of stable
connections admits a nice quotient with respect to the diagonal action of GLm(C) on
M :

M ′ = {A(λ) ∈ M |
n+1∑

i=1

π(A(i)
0 ) = 0, "stable" }/GLm(C),

where

π : ĝ∗
ri → gl∗m

is the moment map under the diagonal action of GLm(C) on M , thus assuring that M ′ is
a smooth complex symplectic variety. The space M ′ can be regarded as a certain moduli
space of meromorphic connections on O⊕m

P1 . Fix n distinct points u1, . . . , un ∈ P
1, and

endow P
1 with a coordinate z for which z(ui ) �= ∞. The variable zi can be identified

with λ − ui and ĝ∗
ri can be embedded in glm(C[z−1

i ]) dzizi via trace-residue pairing. Then

each A(λ) ∈ M determines a meromorphic connection d − A(λ) on on O⊕m
P1 , having

poles at u1, . . . , un,∞. The condition
∑n+1

i=1 π(A(i)
0 ) = 0 singles out the connections

which have no residue at infinity.

Our next result is the characterisation of the outer linear automorphisms of the Takiff
algebra that preserve the standard Lie–Poisson structure (9) on the phase space (8) (see
Theorem 8 for a more articulated statement).
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Theorem 1. Consider two elements A(λ) and B(λ) of the phase space (8), so that they
both have the form (7):

A(λ) =
n∑

i=1

ri∑

k=0

A(i)
k

(λ − ui )k+1
+

r∞∑

k=1

A(∞)
k λk−1,

B(λ) =
n∑

i=1

ri∑

k=0

B(i)
k

(λ − ui )k+1
+

r∞∑

k=1

B(∞)
k λk−1.

Assume that A(λ) and B(λ) are related by a linear automorphism of the Lie algebra

B(i)
k =

ri∑

l=0

T (i)
kl A(i)

l , ∀i = 1, . . . , n,∞,

for some scalar quantities T (i)
kl . Then the Poisson condition

{B(i)
k

⊗, B( j)
l } =

{
δi j [B(i)

k+l ⊗ I,�] k + l ≤ ri
0 k + l > ri

implies

{A(i)
k

⊗, A( j)
l } =

{
δi j [A(i)

k+l ⊗ I,�], k + l ≤ ri
0 k + l > ri

is satisfied if and only if the the following formulae are satisfied:

B(i)
k =

ri∑

j=k

A(i)
j M(ri )

k, j (t
(i)
1 , t (i)2 , . . . t (i)ri ), (10)

where

M(ri )
k, j =

|α|=k∑

w(α)= j

k!
α1!α2! . . . αri !

( ri∏

l=1

(t (i)l )αl

)
, |α| =

ri∑

l=1

αl , w(α) =
ri∑

l=1

l · αl .

(11)

This result allows us to introduce extra (i.e. in addition to the positions of poles)
deformation parameters t (i)1 , . . . , t (i)ri , i = 1, . . . , n,∞ for any connection belonging to
the phase space (8). In other words, we consider families of the form

A(λ) =
n∑

i=1

ri∑

k=0

B(i)
k

(λ − ui )k+1
+

r∞∑

k=1

B(∞)
k λk−1

where the elements B(i)
k contain explicitly the deformation parameters t (i)1 , . . . , t (i)ri as

prescribed by formulae (10) and (11). The isomonodromic deformation equations will
then impose a further implicit dependence of the matrices A(i)

k on the deformation

parameters t (i)1 , . . . , t (i)ri and on the position of the poles u1, . . . , un .
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Remark 3. The set of parameters t1, . . . , tr introduced in Theorem 8 may be replaced by
the coefficients of the jet-expansion of local conformal changes of coordinates z = z(ζ )

at the pole.2 Such a description is natural in the framework of irregular isomonodromic
problems and provides a nice geometric intuition. However, the formulas for the co-
efficients of the jet-expansions are more complicated, especially for the study of the
corresponding Hamiltonians. In example 2 we calculate the relation between the coeffi-
cients of such local conformal map and the parameters parameters t1, . . . , tr for r = 3;
this can be easily generalised to any r .

Remark 4. Let us stress that the class of connections we consider in this paper are ele-
ments of the space (8). This class excludes some of the Jimbo–Miwa–Ueno connections.
Indeed, our deformation parameters correspond to a subset of the Jimbo–Miwa–Ueno
ones and this correspondence is 1 : 1 only in the case of rank m = 2. For example, the
famous Dubrovin’s system

dY

dλ
=
(
U +

V

λ

)
Y,

whereU is a diagonal n×nmatrix and V ∈ son , is not an element of Ô

r1 ×Ô


r∞ for some
r1, r∞ because the diagonal elements ofU are independent deformation parameters. Of
course the isomonodromic deformation equations for V as a function of u1, . . . , un
can be written as a flow on a co-adjoint orbit O
 of the Lie algebra son , but not as
equations for the whole connectionU + V

z on the product of two co-adjoint orbits as our
theory dictates. To include the Dubrovin system (and indeed all of Jimbo–Miwa–Ueno
deformation parameters) in our theory, one should either consider the extended coadjoint
orbits introduced in [13,14] or exploit the Laplace transform. In the latter setting, the
confluence procedure destroys semi-simplicity, therefore it is a different process from
the one considered by Cotti, Dubrovin and Guzzetti [18,19].

This is the correct framework to study confluence of two or more poles. Indeed, we
show that the confluence cascade of r + 1 simple poles at certain positions depending
on t (i)1 , . . . , t (i)ri gives rise to an element of the phase space (8) which has a singularity

of Poincaré rank r and depends on t (i)1 , . . . , t (i)ri , i = 1, . . . , n,∞, as prescribed by
formulae (10) and (11). The following theorem provides the inductive step to create the
confluence cascade (we drop the index (i) for convenience).

Theorem 2. Consider an r-parameter family of connections of the following form:

A =
r∑

k=0

Bk(t1, t2 . . . tr−1)

(λ − u)k+1
+

C

λ − v
+ holomorphic terms, (12)

where by holomorphic terms we mean terms holomorphic in λ − u and λ − v, and each
Bk depends on the parameters t1, . . . , tr as specified by (10), (11). Assume

v = u +
r∑

i=1

tiε
i = u + Pr (t, ε), (13)

2 We thank the referee for pointing out this nice geometric analogy.



I. Gaiur, M. Mazzocco, V. Rubtsov

and that we have the following asymptotic expansions as ε → 0

C ∼
∞∑

j=−r

W [ j]ε j , Ak ∼ −
r−k∑

l=1

W [−k−l]

εl
+ A[k,0] +

∞∑

l=1

A[k,l]εl , (14)

for some matrices W [−k−l], A[k,l]. Then the limit ε → 0 the connection exists and is
equal to

Ã =
r+1∑

i=0

B̃i (t1, t2 . . . tr , tr+1)

(λ − u)i+1
+ holomorphic terms,

where B̃i ’s are given by

B̃i (t1 . . . , tr+1) =
r∑

k=i

ÃkM(r+1)
i,k (t1 . . . tr+1), Ãk =

{
W [−k] + A[k,0], k < r + 1.
W [−r−1], k = r + 1.

(15)

We prove that the confluence procedure gives a Poisson morphism on the product of
co-adjoint orbits and we calculate explicitly the confluent Hamiltonians, which define
the correct isomonodromic deformations.

Theorem 3. Let u be a pole of a connection A with Poincaré rank r , which is the result
of confluence of r simple poles with the simple pole u. Then the confluent Hamiltonians
H1, . . . , Hr which correspond to the times t1, . . . tr are defined as follows:

⎛

⎜⎝

H1
H2
. . .

Hr

⎞

⎟⎠ =
(
M(r)

)−1

⎛

⎜⎜⎝

S(u)
1
S(u)
2
. . .

S(u)
r

⎞

⎟⎟⎠ , (16)

where

S(u)
k = 1

2

∮

�u

(λ − u)kTrA2dλ (17)

are spectral invariants of order i in u and the matrix M(r) has entries M(r)
k, j given by

(11). The Hamiltonian Hu corresponding to the time u is instead given by the standard
formula

Hui = 1

2
resTr
λ=ui

A(λ)2.

Remark 5. It is well known that the isomonodromic deformation equations are Hamilto-
nian, namely that the flow is Hamiltonian with respect to the Jimbo–Miwa–Ueno defor-
mation parameters, see for example [28,37,65]. In [28], the isomonodromy equations
have been described as integrable non-autonomous Hamiltonian systems. A symplectic
fibre bundle whose base is the Jimbo–Miwa–Ueno deformation parameters space and
the fibers are certain moduli spaces of unramified meromorphic connections was in-
troduced in [14]. This approach was extended by D. Yamakawa for any reductive Lie
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algebra g [67] who removed some multiplicity restrictions and introduced a symplectic
two-form on the fibration. Following the same geometric approach and Jimbo-Miwa-
Ueno isomonodromic tau-function Yamakawa [68] has proven that the isomonodromy
equations of Jimbo-Miwa-Ueno is a completely integrable non-autonomous Hamilto-
nian systems. He was also motivated by the quantisation theorem of Reshetikhin but he
did not try to consider the quantisation of general isomonodromy equations3. Recently,
Bertola and Korotkin have derived a new Hamiltonian formulation of the Schlesinger
equations (i.e. for the Fuchsian case) in terms of the dynamical r -matrix structure.

Remark 6. The results of the theorem 2 still hold true for the autonomous systems which
are obtained by the confluence procedure from the Gaudin system. It was shown by
Chernyakov in [17] that the Poisson algebra which arises in the confluent elliptic and ra-
tional Gaudin systems coincides with the dual Takiff algebra equipped with the standard
Lie–Poisson bracket (in [17] the author use the word “fusion” instead of “confluence”).

One of the main theorems of our paper gives a general formula for the confluent KZ
Hamiltonians with singularities of arbitrary Poincaré rank in any dimension.

Theorem 4. Consider the differential operators:

∇u j := ∂

∂u j
− Ĥu j , j = 1, . . . , n (18)

and

∇(i)
k := ∂

∂t (i)k

− Ĥ (i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri (19)

where the Hamiltonians Ĥu j which correspond to the positions of the poles u j , j =
1 . . . , n, and Ĥ (i)

1 , . . . , Ĥ (i)
r which correspond to the times t (i)1 , . . . t (i)ri , for i = 1, . . . , n,

∞, are given by the following elements of the universal enveloping algebraU
(
ĝr1 ⊕ · · ·

⊕ĝr∞
)
:

Ĥu j = 1

2
resTr
λ=u j 0

Â(λ)2,

and

M(ri )

⎛

⎜⎜⎝

Ĥ (i)
1

Ĥ (i)
2

. . .

Ĥ (i)
ri

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

Ŝ(ui )
1
Ŝ(ui )
2
. . .

Ŝ(ui )
ri

⎞

⎟⎟⎠ , Ŝ(ui )
k = 1

2

∮

�ui

(λ − ui )
kTr0 Â(λ)2dλ,

where

Â(λ) =
n∑

i

⎛

⎝
ri∑

j=0

B̂(i)
j

(
t (i)1 , t (i)2 . . . t (i)ri

)

(λ − ui ) j+1

⎞

⎠ ,

3 We are grateful to Prof. Jimbo who has drawn our attention and has sent a file of the paper [68].
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with B̂(i)’s given by

B̂(i)
j (t (i)1 , . . . t (i)ri ) =

r∑

k= j

Â(i)
k M(ri )

j,k (t (i)1 , t (i)2 . . . t (i)ri ), Âk =
∑

α

e(0)
α ⊗ e(i)

α ⊗ zki ,

and e(0)
α corresponds to the quantisation of g∗ to g while

e(i)
α = 1 ⊗ · · · ⊗ eα

i
⊗ · · · ⊗ 1.

Then the differential operators commute

[∇u j ,∇us ] = [∇(i)
k ,∇us ] = [∇(i)

k ,∇(a)
l ] = 0,

∀ j, s = 1, . . . , n, i, a = 1, . . . , n,∞, k = 1, . . . , ri , l = 1, . . . , ra. We call the system
of differential equations

∇u j � = 0, ∇(i)
k � = 0, j = 1, . . . , n, i = 1, . . . , n,∞, k = 0, . . . , ri ,

confluent KZ equations.

Moreover,we express the isomonodromicHamiltonians in termsof the liftedDarboux
coordinates and show that the quasiclassical solutions of the confluent KZ equations is
expressed via the isomonodromic τ -function.

Theorem 5. Given a solution (P1, . . . , Pd , Q1, . . . , Qd) of the classical isomonodromic
deformation equations, the corresponding semi-classical solution �sc (see Sect. 6.3) of
the confluent KZ equations

�
∂�

∂u j
= Ĥu j �, j = 1, . . . , n

and

�
∂�

∂t (i)k

= Ĥ (i)
k �, i = 1, . . . , n,∞, k = 1, . . . , ri

evaluated along the solution (P1, . . . , Pd , Q1, . . . , Qd), admits the following WKB ex-
pansion

�sc(Q(t), t) ∼ τ
i
� (1 + O(�)) , � → 0. (20)

in terms of the classical isomonodromic τ -function

d ln(τ ) :=
∑

i

(
H (i)
ui dui +

ri∑

k=1

H (i)
k dt (i)k

)
.

The asymptotic expansion (20) is valid for u1, . . . , un, t
(i)
k , i = 1, . . . , n,∞, k =

1, . . . , ri in a poly-disk that does not contain the zeroes of the action functional evaluated
along the given solution (P1, . . . , Pd , Q1, . . . , Qd).
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This statement was mentioned in [58] for the case of the standard KZ, namely with
simple poles. We also discuss the quantisation of the reduced Darboux coordinates and
provide the quantised reduced systems in some examples.

Remark 7. Most of our results extend to the case of isomonodromic deformations for
meromorphic connections on principal G−bundles over the Riemann sphere for any
arbitrary complex reductive groupG-this is for example the situation of the famous Fuji-
Suzuki D(1)

2n+2−higher Painlevé hierarchies and matrix Painlevé equations [9]. Only the
results about the so-called “liftedDarboux coordinates coordinates" can’t immediately be
generalised to any connected complex reductive group case. However, we have decided
to restrict to the GLm(C) case having in mind a wider audience. For the same reasons,
we often do not use the language of sheaves and schemes. To extend our results to
higher genus Riemann surfaces is instead a rather serious job. First, one can extend the
“rational" truncated polynomial currents to their trigonometric and elliptic analogues
and to define a proper pairing and basis. For g = 1 case such job can be done probably
using the results of [25,55,56] and we postpone to subsequent papers.

This paper is organised as follows. In Sect. 1, we recall the case of Fuchisan connec-
tions, we discuss the lifted Darboux coordinates and the Marsden–Weinstein reduction
to the phase space (8) in the case of r1 = · · · = rn = r∞ = 0 and remind the Hamilto-
nian formulation. In Sect. 2, we collect facts about the Takiff algebras; we discuss the
lifted Darboux coordinates at each separate pole for any choice of the Poincaré rank
r and show how to obtain the standard Lie–Poisson bracket (9) as Marsden–Weinstein
reduction of the Poisson structure on⊕r

k=0T

glm . We also prove Theorem 1 and discuss

the inner group action on the universal phase space. Finally, we show how to obtain the
intermediate Darboux coordinates and discuss some examples. In Sect. 3, we discuss
the isomonodromic deformations. In Sect. 4, we discuss the confluence procedure. We
first carry out the confluence of two simple poles, explain how to obtain confluence
cascades, prove Theorems 2 and 3. Is Sect. 5, we apply the theory to the case of the
Painlevé equations. In Sect. 6, we deal with quantisation. We give a general formula
for the confluent KZ equations with singularities of arbitrary Poincaré rank and prove
Theorem 5.

We conclude this introduction with a discussion about further research directions
emerging from our work. In the case of Fuchsian systems, the analytic continuation of
the solutions of the isomonodromic equation is described by the Artin braid group Bn
realised as the fundamental group of the configuration space B of n points quotiented
by the natural action of the symmetric group Sn [23]. At quantum level, due to T. Kohno
and V. Drinfeld, the universal R-matrix of U�g gives a representation of Bn as the
monodromy of the KZ equation with values in V⊗n , where V is a finite U�g-module.
This is based on the fact that KZ is realised as a Sn-equivariant flat connection on the
topologically trivial vector bundle over Xn with fibre V⊗n . It would be interesting to
understand how to modify this picture under confluence. In particular, it is not yet clear
what happens if one braids two punctures in the Fuchsian system, say u1 and u2, and
then confluence u2 with a third puncture u3.

Even more interesting is the problem to confluence the duality between KZ and
the Casimir connection by Millson and Toledano-Laredo and to study its effect on the
monodromy. Indeed, given a Lie algebra gwith Cartan sub-algebra h andWeyl groupW ,
this Casimir connection is aW -equivariant flat connection on h with simple poles along
the root hyperplanes and values in any finite-dimensional g-module V . In the case of
g = sln , Toledano-Laredo [62] proved that the monodromy of this family of connections
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is equivalent to the quantumWeyl group action of the generalised braid group Bg of type
g on V obtained by regarding the latter as a module over the quantum groupU�g. While
the R-matrix representation is a deformation of the natural action of the symmetric group
Sn on V⊗n , the representation of Bg deforms the action of a finite extension ofW on any
finite-dimensional g-module. In the same paper [62] Toledano-Laredo showed that the
duality between slk and sll derived from their joint action on the space of k × l matrices
exchanges KZ for slk with the Casimir connection for sll . The current paper opens the
problem of confluencing this duality.

1. Fuchsian Systems

The aim of this section is to review the Poisson and symplectic aspects of the deformation
equations for connections over the n+1-holed sphere with simple poles at the punctures.
Starting from the linear system with simple poles at λ = u1, . . . , un,∞,

d

dλ
� =

n∑

i=1

A(i)

λ − ui
�, λ ∈ �, ui �= u j , (21)

where A(1), . . . , A(n) are non-resonant elements in slm(C) such that A(∞) := −∑ A(i) �=
0, we consider the following one-form

� = (du �)�−1, du � :=
∑

i

∂ui � d ui . (22)

Since we consider only isomonodromic deformations,� is a one-form valued meromor-
phic function in the variable λ with simple poles at u1 . . . , un,∞.

Using the local solutions of (21) in the neighbourhood of the poles ui ’s and applying
Liouville theorem, this form may be written as

� = −
∑

i

A(i)

λ − ui
d ui . (23)

The compatibility condition for (21) and (22), also called zero-curvature condition,

du A − d

dλ
� + [A,�] = 0, (24)

gives the Schlesinger equations (2).

1.1. Phase space. The Schlesinger equations are Hamiltonian, with natural phase space
given by the direct product of co-adjoint orbits which are symplectic leaves of the
standard Lie–Poisson bracket:

(
A(1), A(2), . . . A(n)

)
∈ O


1 × O

2 × · · · × O


n .

In the case when g is a Lie algebra with a non-degenerate bi-linear form (i.e. Killing
form), wemay identify the co-adjoint orbits with the adjoint orbits. The Poisson brackets
may then be written as

{
A(i)⊗, A( j)

}
= δi j [�, 1 ⊗ A(i)] ⇐⇒

{
A(i)

α , A( j)
β

}
= −δi j

∑

γ

χ
γ
αβ A

(i)
γ (25)
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where the lower indices α, β and γ correspond to the Lie co-algebra basis, χγ
αβ are the

structure constants of the Lie algebra and � is a quadratic Casimir element. In the case
of glm it acts as a permutation operator, i.e.

�(A ⊗ B)� = B ⊗ A.

In the case of a Lie algebra with an orthogonal basis eα with respect to the Killing form,
the quadratic Casimir � writes as

� =
∑

α

eα ⊗ eα.

Such bracket may be rewritten as an r -matrix bracket for the connection, i.e.

{A(λ)⊗, A(μ)} =
[

�

λ − μ
, A(z) ⊗ I + I ⊗ A(μ)

]
. (26)

The isomonodromic Hamiltonians for the Schlesinger equations are

Hi = Res
λ=ui

Tr
A(λ)2

2
=
∑

j �=i

Tr(A(i)A( j))

ui − u j
. (27)

In the case of 3 co-adjoint orbits in sl2, the Schlesinger equations can be reduced to the
Painlevé VI equation which is a non-autonomous Hamiltonian system with 1 degree of
freedom.

For n co-adjoint orbits, the fully reduced dimension can be computed using the
spectral type technique introduced by Katz [44]. When all matrices A(i), i = 1, . . . , n
are semi-simple, the spectral type approach gives the dimension of the fully reduced
phase space as a function of the eigenvalues multiplicities of the residues, including the
residue at infinity given by the Fuchs condition:

n∑

i=1

A(i) = −A(∞). (28)

Katz’ formula is:

N = 2 − (1 − n)m2 −
n∑

i=1

li∑

j=1

(mi
j )
2 −

l∞∑

j=1

(m∞
j )2, (29)

where li is the cardinality of the set of eigenvalues for the residue A(i) and mi
j is the

multiplicity of the j-th eigenvalue of the residue A(i) for i = 1, . . . , n,∞.
The Fuchs condition (28) may be viewed as the moment map of the Hamiltonian

group action of conjugation by z-independent invertible matrices and A∞ is a constant
of motion for the Schlesinger equations.

Formula (29) coincides with the dimension of the reduced space under symplectic
reduction as follows:

N =
n∑

i=1

dimO

i − dimG − stabO
∞, (30)
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where stabO
∞ is the dimension of the stabilizer for the Jordan form of the residue at
∞. When A(∞) is an element of the co-adjoint orbit of generic form (ad-regular), we
have that stabO
∞ = dim h, so formula (30) simplifies to

N =
n∑

i=1

dimO

i − dimG − dim h.

For example, in the case of the Painlevé VI equation, we deal with the coadjoint orbits
of the sl2(C) and formula (30) gives

N = 3 · dimOsl2 − dim(SL2) − dim hsl2 = 3 · 2 − 3 − 1 = 2,

which is exactly the dimension of the Painlevé VI equation phase space. In some sense
the multiplicity of the eigenvalues tells us that the Jordan form may be written as the
direct product of identity matrices of sizes corresponding to the the multiplicities. The
stabilizer of such matrix is the set of block diagonal matrices, so the dimension is greater
then the dimension of the Cartan torus and finally we obtain the smaller phase space.

Our first goal is to describe this full reduction as a Hamiltonian reduction and a
Marsden–Weinstein quotient. To this aim, we will need first to extend the phase space
to T 
glm and show that the Darboux coordinates on this cotangent bundle reduce to the
Kirillov-Kostant-Souriau form on the co-adjoint orbits. We will then discuss how the
invariants of the co-adjoint orbits correspond to moment maps with respect to different
Hamiltonian group actions on the extended phase space.

1.2. Extended phase space and its Darboux coordinates. In this subsection, we start by
working locally, namely we restrict to the case of a single co-adjoint orbitO
 of glm and
identify gl
m with glm via the Killing form. In the last part of this subsection we extend
to the product of n co-adjoint orbits.

We consider T 
glm with the standard Darboux coordinates (Q, P) and the canonical
symplectic structure:

ω = Tr (d P ∧ d Q) =
∑

i, j

d Pi j ∧ d Q ji . (31)

Following [1–3], we explain how to obtain the standard Lie–Poisson bracket (25) on
g
 as Marsden–Weinstein reduction of the Poisson structure on T 
glm . There is a direct
way to see this reduction by a straightforward computation (see [39]) that we resume in
the next proposition:

Proposition 6. Consider the canonical symplectic structure on T 
glm:

ω = Tr (d P ∧ d Q) =
∑

i, j

d Pi j ∧ d Q ji . (32)

Let

A = QP, (33)

where we use the ring structure of glm to justify the multiplication of Q and P. Then A
satisfies the standard Lie–Poisson bracket (25) for glm.
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Proof. The Poisson bracket which corresponds to the symplectic form in (32) may be
written in the following way

{P⊗, Q} = �, {P⊗, P} = {Q⊗, Q} = 0.

Inserting this relation to the bracket between A’s we obtain

{A⊗, A} = {QP⊗, QP} = (Q ⊗ I){P⊗, Q}(I ⊗ P) + (I ⊗ Q){Q⊗, P}(P ⊗ I)

= (Q ⊗ I)�(I ⊗ P) − (I ⊗ Q)�(P ⊗ I)

= [�, I ⊗ QP] = [�, I ⊗ A]
As we wanted to prove. ��
Definition 1. We call T 
glm extended phase space and the canonical coordinates P, Q
lifted Darboux coordinates.

To restrict to the co-adjoint orbit, we have to fix the invariants of the co-adjoint action,
i.e. the Jordan form of matrix QP = A. Such a procedure leads to some additional non-
linear equations for the entries of Q and P , and there is no hope to derive the explicit
symplectic structure on the co-adjoint orbit from such a perspective. Therefore, we
follow the construction of [3] to obtain the co-adjoint orbits via Hamiltonian reduction.

The space T 
glm � glm × glm carries two natural commuting symplectic actions of
GLm which we call inner and outer:

g ×
inner

(P, Q) = (gP, Qg−1), h ×
outer

(P, Q) = (Ph, h−1Q), h, g ∈ GLm .

(34)

Lemma 1. The inner and outer actions are Hamiltonian with equivariant moment maps
given by

μinner : T 
glm → gl
m
(P, Q) �→ � = PQ

μouter : T 
glm → gl
m
(P, Q) �→ A = QP . (35)

Let us restrict to the open affine subset of T 
glm where at least one of the twomatrices
Q and P is invertible. For example Q. Then, resolving the moment map for�we obtain

P = �Q−1, A = QP = Q�Q−1.

As a consequence, A and � belong to the same co-adjoint orbit.
Since the inner and outer actions commute, A is invariant under the inner action,

while � is invariant under the outer action. Therefore we use the inner group action to
fix � in Jordan normal form without changing A. In other words, we take the Jordan
normal form �0 of A and select � = �0. This gives

T 
glm//
�0

G = μ−1
inner(�0)/G,

here we denote by //
�0

the quotient with respect to the inner action of GLm on

T 
glm . We may resume these results in the following:
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Lemma 2. The map

T 
glm//
�0

G inner → O


(Q, P) �→ A := QP

is a rational symplectomorphism and the Jordan normal form �0 of A is given by

�0 = PQ.

Remark 8. When A is a full-rank matrix, both P and Q must be invertible. So we may
embed (P, Q) into the groupGLm and P and Q can be seen as left and right eigenvector
matrices for the matrix A. In the case when A may be diagonilized, the action of the
Cartan torus (i.e. the stabilizer of�) leads to a well known fact from linear algebra—the
eigenvectors are defined up to multiplication by non-zero constant. When A is not a
full-rank matrix, we may choose Q to be an invertible matrix (so it may be viewed as
an element of GLn). Then the rank of P must equal to the rank of A. The the moment
map � will inherit the rank of A automatically. Since P in this case not invertible, the
reduced coordinates take the form

P = �Q−1, A = Q�Q−1, det� = det A = det P = 0.

Thismeans that insteadof consideringT 
glm as lifted space,we could take (Q,�Q−1) ∈
T 
GLm . Such consideration is closely related to the approach introduced in [10]. How-
ever, this approach is not very useful for our purposes, since we wish to work with
polynomial unreduced parametrisation, rather then rational.

Remark 9. In the case when we consider g to be any reductive Lie algebra and A ∈ g∗,
then we expect that Lemma 2 is still valid if we fix the value � of the moment map in
g∗ and Q and P (or just Q in the case of degenerate orbit) as the elements from the
corresponding Lie group G.

Let us now consider the case of the product of many co-adjoint orbits. Since the
Poisson brackets (25) are local, namely the residues at different points commute, the
facts we summarised so far easily extend to this case. Indeed, we can apply the above
construction to the co-adjoint orbit at each pole of the Fuchsian system (except ∞) and
define:

A(i) = Qi Pi .

In this case we have that inner and outer actions can be lifted to the direct sum of n
copies T 
glm in a natural way

g ×
inner

(P1, P2, . . . Pn, Q1, Q2, . . . Qn)

= (g1P1, . . . gn Pn, Q1g
−1
1 , . . . Qng

−1
n ), g ∈ ×

n
GLm

h ×
outer

(P1, P2, . . . Pn, Q1, Q2, . . . Qn)

= (P1h1, . . . Pnhn, h
−1
1 Q1, . . . h

−1
n Qn), h ∈ ×

n
GLm

and the lemma 1 is easily generalised as follows:
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Lemma 3. These inner and outer actions are Hamiltonian with equivariant moment
maps given by

μinner : ⊕
n
T 
glm → ⊕

n
gl
m

(P1, . . . Pn; Q1, . . . Qn) → (P1Q1, P2Q2, . . . PnQn)

μouter : ⊕
n
T 
glm → ⊕

n
gl
m

(P1, . . . Pn; Q1, . . . Qn) → (Q1P1, Q2P2, . . . QnPn)

Proof. Let us prove it for the inner action only. The vector field generated by the group
action (via element ξ = (ξ1, ξ2, ...ξn) ∈ ⊕nglm is given by

Xξ (Pi , Qi ) = d

dt
(e−tξi Pi , Qie

tξi )

∣∣∣
t=0

= (−ξi Pi , Qiξi )

=
n∑

i=1

(∑

k, j

−(ξi Pi )k j
∂

∂Pikj
+ (Qiξi )k j

∂

∂Qikj

)
.

Inserting Xξ into the symplectic form we obtain

ω(Xξ , ◦) =
n∑

i

∑

k, j

[
− (ξi Pi )k j dQi jk − (Qiξi )k j d Pi jk

]

= −
n∑

i

Tr (ξi Pi dQi + Qiξi d Pi ) = −
n∑

i

d Tr (ξi Pi Qi ) ,

so the corresponding Hamiltonian is

hξ (m) = 〈μ (m) , ξ 〉 =
n∑

i

Tr
(
ξiμ (m)i

) = Tr (ξi Pi Qi )

where m = (P1, P2, . . . Pn, Q1, . . . Qn). So the moment map is given by

μ (m) = (P1Q1, P2Q2, . . . Pi Qi , . . . PnQn) ,

which is equivariant

μ (g ◦ m) =
(
g−1
1 P1Q1g1, g

−1
2 P2Q2g2, . . . g

−1
i Pi Qi gi , . . . g

−1
n PnQngn

)

= g−1μ(m)g = Ad

g−1(μ(m)) (36)

��
Then the following result is a straightforward computation

Lemma 4. A Hamiltonian system on the phase space

O

1 × O


2 × . . . × O

n �

(
A(1), A(2), . . . A(n)

)

can be lifted to the extended phase space

T 
glm × T 
glm × · · · × T 
glm � (Q1, P1, Q2, P2 . . . Qn, Pn)
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with additional first integrals given by the moment maps of the inner group action

μinner := Pi Qi = �(i),

where the inner group action is given by

(g1, g2, . . . gn) ×
inner

(P1, Q1, P2, Q2, . . . Pn, Qn)

= (g1P1, Q1g
−1
1 , . . . gi Pi , Qi g

−1
i , . . . gn Pn, Qng

−1
n ).

Moreover, if �(i)
0 is the Jordan normal form of A(i), we can fix �(i) = �

(i)
0 .

In particular, the Schlesinger Hamiltonians (27) can be lifted to the extended phase
space T 
glm as follows

Hi =
∑

j �=i

Tr(Qi Pi Q j Pj )

ui − u j
, (37)

and it can be checked directly that they Poisson commute with the moment maps of the
inner group action.

1.3. Outer group action and the gauge group. We have seen that the inner group action
allows us to restrict from T 
glm to O


1 × O

2 × · · · × O


n . Now we consider the outer
group action that will allow us to reduce further. This is given by

(g1, g2, . . . gn) ×
outer

(P1, Q1, P2, Q2, . . . Pn, Qn)

= (P1g1, g
−1
1 Q1, . . . Pi gi , g

−1
i Qi , . . . Pngn, g

−1
n Qn)

and is also Hamiltonian (see Lemma 1).
Because inner and outer group actions commute, their moment maps Poisson com-

mute too. However, the Schlesinger Hamiltonians are generally not invariant under outer
action, unless the outer action is restricted to be a diagonal action, i.e.

g1 = g2 = · · · = gn = g.

In this case, the outer action reduces to the standardGLm-action onO

1×O


2×· · ·×O

n ,

or equivalently to the constant gauge group action:

g ×
outer

A =
∑ g−1A(i)g

z − ui
.

The moment map of such diagonal action is

n∑

i=1

Qi Pi =
n∑

i=1

A(i) = −A(∞), (38)

which is the Fuchs relation.
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In order to describe the reduction procedure induced by the outer diagonal action in
terms of the Marsden–Weinstein reduction, following Proposition 2.2.7 of [4] (see also
[35]) we further extend the phase space by adding another copy of T 
glm :

(P1, Q1 . . . Pn, Qn; P∞, Q∞) ∈
n+1⊕

i=1

T 
glm,

ω =
n∑

i=1

Tr d Pi ∧ d Qi + Tr d P∞ ∧ d Q∞, (39)

with the outer group action of the form

g ×
outer

(P1, Q1 . . . Pn, Qn; P∞, Q∞)

= (P1g, g
−1Q1, . . . Pi g, g

−1Qi , . . . Png, g
−1Qn; P∞g, g−1Q∞).

The corresponding extended space given by the reduction with respect to the inner group
action takes form

(
A(1), A(2), . . . A(n); A(∞)

)
∈ O


1 × O

2 × · · ·O


n × O
∞.

The reduction with respect to the relation (38) on the extended phase space may be
viewed as the Marsden–Weinstein quotient

n+1⊕

i=1

T 
glm//G = μ−1(0)/G, μ =
n∑

i=1

Qi Pi + Q∞P∞,

that corresponds to the Fuchsian relation on the phase space reduced with respect to the
inner group action.

Finally, the fully reduced phase space then has form

M := O

1 × O


2 × · · ·O

n × O
∞//G �

n+1⊕

i=1

(
T 
glm //

�(i)
G

)
//G,

Where � denotes the symplectomorphism between symplectic manifolds.
Moreover, the Hamiltonians are homogeneous polynomials in the lifted Darboux co-

ordinates. Such dependence plays crucial role in the quantisation of the isomonodromic
systems as we will discuss in Sect. 6.

In this paper we extend this scheme for the isomonodromic problems with irregular
singularities and will introduce a well defined confluence procedure that creates an
irregular singularity of Poincaré rank r as a result of collision of r + 1 simple poles. In
the next section, we study the case of the irregular singularities along the same lines of
the regular one.
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2. Takiff Algebras and Associated Symplectic Manifolds

It is well known that the isomonodromic deformation equations in the case of higher or-
der poles also have a co-adjoint orbit interpretation on a current algebra. In the case of the
Painlevé equations, Harnad and Routhier [33] produced finite dimensional parameteri-
sations that can be interpreted as introducing suitable truncations of the current algebra.
Korotkin and Samtleben [48] then conjectured the standard Lie–Poisson structure on
truncated current algebras also called Takiff algebras. In this section, we unify these
two approaches and classify the linear Takiff algebra automorphisms that preserve the
standard Lie–Poisson structure. As a consequence, we obtain a general formula that pre-
scribes the way to introduce independent deformation parameters in generic connections
with poles of any Poincaré rank.

Loosely speaking, the Takiff algebra of degree ri , is the Taylor part of a current
algebra quotiented by the ideal generated by zri where ri is the order of the pole at ui
and z is the local coordinate at ui . For a general system with poles at u1, u2, . . . , un,∞
of Poincaré rank r1, r2, . . . , rn, r∞ respectively, the phase space is

M := Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞//Ggauge,

where Ô

ri stands for the co-adjoint orbit of the Takiff algebra of degree ri .

In this section we remind several generalities about Takiff algebras and describe the
Poisson structure on their co-adjoint orbits. Moreover, we explain the lifted Darboux
parametrisation for the co-adjoint orbits of Takiff algebras. We show that the lifted space
is always the same and the way to distinguish between different isomonodromic systems
is the Hamiltonian group action we choose to obtain the reduced phase space. In Sect. 4
we will show that that the Takiff algebras algebras naturally arise during the confluence
procedure.

The Takiff algebra ĝr of the Lie algebra g is the Lie algebra of polynomials of given
degree r in an indeterminate variable z with the following Lie bracket

⎡

⎣
r∑

i=0

Ai z
i ,

r∑

j=0

Bj z
j

⎤

⎦ =
r∑

i=0

⎛

⎝
i∑

j=0

[Ai , Bi− j ]
⎞

⎠ zi . (40)

This algebra may be viewed as a double quotient of the loop algebra g[[z]] as follows.
Denote by g[z]+ the subalgebra of the elements which has a finite limit when z goes to
the origin. Then ĝr is defined as

ĝr = g[z]+/zr+1g[z]+, g[z]+ = g[[z]]
/
g[z]−, g[z]− =

{
f ∈ g[[z]] : lim

z→∞ f (z) = 0

}
,

These algebras are known in the Integrable Systems community as truncated loop al-
gebras or truncated current algebras. The variable z is usually called spectral parameter
and, as we will illustrate here below, it induces a grading on the Takiff algebra.

In the case when g admits an invariant non-degenerate bi-linear form (Killing form),
we may define the co-algebra ĝ


r in the following way

ĝ

r = g[z]−/z−(r+1)−1g[z]− =

{
A = Ar

zr+1
· · · + A0

z

∣∣∣ Ai ∈ g

}
.
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The pairing between ĝr and ĝ

r is given by

〈A, B〉 =
∮

S1

Tr (AB)dz =
r∑

i=0

Tr Ai Bi . (41)

Let us assume that the Lie algebra g is given by

g = Span {X1, . . . Xm} , [Xi , X j ] = Ck
i j Xk, 〈Xi , X j 〉 = δi j ,

then for the Takiff algebra ĝr we have the following basis and structure equations

Xα,i = Xi z
α, [Xi,α, X j,β ] =

{
Ck
i j Xk,α+β, α + β ≤ r

0 α + β > r.

For the dual algebra g

r , we use the following basis

Xα,i = Xi z−α−1, 〈Xi , X j 〉 = δi j ,

so that the pairing is given by

〈Xi,α, X j,β〉 = δαβ〈Xi , X j 〉 = δαβδi j .

The details about Takiff algebras or truncated current algebras and their standard
Lie–Poisson bracket may be found in [27] (see part 2, chap. 4 §1). In the following
sub-section we recall the essentials of this construction.

2.1. Standard Lie–Poisson bracket for the Takiff algebras. Let us remind the reader that
the standard Lie–Poisson bracket on the dual Lie algebra g
 is given by

{ f, g}(L) = −〈L , [d f (L), d g(L)]〉, f, g ∈ C∞(g
), d f (L), d g(L) ∈ g.

The coadjoint orbits O
 are symplectic leaves of the standard Lie–Poisson structure on
g
. The vector fields onO
 may be identified with the elements of Lie algebra g and the
symplectic form takes the form

ωKKS(X,Y )(L) = −〈L , [X,Y ]〉.
Following [27], we now describe the standard Lie–Poisson structure on the dual ĝ


n of
the Takiff algebra. Let’s consider the following element of the dual ĝ


n

A =
r∑

α=1

∑

i

Aα,i X
α,i ∈ ĝ


n,

The coefficients Aα,i are functions on the coadjoint orbit, with d Aα,i = Xi,α so that
the standard Lie–Poisson bracket is given by

{Aα,i , Aβ, j } = −〈A, [Xi,α, X j,β ]〉
= −〈A,Ck

i j Xkz
α+β〉 =

{−Ck
i j Aα+β,k, α + β ≤ r

0 α + β < r.
(42)
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This is a graded Poisson structure of degree 1, and the Takiff co-algebra inherits the
grading:

ĝ

r :=

r⊕

i=0

ĝ
,i
r , {ĝ
,i

r , ĝ

, j
r } ⊆ ĝ


,i+ j
r ,

where ĝ
,i
r =

{
A = Ai

zi+1

∣∣∣ Ai ∈ g

}
. The same grading is induced on the co-adjoint orbit

Ô

r .

Remark 10. Note that the degree of the grading is due to the choice of the pairing (41) in
the Takiff algebra. If we had chosen a different measure, say d z

zk
, then the degree would

have been k.

In the case when g is glm we have the following Poisson structure

{(Aα)i j , (Aβ)kl} =
{

(Aα+β)ilδ jk − (Aα+β)k jδil α + β ≤ r
0 α + β > r, (43)

which may be written in the r -matrix form

{Aα
⊗, Aβ} =

{−[�, Aα+β ⊗ I] α + β ≤ r
0 α + β > r. (44)

As mentioned before, the co-adjoint orbits of the Takiff algebra form the phase space
of the isomonodromic deformation equations in the case of irregular singularities while
in the Fuchsian Ô


0 = O
.

2.2. Lifted Darboux coordinates. As shown in the previous section, the lifted Darboux
coordinates for the co-adjoint orbits of an ordinary Lie algebra are given by a symplectic
reduction from T 
glm .We prove the same result for the Takiff algebras. Our construction
follows ideas introduced by Chervov and Talalaev in [20] to parametrize the space of
the irregular Gaudin systems.

We start from the following space

g = glm, T 
ĝr =
{

(P, Q)

∣∣∣ P =
r∑

i=0

Pi z
i , Q =

r∑

i=0

Qi z
−i−1, Pi , Qi ∈ glm

}
.

The symplectic form on T 
ĝn is given by the differential of the Liouville form:

ω = d〈P, d Q〉 =
∮

S1

Tr (d P ∧ d Q) dz = d
r∑

i=0

Tr (Pi ∧ d Qi ) , (45)

here d is the differential on the space of the spectral parameter z, while d is the differential
on the phase space.
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Lemma 5. The map

r⊕

i=0

T 
glm → T 
ĝr

(P0, . . . , Pr , Q0, . . . , Qr ) �→ (P, Q)

is a symplectomorphism.

The proof of this result is a straightforward consequence of the fact that T 
ĝn and
n⊕

i=1
T 
glm are isomorphic as vector spaces and formula (45) shows that they are symplec-

tomorphic to each other. However, we have enphasised this simple fact into a Lemma

because
n⊕

i=1
T 
glm provides the ambient space for the confluence procedure.

We now want to construct the Lie group Ĝr of the Takiff algebra. Its elements are
given by:

g(z) = g0 +
r∑

i=1

gi z
i , g0 ∈ GLm, gi ∈ glm,

where, in order to be able to multiply both on the left and on the right, glm is considered
as a bi-module of GLm . The group structure of Ĝn is given by GLm multiplication mod
zn , i.e.

g(z) · h(z) = g(z)h(z)mod zr+1 = g0h0 +
r∑

i=1

⎛

⎝
i∑

j=0

gi− j h j

⎞

⎠ zi .

The inverse is given by

g−1 = g−1
0

[
1 +

r∑

i=1

g−1
0 gi+1z

i

]−1

= g−1
0 (1 + g̃(z))−1 = g−1

0

∞∑

i=0

(−1)i g̃(z)i mod zr+1,

and the neutral element is given by the identity matrix. The induced inner and outer
actions on T 
ĝr are given by

g ×
outer

(P, Q) =
(
[P ◦ g]mod zr+1;π−

[
g−1 ◦ Q

])
(46)

g ×
inner

(P, Q) =
(
[g ◦ P]mod zr+1;π−

[
Q ◦ g−1

])
(47)

where π− is a projection to the Laurent part with respect to spectral parameter z, i.e.

π−

[ ∞∑

i=−∞
Ti z

i

]
=

−1∑

i=−∞
Ti z

i
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Lemma 6. Both inner and outer actions are Hamiltonian with the moment maps respec-
tively

μinner : T 
ĝr → ĝ

r

(P, Q) �→ �(z) = π− [PQ]
μouter : T 
ĝr → ĝ


r
(P, Q) �→ A(z) = π− [QP] . (48)

These two moment maps are dual in a sense of Adams–Harnad–Previato duality [3].
Since inner and outer group actions commute, A(z) and �(z) Poisson commute with
respect to Poisson bracket induced by (45). As in the Fuchsian case, A(z) is an element of
the co-adjoint orbit for the Takiff algebra. On the other hand, �(z) becomes an invariant
of the orbit after quotient via the inner group action.

This fact gives us the opportunity to generalise the statement of Lemma 2 to the case
of Takiff algebras:

Lemma 7. The map

T 
ĝr//
�0

Ĝr → Ô

r

(Q, P) �→ A(z) := π− [QP]

where //
�0

denotes the Hamiltonian reduction w.r.t. the inner action in which the moment

map has value �0, is a rational symplectomorphism and the Jordan normal form �0 of
A is given by

�0(z) = π− [PQ] .

The explicit form of A(z) is

A(z) = Ar

zr+1
· · · + A0

z
, Ak =

r−k∑

i=0

χi,i+k, χi, j = Qi Pj . (49)

while �0(z) takes form

�0(z) = �r

zr+1
· · · + �0

z
, �k =

r−k∑

i=0

Pi+k Qi , (50)

Remark 11. According to Lemma 5, all co-adjoint orbits, i.e the ones for the ordinary
Lie algebras and the one for the Takiff algebras, are reductions of the same phase space.
Systems with different orders of poles are obtained by different choices of the group
realising the reduction: in the Fuchsian case we considered the action of the direct
product of GLm , while in the case of the Takiff algebra we use the inner action of
Ĝr

m := GLm[z]/zr+1GLm[z].
The parametrisation (49) allows a nice combinatorial description which is presented

on Fig. 1.

Theorem 7. The Poisson bracket induced by the Darboux coordinates Qi , Pi on the
space of matrices Ak, k = 0, . . . , r coincides with the graded Poisson structure (44).
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Q0P0 Q1P1 Q2P2 . . . . . . Qr−1Pr−1 QrPr

Q0P1 Q1P2 Q2P3 . . . . . . Qr−1Pr

. . . . . . . . . . . . . . . . . .

QiPi+k−1 Qi+1Pi+k

QiPi+k Ak

. . .

Q0Pr

Fig. 1. Lifted Darboux coordinates for the Takiff algebra of degree r . In this diagram we have r + 1 rows, and
we number them starting at the top with row 0, all the way down to row r . The sum of the elements in row
k gives the coefficient Ak of the power of z−k−1, the blue arrow follows each Qi matrix from the formula
above to the one below, while the red one follows Pi

Proof. This statement is a straightforward corollary of the Lemma 7. However, here we
prove it directly for the sake of clarity. The Poisson bracket on the elements χi j in (49)
is given by

{χi j
⊗, χkl} = {Qi Pj

⊗, Qk Pl} = δ jk(Qi ⊗ 1)�(I ⊗ Pl) − δil(I ⊗ Qk)�(Pj ⊗ I)

= δ jk(Qi Pl ⊗ I)� − δil�(Qk Pj ⊗ I) = δ jk(χil ⊗ I)� − δil�(χk j ⊗ I)

which is the same as
{(

χi j
)
αβ

, (χkl)γ δ

}
= δ jkδγβ (χil)αδ − δilδαδ

(
χk j
)
γβ

.

By direct computation

{Ak
⊗, Al} =

∑

i, j

{χi,i+k
⊗, χ j, j+l} =

∑

i, j

δ j,i+k(χi, j+l ⊗ I)� − δi, j+l�(χ j,i+k ⊗ I)

=
∑

i

(χi,i+k+l ⊗ I)� −
∑

j

�(χ j, j+k+l ⊗ I) = −[�, Ak+l ⊗ I]

we obtain the proof of the statement.When k+l > r the Poisson bracket is automatically
zero. ��

In the next lemma, we show that the quadratic Casimir elements for the Takiff algebra
are given by functions of the spectral invariants of the co-adjoint orbit:

Lemma 8. For the Takiff algebra of degree r , the following quantities are Casimirs

Ik = res
z=0

(
zr+kTr A2

)
, 0 < k < r. (51)

Proof. The fact that Ik are Casimir functions may be checked by direct computation.
Here we demonstrate it for k = 1 since we use this fact later in the text. Explicitly I1
writes as follows

I1 =
r∑

j=0

Tr A j Ar− j .
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The Poisson bracket with an arbitrary generator of the Poisson algebra defined via Lie-
Poisson bracket for the Takiff algebra gives

r∑

j=0

{
(Ai )α,Tr A j Ar− j

} =
r∑

j=0

[Ai+ j , Ar− j ]α +
r∑

j=i

[Ar− j+i , A j ]α

=
r∑

l=i

[Al , Ar−l+i ]α +
r∑

j=i

[Ar− j+i , A j ]α = 0.

In the same way we may prove that Ik are the Casimirs for k > 1. ��

2.3. Poisson automorphisms of the Takiff algebra and independent deformation param-
eters.. In this subsection, we describe the class of linear automorphisms of the Takiff
algebra which preserve the Poisson bracket, namely linear maps

Bi =
r∑

j=0

Ti j A j , Ti j ∈ C, i, j = 0, . . . r, (52)

such that

{Bi⊗, Bj } = [�, I ⊗ Bi+ j ] ⇐⇒ {Ai
⊗, A j } = [�, I ⊗ Ai+ j ] (53)

In the next theorem we describe explicitly the constraints on the coefficients Ti j .

Theorem 8. The coefficients Ti j characterising the class of linear automorphisms of
the Takiff algebra which satify the Poisson condition (53) define an ideal P in the ring
C[T11 . . . Trr ] given by the equations

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T00 = 1
T0k = 0, k > 0
Tk0 = 0, k > 0
Tik = 0, k<i

Tsl =
i+ j=l∑
i, j>0

Tpi Tmj ∀p,m > 0 : p + m = s.

(54)

Moreover we have the following ring isomorphism for the quotient

Q : C[T00 . . . Trr ]/P → C[t1 . . . tr ] (55)

such that

T1i = ti , Tki = 1

i !
di

dεi
Pr (t, ε)

k
∣∣∣
ε=0

, Pr (t, ε) =
r∑

i=1

εi ti , (56)

so that Tki is just the coefficient of the εi term in the polynomial Pr (t, ε)k .

Remark 12. The equations which define the ideal P do not depend on the specific form
of �, i.e. on the structure constants of a Poisson bracket. Therefore, the classification of
the automorphisms is a consequence of the grading structure and not a property of the
specific Lie co-algebra.



Isomonodromic Deformations: Confluence, Reduction and Quantisation

Proof. Assume the matrices Ai and Bi satisfy the Poisson relations (53) and prove the
relations for the coefficients Ti j . Let us start from the relation for B1

{B0
⊗, B0} = [�, I ⊗ B0]. (57)

Substituting (52) in (57) and expanding, we obtain

{B0
⊗, B0} =

r∑

i, j=0

T0i T0 j {Ai
⊗, A j } =

r∑

k=0

(
k∑

i=0

T0i T0,k−i

)
[�, I ⊗ Ak]

= [�, I ⊗ B0] =
r∑

k=1

T0k[�, I ⊗ Ak]. (58)

This relation defines a system of equations for the coefficients T0 j , which takes the form

T00T00 = T00, 2T00T0k +
k−1∑

i=1

T0i T0,k−i = T0k,

that, by recursion, leads to the first set of equations which generate the ideal P:

T00 = 1, T0k = 0, k > 0.

The next statement we want to prove is that Tk0 = 0 for k > 1. We use

{B1
⊗, Bk} = [�, I ⊗ Bk+1] k = 1, . . . , r. (59)

Again, substituting (52) and expanding, we obtain

r∑

i, j=0

T1i Tk j [�, I ⊗ Ai+ j ] =
r∑

j=0

Tk+1, j [�, I ⊗ A j ],

and collecting all coefficients of [�, I ⊗ A1], we have that
Tk+1,0 = T10Tk0,

that is solved by

Tk+1,0 = (T10)
k .

On the other hand substituting (52) in

{B1
⊗, Br } = 0, (60)

we obtain

T10Tr0 = 0 = (T10)
r ⇒ T10 = 0,

as wewanted. Now to demonstrate the statement that Tik = 0 for k<i we use the relation

{B1
⊗, B1} = [�, I ⊗ B2]. (61)
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By substituting (52) we see that the left hand side of (61)

{B1
⊗, B1} =

∑

i, j>2

T1i T1 j [�, Ai+ j ] = T11T11[�, A2] +
∑

i=4

κi [�, Ai ], (62)

does not contain terms in A0 or A1, it contains only one term that depends on A2, given
by T11T11[�, A2] and all other terms depend on A3, . . . , Ar . Expanding the right hand
side of (61) we obtain

[�, I ⊗ B2] = T21[�, I ⊗ A1] +
∑

i=2

T2i [�, I ⊗ Ai ]. (63)

Therefore T21 = 0. Similarly, applying the {B1 ⊗ ◦} to B2 . . . Br and using the same
approach we obtain that Tik = 0 for k < i . The last relation in (54) is obtained by
imposing (53), substituting (52) and expanding as before, and then by imposing all other
conditions we have obtained so far.

We now prove the second part of the Theorem. First of all, we observe that thanks
to relations (54), the coefficients t j := T1 j for j > 0 form a basis in the quotient ring

Q : C[T00 . . . Trr ]/P . Then, because each Tik must be given by a polynomial P(i)
k of

t1, . . . , tr , we just need to check the degree and the form of the coefficients. To this
aim we use the last relation of (54) for Ti j by induction on j from i to r . We omit this
computation as it is straightforward. ��

In the next section we will see how such dependence on the parameters ti ’s arises
during the confluence procedure. In some sense, the irregular deformation parameters
are just the deformation of the representation for the Takiff algebra.

Example 1. In order to give a taste of how the general elements of the Takiff co-algebra
depend on the Poisson automorphism parameters ti , we provide a few examples of low
degree. We consider an element of the Takiff co-algebra as a polynomial in 1

z . In the
case of ĝ


1 Theorem 8 gives

B(z) = t1A1

z2
+

A0

z
. (64)

In this case, we see that the invariant space of the action of A0 is defined up to multipli-
cation by a constant, so this example is quite trivial. Let us look at ĝ


2. In this case, the
general element writes as

B(z) = t21 A2

z3
+
t1A1 + t2A2

z2
+

A0

z
. (65)

Example 2. The next example is the case of ĝ

3 where the element of the co-algebra

writes as

B(z) = t31 A3

z4
+
t21 A2 + 2t1t2A3

z3
+
t1A1 + t2A2 + t3A3

z2
+

A0

z
. (66)

Let us now see how to obtain these formulae for B(z) starting from the following
connection with a pole of order 4 at zero

A(z)dz =
(
A3

z4
+

A2

z3
+

A1

z2
+

A0

z
+ O(1)

)
dz
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and performing a local conformal change of coordinates

z = f (ζ ) = ζ

τ1
+ ζ 2τ2 + ζ 3τ3 + O(ζ 4).

Then

B(z) = A( f (ζ )) f ′(ζ )dζ

=
(

τ31 A3
ζ 4

+
τ21 A2 − 2τ41 τ2A3

ζ 3
+

τ1A1 − τ31 τ2A2 + (2τ51 τ22 − τ41 τ3)A3
ζ 2

+
A0
ζ

+ O(1)

)
dζ

It may explicitly checked that such transformation preserves the Poisson bracket. The
parameters τ1, τ2 and τ3 are related to t1, t2, t3 in (66) by the following bi-rational map

τ1 = t1, τ2 = −t2/t
3
1 , τ3 = −t3/t

4
1 − 2t22 /t51 .

2.4. Direct product of the co-adjoint orbits and outer group action. To study systems
with more than one pole, we will need to consider the symplectic space given by the
direct product of different co-adjoint orbits of the Lie algebra for simple poles, or of
the appropriate Takiff algebra for higher order poles. We use here a unified notation, in
which we understand that for poles of order 1, the Poincaré rank is r = 0 and ĝ0 is g,
Ô


0 is O

i , T


ĝ0 is T 
g and Ĝ0 is G. With this notation in mind, the symplectic space
we consider is

Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞ , (67)

where we always assume to have a pole at infinity like in the Fuchsian case. This product
of co-adjoint orbits may be viewed as the reduction of the universal symplectic space
n⊕

i=1
T 
ĝri with respect to the inner action of the group G(n) := Ĝr1 × Ĝr2 × · · · × Ĝrn ×

Ĝr∞ :

Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞ =
⎛

⎝
⊕

i=1,...,n,∞
T 
ĝri

⎞

⎠ //
⊗�ri

G(n).

Since we have the following symplectomorphism

n⊕

i=1

T 
ĝri �
r1+r2+···+rn+r∞⊕

i=1

T 
glm,

we obtain that

Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞ �
(r1+···+rn+r∞⊕

i=1

T 
glm

)
//

⊗�ri

G(n)

where we denote by //
⊗�ri

the Hamiltonian reduction with respect to the inner action in

which the value of the moment map is given by the product of values �ri of the inner
moment map for each Ĝri .
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We now take into account the outer action on each co-adjoint orbit; similarly to the
Fuchsian case, in order to have a well defined action on the whole connection, we again
restrict to the diagonal case

g1 = g2 = · · · = gn = g∞ = g,

where gi doesn’t depend on the spectral parameter zi . Therefore, this constant diagonal
action is the constant gauge group G action as in the Fuchsian case.

The moment map of this constant diagonal outer action takes the form

μ =
∑

j=1,...,n,∞

r j∑

i=0

Q( j)
i P( j)

i ,

which may be again seen as the sum of residues at poles. Finally, the fully reduced space
takes the form

M = Ô

r1 × Ô


r2 × · · · Ô

rn × Ô


r∞//G(n) �
[(r1+···+rn+r∞⊕

i=1

T 
glm

)
//
�

G(n)

]
//G(n).

(68)

The quotient with respect to the diagonal outer action has the same effect as in the Fuch-
sian case it specifies the residue at the infinity. However, differently from the Fuchsian
case, where this was enough to fully characterise the Fuchsian singularity at infinity,
here we have a pole of arbitrary Poincare rank r at infinity, where the connection takes
the form

A(λ) = λr−1A(∞)
r+1 +

r−1∑

k=0

A(∞)
k+2 λk + regular terms at ∞.

Wemay view the moment map as fixing the term A(∞)
1 . In the next section we will study

the isomonodomic deformations of irregular connections that are elements of the space
(68).

2.5. Fixing the spectral invariants: reduction with respect to the inner action. In this
section we compute explicitly the reduced coordinates for the co-adjoint orbits of the
quotient of Takiff algebras with respect to the inner group action on the lifted Darboux
coordinates in the case of degrees 1, 2, 3 and 4—this choice is motivated by the fact
that in the Painlevé confluence scheme the maximal pole order we have is 4. However,
the described procedure can be easily expanded for the Takiff algebra of any degree we
give a hint and some explanation in the discussion after the examples. In each example
we give explicit results in the case of sl2, since this is the case of the isomonodromic
problems for the Painlevé equations. We also provide the coordinates in the diagonal
gauge the case when the leading term is diagonal by using the additional outer action of
the gauge group G.

2.5.1. First order pole: Takiff algebra of degree 1 In this case Takiff algebra coincide
with the ordinary Lie algebra. The parametrisation in such situation was obtained in
works [5,6].
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2.5.2. Second order pole: Takiff algebra of degree 1 The Darboux parametrisation is
given by

A(z) = Q0P1
z2

+
Q0P0 + Q1P1

z
, ω = d�, � = Tr (P1 d Q1 + P0 d Q0) ,

so that the extendedphase space dimension is 4m2.Wenowwant to reduce this dimension
by solving the moment map conditions

P1Q0 = �1, P0Q0 + P1Q1 = �0

w.r.t. P0 and P1. To do this, we only need to assume that Q0 is invertible, namely
(Q0, Q1) ∈ ⊕Glm × glm . This inversion sends the Liouville form to

θ = Tr
(
�1Q

−1
0 d Q1 + �1Q

−1
0 d Q0 − �1Q

−1
0 Q1Q

−1
0 d Q0

)
,

while

A(z) �→ Q0�1Q
−1
0

z2
+
Q0�0Q

−1
0 + [Q1Q

−1
0 , Q0�1Q

−1
0 ]

z
.

We now want to reduce the dimension by 2m via the torus action Qi → Qi Di , where
Di is a diagonal matrix, that fixes the invariants of the co-adjoint orbit �0,�1. To this
aim, we find the Darboux coordinates p1, . . . pm(m−1), q1, . . . qm(m−1) explicitly in such
a way that

� = Tr
(
�1Q

−1
0 d Q1 + �0Q

−1
0 d Q0 − �1Q

−1
0 Q1Q

−1
0 d Q0

)
=

m(m−1)∑

i=1

pi d qi .

(69)

The number of unknown functions also equals to 2m(m − 1), due to the factorisa-
tion of the torus action. There are many possible choices for the Darboux coordinates
p1, . . . pm(m−1), q1, . . . qm(m−1) in this situation, our aim to find one good choice; it is
convenient to use the following change

L1 = Q−1
0 Q1,

then Liouville form transforms to

� = Tr
[
�1 d L1 + (�0 + [L1,�1]) Q−1

0 d Q0

]
.

The Liouville form is always defined up to a closed form. Since �1 is an invariant of
the co-adjoint orbit (i.e. is a constant) the term

�1 d L1 = d (�1L1)

is exact, so we may drop it. The equation for the differential form therefore simplifies
to

Tr
[
(�0 + [L1,�1]) Q−1

0 d Q0

]
=

m(m−1)∑

i=1

pi d qi ,
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which allowsus to pick ourDarboux coordinates p1, . . . pm(m−1), q1, . . . qm(m−1) in such
a way that Q0 depends only on q1, . . . qm(m−1) (i.e. Q0 is a section of a principal bundle
over the Lagrangian sub-manifold), while the entries of L1 are given by the solutions
of m(m − 1) linear equations. For example we may take the off-diagonal entries of Q0
as the coordinates on the Lagrangian sub-manifold. By using the torus action, we can
make the following choice for Q0:

Q0 =

⎛

⎜⎜⎜⎜⎜⎝

1 q1 . . . . . . qm−1
0 1 qm . . . q2m−3
... 0

. . .
. . .

...

0 . . . 0 1 qm(m−1)
2

0 . . . . . . 0 1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0
qm(m−1)

2 +1 1 0 . . . 0

qm(m−1)
2 +2 qm(m−1)

2 +3 1
. . . 0

...
...

. . .
. . .

...

q(m−1)2 . . . . . . qm(m−1) 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

For sl2 we have

�i =
(

θi 0
0 −θi

)
, Q0 =

(
1 q1
0 1

)(
1 0
q2 1

)
, L1 = 1

2θ1

(
0 −p2

p2q22 − 2θ0q2 + p1 0

)

and the matrix A(z) takes the following form

A(z) = 2θ1
z2

(
q1q2 + 1/2 − (q1q2 + 1) q1

q2 −q1q2 − 1/2

)

+
1

z

(
p1q1 − q2 p2 + θ0 −p1q21 + (2q1q2 + 1) p2 − 2θ0q1

p1 −p1q1 + q2 p2 − θ0

)
. (70)

Ifwe take into account the outer action of SL2, the leading term can be chosen in diagonal
form and we have

Q−1
1 A(z)Q1 = θ1

z2

(
1 0
0 −1

)
+
1

z

(
θ0 p2

p2q22 − 2 θ0q2 + p1 −θ0

)
.

2.5.3. Third order pole: Takiff algebra of degree 2 In this case, the parametrisation in
terms of lifted Darboux coordinates is given by

A(z) = Q0P2
z3

+
Q0P1 + Q1P2

z2
+
Q0P0 + Q1P1 + Q2P2

z
,

so that the extended phase space dimension is 6m2. The moment map is given by the
equations

P2Q0 = �2, P1Q0 + P2Q1 = �1, P0Q0 + P1Q1 + P2Q2 = �0.

Here we again use the following change of variables

L1 = Q−1
0 Q1, L2 = Q−1

0 Q2

that maps the Liouville form to

� = Tr
(
�2 d L2 + �1 d L1 − �2L1 d L1 + (�0 + [L2, �2] + [L1, �1 − �2L1]) Q−1

0 d Q0

)
.
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As in the previous case, the first 2 terms are closed differential forms, so we can drop
them. The dimension of the reduced phase space equals to 3m(m − 1) = 3N and we
consider the following parametrisation

Tr (−�2L1 d L1) =
N/2∑

i=1

pi d qi ,

Tr
[
(�0 + [L2,�2] + [L1,�1 − �2L1]) Q−1

0 d Q0

]
=

3N/2∑

i=N/2+1

pi d qi .

For simplicity, let us denote

�1 = Tr (−�2L1 d L1), �2 = Tr
[
(�0 + [L2,�2] + [L1,�1 − �2L1]) Q−1

0 d Q0

]
,

so that� = �1+�2. Now if wewill find the right parametrisation of L1, wemay choose
Q0 to be a matrix which depends only on qN/2+1, . . . q3N/2 (i.e. again Q0 depends only
on the coordinates of the Lagrangian sub-manifold) and then obtain L2 by solving a
system of linear equations. In the non-degenerate case, when�2 is a semi-simple matrix
with distinct eigenvalues ζi , we have

�1 =
∑

i< j

−ζi (L1)i j d(L1) j i − ζ j (L1) j i d(L1)i j

∑

i< j

(ζi − ζ j )(L1) j i d(L1)i j − d(ζi (L1)i j (L1) j i ) ∼
∑

i< j

(ζi − ζ j )(L1) j i d(L2)i j

and we see that a natural choice of the Darboux coordinates are the off-diagonal entries
of L1, such that

{(L1)i j , (L1)kl} = sgn( j − i)δk jδli (ζi − ζ j ).

In the case of sl2 we have

�2 =
(

θ2 0
0 −θ2

)
, L1 =

(
. . . q1
p1
2θ2

. . .

)
.

Here the diagonal part of L1 is irrelevant, since it does not contribute to �1,�2 and it
may be chosen to be zero by the torus action. Solving the linear equations for the Cartan
form �2 we obtain

�i =
(

θi 0
0 −θi

)
, Q0 =

(
1 q1
q2 1

)

L1 = 1

2θ2

(
0 (p2q2 + p3q3 − θ0)q1 − p2 +

θ1
θ2
p3

p1 − p1q1q2 + (p3q3 − θ0)q2 − 2θ1q3 0

)

Here we take in a slightly different form of Q0 respect to in the previous example for
the sake of obtaining a neater final formula. The matrix A(z) takes form

A(z) = 1

z3
1

1 − q1q2

(
θ2 (q1q2 + 1) −2 θ2q1

2 q2θ2 −θ2 (q1q2 + 1)

)
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+
1

z2
1

1 − q1q2

(
θ1q1q2 + 2 θ2q1q3 − q2 p3 + θ1 −2 q21q3θ2 − 2 θ1q1 + p3

−q22 p3 + 2 θ1q2 + 2 θ2q3 −θ1q1q2 − 2 θ2q1q3 + q2 p3 − θ1

)

+
1

z

(
p1q1 − q2 p2 − p3q3 + θ0 −p1q12 + p3q1q3 − θ0q1 + p2

−p2q22 − p3q2q3 + θ0q2 + p1 −p1q1 + q2 p2 + p3q3 − θ0

)
(71)

The diagonal gauge gives

Q−1
0 A(z)Q0 = 1

z3

(
θ3 0
0 −θ3

)
+

1

z2

(
θ1 p3

2 θ2q3 −θ1

)

+
1

z

( −p3q3 + θ0 −p2q1q2 − p3q1q3 + θ0q1 + p2
−p1q1q2 + p3q2q3 − θ0q2 + p1 p3q3 − θ0

)
(72)

Choosing a different parameterisation for Q0, i.e.

Q0 =
(
1 q1
0 1

)(
1 0
q2 1

)

the system takes the form

Q−1
0 A(z)Q0 = θ3

z3

(
1 0
0 −1

)
+

1

z2

(
θ2 −2θ3q1
p1 −θ2

)

+
1

z

(
q1 p1 + θ1 p3

p3q23 + (−2q1 p1 − 2 θ1) q3 + p2 −q1 p1 − θ1

)
.

2.5.4. Fourth order pole: Takiff algebra of degree 3 Here we provide only the result

Q−1
1 A(z)Q1 = θ4

z4

(
1 0
0 −1

)
+

1

z3

(
θ3 −2θ4q3

2θ4q4 −θ3

)

+
1

z2

(
2θ4q3q4 + θ2 (θ3 − 4θ4) q4q

2
3 − θ4q3 + p4−θ4q

3
3q

2
4

(θ3 − 4θ4) q
2
4q3 + (2θ3 − θ4) q4 + p3 − θ4q

2
3q4

3 −2θ4q3q4 − θ2

)

+
1

z

(
q3 p3 − q4 p4 + θ1 p2

p2q
2
2 − 2 p3q2q3 + 2 p4q2q4 − 2 θ1q2 + p1 −q3 p3 + q4 p4 − θ1

)
(73)

Remark 13. There is an interesting difference between poles of odd or even order. Indeed,
when the order of pole is even r + 1 = 2k, then the reduced phase space dimension is
divisible by 4, and we have a kind of polarisation. Indeed, for poles of order 2k, the
connection can be locally written as

A0

z
+ · · · A2k−1

z2k
,

and the matrices Ak, . . . , A2k−1 form a Poisson commuting family whose dimension is
half of the total dimension. Therefore they define a Lagrangian sub-manifold in the phase
space.Wecan then assume that thesematrices are parameterizedbyQ0, . . . , Qk−1, Pk, . . .
P2k−1 only. This hints at a hidden quaternionic (hyper-Kähler) structure. In the case of
poles of odd order, we will still have that Ak+1, . . . , A2k−1 form a Poisson commuting
family, but now the dimension of the subspace they define is not of half the dimension
of the total space. In this case, we may expect an analog of Sasakian structure.
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3. Isomonodromic Deformations

Let us discuss an important consequence of Theorem 8. Suppose we consider a connec-
tion on the Riemann sphere with n + 1 poles of Poincaré ranks r1, . . . , rn, r∞ and ask
about how to deform it by keeping the monodromy data constant. To answer, we have
to choose some independent deformation variables and then impose that all other quan-
tities depend on those according to the isomonodromicity condition. When all poles
are simple, their positions give us enough independent variables for generic isomon-
odromic deformations, because the number of the isomonodromic Hamiltonians equals
half of the dimension of the space of accessory parameters. When higher order poles are
present, their positions don’t give enough independent variables. Theorem 8 allows us
to introduce further r − 1 independent variables for every singularity of Poincaré rank
r , or in other words we have the following:

Corollary 9. The general element in the Takiff algebra co-adjoint orbit Ô

r has the form

r∑

i=0

Bi (t1, t2 . . . tr )

(λ − u)i+1
, (74)

with

Bi (t1, t2, . . . tr ) =
r∑

j=i

A jM(r)
i, j (t1, t2, . . . tr ), M(r)

i, j = 1

j !
d j

dε j
Pr (t, ε)

i
∣∣∣
ε=0

,

Pr (t, ε) =
r∑

i=1

εi ti ,

and the coefficients A j satisfy the Takiff algebra Poisson bracket (44).

In this paper, we therefore consider the isomonodoromic deformations for the con-
nections of the form

d

dλ
� =

n∑

i=0

⎛

⎝
ri∑

j=0

B(i)
j

(
t (i)1 . . . t (i)ri−1

)

(λ − ui ) j+1
−

r∞∑

i=1

λi−1B(∞)
i

(
t (∞)
1 , . . . t (∞)

r∞−1

)
⎞

⎠�, (75)

where the deformation parameters are the locations of the poles u1 . . . un and the co-
efficients of the Poisson Takiff algebra automorphisms t (i)j , for i = 1, . . . , n,∞ and
j = 1, . . . , ri − 1. The isomonodromic deformation condition means that the matrix
differential one from

� = du,t ��−1 =
n∑

i=1

⎡

⎣�
(0)
i d ui +

ri−1∑

j=1

�
( j)
i d t (i)j

⎤

⎦ , (76)

is a single valued holomorphic one form on CP
1 \ {u1 . . . un}. In general, the explicit

form of � may be obtained by studying the local solutions of the Eq. (75) as in the
celebrated paper by Jimbo, Miwa and Ueno [41].

In this paper we consider the isomonodromic deformations of the connections (75)
as non-autonomous Hamiltonian systems written on a suitable set of co-adjoint orbits.
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The zero curvature condition splits the isomonodromic equation into two parts: a Lax
equation that defines the dynamics on the co-adjoint orbits, and an additional relation
between the partial derivative of � w.r.t. λ and the partial derivative of the connection
with respect to deformation parameters

d

dt (i)j
A − ∂

∂λ
�

(i)
j +

[
A,�

(i)
j

]

=
(

∂

∂t (i)j
A − ∂

∂λ
�

(i)
j

)

︸ ︷︷ ︸
0

+

((
d

dt (i)j
− ∂

∂t (i)j

)
A +

[
A,�

(i)
j

])

︸ ︷︷ ︸
0

= 0.

Thanks to this, we may define the coefficients of the one form � through the following
formula:

�
(i)
j =

∫
∂A

∂t (i)j
dλ. (77)

The matrix �
(i)
j is defined up to the addition of a matrix which does not depend on λ.

Different choices of the gauge result in different constant terms we will see how to fix
this constant term in the examples Sect. 5.5.

As mentioned before, the deformation parameters t (i)1 , . . . t (i)ri , i = 1, . . . , n,∞ ap-
pear as the result of confluence and may be seen as avatars of the Schlesinger system
deformation parameters we start with. If we consider the divisor of singularities (where
we denote ∞ by un+1)

D :=
n+1∑

1

(ri + 1)ui ,

we see that the total number of deformation parameters we introduce is given via the
degree of such divisor, i.e.

d = n + 1
#of singulari ties

+
∑

ri
#irregulartimes

.

In this paper, the idea is that the number of deformation parameters doesn’t change
during the confluence procedure, or, in other words, the degree d is fixed.

Here, we want to answer an important question raised by Bertola and Harnad: what
is the relation between our deformation parameters and the Jimbo–Miwa–Ueno ones?
In [41], the number of deformation parameters depends on the degree of the singularity
divisor as well as on the rank of the connection.The number of Jimbo-Miwa deformation
parameters is not preserved during the confluence cascade. Each coalescence leads to
the appearance of additional m − 2 parameters, where m is the rank of isomonodromic
problem. Here we refer to the rank of a Lie algebra as the dimension of any of its Cartan
subalgebras h. Obviously in the case of sl2 connection, this number equals to zero and
the number of Jimbo–Miwa–Ueno deformation parameters coincides with ours.
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Let’s dwell on the sl2 case in more detail to explain the relation between our param-
eters and the ones by Jimbo–Miwa–Ueno. Consider a connection with a pole at u of
Poincaré rank r , i.e.

A ∼
λ→u

Br
zr+1

+
Br−1

zr
+ · · · B0

z
+ O(1) ∈ sl2,

where z = λ − u is the local coordinate and the matrices Bk are linear combinations
of the bare co-adjoint orbit coordinates A j and contain our deformation parameters as
specified in formula (10).

The Jimbo–Miwa–Ueno deformation parametersw j are the exponents of asymptotic
behaviour of the formal solution at the irregular pole:

� ∼
λ→u

P(z) (I + o(z)) z�0 exp

⎡

⎣−
r∑

j=1

w j

j z j
σ3

⎤

⎦ , σ3 =
(
1 0
0 −1

)
.

These w j can in fact be seen as the spectral invariants associated to the matrices Bk .
Thanks to this fact, in the case of sl2 there is a rationalmapwhich sends the Jimbo–Miwa–
Ueno deformation parameters to ours. To obtain this map explicitly, we diagonalise at
the pole λ = u and obtain the following correspondence between Jimbo–Miwa–Ueno
deformation parameters wi and our t j via

wr = θr tr1
wr−1 = θr−1t

r−1
1 + (r − 1)θr t

r−2
1 t2

. . .

wk =
r∑
j=k

θ jM(r)
k, j (t1, t2 . . . , tr )

. . .

w1 =
r∑

i=1
θi ti .

Here the θi ’s are the spectral invariants of the matrices A j , so we separate the non-
autonomous part (dependence on deformation parameters) from the spectral invariants
that determine the symplectic leaf in the phase space. Roughly speaking, this map is a
map between 2 phase spaces

ĝr → Ôr × C
r ,

which is not bi-rational—starting from the irregular point of Poincaré rank 2 we have to
deal with square roots if when we write t1 . . . tr via Jimbo-Miwa parameters w j ’s.

For higher rank, we may think about our times as a special sub-family of the Jimbo–
Miwa–Ueno isomonodromic deformations. The local solution writes as

� ∼
λ→u

P(z) (I + o(z)) z�0 exp

⎡

⎢⎢⎣−
r∑

j=1

1

j z j

⎛

⎜⎜⎝

w
( j)
1 0 . . . 0
0 w

( j)
2 . . . 0

. . . . . .

0 . . . 0 w
( j)
m

⎞

⎟⎟⎠

⎤

⎥⎥⎦
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and w
( j)
k are the Jimbo–Miwa–Ueno deformation parameters. Then our deformation

parameters are given by the following special trajectory

w
( j)
k

w
( j)
l

= const,

and may be considered as the deformation along a projective line in a space of Jimbo–
Miwa–Ueno parameters.

In the next section we will see how the general form (75) of the isomonodromic
problem with irregular singularities naturally arises during the confluence procedure.

4. Confluence Procedure

4.1. Coalescence of two simple poles. Without loss of generality, we consider conflu-
ence of un := v1 and un−1 := w, which is given by the following change of deformation
parameters

ui = ui , i = 1 . . . n − 1, v1 = w + εt1. (78)

Taking the limit ε → 0 the deformation parameter v1 tends to w, this is what is meant
by coalescence. We rewrite matrix A(λ) as

A(λ) =
n−2∑

i=1

A(i)

λ − ui
+

B

λ − w
+

C

λ − w − εt1
, B = A(n−1), C = A(n),

where B and C are introduced as a convenient notation to avoid too many indices. We
want to assume some ε expansions for the matrices B and C in order that the limit of
A(λ) as ε �→ 0 is well defined and the resulting system has a double pole at w. To this
end, observe that by rewriting the last two terms in A(λ) as

B

λ − w
+

C

λ − w − εt1
= B

λ − w
+

1

λ − w
C

(
1 − εt1

λ − w

)−1

and expanding
(
1 − εt1

λ−w

)−1
in ε we obtain

B

λ − w
+

C

λ − w − εt1
= C + B

λ − w
+

εt1
(λ − w)2

C + O(ε2).

In order to produce a second order pole, we need the following two limits to be finite:

lim
ε→0

(εC) := A(n−1)
1 �= 0, lim

ε→0
(C + B) := A(n−1)

0 ,

Assuming that A(i)’s, B and C may be expanded in the Laurent series in ε we obtain
expansions

A(i) = Ã(i) + O(ε), C = 1

ε
A(n−1)
1 + C0 + O(ε), (79)

B = −1

ε
A(n−1)
1 + B0 + O(ε), C0 + B0 = A(n−1)

0 .



Isomonodromic Deformations: Confluence, Reduction and Quantisation

Note that we have called these limits A(n−1)
0 and A(n−1)

1 respectively to adhere to the
notation of section 3.

Under these hypotheses, we can take the limit as ε → 0 and define

Ã(λ) := lim
ε→0

A(λ) =
n−2∑

i=1

Ã(i)

λ − ũi
+ t1

A(n−1)
1

(λ − w)2
+

A(n−1)
0

λ − w
. (80)

Remark 14. Observe that the number of deformation parameters has not changed after
the confluence, n − 1 of them have remained as positions of poles, but one of them
has become part of the leading term at the second order pole—this is compatible with
Theorem 8. Indeed, in the next Proposition 10 we will prove that the matrices A(n−1)

1

and A(n−1)
0 satisfy the Takiff algebra Poisson brackets. We will see that as we increase

the Poincaré rank of the poles in the confluence procedure, more and more deformation
parameters will appear in the numerators of pole expansions exactly in the way predicted
by Theorem 8.

Now let us focus on the deformation equations. The change of variables (78) trans-
forms the deformation 1-form (23) to

� = −
n−2∑

i=1

A(i)

λ − ui
d ui − A(n−1)

λ − w
dw − A(n)

λ − w − εt1
(dw + ε d t1).

Applying the expansion (79), we obtain

�̃ = lim
ε→0

� = −
n−2∑

i=1

Ã(i)

λ − ui
d ui −

(
t1

A(n−1)
1

(λ − w)2
+

A(n−1)
0

λ − w

)
dw − A(n−1)

1

λ − w
d t1.

(81)

The deformation 1-form �̃ satisfies equation (77) with Ã in place of A.

Definition 2. We call the process of taking the expansions (79) and the limits (80), (81),
1+1 confluence procedure.

The the connection A and the deformation one form � are linear in A(i)’s so the
O(ε) terms vanish during the limiting procedure. Since the Poisson structure and the
Schlesinger Hamiltonians are quadratic structures the limiting procedure becomes more
complicated. Now we explain how to tackle their confluence.

Proposition 10. The 1+1 confluence procedure gives a Poisson morphism between the
direct product of the co-adjoint orbits to the Lie algebra and the co-adjoint orbit of the
Takiff algebra:

O

1 × O


2 × · · ·O

n × O
∞

confluence−−−−−−→ O

1 × O


2 × · · ·O

n−2 × Ô


2,n−1 × O
∞.

Namely, if the matrices A(i), B,C satisfy the standard Lie–Poisson brackets (25), then
the matrices Ã(i), A(n−1)

0 , A(n−1)
1 satisfy the Poisson algebra of the coefficients for the

Takiff algebra (44), i.e.
{
Ã(i)

α , Ã( j)
β

}
= −δi j

∑

γ

χ
γ
αβ Ã

(i)
γ ,

{
Ã(i)

α , A(n−1)
0,β

}
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=
{
Ã(i)

α , A(n−1)
1,β

}
= 0 i, j �= n − 1,

{
A(n−1)
1,α , A(n−1)

1,β

}
= 0,

{
A(n−2)
1,α , A(n−1)

0,β

}
= −χ

γ
αβ A

(n−1)
1,γ .

{
A(n−1)
0,α , A(n−1)

0,β

}
= −χ

γ
αβ

(
A(n−1)
0,γ

)
, (82)

Proof. The Poisson structure (82) for the coefficients of the connection near the irreg-
ular singularity coincides with the standard Lie-Poisson bracket (44) for the co-adjoint
orbit Õ


2 of the Takiff algebra g2 � g[z]/(z2g[z]), where g[z] is a Lie algebra of the
polynomials with coefficients in g. Therefore, we need to prove that (82) arises as the
1 + 1 confluence from the standard Lie-Poisson bracket on O


n−1 × O

n . The first row

relations are straightforward and we omit the proof. To prove the relations in the second
row of (82), let us consider the Poisson relations (25) for B and C

{Cα,Cβ} = −
∑

γ

χ
γ
αβCγ , {Bα, Bβ} = −

∑

γ

χ
γ
αβBγ , {Cα, Bβ} = 0.

Inserting the expansion (79) and expanding the Poisson relations in ε, we obtain

1

ε2

{
A(n−1)
1,α , A(n−1)

1,β

}
+
1

ε

({
A(n−1)
1,α ,C0,β

}
+
{
C0,α, A(n−1)

1,β

})

+
{
C0,α,C0,β

}
+
{
A(n−1)
1,α ,C1,β

}
+
{
C1,α, A(n−1)

1,β

}
= −χ

γ
αβ

(
1

ε
A(n−1)
1,γ + C0,γ

)
+ o(ε)

1

ε2

{
A(n−1)
1,α , A(n−1)

1,β

}
− 1

ε

({
A(n−1)
1,α , B0,β

}
+
{
B0,α, A(n−1)

1,β

})

+
{
B0,α, B0,β

}−
{
A(n−1)
1,α , B1,β

}
−
{
B1,α, A(n−1)

1,β

}
= χ

γ
αβ

(
1

ε
A(n−1)
1,γ − B0,γ

)
+ o(ε)

− 1

ε2

{
A(n−1)
1,α , A(n−1)

1,β

}
+
1

ε

({
A(n−1)
1,α , B0,β

}
−
{
C0,α, A(n−1)

1,β

})

+
{
C0,α, B0,β

}
+
{
A(n−1)
1,α , B1,β

}
−
{
C1,α, A(n−1)

1,β

}
= o(ε).

Collecting different terms in ε, we obtain

ε−2 :
{
A(n−1)
1,α , A(n−1)

1,β

}
= 0, (83)

ε−1 :
{
A(n−1)
1,α ,C0,β

}
+
{
C0,α, A(n−1)

1,β

}

= −χ
γ
αβ A

(n−1)
1,γ , (84)

ε−1 :
{
A(n−1)
1,α , B0,β

}
+
{
B0,α, A(n−1)

1,β

}
= −χ

γ
αβ A

(n−1)
1,γ , (85)

ε−1 :
{
A(n−1)
1,α , B0,β

}
−
{
C0,α, A(n−1)

1,β

}
= 0, (86)

ε0 : {C0,α,C0,β
}
+
{
A(n−1)
1,α ,C1,β

}
+
{
C1,α, A(n−1)

1,β

}

= −χ
γ
αβC0,γ , (87)

ε0 : {B0,α, B0,β
}−

{
A(n−1)
1,α , B1,β

}
−
{
B1,α, A(n−1)

1,β

}

= −χ
γ
αβB0,γ (88)
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ε0 : {C0,α, B0,β
}
+
{
A(n−1)
1,α , B1,β

}
−
{
C1,α, A(n−1)

1,β

}
= 0. (89)

The term of order ε−2 in (83) proves the first relation in the second row of (82). Let us
prove the second relation. Take the 1/ε term
{
A(n−2)
1,α , B0,β

}
−
{
C0,α, A(n−2)

1,β

}
= 0 ⇐⇒

{
C0,α, A(n−2)

1,β

}
=
{
A(n−2)
1,α , B0,β

}

and put it in the Poisson relation between A(n−1)
1 and C0. We get

−χ
γ
αβ A

(n−2)
1,γ =

{
A(n−2)
1,α ,C0,β

}
+
{
C0,α, A(n−2)

1,β

}
=
{
A(n−2)
1,α ,C0,β

}
+
{
A(n−2)
1,α , B0,β

}

=
{
A(n−2)
1,α ,C0,β + B0,β

}
= −χ

γ
αβ A

(n−2)
1,γ

which proves the second relation. Now let us compute the last Poisson bracket
{
C0,α + B0,α,C0,β + B0,β

} = {
C0,α,C0,β

}
+
{
C0,α, B0,β

}
+
{
B0,α,C0,β

}
+
{
B0,α, B0,β

}
.

Using the ε0-terms from (83) for
{
C0,α,C0,β

}
and

{
B0,α, B0,β

}
, we obtain

{
C0,α + B0,α,C0,β + B0,β

} = −χ
γ
αβ(C0,β + B0,β) −

{
A(n−2)
1,α ,C1,β

}

−
{
C1,α, A(n−2)

1,β

}

+
{
A(n−2)
1,α , B1,β

}

+
{
B1,α, A(n−2)

1,β

}

+
{
C0,α, B0,β

}
+
{
B0,α,C0,β

}
. (90)

The last ε0-term in (83) leads to the following relations

{
C0,α, B0,β

} =
{
C1,α, A(n−2)

1,β

}
−
{
A(n−2)
1,α , B1,β

}

{
B0,α,C0,β

} =
{
A(n−2)
1,α ,C1,β

}
−
{
B1,α, A(n−2)

1,β

}

which cancel all terms in the right-hand side of (90) except the first term, so we obtain
{
C0,α + B0,α,C0,β + B0,β

} = −χ
γ
αβ(C0,γ + B0,γ ),

which concludes the proof. ��
Observe that the relations (83) contain more information than we need, and that one

could actually try to come up with a Poisson algebra involving all coefficients Bk , Ck in
the expansion (79). However we are only interested in the Poisson subalgebra generated
by A(n−1)

1 , A(n−1)
0 = C0 + B0 and Ã(i) for i = 1, . . . , n − 2. The main feature of this

subalgebra is that it does not depend on a choice of a Poisson algebra for the coefficients
Bk and Ck for k > 1. We call this sub-algebra Isomonodromic Poisson Algebra (IPA),
since these are the only elements which survive in the isomonodromic problem after the
confluence procedure.
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Proposition 11. The 1 + 1 confluence procedure produces the isomonodromic Hamilto-
nians giving the zero curvature condition

du Ã − d

dλ
�̃ + [ Ã, �̃] = 0

as equation of motion.

Proof. To prove this, we start from the extended symplectic form for the Schlesinger
equations:

ωKKS +
n∑

i=1

dui ∧ dHi .

Here ωKKS is the symplectic form which corresponds to the standard Lie–Poisson struc-
ture on the direct product of the co-adjoint orbits. Thanks to Proposition 10, the standard
Lie–Poisson bracket tends to the Takiff algebra Poisson bracket, therefore ωKKS tends

to the corresponding symplectic form. Let us concentrate on the
n∑

i=1
d ui ∧ d Hi part.

This part transforms to

n∑

i=1

d ui ∧ d Hi →
n−2∑

i=1

d ui ∧ d Hi + dw ∧ d (Hn−1 + Hn) + d t1 ∧ d (εHn) .

Since we are working on a symplectic leaf of the standard Lie–Poisson bracket, the
central elements, or Casimirs, can be considered as fixed scalars, i.e. the differential d
acts on them as a zero. To find the Hamiltonians of the confluent dynamic we have to
calculate the limit of the "time-dependent" part of the symplectic structure as ε goes to
zero. In other words, we have to find

d H̃i := lim
ε→0

d Hi , d H̃n−1 := lim
ε→0

d(Hn−1 + Hn), d H̃n := lim
ε→0

ε d Hn . (91)

To compute these limits, we can treat the Hamiltonians up to addition of Casimirs. This
allows us to use the Casimirs to regularise parts of the Hamiltonains that are singular in
ε. Therefore all = signs in the rest of the proof are intended as equal up to Casimirs. For
i < n − 2 we have

H̃i := lim
ε→0

Hi =
n−2∑

j �=i

Tr
(
Ã(i) Ã( j)

)

ui − u j
+ t1

Tr
(
Ã(n−1)
1 Ã(i)

)

(ui − w)2
+
Tr
(
Ã(n−1)
0 Ã(i)

)

ui − w
, (92)

for i = n − 1 we have

H̃n−1 = lim
ε→0

(Hn−1 + Hn) = lim
ε→0

∑

j<n−2

Tr Ã( j)

(
A(n−1)

w − u j
+

A(n)

w + εt1 − u j

)

=
∑

j<n−1

Tr Ã( j)

(
Ã(n−1)
0

w − u j
− t1

Ã(n−1)
1

(w − u j )2

)
. (93)
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For i = n

H̃n = lim
ε→0

εHn .

Substituting coalescence expansions we get

εHn =
⎡

⎣
∑

j<n−2

Tr Ã( j)A(n−2)
1

w − u j
+ O(ε)

⎤

⎦ +
Tr A(n)A(n−1)

t1
. (94)

The last term in (94) contains terms of order 1/ε and 1/ε2. :

Tr A(n)A(n−1)

ũn
= 1

ũn

(
− 1

ε2
Tr
(
Ã(n−1)
1

)2
+
1

ε
Tr
(
Ã(n−1)
1 B0 − C0 Ã

(n−1)
1

)
+ Tr (B0C0)

)

+
1

ũn
Tr
(
Ã(n−1)
1 B1 − C1 Ã

(n−1)
1

)

The 1/ε2 term is a Casimir of the Poisson structure, so we may drop it.
Let us show that also the 1/ε-term is aCasimir and that, after eliminating theCasimirs,

εHn → H̃n + O(ε) where

H̃n =
∑

j<n−2

Tr Ã( j)A(n−2)
1

w − u j
+

1

t1

Tr
(
Ã(n−1)
0

)2

2
. (95)

To see this, let us remind that the Casimirs of the Poisson algebra in the Fuchsian case

are Tr
(
A(i)

)k
, so the function

1

2
Tr
(
A(n) + A(n−1)

)2

differs from the last term of (94)

Tr A(n)A(n−1).

by a Casimir. Since the Hamiltonians are defined up to the addition of a Casimir, we
obtain

εHn =
∑

j<n−2

Tr Ã( j)A(n−2)
1

w − u j
+
Tr
(
A(n) + A(n−1)

)2

2t1
+ O(ε)

=
∑

j<n−2

Tr Ã( j)A(n−2)
1

w − u j
+

1

t1

Tr
(
Ã(n−1)
0

)2

2
+ O(ε).

Taking the limit as ε → 0 we obtain the Hamiltonian (95). ��
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4.2. Irregular singularities arising as confluence cascades.. In this section we consider
an irregular singularity of arbitrary Poincaré rank r as the result of the confluence cascade
of r simple poles v1, v2 . . . vr with some chosen simple pole u. At the first step, we send
v1 to u and create second order pole as in the previous subsection. Then we do the same
for v2—we collide it with the second order pole at u and create a pole of order 3. In such
a way, we continue this procedure, so at the l-th step we collide the simple pole vl with
the pole of order l at u to create a new pole of order l +1. Finally, a the final r -th step, we
obtain a pole of order r + 1, i.e. of Poincaré rank r . During this procedure, the poles vl ’s
that disappear give rise to deformation parameters tl ’s for the irregular isomonodromic
problem4. These deformation parameters appear explicitly in the coefficients of the local
expansion of the connection near the singularity u. In the sub-section 4.2.1, we prove
Theorem 2 that tells us that this dependence is the one described in Corollary 9. Before
attacking that proof, let us formalise the definition of confluence:

Definition 3. The limiting procedure described in the hypotheses of Theorem 2 is called
r + 1 confluence.

Observe that as a result of the 1+1 confluence in subsection 4.1we obtain a connection
of the form (12) with r = 2. We can then apply the 1 + 2 confluence to this and again
obtain a connection of the form (12) with r = 3 and so on. Therefore we can give the
following recursive definition:

Definition 4. The procedure of applying Theorem 2 recursively r times is called con-
fluence cascade of r + 1 simple poles on the Riemann sphere.

As mentioned at the beginning of this section, the inductive hypothesis on the local
form of the connection (12) is not restrictive. Indeed, we expect the local form of a
connection with a pole of order r at u to be given by an element in the Takiff algebra
co-adjoint orbit Ô


r with some spectral parameter z = λ − u. However, if we want to
keep the number of independent variables to be maximal, we need to introduce some
extra variables ti by hand in such a way that they can be treated as independent variables.
In Corollary 9, we proved that the only way to do this is by taking precisely the form
(12). Therefore, Theorem 2 is equivalent to the following result:

Theorem 12. Assume that u is a singularity of Poincaré rank r obtained by the conflu-
ence of r + 1 simple poles. Then the coefficients of the local expansion in a disk around
u

A(λ) ∼
r∑

i=0

Bi (t1, . . . tr )

(λ − u)i+1
+ O((λ − u)0),

take the form

Bi (t1, t2, . . . tr ) =
r∑

j=i

B[ j]M(r)
i, j (t1, t2, . . . tr ),

where

M(r)
k, j =

|α|=k∑

w(α)= j

k!
α1!α2! . . . αr !

(
r∏

i=1

tαii

)
, M(r)

k> j := 0,

4 The confluence procedure is not symmetric in vi , however different choices of the order of the coalescence
cascade will lead to the action of the permutation group on the tl ’s, so we fix this ordering once for all.
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|α| =
r∑

i=1

αi , w(α) =
r∑

i=1

i · αi ,

and B[ j]
i ’s hold the following Poisson relations

{(
B[k])

α
,
(
B[p])

β

}
=
{−χ

γ
αβ

(
B[k+p])

γ
k + p ≤ r

0 k + p > r,
(96)

where χ
γ
αβ are the structure constants of the corresponding Lie algebra.

We want to underline here that the Poisson structure (96) gives rise to the Takiff
co-algebra Poisson structure on the coefficients of the local expansion, i.e

{
Bi (t1, . . . tr )α, Bj (t1, . . . tr )β

} = −
∑

γ

χ
γ
αβBi+ j (t1, . . . tr )γ . (97)

However, in formula (97) the dependence on the deformation parameters is implicit,
while (96) contains information about the explicit dependence on the variables ti ’s.

To motivate the formulae appearing in the statement of this theorem, before proving
it, we introduce some preliminaries on the confluence procedure and on the algebraic
structures that appear during coalescence.

4.2.1. The algebra of the weighted monomials and associated polynomials. The aim of
this subsection is to collect some useful algebraic relations involving the coefficients
t1, . . . , tr that arise during the confluence procedure and describe the general elements
of the Takiff co-algebra with respect to the Poisson automorphisms.

In order to prove Theorem 2, in the neighborhood of a simple pole vr with a pole w

of Poincaré rank r we take the following expansion

vr = w + Pr (t, ε) = w +
r∑

i=1

tiε
i .

The powers of the polynomial Pr (t, ε) play a significant role since they appear in the
following expansion

C

λ − vr
= C

λ − w

(
1 − Pr (t, ε)

λ − w

)−1

= C

λ − w

(
1 +

Pr (t, ε)

λ − w
+ · · · + Pr (t, ε) j

(λ − w) j
+ · · · + Pr (t, ε)r

(λ − w)r

)
+ O(εr+1).

Eachpower of Pr (t, ε)maybe seen as a polynomial in εwith coefficients inC[t1, t2 . . . tr ]

Pr (t, ε)
r = tr1ε

r + O(εr+1).

Because the aim of the confluence is to create a pole of Poinceré rank r + 1, we need
the coefficeints (λ − w)−r−2 to survive, therefore, we have to require C to be a Laurent
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polynomial in ε starting from the power−r . Taking this fact into account, it is important
to understand how each power of Pr (t, ε) expands via ε

Pr (t, ε)
i mod εr+1 =

r∑

j=i

M(r)
i,k (t1, . . . tr )ε

k = M(r)
i,i (t1, . . . tr )ε

i + · · · +M(r)
i,r (t1, . . . tr )ε

r ,

where

M(r)
i,k (t1, . . . tr ) = 1

k!
d

dε
Pr (t, ε)

i
∣∣∣
ε=0

.

The following simple Lemma calculates an explicit formula for M(r)
i, j (t1, . . . tr ) and

gives some useful identites.

Lemma 9. M(r)
i,k is a homogeneous polynomial in t1 . . . tr of degree i for any k given by

M(r)
i,k (t1, . . . tr ) =

|α|=i∑

w(α)=k

i !
α1!α2! . . . αr !

⎛

⎝
r∏

j=1

t
α j
j

⎞

⎠ , w(α) =
r∑

j=1

jα j , |α| =
r∑

j=1

α j .

The polynomials M(r)
i,k satisfy the following identities

M(r+1)
i,k = M(r)

i,k , ∀k ≤ r, M(r+1)
i,r+1 = t ir+1 (98)

and

M(r)
j,k =

k∑

p=0

[
M(r)

j−1,p · M(r)
i,k−p +M(r)

j−i,k−p · M(r)
i,p

]
, ∀i ≤ j. (99)

Note that the function w(α), that we call weight, can be calculated by the following
formula

w

(
n∏

i=1

tαii

)
= (α1, α2, . . . αn)

⎛

⎜⎝

1
2
..

n

⎞

⎟⎠ =
n∑

k=1

kαk . (100)

The weights are elements in the semi-group of homomorphism from the semi-group of
monomials in the variables t1, . . . tr to the (Z≥0,+), in fact:

w(θ · η) = w(θ) + w(η).

Remark 15. Instead of considering the polynomials Pr (t1, . . . tr ), we might consider the
formal power series

P(∞)(ε, t) =
∞∑

i=1

tiε
i ,

and truncate all expansions at εr+1. The result will be the same, but such approach
probably clarifies the recursive nature of the confluence procedure. In similar way, the
upper triangular matrix M(r) with entries M(r)

i,k given in (11) can be considered as as
a sub-matrix of size r × r in the upper left corner of some infinite dimensional upper
triangular “master" matrix M(∞) with entries given by

M(∞)
j,r = 1

r !
dr

dεr
P(∞)(ε, t) j

∣∣∣
ε=0

.
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4.2.2. Proof of the Theorems 12 and 2 We proceed by induction. Here we will start
with the proof of the explicit dependence of the local expansion on ti ’s and then we will
handle the Poisson structure.

The statement of the theorem is true for r = 0, 1, i.e. the Fuchsian case and the case
of a pole of order 2. This was proven in subsection 4.1. Now let the statement be true
for the irregular singularity of Poincaré rank r − 1. Adding another simple pole vr , we
consider the following connection

A =
r−1∑

i=0

Bi (t1, t2 . . . tr−1)

(λ − w)i+1
+

C

λ − vr
+ · · · , Bi =

r−1∑

j=i

B[ j]M(r−1)
i, j ,

where the dots denote regular terms in (λ−w) and (λ−v1), with the following behaviour
of vr

vr = w +
r∑

j=1

t jε
j , C =

∞∑

j=−r

C [i]εi .

Expanding A with respect to ε at r ’th order we obtain

A = C [−r ]tr1
(λ − w)r+1

+
r−1∑

i=0

Bi + CPr (t, ε)i

(λ − w)i+1
+ · · · .

Using the formula (98), the coefficients Bi expand via polynomials M(r)
i, j giving the

following

Bi + CPr (t, ε)
i = C [−r ]M(r)

i,r +
r−1∑

j=i

(
B[ j] + ε jC

)
M(r)

i, j .

Since the confluence procedure requires the existence of the limit ε → 0, the negative
powers of ε should vanish, so we obtain the expansions for the coefficients A(r)

j in the
form

B[k] = −
−(k+1)∑

m=−r

C [m]

εm+k + B[k,0] +
∞∑

l=1

B[k,l]εl .

Using these expansions and taking the ε → 0 limit, we obtain

A =
r+1∑

i=1

B̃i (t1 . . . tr )

(λ − u)i
+ · · · ,

where B̃i ’s are given by (15), which finishes the proof of the first part of the theorem.
Now we prove that the Poisson structure for the coefficient of the local expansion of

the connection near an irregular singularity, which arises after confluence procedure is
the Poisson structure given by (96).
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Again we use induction. The statement is obvious in case when r = 0, and we have
previously proved that it holds for r = 1. Using the previous results we consider the
same coalescence

A =
r−1∑

i=0

Bi (t1, t2 . . . tr−1)

(λ − w)i+1
+

C

λ − vr
+ · · · =

r∑

i=0

B̃i
(λ − w)i+1

where B̃i is given by (15). The expansions take the same form

C =
∞∑

j=−r

C [i]εi , B[k] = −
−(k+1)∑

m=−r

C [m]

εm+k + B[k,0] +
∞∑

l=1

B[k,l]εl .

In order to get rid of the indices let us use the following notation

V = B[k], W = B[l], U = B[k+l].

In the case when the indices on the right hand sides are out of bound we assume that the
values are zero. The Poisson relations are

{Vα,Wβ } = −χ
γ
αβUγ , {Cα,Cβ } = −χ

γ
αβCγ , {Cα, Vβ } = {Cα,Wβ } = {Cα,Uβ } = 0

and the expansions are

C = C [−r ]

εr
+
C [−r+1]

εr−1 + · · · + C [−1]

ε
+ C [0] +

∞∑

i=1

C [i]εi (101)

V = −C [−r ]

εr−k
− C [−r+1]

εr−k−1 − · · · − C [−k+1]

ε
+ V [0] +

∞∑

i=1

V [i]εi . . . (102)

W = −C [−r ]

εr−l
− C [−r+1]

εr−l−1 − · · · − C [−l+1]

ε
+W [0] +

∞∑

i=1

W [i]εi . . . (103)

U = − C [−r ]

εr−k−l
− C [−r+1]

εr−k−l−1 − · · · − C [−k−l+1]

ε
+U [0] +

∞∑

i=1

U [i]εi . (104)

Due to the confluence formula we want to prove that the following Poisson relation
holds

{
V [0]

α + C [−k]
α ,W [0]

β + C [−l]
β

}
=
{
V [0]

α ,W [0]
β

}
+
{
V [0]

α ,C [−l]
β

}

+
{
C [−k]

α ,W [0]
β

}
+
{
C [−k]

α ,C [−l]
β

}
= −χ

γ
αβ

(
U [0]

γ + C [−k−l]
γ

)
.

Taking the corresponding ε-terms of the expansions of the Poisson relations we get

Res
ε=0

ε0−1 {Vα,Wβ

} :
{
V [0]

α ,W [0]
β

}
−

r−l∑

i=1

{
V [i]

α ,C [−i−l]
β

}
−

r−k∑

i=1

{
C [−i−k]

α ,W [i]
β

}
= −χ

γ
αβU

[0]
γ ,

(105)



Isomonodromic Deformations: Confluence, Reduction and Quantisation

Res
ε=0

εl−1 {Vα,Cβ

}

:
{
V [0]

α ,C [−l]
β

}
+

r−l∑

i=1

{
V [i]

α ,C [−i−l]
β

}
−

r−k∑

i=1

{
C [−i−k]

α ,C [i−l]
β

}
= 0, (106)

Res
ε=0

εk−1 {Cα,Wβ

}

:
{
C [−k]

α ,W [0]
β

}
+

r−k∑

i=1

{
C [−i−k]

α ,W [i]
β

}
−

r−l∑

i=1

{
C [i−k]

α ,C [−i−l]
β

}
= 0 (107)

Res
ε=0

εk+l

{
Cα,Cβ

}

ε

:
{
C [−k]

α ,C [−l]
β

}
+

r−k∑

i=1

{
C [−k−i]

α ,C [i−l]
β

}
+

r−l∑

i=1

{
C [−k+i]

α ,C [−i−l]
β

}
= (108)

= −χ
γ
αβC

[−l−k]
γ . (109)

Finally, taking the sum of the relations in (107) we get the desired Poisson structure
{
V [0]

α ,W [0]
β

}
+
{
V [0]

α ,C [−l]
β

}
+
{
C [−k]

α ,W [0]
β

}
+
{
C [−k]

α ,C [−l]
β

}
= −χ

γ
αβ

(
U [0]

γ + C [−l−k]
γ

)

4.3. Confluent Hamiltonians. As we saw in Sect. 4.1, in the case of the 1+1 confluence,
the confluent Hamiltonians can be obtained as the limits of some functions on a phase
space—linear combinations of the initial Hamiltonians with coefficients depending on a
small parameter ε. Moreover the procedure of taking such limit requires the introduction
of some shifts by Casimirs, since the Hamiltonians are defined up to Casimir element
of the Poisson algebra. Such Casimir normalisation may be exploited in the case of the
confluence for the higher order poles, however, this procedure becomes very heavy. In
this section, we calculate these limits using residue calculus. Let us start by explaining
these limits of the Hamiltonians in the 1 + 1 confluence procedure; we want to calculate
limits in (91):

d H̃i := lim
ε→0

d Hi , d H̃n−1 := lim
ε→0

d(Hn−1 + Hn), d H̃n := lim
ε→0

ε d Hn .

The Fuchsian Hamiltonians (27) can be written in the following form

Hui = 1

2

∮

�ui

Tr
(
A2
)
d λ, (110)

where�ui is a contour that contains no singularities except ui . Since the matrix A admits
a finite limit as ε → 0, the integrand has a finite limit. When ui �= v1, u, we can always
deform �ui in such a way that the coalescence of v1 and u does not affect the contour
of integration. This allows us to switch the limit and the integration operations, which
gives the formula for the confluent Hamiltonian

H̃ui = 1

2

∮

�ui

Tr
(
Ã2
)
d λ, ui �= t1, u. (111)
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Fig. 2. Poles and contours confluence procedure

Let us now deal with the limit of Hw + H1. Because both contours �w and �1 will
depend on ε, we cannot calculate the limits of Hw and H1 separately. However, we can
calculate the limit of the sum due to

Hu + Hv1 = 1

2

∮

�w

Tr
(
A2
)
d λ +

1

2

∮

�v1

Tr
(
A2
)
d λ = 1

2

∮

�w∪�v1

Tr
(
A2
)
d λ,

where the last equality holds since the integrands in both integrals are the same and
�u ∪ �v1 denotes the contour obtained by merging �u and �1 as illustrated in Fig. 2.
Such contour may be deformed to the contour �̃u , such that the coalescent singularities
are located inside this contour and the confluence doesn’t affect the contour itself. Using
the same arguments as before we obtain that

H̃u = lim
ε→0

1

2

∮

�w∪�v1

Tr
(
A2
)
d λ,= 1

2

∮

�w

Tr
(
Ã2
)
d λ. (112)

In order to obtain H̃1 we consider the following sum of Casimirs

1

2

∮

�u

(λ − u)Tr
(
A2
)
d λ +

1

2

∮

�v1

(λ − v1)Tr
(
A2
)
d λ

which may be put to zero since the Hamiltonians are defined up to Casimirs. Expanding
v1 in ε we obtain

1

2

∮

�u

(λ − u)Tr
(
A2
)
d λ +

1

2

∮

�v1

(λ − u)Tr
(
A2
)
d λ − t1ε

1

2

∮

�v1

Tr
(
A2
)
d λ

= 1

2

∮

�u∪�v1

(λ − u)Tr
(
A2
)
d λ − t1εH1 = 0.
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The relation written above finally gives us

H̃1 = 1

2t̃1

∮

�u

(λ − u)Tr
(
Ã2
)
d λ = Res

λ=u

[
(λ − u)

t1
Tr

(
Ã2

2

)]
. (113)

Let us now add one more simple pole to w using the confluence, by a similar com-
putation as above, we obtain the following isomonodromic Hamiltonians

Hui = Res
λ=ui

Tr

(
A2

2

)
, Hu = Res

λ=u
Tr

(
A2

2

)

H1 = Res
λ=u

([
(λ − u)

t1
− t2(λ − u)2

t31

]
Tr

(
A2

2

))
, H2 = Res

λ=u

[
(λ − u)2

t21
Tr

(
A2

2

)]
.

The form of the Hamiltonians for t1 and t2 looks quite bizarre, but we may obtain them
by solving the following linear system

M(2)
(
H1
H2

)
=
(
t1 t2
0 t21

)(
H1
H2

)
=
(
S1
S2

)
, Si = 1

2

∮

�u

(λ − u)iTr A2 d λ.

Here M(2) is a matrix which entries were already introduced in (11).

We now prove Theorem 3:

Theorem 13. Let u be a pole of a connection A with Poincaré rank r , which is the result
of confluence of r simple poles with the simple pole u. Then the confluent Hamiltonians
H1, . . . , Hr which correspond to the times t1, . . . tr are defined as follows:

⎛

⎜⎝

H1
H2
. . .

Hr

⎞

⎟⎠ =
(
M(r)

)−1

⎛

⎜⎜⎝

S(u)
1
S(u)
2
. . .

S(u)
r

⎞

⎟⎟⎠ , (114)

where

S(u)
k = 1

2

∮

�u

(λ − u)kTr A2 d λ (115)

are spectral invariants of order i in u and the matrix M(r) has entries M(r)
k, j given by

(11). The Hamiltonian Hu corresponding to the time u is instead given by the standard
formula

Hui = 1

2
res

λ=ui
Tr A(λ)2.
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Proof. We use induction to prove this theorem. We already showed that the statement
holds for r = 2 and it is trivial in case when r = 1. Now we want to prove that if the
statement of the theorem holds for rank r it is also true for rank r + 1. The confluence
expansion

vr+1 = u + Pr+1(t, ε) = u +
r+1∑

i=1

εi ti

sends the extended symplectic form

ω = d t1 ∧ d H1 + · · · + d tr ∧ d Hr + d u ∧ d Hu + d vr+1 ∧ d Hr+1 + · · ·
(where the terms that are not changed in the confluence procedure are omitted), to

dt1 ∧ d(H1 + εHr+1) + · · · + dtr ∧ d(Hr + εr Hr+1)

+ dtr+1 ∧ d(εr+1Hr+1) + du ∧ d(Hu + Hr+1) + · · · =
that must be equal to

d t1 ∧ d H̃1 . . . d tr ∧ d H̃r + d tr+1 ∧ d H̃r+1 + d u ∧ d H̃u + · · · .

Therefore, we must find the limits

H̃u = lim
ε→0

(Hu + Hr+1) , H̃k = lim
ε→0

(
Hk + εk Hr+1

)
, k = 1 . . . r,

H̃r+1 = lim
ε→0

εr+1Hr+1.

The first limit is quite simple and may be obtained via the union of contours which we
already described before. To find the other limits, let us consider the relation

∮

�u

(λ − u)iTr
A2

2
d λ +

∮

�r+1

(λ − vr+1)
iTr

A2

2
d λ = S(u)

i mod (Casimirs)

expanding vn+1, we obtain

∮

�u∪�r+1

(λ − u)iTr
A2

2
d λ −

∮

�r+1

φ(λ)Tr
A2

2
= S(u)

i mod (Casimirs) ,

where φ(λ) is a holomorphic function inside �r+1 which is given by

φ(λ) = (λ − u)i − (λ − u − Pr+1(t, ε))
i .

Since φ(λ) has no zeros at vr+1 we have

∮

�r+1

φ(λ)Tr
A2

2
= φ(u + Pr+1(t, ε))

∮

�r+1

Tr
A2

2
= Pr+1(t, ε)

i
∮

�r+1

Tr
A2

2
= Pr+1(t, ε)

i Hr+1.



Isomonodromic Deformations: Confluence, Reduction and Quantisation

Finally, we obtain the following identity:
∮

�u∪�r+1

(λ − u)iTr
A2

2
d λ − Pr+1(t, ε)

i Hr+1 = S(u)
i mod (Casimirs) . (116)

In the case i = r + 1, S(u)
r+1 is a Casimir due to the formula (51), therefore we have

∮

�u∪�r+1

(λ − u)r+1Tr
A2

2
d λ = Pr+1(t, ε)

r+1Hr+1 mod (Casimirs) .

The left hand side of this identity has a finite limit when ε goes to 0. Indeed, since the
contour contains both u and vr+1 the confluence procedure doesn’t affect it and the only
dependence in ε is in A. According to Theorem 2, A has a finite limit, the same has
Tr A2, so we have that

lim
ε→0

∮

�u∪�r+1

(λ − u)r+1Tr
A2

2
d λ =

∮

�u∪�r+1

(λ − u)r+1 lim
ε→0

Tr
A2

2
d λ

=
∮

�u

(λ − u)r+1Tr
Ã2

2
d λ = S̃(u)

r+1,

where S̃(u)
r+1 is a spectral invariant of the confluent system with connection Ã. Since after

the confluence, the order of pole increases to r +2, such spectral invariant is not a Casimir
for the confluent system. This means, that the limit of Pr+1(t, ε)r+1Hr+1 up to Casimirs
exists and equals to S̃(u)

r+1. On the other hand we have

Pr+1(t, ε)
r+1Hr+1 =

(
tr+11 εr+1 + O(εr+2)

)
Hr+1,

and since the limit exists up to Casimirs we get that

Hr+1 mod (Casimirs) = S̃(u)
r+1

εr+1
+

∞∑

i=−r

H [i]
r+1ε

i ,

so in principle Hr+1 may have terms of lower order than 1/εr+1, but these terms have to
be Casimirs. Considering the relations (116) for i = 1 . . . r + 1 as a linear system, we
obtain

⎛

⎜⎜⎜⎜⎝

S̃1
S̃2
S̃3
. . .

S̃r+1

⎞

⎟⎟⎟⎟⎠
− M(r+1)

⎛

⎜⎜⎜⎝

ε

ε2

ε3

. . .

εr+1

⎞

⎟⎟⎟⎠ Hr+1 =

⎛

⎜⎜⎜⎝

S1
S2
. . .

Sr
0

⎞

⎟⎟⎟⎠ mod (Casimirs) (117)

where

S̃i =
∮

�u∪�r+1

(λ − u)iTr
A2

2
d λ, Si =

∮

�u

(λ − u)iTr
A2

2
d λ.
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Note that the contours in the definition of S̃i are not affected by the confluence procedure.
Using the same arguments as above, we compute the limits of these integrals, which are

lim
ε→0

S̃i = S̃(u)
i =

∮

�u

(λ − u)iTr
Ã2

2
d λ,

where S̃(u)
i denote the spectral invariants of the confluent system with connection Ã.

The crucial point here is that the matrixM(r+1) containsM(r) as r + 1, r + 1 minor,
i.e.

M(r+1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

M(r)

tr+1
...
...

0 0 . . . 0 tr+11

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Now let us consider the following matrix

C =

⎛

⎜⎜⎜⎜⎜⎝

(M(r)
)−1

0
...
...

0
0 0 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎠

and let us act via C on the equation (117) from the left. Then we obtain

C S̃ =

⎛

⎜⎜⎜⎜⎝
Ir

...

...

0 0 . . . 0 tr+11

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

εHr+1
ε2Hr+1

. . .

εnHr+1
εn+1Hr+1

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

H1
H2
. . .

Hr
0

⎞

⎟⎟⎟⎠ =

=

⎛

⎜⎜⎜⎜⎝
Ir

...

...

0 0 . . . 0 tr+11

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

εHr+1 + H1
ε2Hr+1 + H2

. . .

εr Hr+1 + Hr

εr+1Hr+1

⎞

⎟⎟⎟⎠ = CM(r+1)

⎛

⎜⎜⎜⎝

εHr+1 + H1
ε2Hr+1 + H2

. . .

εr Hr+1 + Hr

εn+1Hr+1

⎞

⎟⎟⎟⎠ .

In this way we have arranged the entries of equation (117) in such a way that the left
hand side has a nice limit as ε goes to zero (the confluence of points is inside the contour
of integration for S̃i ). On the right hand side we have the functions whose limits we want
to find. Finally, multiplying by C−1 from the left we obtain

M(r+1)

⎛

⎜⎜⎜⎜⎝

H̃1

H̃2
. . .

H̃r

H̃r+1

⎞

⎟⎟⎟⎟⎠
= M(r+1) lim

ε→0

⎛

⎜⎜⎜⎝

εHr+1 + H1
ε2Hr+1 + H2

. . .

εr Hr+1 + Hn

εr+1Hr+1

⎞

⎟⎟⎟⎠
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= lim
ε→0

⎛

⎜⎜⎜⎜⎝

S̃1
S̃2
S̃3
. . .

S̃r+1

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

S̃1
S̃2
S̃3
. . .

S̃r+1

⎞

⎟⎟⎟⎟⎠

which concludes the proof. ��
Remark 16. The matrixM(r) is automatically upper triangular matrix, so it is quite easy
to solve such a system for any reasonable n.

We may consider Hamiltonians which are related to poles locations as spectral in-
variants S(u)

0 . Then it is easy to extend formula from (114) as follows

N (r)

⎛

⎜⎝

H0
H1
. . .

Hr

⎞

⎟⎠ =

⎛

⎜⎜⎝

S(u)
0
S(u)
1
. . .

S(u)
r

⎞

⎟⎟⎠ , N (r) =

⎛

⎜⎜⎝

1 0 . . . 0
0
...

0

M(r)

⎞

⎟⎟⎠ .

4.4. Examples of Hamiltonians. In order to see all the features of the obtained Hamil-
tonians, we consider a connection with 3 simple poles at 0, 1 and ∞, and one irregular
singularity at some point u. The simplest example is

A(λ) = A(0)

λ
+

A(1)

λ − 1
+

A(u)
0

λ − u
+

t1A
(u)
1

(λ − u)2
. (118)

The explicit formulas for the Hamiltonians are

Hu = Tr

[
A(u)
0

(
A(0)

u
+

A(1)

u − 1

)
− t1A

(u)
1

(
A(1)

(u − 1)2
+

A(0)

u2

)]
(119)

H1 = Tr

[
A(u)
1

(
A(0)

u
+

A(1)

u − 1

)
+

A(u)
0 A(u)

0

2t1

]
(120)

In the lifted Darboux coordinates, the Hamiltonians take the form

Hu = Tr
(
Q(u)

0 P(u)
0 + Q(u)

1 P(u)
1

)(Q(0)P(0)

u
+
Q(1)P(1)

u − 1

)

−t1Q
(u)
0 P(u)

1

(
Q(1)P(1)

(u − 1)2
− Q(0)P(0)

u2

)
(121)

H1 = Tr
Q(0)P(0)Q(u)

0 P(u)
1

u
+
Q(1)P(1)Q(u)

0 P(u)
1

u − 1

+

(
Q(u)

0 P(u)
0 + Q(u)

1 P(u)
1

)2

2t1
. (122)
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Using the lifted Darboux coordinates, it is a straightforward computation to check that
the Hamiltonians Poisson commute, moreover we may check that the cross-derivative
w.r.t. u and t1 is zero, i.e.

∂

∂t1
Hu − ∂

∂u
H1 = 0,

which tells us that the τ -function

d ln τ = Tr

(
A(u)
0

(
A(0)

u
+

A(1)

u − 1

)
− t1A

(u)
1

(
A(1)

(u − 1)2
− A(0)

u2

))
d u

+Tr

(
A(u)
1

(
A(0)

u
+

A(1)

u − 1

)
+

A(u)
0 A(u)

0

2t1

)
d t1

is defined correctly. If we go further and consider a pole of Poincaré rank 2 at u, the
matrix A(λ) takes form

A(λ) = A(0)

λ
+

A(1)

λ − 1
+

A(u)
0

λ − u
+
t1A

(u)
1 + t2A

(u)
2

(λ − u)2
+

t21 A
(u)
2

(λ − u)3
. (123)

Then, the Hamiltonians write as

Hu = Tr

[
A(u)
0

(
A(0)

u
+

A(1)

u − 1

)
− t1A

(u)
1

(
A(0)

u2
+

A(1)

(u − 1)2

)

+A(u)
2

(
t21 A

(0)

u3
+

t21 A
(1)

(u − 1)3
− t2A(0)

u2
− t2A(1)

(u − 1)2
+

)]

H1 = Tr

[
A(u)
1

(
A(0)

u
+

A(1)

u − 1

)
− t1A

(u)
2

(
A(0)

u2
+

A(1)

(u − 1)2

)

+
A(u)
0 A(u)

0

2t1
− t2

A(u)
0 A(u)

1

t21
− t22

A(u)
0 A(u)

2

t31

]

H2 = Tr

[
A(u)
2

(
A(0)

u
+

A(1)

u − 1

)
+

A(u)
0 A(u)

1

t1
+ t2

A(u)
0 A(u)

2

t21

]
.

As in the previous example, the cross-derivatives are zero

∂

∂t1
Hu − ∂

∂u
H1 = ∂

∂t2
Hu − ∂

∂u
H2 = ∂

∂t1
H2 − ∂

∂t2
H1 = 0,

so the τ -function is defined correctly.
In the case of sl2, the isomonodromic deformations of (118) correspond to the con-

fluence of the two-time Garnier system and belong to the list of the so-called fourth-
order Painlevé equations introduced in [45,46]. The second example (123) is more
complicated—the Hamiltonian reduction gives a Hamiltonian system with 3 degrees of
freedom, which corresponds to a sixth order Painlevé equation.
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0 1 t ∞ 0 t ∞

0 ∞

∞

t ∞

Fig. 3. Confluence scheme for Painlevé equations. Each triangle at this diagram corresponds to the Takiff
algebra Darboux coordinates which were introduced in Fig. 1

4.5. Confluencing higher order poles. The confluence of two poles w1 and w2 of
Poincaré rank r1 and r2 respectively can be treated a the confluence of r1 + r2 + 2
simple poles. Indeed, we have seen at the beginning of section 5.2 that the generic con-
nection with a Poincaré rank r singularity can be obtained as confluence of r + 1 simple
poles. Therefore, a connection with two poles w1 and w2 of Poincaré rank r1 and r2
respectively is obtained by coalescing r1 + 1 and r2 + 1 simple poles.

5. The Non-ramified Painlevé Equations

5.1. General scheme. The confluence diagram of the Darboux parametrisations in the
case of rank 2 non-ramified connections with 4 points is given at Fig. 3. We start by
illustrating the general scheme of reduction which works for any rank.

The Hamiltonians of the isomonodromic problem with irregular singularities of
Poincaré rank ri at a point ui admit additional symmetries with respect to the inner
action (choice of the spectral invariants at each singularity) and outer action (gauge
group action). Using the Darboux parametrisation of the co-adjoint orbit for the sl2-
Takiff algebras, we automatically fix the spectral invariants, i.e. reduce with respect to
the inner action. The only symmetry which still needs to be taken into account is the
gauge freedom which leads to the fully reduced phase space. In all the examples of this
section, we write down the Darboux coordinates by immediately diagonalizing the lead-
ing terms at one of the irregular singularities. Therefore, the number of the intermediate
coordinates in all examples is 4 and not 6 (because we have eliminated 2 coordinates by
diagonalisation). Such coordinates are in correspondence with the Darboux coordinates
which were used in [33]. In order to reduce to the smallest dimension of the system
(namely 2), we have to reduce with respect to the stabilizer action, which in all exam-
ples is equivalent to the additional action of the Cartan torus, since we consider only the
unramified situation, which corresponds to the case when Katz index is an integer. The
ramified situation will be considered in the next work of the first author.
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5.2. Painlevé V. The isomonodromic problem takes the form

d
dλ

� =
(
A(0)

λ
+ A(t)

λ−t + B1

)
�

d
dt � = − A(t)

λ−t �.

(124)

the deformation equations are

d

dt
A(0) = 1

t
[A(t), A(0)], d

dt
A(t) = 1

t
[A(0), A(t)] + [B1, A

(t)], d

dt
B1 = 0.(125)

The Poisson algebra is given by
{
A(i)⊗, A( j)

}
= δi j [�, I ⊗ A(i)],

{
A(i)⊗, B1

}
= {

B1
⊗, B1

} = 0 (126)

the isomonodromic Hamiltonian writes as

HV = res
λ=t

Tr

(
A(λ)2

2

)
= Tr

(
A(t)B1 +

1

t
A(t)A(0)

)
. (127)

In the sl2 case, the Darboux parametrisation of the elements of the coadjoint orbit takes
the form

A(0) =
(
p0q0 − θ0 −(p0q0 − 2θ0)p0

q0 −p0q0 + θ0

)
, A(t) =

(
ptqt − θt −(ptqt − 2θt )pt

qt −ptqt + θt

)
,

with the symplectic form

ω = d pt ∧ d qt + d p0 ∧ d q0.

Using the gauge freedom, we set the constant matrix B1 to be diagonal:

B1 =
(
k 0
0 −k

)
.

In such a parametrisation, the Hamiltonian takes form

H = res
λ=t

Tr

(
A(λ)2

2

)

= 4k(ptqt − θt ) − 2

t
(qtq0(pt − p0)

2 − 2(q0θt − qtθ0)(pt − p0) − 2θ0θt )

= 4k(ptqt − θt ) − 2qtq0
t

(
pt − p0 − θt

qt
+

θ0

q0

)2

+
2

t

(
θ2t

q0
qt

+ θ20
qt
q0

)
.

This Hamiltonian is invariant under the following rescaling

pi → piα, qi → qi
α

which is the same as the gauge SL(2) action via diagonal matrix. The moment map is

q0 p0 + qt pt .
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The change of coordinates

I = q0 p0 + qt pt , φ = ln(q0), u = − qt
q0

, v = ptq0,

is a canonical transformation. Resolving it with respect to the q’s and p’s we obtain

q0 = eϕ, qt = −eϕu, p0 = e−ϕ(I + uv) pt = e−ϕv,

and the symplectic form goes to

ω = d pt ∧ d qt + d p0 ∧ d q0 = d I ∧ d ϕ + d v ∧ d u.

The Hamiltonian in these coordinates writes as

H = −4k(uv + θt ) + 2
u

t

(
v − I − uv +

θt

u
+ θ0

)2

− 2

t

(
θ2t

1

u
+ θ20 u

)

and it is obvious that I andϕ are the part of the action-angle variables, sowemaydecrease
the number of degrees of freedom by 1 and consider the following Hamiltonian system

H =−4k(uv + θt ) + 2
u

t

(
v − a − uv+

θt

u
+θ0

)2

− 2

t

(
θ2t

1

u
+θ20 u

)
, ω = d v ∧ d u.

The equations of motion take form

u̇ = ∂H

∂v
= −4ku +

4u

t
(1 − u)

(
v − a − uv +

θt

u
+ θ0

)

v̇ = −∂H

∂u
= 4kv − 2

t

(
(v − uv − a +

θt

u
+ θ0)

2 +
θ2t

u2
− θ20

)

−4

t
u(v − uv − a +

θt

u
+ θ0)

(
v +

θt

u2

)
.

Writing second order ODE for u we obtain

d2u

dt2
=
(

1

u − 1
+

1

2u

)(
du

dt

)2

− 1

t

du

dt
+ 8θ0

(u − 1)2

t2

(
u −

(
θt

θ0

)2 1

u

)
+

+4k(4(a − θ0 − θt ) − 1)
u

t
− 8k2

u(u + 1)

u − 1

which is the Gambier’s form of the Painlevé V equations and the constants are given by

θ0 = α

8
, θ2t = −αβ

64
, k2 = − δ

8
, 4k(4(a − θ0 − θt ) − 1) = γ.

The following canonical transformation

u = x

x − 1
, v = −((x − 1)y + a − 2θ0)(x − 1), d v ∧ d u = d y ∧ d x,

sends H to the following form

t H =2x(x − 1)y2+4(ktx(x − 1)+x(θt − θ0) − θt )y + 4(xkt (a − 2θ0)−θt (kt − θ0))

which was introduced in [43]. The example of the Painlevé V equation as a system
written on the co-adjoint orbits of the Takiff algebra was recently studied by [42] in
more details.
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5.3. Painlevé IV. The connection is

A(λ) = A(t)

λ − t
− B1 − B2λ (128)

and the deformation one-form is

� = − A(t)

λ − t
d t. (129)

The deformation equations are

Ȧ(t) = [A(t), B1 + B2t], Ḃ1 = [B2, A
(t)], Ḃ2 = 0.

The Poisson structure is

{A(t)⊗, A(t)} = [�, 1 ⊗ C], {B1⊗, B1} = [�, 1 ⊗ B2], {B1⊗, B2} = {B2⊗, B2} = 0.

the Hamiltonian writes as

H = res
λ=t

Tr
A2

2
= −Tr

(
A(t)B1 + t A(t)B2

)
. (130)

Since B3 is a constant ofmotion, the same holds for the transitionmatrix to the eigenbasis
of B3. This allowsus to consider the gauge,which is equal to this transitionmatrixwithout
changing the Poisson structure of A(t). In the case of sl2 we have

A(t) =
(
ptqt − θt − (ptqt − 2θt ) pt

qt −ptqt + θt

)
, B2λ + B1 = λθ3

(
1 0
0 −1

)
+

(
θ2 −2θ3q3
p3 −θ2

)
.

(131)

The Hamiltonian writes as

H = (ptqt − 2θt ) pt p3 − 2 (ptqt − θt ) (tθ3 + θ2) + 2θ3q3qt . (132)

Since B3 is a diagonal matrix (has no Jordan blocks) the stabilizer is the Cartan torus of
SL2,i.e.

S =
(
h 0
0 1/h

)
.

The additional action of the stabilizer of B3 leads to the following action on the reduced
phase space

qt → qt
h2

, pt → h2 pt , q3 → h2q3, p3 → p3
h2

,

which is Hamiltonian with the following moment map

I = q3 p3 − qt pt .

Using the symplectic change of coordinates

q3 = eφ, qt = e−φu, p3 = e−φ(I + uv), pt = eφv,
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d p3 ∧ d q3 + d pt ∧ d qt = d I ∧ d φ + d v ∧ d u, (133)

and fixing the level set of moment map I = I0 = const we reduce to the system with
one degree of freedom

H = (uv − 2θt ) v (uv + I0) − 2 (uv − θt ) (tθ3 + θ2) + 2θ3u. (134)

Finally, using the change of variables

u = x(xy − I0), v = 1

x
, d v ∧ d u = d y ∧ d x

sends Hamiltonian to the Okamoto form of PIV

H = 2yx2 +
(
θ3y

2 + (−2tθ3 − 2 θ2) y − 2I0
)
x + (−I0θ3 − 2θ3θt ) y. (135)

Taking

θ3 = −1, θ2 = 0, I0 = −θ0, θt = −1

2
(θ∞ + θ0)

we obtain the PIV Hamiltonian

H = 2yx2 − (y2 + 2t y + 2θ0)x + θ∞y.

5.4. Painlevé III. The connection takes form

A = B0

λ
+ t

B1

λ2
+ C (136)

with deformation one-form

� = − B1

λ
d t. (137)

the Poisson algebra is

{C⊗,C} = {C⊗, B0,1} = {B1
⊗, B1} = 0, (138)

{B0
⊗, B0} = [�, 1 ⊗ B0], {B0

⊗, B1} = [�, 1 ⊗ B1]
the Hamiltonian is given by

H = 1

2
res
λ=0

Tr
λ

t
A2 = Tr

(
CB1 +

B2
0

2t

)
. (139)

In the case of sl2, choosing the gauge such that C is diagonal, we have the following
Darboux parametrisation

B0 =
(
p1q1 − p2q2 + θ1 −p1q21 + (2q1q2 + 1) p2 − 2θ1q1

p1 −p1q1 + p2q2 − θ1

)



I. Gaiur, M. Mazzocco, V. Rubtsov

B1 =
(
2q1q2θ2 + θ2 −2θ2 (q1q2 + 1) q1

2θ2q2 −2q1q2θ2 − θ2

)
,

C =
(

θ3 0
0 −θ3

)
. (140)

the Hamiltonian writes as

t H = p22q
2
2 + 4tθ2θ3q1q2 − 2θ1 p2q2 + p1 p2. (141)

The action of the stabilizer of C gives the following integral of motion

I = q1 p1 − q2 p2.

In order to reduce the number of degrees of freedom, we use the change of variables

q1 = eφ, q2 = −e−φu, p1 = e−φ(I + uv), p2 = −eφv,

d p1 ∧ d q1 + d p2 ∧ d q2 = d I ∧ d φ + d v ∧ d u

which leads to the following Hamiltonian

t H = v2u2 −
(
v2 + 2θ1v + 4tθ2θ3

)
u − I0v (142)

where I0 is given value of the first integral I . The obtained Hamiltonian corresponds to
the Painlevé III equation of type D6 after some choice of constants. To obtain further
degenerations to D7 and D8 we have to consider nilpotent orbits.

5.5. Painlevé II. Jimbo-Miwa. The connection takes form

A(λ) = B3

λ4
+
B2

λ3
+
B1 + t B3

λ2
+
B0

λ
. (143)

The deformation one form is

� = − B3

λ
d t (144)

The deformation equations are

d

dt
B3 = [B2, B3], d

dt
B2 = [B1, B3], d

dt
B1 = [B0 − t B2, B3], d

dt
B0 = 0.

(145)

The Poisson structure is given by
{
Bi⊗, Bj

} = [�, I ⊗ Bi+ j−1] (146)

The Hamiltonian takes the form

H = res
λ=0

Tr λ3
A(λ)2

2
= Tr

(
B2
1

2
+ B0B2 + t B1B3

)
, (147)
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where we drop the term Tr B2
3 because it is a Casimir. Since we assume that for Painlevé

II there is no singularity at ∞, the value of the gauge group moment map should be put
to zero, i.e.

B0 = 0. (148)

Such reduction has to be viewed as a Hamiltonian reduction written on the co-adjoint
orbit of the Takiff algebra ĝ3, so we have to change not only the Hamiltonian, but also
the Poisson structure. However, usually the second Painlevé equation isomonodromic
problem writes in a chart where the only singularity is at ∞. In this case, the connection
takes form

A(λ) = B3λ
2 + B2λ + B3t + B1. (149)

Here we already resolved the gauge group moment map, by setting the residue at ∞ to
be zero. The deformation one-form then my be written as

� = (B3λ + B2) d t.

The deformation equations are

Ḃ3 = 0, Ḃ2 = [B3, B1], Ḃ1 = t[B2, B3] + [B2, B1].
The deformation equations are Hamiltonian, with Hamiltonian written as

H = res
λ=0

Tr
A2

2λ
= Tr

(
B2
1

2
+ t B1B3

)
. (150)

To obtain the Painlevé II equation, we consider the sl2 case. the Darboux parametrisation
is given by

B3 =
(

θ3 0
0 − θ3

)
, B2 =

(
θ2 − 2θ3q3

2θ3q4 − θ2

)
,

B1 =
(
2θ3q3q4 + θ1

(
θ2 − 4θ3 − θ3q33q

2
4

)
q4q23 − θ3q3 + p4

(θ2 − 4θ3) q24q3 + (2θ2 − θ3) q4 + p3 − θ3q33q
2
4 − 2θ3q3q4 − θ1

)
.

The Hamiltonian takes form

H = −(2θ3q3q4 + θ1)
2 − 2t (2θ3q3q4 + θ1)θ3 − ((θ2 − 4θ3)q4q

2
3 − θ3q3 + p4

− θ3q
3
3q

2
4 )((θ2 − 4θ3)q

2
4q3 + (2θ2 − θ3)q4 + p3 − θ3q

2
3q

3
4 ).

(151)

The action of stabilizer of B4 gives us the moment map

I = p3q3 − p4q4

which gives us the following change of variables (p3, p4, q3, q4) → (I, v, φ, u)

p3 = e−φ(I + uv), p4 = eφv, q3 = eφ, q4 = e−φu

d p3 ∧ d q3 + d p4 ∧ d q4 = d v ∧ d u + d I ∧ d φ.

The Hamiltonian then writes as

H = −(2θ3u + θ1)
2 − 2t (2θ3u + θ1)θ3 − (v − θ3u

2 + (θ2 − 4θ3)u − θ3)

(uv + (θ2 − 4θ3)u
2 + (2θ2 − θ3)u + I − θ3u

3)
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The change of variable

v = w +
1

2u
(2θ3u

3 − 2u2θ2 + 8θ3u
2 − 2uθ2 + 2θ3u − I ), w = − p

q
, u = −q2

2

gives us

H = p2

2
− θ23q

4 +

(
2θ23 t + 2θ2θ3 − θ22

2

)
q2 − I 2

2q2

which is the Hamiltonian of P34 equation, which is equivalent to Painlevé II in case
when I = 0.

Remark 17. The isomonodromic problem with connection matrix (149) corresponds to
the non-autonomous version of the famous Nahm top which first appeared in [54].
Treating the variable t as a constant, we obtain an integrable system with Lax matrix
(149) which is gauge equivalent to the Lax matrix for the Nahm equation. This gives
the explicit Hamiltonian formulation of the Nahm equation in terms of the coadjoint
orbits of the Takiff algebras. This should coincide with the Hamiltonian formalism for
the Nahm equations introduced in [59].

6. Quantisation

In this section we give a general formula for the confluent KZ equations with singular-
ities of arbitrary Poincaré rank in any dimension. Moreover, we use the lifted Darboux
coordinates in order to generalise an observation by Reshetikhin that the quasiclassi-
cal solution of the standard KZ equations (i.e. with simple poles) is expressed via the
isomonodromic τ -function [58]. Here we propose an easy proof which is valid for any
configuration of the points of the divisor on the Riemann sphere. Firstly we review
Reshetikhin’s approach for the quantum isomonodromic problems and then produce our
proof which is based on the generalisation of an observation by Malgrange [50].

Throughout this section,weworkwith the canonical quantisation of the linear Poisson
brackets that prescribes the standard correspondence principle

{ f, g} −−→ [ f̂ , ĝ] = i�{̂ f, g}, (152)

where the symbol̂ denotes the quantum operator, i.e. f̂ is the quantum operator cor-
responding to the classical function f , and � is a formal deformation parameter. More
accurately, one can speak about the so-called Rees deformation that assigns to a filtered
vector space R = ∪i Ri a canonical deformation of its associated graded algebra gr(R)

over the affine line A1 considered as the spectrum Spec(C[�]) of the polynomials C[�].
The fiber at the point � is isomorphic to R if � �= 0 and to gr(R) for � = 0. The
corresponding C[�]-module here is the direct sum ⊕i Ri on which � acts by mapping
each Ri to Ri+1 [24]. In our case the Rees construction gives a one-parameter family of
algebras U�(g), with the associated graded algebra U0(g) being the symmetric algebra
S(g). The � deformation re-scales the bracket by �, so that the � linear terms define the
standard Poisson bracket on S(g).
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6.1. Finite-dimensional representation. In this sub-section, we recall the basic ideas at
the basis of Reshetikhin’s approach to quantum isomonodromic problems for Fuchsian
systems and then adapt it to the irregular case. We fix � = 1 for simplicity.

In the case of Fuchsian systems, we are dealing with the canonical quantisation of
the direct product of the co-algebras g
. The quantisation functor sends the functions
on the phase space of the classical system to the differential operators which act on
some Hilbert space in a way that (152) holds. In principle, a choice of finite dimensional
representation may be seen as a choice of the special subspace of the Hilbert space of
functions on which the algebra of quantum operators acts. However, we may avoid such
complicated construction of finite dimensional representationwhen the classical Poisson
algebra is given by a linear Poisson bracket. Indeed, for g
, the standard Lie–Poisson
bracket endows the space of functions with the structure of a Lie algebra so that the
structure constants of this Poisson algebra are identified with the structure constants of
the Lie algebra g.

In general, the quantisation procedure for the phase space of the Fuchsian system
may be viewed as a map from

g
 × g
 × · · · × g


︸ ︷︷ ︸
n

to the differential operators which act on the tensor product of Hilbert spaces Hi :

H1 ⊗ H2 ⊗ · · · ⊗ Hn .

However, the isomonodromic nature of the Hamiltonian systems we consider gives
additional information which may be used to define a quantum problem in a uniform
way. Following [40], we quantise the connection that becomes the generating function
for the quantumHamiltonians. Considering the connection as a matrix whose entries are
functions on g
 × g
 × · · · × g
, we obtain the following quantisation for the Fuchsian
case:

Â(λ) =
n∑

i=1

Â(i)

λ − ui
, Â(i) =

∑

α

e(0)
α ⊗ e(i)

α , e(i)
α = 1 ⊗ · · · ⊗ eα

i
⊗ · · · ⊗ 1,

where each e(i)
α , i = 1, . . . , n is a basis of the representation we choose for the quanti-

sation and the first e(0)
α corresponds to the auxiliary space H0 given by the connection.

The Schlesinger Hamiltonians then transform to

Ĥi =
∑

j �=i

Tr (0)( Â(i) Â( j))

ui − u j
, (153)

whereTr (0) is the trace in the auxiliary spaceH0. The quantumSchlesingerHamiltonians
Ĥi are the solutions for the classical Yang-Baxter equations and may be written as

Ĥi =
∑

j �=i

ri j
ui − u j

, (154)

where ri j is a solution of the classical Yang-Baxter equation

[ri j , rik] + [ri j , r jk] + [rik, r jk] = 0.
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The corresponding set of Schrödinger equations are called Knizhnik–Zamolodchikov
equations and take form

∇i� =
⎛

⎝ ∂

∂ui
−
∑

j �=i

ri j
ui − u j

⎞

⎠� = 0.

Moreover, the Knizhnik–Zamolodchikov operators commute, i.e.

[∇i ,∇ j ] = 0 ⇐⇒ ∂

∂ui
Ĥ j = ∂

∂u j
Ĥi , [Ĥi , Ĥ j ] = 0.

Reproducing the same scheme for the Takiff co-algebras, we obtain the quantisation
map that acts by replacing the co-algebra with the Lie algebra

ĝ

r1 × ĝ


r2 × · · · ĝ

rn × ĝ


r∞ −−→ ĝr1 ⊗ · · · ĝrn ⊗ ĝr∞ . (155)

The quantum connection then takes the form

Â(λ) =
n∑

i

⎛

⎝
ri∑

j=0

B̂(i)
j

(
t (i)1 , t (i)2 . . . t (i)ri

)

(λ − ui ) j+1

⎞

⎠ ,

where B̂(i)’s are given by

B̂(i)
j (t (i)1 , . . . t (i)ri ) =

r∑

k= j

Â(i)
k M(ri )

j,k (t (i)1 , t (i)2 . . . t (i)ri ),

Â(i)
k =

∑

α

e(0)
α ⊗ e(i)

α ⊗ zki , e(i)
α = 1 ⊗ · · · ⊗ eα

i
⊗ · · · ⊗ 1.

The Hamiltonians which correspond to the position of poles are given as in the Fuchsian
case, i.e.

Ĥui = 1

2
res

λ=ui
Tr 0 Â(λ)2,

where Tr 0 is the trace in the 0-th space, so we now have to choose a quantum ordering,
for example lexigraphical ordering. The irregular Hamiltonians have to be calculated
according to the Theorem 3 at each irregular singularity changing Tr by Tr 0. Again
we will choose a quantum ordering. Thus, we obtain that the irregular Hamiltonians are
given by

M(ri )

⎛

⎜⎜⎝

Ĥ (i)
1

Ĥ (i)
2

. . .

Ĥ (i)
ri

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

Ŝ(ui )
1
Ŝ(ui )
2
. . .

Ŝ(ui )
ri

⎞

⎟⎟⎠ , Ŝ(ui )
k = 1

2

∮

�ui

(λ − ui )
kTr 0 Â

2 d λ

at the point ui with the Poincare rank ri . To prove Theorem 4 we need to show that the
confluent KZ gives a quantum integrable system, namely that the differential operators
defined in (18), (19)

∇u j := ∂

∂u j
− Ĥu j , j = 1, . . . , n
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∇(i)
k := ∂

∂t (i)k

− Ĥ (i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri

commute. This is a simple consequence of the fact that in the quantisation process the
derivatives remain commutative, i.e. for example [ ∂

∂u j
, ∂

∂t (i)k

] = 0, and that the quantum

Hamiltonians are linear combinations of the quantum Gaudin spectral invariants Ŝ(ui )
k ,

k = 0, . . . , ri , which commute as proved in [52].
We have to mention that for the Fuchsian times the isomonodromic Hamiltonian

depends on each phase space gri linearly—which means that it may be written as

Ĥui ∈ ĝr1 ⊗ · · · ĝrn ⊗ ĝr∞ ⊂ U
(
ĝr1 ⊕ · · · ⊕ ĝr∞

)
.

In the case of irregular poles, the Hamiltonians become more complicated—there are
quadratic terms which contain elements from the same space and in general we have
that

Ĥ (i)
k ∈ U (ĝr1) ⊗ · · ·U (ĝrn ) ⊗U (ĝr∞).

The problem of calculating the explicit form of the Hamiltonians introduced in this paper
involves the representation theory ofU (ĝri ), that is rather complicated. In order to avoid
this representational theoretic problems, we write down the quantum Hamiltonians for
the irregular isomonodromic deformations using the intermediate Darboux coordinates.
We deal with the classical examples of the Painlevé equations in the next section, where
we provide invariant subspaces for these Hamiltonians. These subspaces give finite
dimensional representations for the Hamiltonians which are the quantum reduction of
the irregular Hamiltonians introduced in this section.

6.2. Intermediate Quantum Hamiltonians for Painlevé equations. In this subsection we
write quantum Hamiltonians for the Painlevé equations in Darboux coordinates before
the reduction with respect to the gauge group action. In the case of Painlevé VI, the
gauge group action is not taken into account. For the other cases, we partly resolve the
gauge group action by diagonalising the leading term, but we do not finish reduction
by ignoring the additional Cartan torus action (otherwise the quantisation becomes very
cumbersome). Because of this, in the Painlevé VI example the number of coordinates for
sl2 for 4 punctures is 6while in the other examples the number of intermidiate coordinates
is 4 (2 moments + 2 positions). Since we are dealing with Darboux coordinates, the
quantisation process becomes fairly straightforward. In this subsection, we show that for
each of the non-ramified Painlevé differential equations, there is a choice of quantisation
such that the quantum operator acts nicely on the space of homogeneous polynomials.
More precisely, we show that the invariant subspaces for the quantum Hamiltonians are
given by the homogeneous polynomials in several variables (3 for Painlevé VI and 2 for
others) with fixed degree. In this section we keep � explicit as that makes it clearer how
to extract semi-classical limits.

6.2.1. Painlevé VI. For the sl2 Fuchsian system we have that the Hamiltonians in the
intermediate coordinates take form

Hi =
∑

j �=i

hi j
ui − u j

, hi j = 2pi p jqiq j − p2i qi q j − p2j qi q j −
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2θ j pi qi − 2θi p j q j + 2θi pi q j + 2θ j p j qi + 2θiθ j (156)

The quantisation problem is not trivial because we have to choose the quantum ordering.
There are three standard ways of the ordering, which are given by

: p̂i q̂ j :=: q̂ j p̂i := q̂ j p̂i + δi jε
(i), ε(i) =

⎧
⎨

⎩

0, left,
i�, right,
i�
2 , Weyl.

This leads to the following forms of Hamiltonians

Ĥi =
∑

j �=i

ĥi j
ui − u j

where

ĥi j = 2q̂i q̂ j p̂i p̂ j − q̂i q̂ j p̂
2
i − q̂i q̂ j p̂

2
j − 2(θ j − ε( j))q̂i p̂i − 2(θi − ε(i))q̂ j p̂ j+

+ 2(θi − ε(i))q̂ j p̂i + 2(θ j − ε( j))q̂i p̂ j+

+ 2(θi − ε(i))(θ j − ε( j)).

Here we see that different choices of the ordering lead to different shifts of the local
monodromies θi → θi − ε(i). Thanks to this fact, and the fact that the shifts are of order
�, we may fix the left ordering without loss of generality.

The most remarkable property is that the Hamiltonians Ĥi leave invariant the space
of homogeneous polynomials of qi with fixed degree in the following choice of the
quantisation p̂i = −i� ∂

∂xi
·, q̂i = xi ·. So we may look for a solutions for the set of

quantum Schrodinger equations

i�∂ui � = Ĥi� (157)

in the following form

�(n) =
∑

|α|=n

wα(u1, .., ui .., um)

m∏

i=1

xαk
i , |α| =

m∑

i=1

αi

which will lead to the non-autonomous linear system of ODE for the wα(u)-s. The
resulting equations in fact are KZ equations, since the equations for wα inherit the
singularities of Ĥi . Let’s consider the vector

W (n) =

⎛

⎜⎜⎜⎝

wα1

wα2

..

..

wαN

⎞

⎟⎟⎟⎠

where αi are the distinct partitions of n with height m (with zero entries). Then W (n)

satisfies the equations

i�
∂

∂ui
W (n) −

∑

j �=i

M (i, j)
n

ui − u j
W (n) = 0
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where M (i, j)
n is the action of ĥi j on homogeneous polynomials of degree n. These

equations are Knizhnik–Zamolodchikov type equations.
In the case of the Painlevé VI equation, we deal with 4-punctured sphere 0, 1, t,∞.

The quantum Hamiltonian then writes as

Ĥ = 1

t

(
2q̂1q̂2 p̂1 p̂2 − q̂1q̂2 p̂

2
1 − q̂1q̂2 p̂

2
2 − 2θ2q̂1 p̂1

−2θ1q̂2 p̂2 + 2θ1q̂2 p̂1 + +2θ2q̂1 p̂2 + 2θ1θ2
)
+

1

t − 1

(
2q̂1q̂3 p̂1 p̂3 − q̂1q̂3 p̂

2
1 − q̂1q̂3 p̂

2
3 − 2θ3q̂1 p̂1

−2θ1q̂3 p̂3 + 2θ1q̂3 p̂1 + +2θ3q̂1 p̂3 + 2θ1θ3
)
.

(158)

Let’s consider simple case where |α| = 1. Substituting the following function

�(1) = w1x1 + w2x2 + w3x3

into the Schrodinger equation (157) gives the following system

i�
d

dt
w1 = 2i�θ2(w2 − w1) + 2θ1θ2w1

t
+
2i�θ3(w3 − w1) + 2θ1θ3w1

t − 1

i�
d

dt
w2 = 2i�θ1(w1 − w2) + 2θ1θ2w2

t
+
2θ1θ3w2

t − 1

i�
d

dt
w3 = 2θ1θ2w3

t
+
2i�θ1(w1 − w3) + 2w3θ1θ3

t − 1
(159)

whose solution is given by the hypergeometric function in the following way

w1 =C1t
− 2i

�
θ1θ2(t − 1)−

2i
�

θ1θ3+

C2t
− 2i

�
θ1θ2(t − 1)−

2i
�

θ1θ3−2(θ1+θ3)
2F1(2θ2,−2θ3 + 1; 2(θ1 + θ2) + 1; t)+

C3t
− 2i

�
θ1θ2−2(θ1+θ2)(t − 1)−

2i
�

θ1θ3−2(θ1+θ3)
2F1(−2θ1,

− 2(θ1 + θ2 + θ3) + 1;−2(θ1 + θ2) + 1; t).

6.2.2. Painlevé V the Hamiltonian in the intermediate coordinates is given by

t H = 2tθ∞q1 p1 − q0q1 p
2
0 + 2q0q1 p0 p1 − q0q1 p

2
1 + 2θ0q1 p0 + 2θ1q0 p1 + 2θ0θ1.

(160)

Using the same argument as in the previous case, we consider left ordering. Moreover,
we see that if quantise in the following way

q̂i = xi ·, p̂i = −i�
∂

∂xi
, (161)

the space of homogeneous polynomials in x0 and x1 is invariant under the action of the
Hamiltonian. Considering the example of the degree 2

�(2) = w1x
2
1 + w2x

2
0 + w3x0x1,
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we get the following system of ordinary differential equations for the coefficients

i t�
d

dt
w1 = −4i tθ∞�w1 − 2 iθ0�w3

i t�
d

dt
w2 = −2iθ1�w3

i t�
d

dt
w3 = 2�

2(w1 + w2) − 2iθ∞t�w3 − 4θ1i�w1 − 4θ0i�w2θ0 − 2�
2w3.

(162)

These linear equations can be solved explicitly in terms of modified Bessel functions.

6.2.3. Painlevé IV the Hamiltonian in the intermediate coordinates takes form

H = qt p
2
t p3 − 2θt pt p3 − 2 (ptqt − θt ) (tθ3 + θ2) + 2θ3q3qt . (163)

In general, the choice of the Lagrangian submanifold for the quantisation procedure
defines the properties of the quantum Hamiltonian. Here the quantum Hamiltonian will
not preserve the homogeneous polynomials if we choose the standard quantisation (161).
However, the choice of the Lagrangian sub-manifold is irrelevant when we deal with
the Darboux coordinates and corresponds to the integral transformation on the quantum
level. If we choose the following quantisation

q̂3 = x ·, p̂3 = �
∂

∂x
, q̂t = �

∂

∂y
, p̂t = y·

the quantum Hamiltonian will preserve degree of the homogeneous polynomials. More-
over the choice of the ordering shifts the monodromy parameter θt by �-small values.
the Hamiltonian writes as

Ĥ = y2
∂2

∂x∂y
− 2θt y

∂

∂x
− 2 (tθ3 + θ2)

(
y

∂

∂y
− θt

)
+ 2θ3x

∂

∂y
. (164)

Writing down the system for the second order polynomial wave function

�(2) = w1x
2 + w2y

2 + w3xy,

we obtain the system

i�

2

d

dt

⎛

⎝
w1
w2
w3

⎞

⎠ =
⎛

⎝
−(tθ3 + θ2)θt 0 −θ3

−(tθ3 + θ2)θt 2θt − 1
2θt −2θ3 −(tθ3 + θ2)θt

⎞

⎠

⎛

⎝
w1
w2
w3

⎞

⎠ , (165)

which may be solved via exponential functions.
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6.2.4. Painlevé III the Hamiltonian is

t H = p22q
2
2 + 4tθ2θ3q1q2 − 2θ1 p2q2 + p1 p2.

We quantise as follows:

q̂1 = x ·, p̂1 = i�
∂

∂x
, q̂2 = i�

∂

∂y
, p̂2 = y·,

leading to the quantum Hamiltonian (up to � shifts of θ1) takes form

Ĥ = y2
∂2

∂y2
− 2θ1y

∂

∂y
+ 4tθ2x

∂

∂y
+ y

∂

∂x
. (166)

Writing down system for the second order polynomial wave function

�(2) = w1x
2 + w2y

2 + w3xy,

we obtain the system

i�t
d

dt

⎛

⎝
w1
w2
w3

⎞

⎠ =
⎛

⎝
0 0 4t
0 2 − 4θ1 1
2 8t −2θ1

⎞

⎠

⎛

⎝
w1
w2
w3

⎞

⎠ . (167)

These equations can be solved in terms of confluent hypergeometric functions of type
1F2.

6.2.5. Painlevé II The intermediate Darboux coordinates Hamiltonian is

H = (q53q
5
4 + 8q43q

4
4 + 18q33q

3
4 + 12q23q

2
4 + (4t + 1)q3q4)θ

2
4

+(−2q43q
4
4 − 10q33q

3
4 − 10q23q

2
4 − 2q3q4)θ3θ4

−(p3q
3
3q

2
4 − p4q

2
3q

3
4 − 4p3q

2
3q4 − 4p4q3q

2
4 + 4q3q4θ2 + 2tθ2 − p3q3 − p4q4)θ4

+(q33q
3
4 + 2q23q

2
4 )θ

2
3 + (p3q

2
3q4 + p4q3q

2
4 + 2p4q4)θ3 + p3 p4. (168)

Choosing of the following quantisation

q̂3 = −i�
∂

∂x
, p̂3 = x ·, q̂4 = y·, p̂4 = −i�

∂

∂y

leads to the invariance of the degree of the homogeneous polynomials with respect to
the Hamiltonian action. Indeed, after quantisation, the Hamiltonian is mapped to the
operator with the same number of derivatives and multiplications in each member. We
do not provide the explicit form of the quantum Hamiltonian and the action on the
eigenspaces since the calculation is straightforward but the answer is too long.

Remark 18. In these examples, we consider the deformation quantisation of the interme-
diate Darboux coordinates. This means that the quantised Hamiltonians are elements of
theWeyl algebra in two variablesW[x, y] = C[x, ∂x , y, ∂y]/〈[∂x , x] = 1, [∂y, y] = 1〉.
However, we know that the Hamiltonian we quantise allows additional symmetry, which
lifts to an additional vector field Î that commutes with the quantum Hamiltonian vector
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field. For example, in the case of the Painlevé III equation, the quantum Hamiltonian
(166) commutes with

Î = x
∂

∂x
+ y

∂

∂y
.

By restricting to the eigenfunctions of Î with some chosen eigenvalue I0, we produce
quantum Hamiltonian reduction, which is simply given by the quotient of the algebra
W[x, y]/〈 Î − I0〉. As a result we obtain the following quantum Hamiltonian

ĤIII = q2
∂

∂q
+
(
−q2 − 2qθ1 + 4tθ2

) ∂

∂q
+ I0q, q = y

x
,

which is just theDirac quantisation of theHamiltonian for the Painlevé III equation (142).
Such reduction may be performed for all examples, the resulting quantum Hamiltonians
coincide with the quantumHamiltonians introduced in [40,53] up to change of variables
and ordering.

6.3. Semi-classical solution of the confluent Knizhnik–Zamolodchikov equation. In this
sectionwediscuss the semi-classical solutions of the confluentKnizhnik–Zamolodchikov
equations in terms of the isomonodromic tau function. By the term “semi-classical” we
mean the solutions �sc of the system

�
∂�

∂u j
= Ĥu j �, j = 1, . . . , n (169)

and

�
∂�

∂t (i)k

= Ĥ (i)
k �, i = 1, . . . , n,∞, k = 1, . . . , ri (170)

that can be formally expressed as power series in � in an open set in the phase space. To
characterise these solutions, we use the lifted Darboux coordinates and quantise them
according to (152)

[P̂iab , Q̂ jcd ] = i� δi jδcbδad . (171)

Such quantisation leads to the infinite dimensional representation of the isomonodromic
Hamiltonians as differential operators on aHilbert space of functions depending on some
coordinates x jab , j = 1 . . . d, a, b = 1 . . .m and the isomonodromic times. In particular
we put

Q̂ jab = x jab ·, P̂icd = �
∂

∂xidc
.

The standard theoretical physics approach (beautifully described for example by Voros
in his seminal paper [64]) consists in performing WKB analysis of �cs as � → 0.
This of course means paying careful attention to avoid the so-called turning points, or
in other words, points in which the action functional expanded in � has zero constant
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term. Assuming that one stays clear of turning points, the formula for the semiclassical
solutions is written as:

�sc ∼ exp

(
i

�
S
)

, � → 0

where S is the classical action functional which explicitly depends on the entries of
the classical variables Q and the isomonodromic times. The dependence of S on P is
implicit, since

Pikl = ∂S
∂Qilk

.

In this section we prove Theorem 5, namely that �cs evaluated along solutions of the
classical systemmaybewritten as the isomonodromic τ -function. This statement already
appeared in [58] for theKnizhnik–Zamolodchikov equationswith Fuchsian singularities.
However, our approach works also for irregular systems.

Proof of Theorem 5.. We write the Hamiltonian system with Hamiltonians H (i)
ui and

H (i)
1 , . . . , H (i)

ri for i=1, . . . , n in theDarbouxcoordinates P1, P2 . . . Pd , Q1, Q2 . . . Qd .
The action functional satisfies the following relation

d S =
d∑

j=1

Pj d Q j −
∑

i

(
Hui d ui +

ri∑

k=1

H (i)
k d t (i)k

)
=

d∑

j=1

Pj d Q j − d ln(τ ),

(172)

along the solutions of the system. We now use a result by Malgrange to show that the
logarithmic differential of the τ function is already contained in the definition of the
action functional:

Lemma 10 (Malgrange [50]). If the Hamiltonians are homogeneous polynomials of
degree two in P1, . . . , Pd, then along solutions one has

dS =
∑

i

(
H (i)
ui d ui +

ri∑

k=1

H (i)
k d t (i)k

)
. (173)

Proof. Evaluating the first term in (172) along the solutions of the isomonodromic
deformation equations, we obtain

∑

j

Tr(PjdQ j ) =
∑

j

Tr

(
Pj

∑

l

(
dQ j

dul
dul +

rl∑

k=1

dQ j

dt (l)k

dt (l)k

))

=
∑

j

Tr

(
Pj

∑

l

(
∂Hul

∂Pj
dul +

rl∑

k=1

∂H (l)
k

∂Pj
dt (l)k

))
.

Using the fact that the Hamiltonians are homogeneous of degree two in P1, . . . , Pd , we
obtain that

∑

j

Tr

(
Pj

∑

l

(
∂Hul

∂Pj
dul +

rl∑

k=1

∂H (l)
k

∂Pj
dt (l)k

))
= 2

∑

i

(
H (i)
ui d ui +

ri∑

k=1

H (i)
k d t (i)k

)
.

which leads to the statement of the lemma. ��
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In the case of the Fuchsian isomonodromic deformation are given by (37)

Hi =
∑

j �=i

Tr(Qi Pi Q j Pj )

ui − u j
,

which are homogeneous of degree 2 in the entries of matrices P1, P2 . . . Pn . The same
holds for the irregular singularities - indeed, the irregular Hamiltonians are given by the
quadratic spectral invariants, i.e.

H =
∑

α,β

∑

i, j

Cα,β
i, j Tr

(
A(α)
i A(β)

k

)
, (174)

where α, β are the indices of the singular points, while i and j are the indices which
correspond to the coefficients of local expansion near singularity and Cα,β

i, j are coeffi-
cients which can be explicitly computed by using the formulas from section 4. Thanks

to Lemma 6, all the terms Tr
(
A(α)
i A(β)

k

)
are homogeneous polynomials of degree 2 in

the variables Pi (as well as homogeneous polynomials of degree 2 in the Qi ). This fact
allows us to apply Lemma 10 to conclude that, up to constant terms, the action func-
tional evaluated on the solutions of the isomonodromic deformation equations coincides
with the τ -function. Thanks to this fact, given a solution (P1, . . . , Pd , Q1, . . . , Qd) of
the classical isomonodromic deformation equations, the corresponding semi-classical
solution admits the following WKB expansion

�sc ∼ exp

(
i

�
log τ

)
, � → 0

for u1, . . . , un , t
(i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri in a poly-disk that does not con-

tain the zeroes of the action functional evaluated along the given solution (P1, . . . , Pd ,
Q1, . . . , Qd). ��

Observe that this proof depends on the coordinates we use to quantise. In general,
the property of semi-classical solution to be a power of an isomonodromic τ -function
breaks for the reduced systems. The classical analogue of this phenomenon is equivalent
to the statement that the reduced Hamiltonians are not hoimogeneous in moments or
coordinates. This can be seen on the Painlevé II example - in the fully reduced coordinates
the Hamiltonian writes as

H = p2

2
− 1

2

(
q2 +

t

2

)
− θq,

while the action along the solution writes as

d S = p d q − H d t =
[
p
∂q

∂t
− H

]
d t =

[
p2 − H

]
d t

=
[
p2

2
+
1

2

(
q2 +

t

2

)
+ θq

]
d t �= H d t.

The classical action now differs from the τ -function by some function that depends on
time. This deviation from the classical action functional was investigated in the paper by
Its and Prokhorov [38] for the classical Painlevé equations in fully reduced coordinates.
From the quantum point of view, the reduction is a restriction to the eigenspace of
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the Casimir operator which partially provides separation of variables in the quantum
problem. By passing to a smaller number of coordinates, the parts which were depending
on the lifted coordinates vanish, so the structure of the solution changes rapidly.However,
despite the fact that the theorem doesn’t work in the reduced case, we still see the avatars
of this statement since the τ -function still enters the quasiclassical solution in some way,
see paper [38] and formula (2.27) in [69].
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