

University of Birmingham

Optimisation and Learning with Randomly
Compressed Gradient Updates
Huang, Zhanliang; Lei, Yunwen; Kaban, Ata

DOI:
10.1162/neco_a_01588

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Huang, Z, Lei, Y & Kaban, A 2023, 'Optimisation and Learning with Randomly Compressed Gradient Updates',
Neural Computation. https://doi.org/10.1162/neco_a_01588

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This document is the Author Accepted Manuscript version of a published work, Zhanliang Huang, Yunwen Lei, Ata Kabán; Optimization and
Learning With Randomly Compressed Gradient Updates. Neural Comput 2023; doi: https://doi.org/10.1162/neco_a_01588, which appears in
its final form in Neural Computation, copyright © 2023 Massachusetts Institute of Technology. The final Version of Record can be found at:
https://doi.org/10.1162/neco_a_01588

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1162/neco_a_01588
https://doi.org/10.1162/neco_a_01588
https://birmingham.elsevierpure.com/en/publications/a240701f-c9f8-4943-820a-45e3f36de2f8

Optimisation and Learning with Randomly

Compressed Gradient Updates

Zhanliang Huang1�, Yunwen Lei2, and Ata Kabán1

1School of Computer Science, University of Birmingham, United Kingdom
2Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

ZXH898@student.bham.ac.uk yunwen@hkbu.edu.hk A.Kaban@bham.ac.uk

Abstract. Gradient descent methods are simple and efficient optimisation algorithms
with widespread applications. To handle high-dimensional problems, we study compressed
stochastic gradient descent (SGD) with low-dimensional gradient updates. We provide
a detailed analysis in terms of both optimisation rates and generalisation rates. To this
end, we develop uniform stability bounds for CompSGD for both smooth and non-smooth
problems, based on which we develop almost optimal population risk bounds. Then, we
extend our analysis to two variants of SGD – batch and mini-batch gradient descent.
Furthermore, we show these variants achieve almost optimal rates compared to their
high-dimensional gradient setting. Thus, our results provide a way to reduce the dimension
of gradient updates without affecting the convergence rate in the generalisation analysis.
Moreover, we show that the same result also holds in the differentially private setting,
which allows us to reduce the dimension of added noise with “almost free” cost.

Keywords: Gradient descent, random projection, generalisation bounds, differential
privacy.

1 Introduction

Stochastic gradient descent (SGD) is a popular optimisation algorithm that has gained

much attention for decades [Bottou et al., 2018]. For instance, it is well-known in convex

optimisation that SGD can optimise convex functions over a convex domain with guar-

anteed convergence rates [Zhang, 2004]. Furthermore, it is known that the error bound

of SGD can be dimension-independent which makes it favorable for high-dimensional

optimisation [Hardt et al., 2016, Charles and Papailiopoulos, 2018, Chen et al., 2018, Lei

and Ying, 2020, Kuzborskij and Lampert, 2018, Liu et al., 2017].

More recently, in the context of distributed optimisation, there is an increasing interest

in sketching methods in SGD, where a sketch of the gradient is transmitted to the server

instead of the original full gradient in order to reduce communication costs. Existing

compression of gradients can mostly be categorised into two categories, 1) by sparsification

that finds a sparse representation of the gradient which reduces communication costs by

only transmitting the non-zero coefficients (e.g. [Wang et al., 2018, Stich et al., 2018]); 2) by

quantisation that finds a less precise approximation of the gradient to reduce transmitted

bits (e.g. [Alistarh et al., 2017, Agarwal et al., 2018]) such as taking the sign of values or

2 Z. Huang et al.

rounding to the nearest unit integer. Besides these two categories, another approach is to

consider gradient updates with reduced-dimensions while preserving accuracy performance.

A particularly useful and innovative recent approach proposed by [Kasiviswanathan,

2021] is CompSGD, which employs random projection (RP) for this purpose. Random

projection is a dimensionality reduction technique that achieves a low-dimensional repre-

sentation of vectors such that their distances can be preserved. The authors showed that,

contrary to previous approaches (where sketching comes at the expense of an increase

in the variance of the gradient), compression by random projection is able to exploit

the geometry of the parameter space imposed by regularisation to make the approach

lossless. In other words, CompSGD can achieve the same convergence rate as classical SGD

up to logarithmic factors (in expectation). Furthermore, the authors also demonstrated

empirically that the run time of CompSGD is almost the same as that of classical SGD.

Hence, one can use the lower dimensional (compressed) gradient for almost ‘zero cost’ in

its performance. Furthermore, CompSGD lends itself to applications in privacy-related

optimisation, as we only need to add noise in the low dimensional space of compressed

gradients [Kasiviswanathan, 2021], which then reduces the dimensionality of the injected

noise.

The existing theoretical analysis of CompSGD only provides its optimisation conver-

gence rate [Kasiviswanathan, 2021] in specific non-private settings, and has not considered

differential privacy. Moreover, an analysis of optimisation can only guarantee the perfor-

mance of models on training examples. However, the object of primary interest in machine

learning is the generalisation error, or population risk, of the learned models. It is therefore

imperative to find out to what extent the use of compressed gradients would affect the

generalisation guarantees of learning algorithms. A positive finding on this question will

provide a solid theoretical footing for applications in large-scale distributed and federated

learning with low communication cost, such as the systems described in [Maurya and

Toshniwal, 2018], and applications in differentially private learning.

In this paper, we set out to study these questions for the first time, starting with convex

problems. These have a fundamental role in both learning and optimisation [Bartlett et al.,

2006], and apply naturally to a variety of high dimensional sparsity-based models [Jaggi,

2011, Liu et al., 2009, Tan et al., 2018, Maurya and Toshniwal, 2018] and structure learning

[Bach et al., 2012, Gonçalves et al., 2014]. Insights from the study of convex problems are

indispensable to advance our understanding further. We will consider differentially private

Generalisation of CompSGD 3

settings in both optimisation and learning problems. To tackle the latter, following a line of

research on SGD [Hardt et al., 2016, Lei and Ying, 2020], we will leverage the fundamental

concept of algorithmic stability to study the generalisation performance of CompSGD.

This will shed light on the effects of gradient update compression in algorithm-dependent

bounds while the analysis itself is independent on the particular form of predictors.

Contributions. We provide a rigorous analysis of CompSGD [Kasiviswanathan, 2021]

in terms of optimisation convergence rates, as well as generalisation convergence rates.

These quantify the effect of random compression of gradient updates. As a key ingredient,

we employ a stability-based analysis, providing the first stability and generalisation

guarantees for SGD with low-dimensional gradients. We consider both smooth and non-

smooth problems, with and without privacy constraints. Furthermore, we also give the

first optimisation and stability convergence analysis for two variants of CompSGD in both

private and non-private settings. Our main contributions and findings are summarized as

follows:

1. We prove the first uniform stability bounds of CompSGD for both smooth and non-

smooth problems. Based on this, we show that CompSGD can achieve the same

population risk bounds as regular SGD up to logarithmic factors. Our bound of the

order Õ(1/
√
n) is optimal up to a logarithmic factor, where n is the sample size. Here

we use Õ to hide logarithmic factors.

2. We prove the first optimisation bounds of batch and mini-batch compressed gradient

descent and show the convergence can be quicker with a larger step size in the smooth

case.

3. We further extend our stability analysis to batch and mini-batch variants of CompSGD

and show that these variants can achieve the exact same population risk bounds as

CompSGD with fewer iterations.

4. We prove the first optimisation bound for CompSGD in the differentially private setting

and show that the dimensionality of the injected noise can be significantly reduced

from O(d) to O(log(d)), where d is the dimension.

5. Finally, by our stability analysis in the differentially private setting, we also prove

the first generalisation bound of DP-CompSGD and show the same generalisation

convergence also holds while the dimensionality is reduced.

Outline. The remainder of this paper is organised as follows. In Section 1.1 we discuss

the related literature to our work. We review the CompSGD algorithm in Section 2.1,

4 Z. Huang et al.

and discuss our analysis strategy in Section 2.2. We prove optimisation and generalisation

bounds for the CompSGD with and without the smoothness assumption in Sections

3.1 and 3.2 respectively. In Section 4, we discuss the batch and mini-batch variants

of CompSGD and present their corresponding optimisation and generalisation bounds.

Finally, we present the differentially private algorithms in Section 5, where we will prove

the optimisation and generalisation guarantees of DP-CompGD and DP-CompSGD with

mini-batch in Sections 5.2 and 5.3 respectively.

In Table 1 we provide a summary of optimisation error rates obtained for the CompSGD

algorithm and related iterative algorithms considered in this paper, in comparison with

classical SGD. In Table. 2 we give the generalisation error rates for the same algorithms

when employed to trained predictors, again in comparison with classical SGD. Section 6

presents the proofs of our theoretical results, and we conclude our study in Section 7.

Table 1. A summary of optimisation error rates for iterative algorithms with randomly compressed gradients with
simplified parameters: The loss function is 1-Lipschitz, and the diameter of the parameter set C is 1. Refer to the
indicated Theorems for results with general parameters. For the differentially private (DP) algorithms (last two
rows), mT denotes the maximum projection dimension used, and σ2 is the variance of the noise added for privacy.

Optimisation errors
Smooth case Non-smooth case

Convergence rate Step size Convergence rate Step size

Classical SGD
O
(

log T√
T

)
([Shamir and Zhang, 2013, Thm. 2])

ηt = η√
t

O
(

log T√
T

)
([Shamir and Zhang, 2013, Thm.2])

ηt = η√
t

CompSGD
O
(

log T√
T

)
([Kasiviswanathan, 2021, Thm. 2.3])

ηt = η√
t

O
(

log T√
T

)
([Kasiviswanathan, 2021, Thm. 2.3])

ηt = η√
t

CompGD O
(
log T
T

)
(Thm. 4) ηt = η O

(
log T√

T

)
(Thm. 6) ηt = η√

t

CompMinibatch O
(

log T√
T

)
(Thm. 8) ηt = η√

t
O
(

log T√
T

)
(Thm. 8) ηt = η√

t

DP-CompGD
O
(

log T
√
mT

T
+

T
√
mT log(1/δ)

n2ϵ2

)
(Thm. 12)

ηt = 1√
mT

O
(

log T√
T

+

√
mT log(1/δ)

nϵ

)
(Thm. 11)

ηt = 1√
t(1+mT σ2)

DP-CompMinibatch
O
(

log T√
T

+
log T

√
mT log(T/nδ)

nϵ

)
(Thm. 14)

ηt = 1√
t(1+mT σ2)

O
(

log T√
T

+
log T

√
mT log(T/nδ)

nϵ

)
(Thm. 14)

ηt = 1√
t(1+mT σ2)

Table 2. A summary of generalisation error rates obtained with the same algorithms as in Table 1.

Generalisation errors
Smooth case Non-smooth case

Convergence rate Parameters Convergence rate Parameters

Classical SGD
O
(

1√
n

)
([Hardt et al., 2016, Prop.5.4])

ηt = η√
T
, T ≍ n

O
(

1√
n

)
([Lei and Ying, 2020, Thm.7])

ηt = η
T 3/4 , T ≍ n2

CompSGD O
(

logn√
n

)
(Thm. 2) ηt = η√

t
, T ≍ n O

(
logn√

n

)
(Thm. 3) ηt = η

T 3/4 , T ≍ n2

CompGD O
(

logn√
n

)
(Thm. 5) ηt = η, T ≍

√
n O

(
logn√

n

)
(Thm. 7) ηt = η

T 3/4 , T ≍ n2

CompMinibatch O
(

logn√
n

)
(Thm. 9) ηt = η√

t
, T ≍ n O

(
logn√

n

)
(Thm. 10) ηt = η

T 3/4 , T ≍ n2

DP-CompGD
O
(

logn√
n

+ log(1/δ)

n3/2ϵ2

)
(Thm. 13)

ηt = η
T 3/4 , T ≍ n2 O

(
logn√

n
+ log(1/δ)

n3/2ϵ2

)
(Thm. 13)

ηt = η
T 3/4 , T ≍ n2

DP-CompMinibatch
O
(

logn√
n

+ log(T/nδ)

n3/2ϵ2

)
(Thm. 15)

ηt = η
T 3/4 , T ≍ n2 O

(
logn√

n
+ log(T/nδ)

n3/2ϵ2

)
(Thm. 15)

ηt = η
T 3/4 , T ≍ n2

Generalisation of CompSGD 5

Remark 1. Note that the parameter choice can be different in Table 1 and 2 to give

the best error rate. For example, the optimisation error of DP-CompGD in Table 1 is

minimized by choosing a constant step size, which leads to fast convergence in the training

error. However, we have to choose a smaller step size parameter for the generalisation

guarantee because we need to balance the optimisation error and the estimation error

terms.

1.1 Related work

The concept of algorithmic stability has existed for over thirty years [Devroye and

Wagner, 1979]. The modern framework of stability analysis was established in [Bousquet

and Elisseeff, 2002], where the important uniform stability was introduced and was

demonstrated for regularisation schemes. The notion of uniform stability was extended

to study randomised algorithms in [Elisseeff et al., 2005]. Further work by [Shalev-

Shwartz et al., 2010] studied the relation between stability, uniform convergence, and

learnability. An influential paper [Hardt et al., 2016] applies uniform stability to study

the generalisation of SGD for convex and smooth problems, which inspires a lot of work

on the stability and generalisation analysis of iterative algorithms [Chen et al., 2018, Lei

and Ying, 2020, Kuzborskij and Lampert, 2018, Liu et al., 2017, Richards and Kuzborskij,

2021, Nikolakakis et al., 2022]. The smoothness assumption was removed recently by

balancing stability and optimisation with small step sizes [Lei and Ying, 2020, Bassily

et al., 2020]. For non-convex problems, it was shown any global minimiser would generalize

well under a Polyak- Lojasiewicz condition [Charles and Papailiopoulos, 2018, Lei and Ying,

2021]. Other applications of stability can be found in structured prediction [London et al.,

2016], transfer learning [Kuzborskij and Lampert, 2018], minimax optimisation [Zhang

et al., 2021], hyperparameter optimisation [Bao et al., 2021] and adversarial training [Xing

et al., 2021]. The notion of differential privacy has strong relations with stability as

discussed in [Dwork and Roth, 2014], in the sense that private algorithms are also stable

randomised algorithms. Several private SGD algorithms have been developed in the past

decade [Song et al., 2013, Agarwal et al., 2018, Bassily et al., 2020, Wang et al., 2022].

The algorithm of our interest to analyse in this paper is the CompSGD proposed by

[Kasiviswanathan, 2021], which we review in Section 2.1. It uses randomly compressed

low-dimensional gradients to reduce the communication cost of transmitting the gradients

in distributed optimisation. The random compression is implemented as a random pro-

6 Z. Huang et al.

jection (RP) technique [Dasgupta and Gupta, 2003, Gordon, 1988], which is a popular

dimensionality reduction tool. RP has been previously applied to many learning algorithms

in various contexts [Showkatbakhsh et al., 2018, Kabán, 2016], including privacy-related

learning [Xu et al., 2017, Kenthapadi et al., 2012]. CompSGD was shown to overcome the

loss of information encountered in earlier approaches of reducing the communication costs

that used a sparsified or quantised version of the gradient [Alistarh et al., 2017, Alistarh

et al., 2018, Wang et al., 2018, Agarwal et al., 2018, Stich et al., 2018] as an encoding

process.

2 Preliminaries

In this section, we describe the problem setup and the notations used. We consider the

following general setting of supervised learning. Let D be a probability distribution defined

over some sample space Z ⊆ X × Y, where X ⊆ Rd is an input domain, Y ⊆ R is the

target or label set, so each z ∈ Z consists of d attributes and a label. We draw an i.i.d.

sample set S = {z1, . . . , zn} from D. Let f : Rd×Z → R be a loss function that quantifies

the quality of outputs for a hypothesis represented by the parameter vector w ∈ C, where

C is the parameter set, assumed to be a convex set. Given some loss function f , we aim

to find a w ∈ C that minimises the risk (expected loss) defined as F (w) = Ez∼D[f(w, z)].

Since the distribution D is typically unknown, we work with its empirical analogue, defined

as

FS(w) =
1

n

n∑
i=1

f(w, zi). (1)

Given a finite sample set S ⊂ Z, we run an iterative gradient-based optimisation algorithm

to minimise (1) over the parameter set C, such as the Stochastic Gradient Descent (SGD),

where at each step we update our weight vector w ∈ C using a sample-based estimate of

the gradient of f .

We note that this is a general setting, as it is not tied to any specific hypothesis class, or

model, nor any properties of the underlying data distribution. It applies whenever the

learning proceeds through an iterative gradient-based optimisation procedure.

We are interested in a compressive approach, whereby the optimisation is carried out in a

dimensionality-reduced parameter space [Kasiviswanathan, 2021], as this naturally lends

itself to private and distributed applications. This compressive optimiser will be described

in the next subsection. To ensure minimal loss of information, both the algorithm and

Generalisation of CompSGD 7

the analysis will make use of a geometric measure of complexity of the parameter set C,

namely the Gaussian width, defined as

w(C) = E sup
x∈C

⟨g, x⟩ where g ∼ N(0, In), (2)

and In is the n× n identity matrix.

Notation conventions. We use ∥ · ∥ to denote the Euclidean norm. We use the notation

[n] := {1, . . . , n}. We denote by A a (randomised) optimisation algorithm. Expectations

E[·] are taken with respect to the random sampling of S and the randomness in the

algorithm A, unless otherwise specified. For a set C, we define its diameter as ∥C∥ =

supw,v∈C ∥w − v∥. Given a linear transform Φ ∈ Rm×d, we define the transformed set

ΦC := {Φw : w ∈ C}. For our purposes, Φ will be an m× d,m ≤ d random matrix with

i.i.d. Gaussian entries having 0 mean and variance 1/m, commonly referred to in the

dimensionality reduction literature as “random projection” (although not a projection in

the geometric sense). Furthermore, we define the orthogonal projection operator Π in the

usual way as follows: for a set C and vector w, the projection of w onto C is denoted by

ΠCw; this is the vector w′ ∈ C such that w′ has a minimal distance to w. We use the

notation B ≍ B̃ if there exist universal constants c1, c2 > 0 such that c1B̃ ≤ B ≤ c2B̃.

2.1 SGD optimisation with compressed gradient updates

In this section, we briefly review SGD with compressed gradient updates, as proposed

by [Kasiviswanathan, 2021] – see Algorithm 1. At each iteration, this algorithm uses

a random projection (RP) Φ to compress both the weight vector w and the gradient

vector estimated using a randomly sampled training point z, i.e. ∇f(wt, z), to a lower

dimension that depends on the Gaussian width of the parameter set C (lines 4-6). It then

takes a step in the direction of the negative gradient in the reduced parameter space, and

orthogonally maps the updated parameter vector into the set ΦC (line 7). Finally, it lifts

this updated parameter back into the original higher dimensional parameter set C (line

8). We use the weighted average output from the algorithm, as common in SGD, defined

as w̄T = (
∑T

t=1 ηtwt)/
∑T

t=1 ηt, where ηt and wt are the learning rate and output of the

algorithm at each iteration.

Remark 2. The compression operator Φ used in CompSGD is a random projection matrix,

which is different from compression operators used in sparsification and quantization as

8 Z. Huang et al.

Algorithm 1 CompSGD [Kasiviswanathan, 2021]

1: Inputs: Sample set S of n points in Z, convex set C, learning rate parameters {ηt},
and projection dimension parameters {βt}, number of iterations T .

2: initialize w0 as any point in C.
3: for t = 1 to T do
4: mt = O(min{d, ω(C)2/β2

t })
5: set Φt ∈ Rmt×d to be an i.i.d. random projection matrix
6: set ∇f(wt, zit) as the gradient where it is uniformly drawn from [n]
7: set θt = ΠΦtC(Φtwt − ηtΦt∇f(wt, zit))
8: pick wt+1 as any element from the set {w ∈ C : Φtw = θt}.
9: end for

10: Output: w1,w2, . . . ,wT

mentioned in the introduction. The performance of random projection is highly dependent

on the geometry of the set C which is captured by the Gaussian width w(C) that we use

here. Note that this compression approach can be applied in conjunction with existing

approaches in sparification and quantization. For example, [Kasiviswanathan, 2021] has

applied CompSGD with the quantization method by [Alistarh et al., 2017] to achieve

further reduction on communication costs. Furthermore, by the guarantee of Gordon’s

theorem [Gordon, 1988], the distance distortion due to random projection can be quantified

and bounded tightly, as long as we set the appropriate projection dimension relatively to

the complexity of C.

A key result of [Kasiviswanathan, 2021] showed that the optimisation convergence of

SGD with compressed gradients is the same as that of regular SGD up to logarithmic

factors. They also demonstrated experimentally that the run time of using low-dimensional

gradients is almost as quick as regular SGD. In turn, the benefits of using compressed

gradient updates may include a reduction of the communication costs in distributed optimi-

sation problems [Kasiviswanathan, 2021], and potentially a reduction of the dimensionality

of randomised noise required in differentially private learning.

However, the existing results of the analysis of this algorithm only address optimisation

convergence rates in a non-private setting. Differentially private optimisation convergence

rates have not been attempted previously. Beyond optimisation, from the perspective of

using this optimisation method in machine learning, we need to know what can we say

about generalisation – in particular, what is the effect of random compression of gradient

updates. This has not been addressed previously. To get a handle on this problem while

maintaining generality, we shall appeal to stability theory, which we describe next. One of

our main results will establish that the stability and generalisation bound of learning with

Generalisation of CompSGD 9

CompSGD are nearly the same as that of learning with regular SGD, up to logarithmic

factors.

2.2 Generalisation via algorithmic stability

Denote by A(S) the output of a stochastic learning algorithm A run on a sample set S.

We denote by w∗
S ∈ C an empirical risk minimiser (ERM), that is a hypothesis with the

lowest empirical error, arg minw∈C FS(w). We are interested in the excess risk of A(S),

which is F (A(S)) − F (w∗) where w∗ = arg minw∈C F (w) is the unknown best performing

hypothesis whose parameters live in C. The expected excess risk can be broken down into

two terms, noting E[FS(w∗)] = F (w∗):

ES,A[F (A(S)) − F (w∗)] = E[F (A(S)) − FS(A(S))] + E[FS(A(S)) − FS(w∗)]. (3)

The first term of the decomposition is called the estimation error due to sampling of

S and the second term is the optimisation error induced by minimising the empirical

risk. Stability properties of the algorithms are known to have a strong connection to

their generalisation, as stability allows us to understand the scale of the estimation error.

The notion of stability that we will employ is uniform stability. Uniform stability is a

widespread notion of stability that drives powerful analysis [Elisseeff et al., 2005, Hardt

et al., 2016, Bousquet and Elisseeff, 2002].

Definition 1 (Uniform stability). An algorithm A is said to be ϵ-uniformly stable if

we have for all S, S ′ ∈ Zn that differ by at most one example,

sup
z

EA[f(A(S), z) − f(A(S ′), z)] ≤ ϵ. (4)

The following powerful theorem connects uniform stability and generalisation:

Theorem 1 ([Shalev-Shwartz et al., 2010]). If A is ϵ-uniformly stable, then

|ES,A[F (A(S)) − FS(A(S))]| ≤ ϵ.

Our general strategy will be to investigate the two terms of (3) individually and combine

the results together to obtain an excess risk bound. The second term, i.e. the optimisation

error is already available in some settings from [Kasiviswanathan, 2021], while the first

10 Z. Huang et al.

term, i.e. the estimation error will need some work and will be obtained by establishing a

suitable stability bound.

In this analysis framework, bounding the optimisation error is part of bounding the

generalisation error. However, we are also interested in optimisation convergence rates,

since optimisation is useful in many other application areas. Thus, we produce two sets of

results: optimisation error rates, and generalisation error rates. The difference is that, for

optimisation we choose the step size that achieves the best optimisation error rates, while

for generalisation we choose the step size and the number of iterations to balance out the

optimisation error and the estimation error in order to achieve the best generalisation

error rates. Consequently, the rates can be different depending on whether our goal is

optimisation or generalisation, and indeed we see examples in our summary Tables 1-2

(last two rows), where the optimisation convergence rate of an algorithm differs from its

generalisation convergence rates.

In this paper, we will mainly consider the weighted average output model

w̄ =

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtwt.

However, many parts of our results will also hold for the final output model wT or other

similar averaging models (e.g. average of last 10 iterations).

Throughout this paper, we will assume that the loss function f is convex and Lipschitz

in its first argument. Recall, a function φ : Rd × Z → R is L-Lipschitz on C ⊂ Rd with

respect to the norm ∥ · ∥ if ∀w,w′ ∈ C,∀z ∈ Z we have |φ(w, z)−φ(w′, z)| ≤ L∥w−w′∥.

A differentiable function φ : Rd → R is convex over C ⊂ Rd if ∀w,w′ ∈ C we have

φ(w) ≥ φ(w′) + ⟨w −w′,∇φ(w′)⟩.

We note that, despite the popular use of SGD on non-convex problems, the theoretical

analysis in the non-convex case is still very limited (e.g. privacy-related applications [Wang

et al., 2019]). There are currently no generalisation analyses of SGD with compressed

gradients at all, to the best of our knowledge. Therefore our aim is to provide the first

insights in compressed gradient descent methods that yield low generalisation error. This

will eventually lead to new insights in privacy applications and complex non-convex

problems.

Generalisation of CompSGD 11

3 Generalisation of CompSGD

3.1 Generalisation bound under smoothness assumption

In this section, we assume that the loss function f , is convex, L-Lipschitz, and also

µ-smooth. A function φ : Rd × Z → R is µ-smooth on C ⊂ Rd if ∀v,w ∈ C,∀z ∈ Z

we have ∥∇φ(v, z) −∇φ(w, z)∥ ≤ µ∥w − v∥, i.e. its gradient is µ-Lipschitz in its first

argument on C.

These assumptions are common and critical for convex optimisation problems as

they lead to bounds on the divergence or expansiveness of the gradient updates when

the algorithm is running on neighbouring sample sets [Hardt et al., 2016]. Examples of

common loss functions that satisfy these assumptions are logistic loss, Huber loss and

exponential loss (assuming bounded input samples). Later we also provide analysis without

the smoothness assumption, which applies to e.g. the Hinge loss.

However, the bottleneck here is to account for the effects of random compressions

that operate at each iteration of Alg. 1. This is a form of sketching, which creates a

perturbation that was not present in classical SGD. It is not at all obvious as to whether

this sketched parameter update rule is sufficiently well behaved, moreover since at each

iteration the updated parameter vector wt+1 depends on the random matrix of the previous

iteration, Φt, and these perturbations accumulate from iteration to iteration. Fortunately,

it turns out that the Gaussian width defined in (2) allows us to estimate an appropriate

projection dimension based on the structural complexity of the parameter set, such that

the parameters learned by CompSGD from two neighbouring sets still do not diverge too

much. This allows us to carry out a useful stability analysis similar to that of classical

SGD, while incurring just an extra log factor.

Theorem 2 (Stability and generalisation of CompSGD under smoothness).

Assume that the loss function f is convex, µ-smooth and L-Lipschitz on w ∈ C, for every

z ∈ Z. Suppose that we run the CompSGD with step sizes ηt = η√
t
≤ 2/µ for T ≍ n

iterations. Let βt = 1
t+1

, ηt = η√
t
for some absolute constant η.

1. Then, the CompSGD algorithm (both wT and w̄T) is ϵstab-uniformly stable with ϵstab =

O
(
L2 log(n)/

√
n
)
.

2. Moreover, the weighted average output w̄T of CompSGD satisfies the following general-

isation bound

E[F (w̄T)] = F (w∗) + O(L2 log(n)/
√
n). (5)

12 Z. Huang et al.

Remark 3. For the vanilla SGD, excess risk bounds of the order O(1/
√
n) were established

for SGD with ηt ≍ 1/
√
n and T ≍ n [Hardt et al., 2016]. Theorem 2 shows that CompSGD

is able to achieve the same generalisation bounds (up to a log factor) by updating with

compressed stochastic gradient.

Remark 4. The choice of βt in Thm. 2 makes the projection dimension in Alg.1 scales

inversely with t. This is needed for the theoretical analysis and will appear similarly

for later analyses. However, in practice this appears to be not crucial, as demonstrated

in [Kasiviswanathan, 2021, Appendix B.3] on relatively complex and high-dimensional

real-world problems. CompSGD can be implemented in the distributed learning setting

which requires less iterations to converge. Furthermore, many real world problem have

very high dimensions while their intrinsic dimension may be much smaller, allowing mt to

be smaller than it is required here. Our results presented here considers the worst case

scenario.

3.2 Generalisation bound without smoothness

The smoothness assumption is commonly used in the analysis for regular SGD since it

simplifies the analysis for both optimisation and generalisation. However, in practice,

we often encounter learning problems with non-smooth loss functions (e.g. the Hinge

loss). Recently, [Lei and Ying, 2020] showed for SGD without the smoothness assumption

(relaxed Hölder-continuous assumption) enjoys stability and generalisation bounds (up to

constant factors) similar to that with the smooth assumption by choosing an appropriate

choice of parameters. We will adapt parts of their technique here to prove the generalisation

convergence for CompSGD in the non-smooth case. We show that we can obtain the same

convergence as in the smooth case for CompSGD up to log factors by choosing suitable

projection and learning parameters.

Theorem 3 (Stability and generalisation of CompSGD without smoothness).

Assume that the loss function f is convex and L-Lipschitz over the convex set C. Suppose

that we run the CompSGD with step sizes ηt = η
T 3/4 for some absolute constant η for T

steps. Furthermore we let βt = 1
t+1

and T ≍ n2.

1. Then CompSGD is ϵstab-uniformly stable with ϵstab = O
(
L2
√

log(n)/
√
n
)
.

2. Moreover, the weighted average output w̄T of CompSGD satisfies the following general-

isation bound

E[F (w̄T)] = F (w∗) + O
(

(∥C∥2 + L2) log(n)√
n

)
. (6)

Generalisation of CompSGD 13

From Theorem 3 we have chosen a relatively smaller step size parameter ηt = η/T 3/4

comparing to ηt = η/
√
t in the smooth case. The choice of ηt here is needed for our result

to have the same convergence as in the smooth case. An intuitive explanation for the

smaller step size parameter is that the problem is harder without the smoothness hence

we need to take more careful steps towards the optima.

Remark 5. The choice of the parameter in the non-smooth case matches with the choice

for classical SGD in the same setting [Lei and Ying, 2020]. Hence Theorem 3 shows that

CompSGD achieves the same generalisation bounds in the non-smooth setting with the

same parameters (up to logarithmic factors).

4 Variants of CompSGD

In this section, we present the convergence guarantee of the variants of the CompSGD -

batch gradient descent that uses the full gradient (section 4.1) and mini-batch gradient

descent that uses the gradient of the mini-batch (section 4.2). These variants of SGD are

also widely used in practice, especially in cases where we can compute the full gradient

easily to make more informative updates in each iteration. In the differentially private

setting, it is also desirable to use the batch gradient instead of the stochastic gradient due

to the random noise injected and to limit the number of iterations required. In this section,

we show that the risk bounds of these variants are the same as the rates for CompSGD.

Hence, we can choose an appropriate method suited to our needs without affecting its

generalisation.

4.1 Compressed gradient descent

The first variant we will analyze is the classical batch gradient descent.

Batch gradient descent utilizes the most information from the sample set S at each

iteration to make accurate updates. Hence we can usually converge close to the optima

using much less iterations compared to SGD which can be beneficial in many cases (e.g.

private optimisations). The detail is outlined in Algorithm 2.

Since batch gradient utilises the most information from the sample set at each iteration,

batch gradient descent is a special case where we can use a constant step size η to obtain

a quicker convergence rate in its optimisation bound. We show that this is also the case

for compressed batch gradient descent.

14 Z. Huang et al.

Algorithm 2 Compressed Gradient Descent (CompGD)

1: Inputs: Sample set S of n points in Z, convex set C, learning rate parameters {ηt},
and projection dimension parameters {βt}.

2: initialize w as any point in C.
3: for t = 1 to T do
4: Set mt = O(min{d, ω(C)2/β2

t })
5: Let Φt ∈ Rmt×d be an i.i.d. random projection matrix
6: compute ĝt = 1

n

∑
z∈S ∇f(wt, z) as the gradient

7: set θt = ΠΦtC(Φtwt − ηtΦtĝt)
8: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}.
9: end for

10: Output: w1,w2, . . . ,wT

Theorem 4 (Optimisation with CompGD, smooth case). Let f be a convex function

over a convex set C, and satisfy L-Lipschitz condition and µ-smooth condition. Then with

ηt = η ≤ 1/(2µ) for some absolute constant η and βt = 1
t+1

, the compressed gradient

descent satisfies

E[FS(w̄T) − FS(w∗)] = O
(
∥C∥2 log(T)

T

)
. (7)

We now study the risk bounds of CompGD. Note that here we have O(1/T) for its

optimisation bound which is better than SGD. We also note that we have chosen a

constant step size η for batch gradient because each gradient update is accurate enough

to take larger steps. Hence, we only required T ≍
√
n to achieve the same generalisation

convergence compared to SGD.

Theorem 5 (Stability and generalisation of CompGD, smooth case). Assume the

loss function f is convex, µ-smooth, and L-Lipschitz over the convex set C. Suppose we

run the CompGD with ηt = η ≤ 1/(2µ) for T ≍
√
n steps where η is an absolute constant

and βt = 1/(t + 1).

1. Then CompGD satisfies uniform stability with ϵstab = O (L2/
√
n) .

2. Moreover, the weighted average output w̄T of CompGD satisfies the following excess

risk bound

E[F (w̄T)] = F (w∗) + O
(

(∥C∥2 + L2) log(n)√
n

)
. (8)

While we can obtain a faster convergence rate for batch gradient descent in optimisation,

the stability guarantee of CompGD is the same as CompSGD. This is also the case for

classical SGD, because the samples we use for wt+1,w
′
t+1 will differ in one point every

iteration with probability 1. Hence we do not obtain an improvement in the expected

Generalisation of CompSGD 15

excess generalisation risk. However, the smoothness case will allow us to choose a larger

learning rate compared with the non-smooth case.

Theorem 6 (Optimisation with CompGD, non-smooth case). Let f be a convex

function over a convex set C and satisfy L-Lipschitz condition. Then with ηt = η/
√
t for

some absolute constant η and βt = 1
t+1

, the compressed gradient descent satisfies

E[FS(w̄T) − FS(w∗)] = O
(

(∥C∥2 + L2) log(T)√
T

)
. (9)

Theorem 7 (Stability and generalisation of CompGD, non-smooth case). Assume

the loss function f is convex, µ-smooth and L-Lipschitz over the convex set C. Suppose we

run the CompGD with ηt = η/T 3/4 for T ≍ n2 steps where η is an absolute constant and

βt = 1/(t + 1).

1. Then CompGD satisfies uniform stability with ϵstab = O (L2 log(n)/
√
n) .

2. Moreover, the weighted average output w̄T of CompGD satisfies the following excess

risk bound

E[F (w̄T)] = F (w∗) + O
(

(∥C∥2 + L2) log(n)√
n

)
. (10)

4.2 CompSGD with Mini-batch

In this section, we study the stability and generalisation of CompSGD with a mini-batch

strategy. Mini-batch SGD is considered as a semi-stochastic version of gradient descent

and is widely used in various applications [Konečnỳ et al., 2015, Zhao and Zhang, 2014].

Different sampling techniques may be used to sample a mini-batch depending on the

application and preference. Here we will use the following sampling method for the

CompSGD with mini-batch: For each iteration we sample a mini-batch Bt of size b from

the sample set S without replacements, then we will sample a fresh batch from S at the

next iteration so that the sampling set S is consistent.

Theorem 8 (Optimisation with Mini-batch SGD). Let f be a convex function over

a convex set C, and satisfy L-Lipschitz condition. Then with ηt = η√
t
and βt = 1

t+1
, the

CompSGD with mini-batch satisfies

E[FS(w̄T) − FS(w∗)] = O
(

(∥C∥2 + L2) log(T)√
T

)
. (11)

16 Z. Huang et al.

Algorithm 3 CompSGD with Mini-batch (CompMinibatch)

1: Inputs: Sample set S of n points in Z, batch size b, convex set C, learning rate
parameters {ηt}, and projection dimension parameters {βt}.

2: initialize w as any point in C.
3: for t = 1 to T do
4: Set mt = O(min{d, ω(C)2/β2

t })
5: Let Φt ∈ Rmt×d be an i.i.d. random projection matrix
6: Sample a mini-batch Bt of size b uniformly from S
7: compute ĝt = 1

b

∑
z∈Bt

∇f(wt, z) as the gradient of the mini-batch
8: set θt = ΠΦtC(Φtwt − ηtΦtĝt)
9: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}.

10: end for
11: Output: w1,w2, . . . ,wT

Theorem 9 (Stability and generalisation of Mini-batch SGD, smooth case).

Assume that the loss function f is µ-smooth, convex, and L-Lipschitz for every z. Suppose

that we run the CompSGD with mini-batch of size b and step sizes ηt ≤ 2/µ for T iterates.

Then with ηt = η/
√
t for some absolute constant η, βt = 1

t+1
and T ≍ n, we have

1. The algorithm CompMinibatch is ϵstab-uniformly stable with ϵstab = O (L2 log(n)/
√
n).

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[F (w̄T)] = F (w∗) + O
(

(∥C∥2 + L2) log(n)√
n

)
. (12)

We note that the optimisation and stability of the mini-batch achieve the same

convergence rate as SGD, which is optimal up to logarithmic factors. The main advantage

of mini-batch is to perform stochastic gradient descent while preventing over-randomised

convergence to the optima. In the best case we will obtain the same convergence as for

batch gradient descent in section 4.1. Since the mini-batch selected can be either quite

small or large depending on the computational complexity desired, the upper bound for

its generalisation error is identical to SGD as we show below.

Theorem 10 (Stability and generalisation of Mini-batch SGD, non-smooth

case). Assume that the loss function f is convex and L-Lipschitz for every z. Suppose

that we run the CompSGD with mini-batch of size b and step sizes ηt = η/T 3/4 for some

absolute constant η, βt = 1
t+1

and T ≍ n2.

1. The CompSGD with mini-batch is ϵstab-uniformly stable with ϵstab = O (L2 log(n)/
√
n).

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[F (w̄T)] = F (w∗) + O
(

(∥C∥2 + L2) log(n)√
n

)
. (13)

Generalisation of CompSGD 17

5 Reducing the Noise for Differentially Private Applications

5.1 A Brief Background on Differential Privacy

We provide a brief introduction of differential privacy here as a preliminary. Differential

privacy (DP) is a rigorous theoretical privacy guarantee that is introduced by [Dwork,

2006], and since then DP has been a popular concept that has been widely applied to

many common algorithms in computer science. Roughly speaking, DP guarantees that

the participation of a particular sample will not affect the output of the algorithm, hence

adversaries cannot recover particular samples from the output of a DP algorithm. We

denote two datasets S ∼ S ′ if they differ by at most an example.

Definition 2 (Differential privacy [Dwork, 2006]). A randomised algorithm M with

domain X is (ϵ, δ)-differentially private if for all B ⊆ Range(M) and for all S ∼ S ′ ⊂ X :

Pr[M(S) ∈ B] ≤ exp(ϵ) Pr[M(S ′) ∈ B] + δ.

There have been many ways of achieving differential privacy for algorithms since there

is a vast amount of research related to differential privacy [Dwork and Roth, 2014]. One

of the common mechanism is the Gaussian mechanism:

Definition 3 (Gaussian mechanism [Dwork et al., 2006]). Let F : X n → Rd. The

algorithm with input S ∈ X n outputs F (S) + e where e ∼ N(0, 2∆2 log(1.25/δ)/ϵ2Id×d)

where ∆ denotes ℓ2-global sensitivity of the function F defined as supS∼S′ ∥F (S)−F (S ′)∥,

is (ϵ, δ)-differentially private. Here Id×d denotes the identity matrix in Rd×d.

The Gaussian mechanism works by analysing the global sensitivity of an algorithm F

and adding Gaussian noise (w.r.t. its sensitivity) to guarantee privacy. This is the most

common mechanism used for differentially private gradient descent methods, since its

combination with the strong composition theorem provides decent privacy guarantees

while preserving good accuracy. For our purpose, the algorithm F will be our gradient

computation that takes samples in S ⊂ Z as inputs and outputs a gradient in d-dimension.

5.2 Differentially Private Compressed Gradient Descent

In this section, we demonstrate and analyse the DP-SGD with compressed gradients. To

guarantee differential privacy we impose the Gaussian mechanism to add Gaussian noise

to the gradient updates. For classical DP gradient updates, we need to add noises in the

18 Z. Huang et al.

original d-dimensional space which could be of very large size if d is large. We impose the

compressed gradient updates in the private setting to add noise in a much lower dimension

instead. The algorithm is introduced in the appendix of [Kasiviswanathan, 2021]. However,

no convergence analysis has been done for the private setting. The detailed algorithm is

outlined in Algorithm 4.

The algorithm uses a standard application of the Gaussian mechanism [Dwork, 2006] to

guarantee (ϵ, δ)-differential privacy. The main idea of the mechanism is to perturb the

gradient update at each iteration by injecting noise. A similar approach has also been

taken in [Song et al., 2013] in the classical case (without projections).

Algorithm 4 Differentially private CompGD (DP-CompGD)

1: Inputs: Sample set S = {z1, . . . , zn} ⊂ Zn, privacy parameters (ϵ, δ), step size param-
eters {ηt} and projection parameters {βt}.

2: initialize w1 as any point in C
3: for t = 1 to T do
4: set mt = min{d, ω(C)2/β2

t }
5: choose projection matrix Φt ∈ Rmt×d with i.i.d. entries from N (0, 1/mt)

6: set σ2 = 32L2T log(1/δ)
n2ϵ2

7: set st = ∥∇FS(wt)∥
∥Φt∇FS(wt)∥

8: set θt = ΠΦtC(Φtwt − ηt(stΦt∇FS(wt) + e)) where e ∼ N (0, σ2Imt)
9: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}

10: end for
11: Output: w1,w2, . . . ,wT

We note that the variance of the injected noise σ2 here depends not only on the privacy

parameters ϵ, δ, but also on the number of iterations T and the number of samples n.

The dependence on T follows from the iterative property of gradient descent as we need

to query the sample set once every epoch. The dependence on n follows from the use of

the gradient ∇FS(wt) for our algorithm. We remark that it is more preferable to use the

full gradient in the privacy setting as compared to SGD if we wish to maximise accuracy

because we can reduce the variance of the noise. Since differential privacy requires that the

sensitivity of the gradient is bounded uniformly, we are required to set the normalization

factor st as in the algorithm to guarantee this property. Other methods such as gradient

clipping as in [Chen et al., 2020] also works similarly to bound the sensitivity uniformly.

One of the main challenges in the differentially private setting is to accommodate in the

analysis the normalization factor st on the gradient updates, which depends on the random

projection Φt and the gradient ∇FS. The size of the random projection Φt only depends

on the Gaussian width of C (and distortion parameter βt), meaning we have a uniform

Generalisation of CompSGD 19

norm-preservation guarantee for elements of C, but no guarantee on the distortion of the

projected gradients Φt∇FS. This makes the convergence of the projected gradient updates

difficult to analyse. We exploit the Gaussianity of Φt to overcome this bottleneck, and we

show that the convergence of DP-CompGD is almost the same as that of high-dimensional

SGD (without projection) while reducing the dimensionality of the noise and the gradient.

Theorem 11 (Optimisation with DP-CompGD, non-smooth case). Assume that

the loss function f is convex and L-Lipschitz over the convex set C. Suppose we run the

compressed GD with step sizes ηt = ∥C∥/
√

t(L2 + mTσ2) for some absolute constant η.

For privacy parameters ϵ, δ we let σ2 = O(L2 log(1/δ)T/(ϵ2n2)) and βt = 1/(t + 1). Then

we have that the private CompSGD satisfies

E[FS(w̄T)] = F (w∗) + O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mT log(1/δ)

nϵ

)
, (14)

where mT = maxt∈[n] mt ≤ d.

We note that the second term in (14) has the privacy parameter ϵ in the denominator,

which implies that the second term will vanish as ϵ tends to infinity (zero privacy). In that

case, we recover the same convergence rate as in the non-private case as expected. We also

note that mT is dependent on the Gaussian width of the constraint set C. This captures

the dimensionality reduction from d to ω(C), which can be much smaller if the set has a

low dimensional structure. e.g. if C is the ℓ1-ball, then we have ω(C) = O(
√

log d).

In the case of smooth f , we can obtain a faster convergence in optimisation just as we

have observed for the non-private case.

Theorem 12 (Optimisation with DP-CompGD, smooth case). Assume that the

loss function f is convex, µ-smooth and L-Lipschitz over the convex set C. Suppose that

we run the compressed GD with step sizes ηt = ∥C∥
L
√
mT

≤ 1/(4µ) for some absolute constant

η. For privacy parameters ϵ, δ we let σ2 = O(log(1/δ)L2T/(ϵ2n2)) and βt = 1/(t + 1).

Then we have that the private CompSGD satisfies

E[FS(w̄T)] = F (w∗) + O
(
L∥C∥ log T

√
mT

T
+

LT
√
mT log(1/δ)

n2ϵ2

)
,

where mT = maxt∈[n] mt ≤ d.

20 Z. Huang et al.

Similar to the non-smooth case, we note that when the privacy parameters ϵ, δ converge

to infinity, we will recover the same convergence bound as in the non-private case for

compressed gradient descent.

Remark 6. Notice here that we have specified the learning rate ηt needed for the optimi-

sation error bounds in Thm. 11 and Thm. 12. The only necessary dependence in ηt is

t, σ2, and mT for the dimensionality dependence. Other constants can be chosen freely

without affecting the result (up to constant factors) in a similar way as previous results

(as in e.g. Thm. 4).

Theorem 13 (Stability and generalisation of DP-CompGD). Assume that the loss

function f is convex and L-Lipschitz for every w ∈ C, z ∈ Z. Then,

1. For βt = 1
t+1

, ηt = η
T 3/4 , and some absolute constant η and T ≍ n2, the differentially

private CompGD is ϵstab-uniformly stable with ϵstab = O
(

L log(n)√
n

)
.

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[F (w̄T)] = F (w∗) + O

(
(∥C∥2 + L2) log(n)√

n
+

log(1/δ)

n3
√
nϵ2

n2∑
t=1

mt

)
. (15)

5.3 Differentially Private CompSGD with mini-batch

While we prefer using large batch gradients in the private setting to reduce the global

sensitivity of the gradient and improve optimisation with fewer iterations, private mini-

batch SGD can be useful for large sample sets. Moreover, the mini-batch act as a trade-off

parameter between computational complexity and the accuracy of gradient updates. In

this section, we present the differentially private CompSGD algorithm using mini-batch

gradient updates, the algorithm is outlined in Alg. 5.

Note that the mini-batch version of DP-CompSGD induces an extra log factor in its

variance σ2, which will lead to an extra multiplicative log factor in the optimisation and

generalisation bounds. This is a trade-off in privacy from using a smaller batch of samples

in each gradient update (instead of the full batch as in Alg. 4). Fortunately, we are still

able to obtain the same convergence guarantees for the mini-batch as in Section. 5.2 when

ϵ tends to infinity.

Theorem 14 (Optimisation with DP-CompMiniBatch, non-smooth case). As-

sume that the loss function f is convex and L-Lipschitz over the convex set C. Suppose we

Generalisation of CompSGD 21

Algorithm 5 Differentially Private CompSGD with mini-batch (DP-CompMiniBatch)

1: Inputs: Sample set S = {z1, . . . , zn}, batch size b, privacy parameters (ϵ, δ), step size
parameters {ηt} and projection parameters {βt}.

2: initialize w1 as any point in C
3: for t = 1 to T do
4: set mt = min{d, ω(C)2/β2

t }
5: choose projection matrix Φt ∈ Rmt×d with i.i.d. entries from N (0, 1/mt)
6: Sample a mini-batch Bt of size b uniformly from S

7: set σ2 = 162LT log(1/δ) log(2.5Tb/(δn))
n2ϵ2

8: set st =
∥∇FBt (wt)∥

∥Φt∇FBt (wt)∥
9: set θt = ΠΦtC(Φtwt − ηt(stΦt∇FBt(wt) + e)) where e ∼ N (0, σ2Imt)

10: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}
11: end for
12: Output: w1,w2, . . . ,wT

run the compressed GD with step sizes ηt = ∥C∥/
√

t(L2 + mTσ2). For privacy parameters

0 ≤ ϵ, δ ≤ 1 and βt = 1/(t + 1). Then the private CompSGD with mini-batch satisfies

E[FS(w̄T)] = F (w∗) + O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mT log(1/δ) log(4TB/(δn))

nϵ

)
.

Similar to the non-private case for the mini-batch variance, there is no improvement

with the additional smoothness condition, we obtain the same convergence for both cases.

The rate we obtained here is the same as the result obtained with non-projected gradients

in [Bassily et al., 2020] with a key difference: the dimensionality dependence
√
d is replaced

with the maximum projection dimension mT . Hence the reduction of dimensionality here

comes for “free” compared with using non-projected gradients.

Theorem 15 (Stability and generalisation of DP-CompMiniBatch). Assume that

the loss function f is convex and L-Lipschitz for every w ∈ C, z ∈ Z.

1. Then, for βt = 1
t+1

, ηt = η
T 3/4 for some absolute constant η and T ≍ n2, the differentially

private mini-batch CompSGD is ϵstab-uniformly stable with ϵstab = O
(

L log(n)√
n

)
.

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[F (w̄T)] = F (w∗) + O

(
(∥C∥2 + L2) log(n)√

n
+

L2 log(4Tb/(δn)) log(1/δ)

n3
√
nϵ2

n2∑
t=1

mt

)
.

Remark 7. Note that the generalisation bound obtained here is tight, as we required at

least O(1/
√
n) even in the non-private case. The convergence rate will be almost the

same (up to log factors) as the non-private case if the privacy parameter is not too small -

ϵ ≍ 1/
√
n.

22 Z. Huang et al.

6 Proofs

In this section, we present the proofs of the key theorems from Section 3 and Section 5.

Supporting lemmas and proofs of intermediate results are deferred to the Appendix to

focus on the proofs of our main results only. Similarly, proofs for Sections 4.1, 4.2 and 5.3

are deferred to the Appendix as they use similar techniques as the proofs we present in

this section with slight variations.

For simplicity, we first denote our gradient update at iteration t as follows. A gradient

update in CompSGD (lines 4-8 in Alg. 1) is a map G : Rd×Rd → Rd that takes a parameter

vector wt and a training point z as inputs, and it outputs the updated parameter vector

G(wt, z), defined as the following

G(wt, z) = arg min
w∈C

{∥w∥1 : Φtw = ΠΦtC(Φtwt − ηtΦt∇f(wt, z))}, (16)

where Φt is a RP matrix, and ηt is the step size parameter. We drop the dependence of z

when it is clear from the context and just write G(w) for simplicity. We remark that our

analysis does not require w to have the minimum ℓ1-norm property; this is included only

to break ties so that the map G is well defined. Indeed, one can pick the updated element

as described in Alg 1.

6.1 Proof of stability & generalisation of CompSGD under smoothness

This section will prove Theorem 2, i.e. the stability of CompSGD, which combined with

an existing optimisation bound will give us its generalisation guarantee.

First, we establish some important properties of CompSGD. A key idea in stability analysis

is to control the extent to which a sequence of updates starting from neighbouring sample

sets diverge, in each iteration - in our case, one update corresponds to one run of lines 4-8

in Alg. 1. The algorithm is more stable if the divergence is smaller. The following result

shows how the divergence between two gradient updates in CompSGD is controlled by

the projection parameter βt.

Lemma 1 (Distortion induce by the random projection). Let wt+1,w
′
t+1 ∈ C be

the parameter vectors at iteration t + 1 of Alg. 1 when run on two neighbouring sample

sets S and S ′. For any choices of training points zit and z′it, we have

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − (ηt∇f(wt, zit) − ηt∇f(w′
t, z

′
it))∥

2.

Generalisation of CompSGD 23

Since Lemma 1 implies that the divergence of gradient update with projected gradient is

upper bounded by the divergence of regular gradient update (up to the 1 − βt factor), we

can make use of some property analysis from classical SGD. We will approach this using

the concepts of expansivity and boundedness introduced in [Hardt et al., 2016].

Definition 4 (Well behaved gradient update). We say the gradient update G(w)

is α-expansive if, for all v,w ∈ C we have ∥G(v) − G(w)∥ ≤ α∥v − w∥. We say the

gradient update G(w) is γ-bounded if supw∈C ∥w −G(w)∥ ≤ γ.

We now show that, for the type of loss functions considered, the update rule of Alg. 1 is

well-behaved despite the distortion created by random compression. First we show that,

at any iteration t the CompSGD update rule wt+1 = G(wt) has limited expansiveness

whenever the same training point is chosen for gradient estimation (Lem. 2). Secondly, the

CompSGD update is bounded whenever different training points are chosen for gradient

estimation (Lem. 3).

Lemma 2 (Limited expansiveness). Assume that f is convex and µ-smooth. Fix any

t ∈ N, and let wt,w
′
t ∈ C be the parameter vectors at the t-th iteration of Alg. 1 when run

on two neighbouring sample sets S and S ′. If zit = z′it i.e. the same training point is chosen

to estimate the gradient at the t-th iteration, then the update rule of CompSGD (Alg. 1)

is 1√
1−βt

-expansive for ηt ≤ 2/µ – that is, we have ∥wt+1 −w′
t+1∥ ≤ 1√

1−βt
∥wt −w′

t∥.

Lemma 3 (Boundedness). Assume that f is L-Lipschitz. Fix any t ∈ N, and let wt ∈ C

be the parameter vector at the t-th iteration of Alg. 1 when run on S. Then the update

rule of the CompSGD (Alg. 1) is ηtL√
1−βt

-bounded – that is, we have ∥wt+1 −wt∥ ≤ ηtL√
1−βt

.

The detailed proofs are these properties are deferred to Appendix A.1 and we focus on

the proof of our main result here. With these core properties recorded, we now prove the

stability guarantee of the CompSGD under the smoothness setting. The basic idea in the

proof is that we note with probability 1 − 1/n the sample we select from S and S ′ will

be identical, which allows us to use the expansiveness of CompSGD. We can then bound

the low probability case with the γ-bounded property and put the two cases together to

obtain our result.

Proof of Theorem 2. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample point. Denote Gt := G(·, zit) and G′
t := G(·, z′it), with t ∈ [T], it ∈ [n],

the gradient updates induced by running the CompSGD on the neighbouring sample sets

24 Z. Huang et al.

S and S ′, respectively. Let δT = ∥wT −w′
T∥, and fix a sample point z. By the Lipschitz

condition,

E[|f(wT , z) − f(w′
T , z)|] ≤ LE[δT]. (17)

Observe that, at iteration t, with probability 1 − 1/n, the example zit and z′it selected

from both S and S ′ is the same. In this case we have Gt = G′
t, and we use the limited

expansiveness property of the update Gt from Lemma 2. With the remaining probability

1/n, we have zit ̸= z′it , in which case we use the boundedness property of both updates

Gt and G′
t cf. Lemma 3. By the linearity of expectation, and the triangle inequality, this

yields the following

E[δt+1] ≤
(

1 − 1/n√
1 − βt

)
E[δt] +

1

n

(
E[δt] +

2ηtL√
1 − βt

)
. (18)

Now it remains to solve this recursive sequence. We multiply both sides by
∏t−1

j=1

√
1 − βj ,

[
t∏

j=1

√
1 − βj

]
E[δt+1] ≤

[
t−1∏
j=1

√
1 − βj

]
E[δt] +

2ηtL

n

t−1∏
j=1

√
1 − βj (19)

and sum up the T iterates

[
T−1∏
j=1

√
1 − βj

]
E[δT] ≤

T−1∑
t=1

2ηtL

n

t−1∏
j=1

√
1 − βj. (20)

Rearranging, we have:

E[δT] ≤ 2L

n

T−1∑
t=1

ηt

T−1∏
j=t

(1 − βj)
−1/2. (21)

In particular, with the choice βj = 1
j+1

, we have
∏T−1

j=t (1 − βj)
−1/2 =

√
T√
t
. Furthermore,

choosing ηt = η√
t

with some absolute constant η, we have

E[δT] =
2ηL

√
T

n

T−1∑
t=1

1

t
= O

(
L
√
T log(T)

n

)
, (22)

where we exploited the fact that the growth rate of the partial sum of a harmonic series

is just logarithmic. Finally, we take T ≍ n and plug it back into (17) to conclude our

stability bound.

Generalisation of CompSGD 25

Note that this proves all results from Theorem 2. The generalisation bound in Theo-

rem 2 is a direct consequence of stability, combined with the optimisation bound from

[Kasiviswanathan, 2021, Thm. 2.3] and Theorem 1, using the strategy discussed in sec-

tion 2.2.

6.2 Proof of optimisation, stability & generalisation of CompSGD without

smoothness

We first prove the optimisation bound of CompSGD in the non-smooth case that uses a

small step size parameter.

Theorem 16 (Optimisation with CompSGD with small step size). Let f be a

convex and L-Lipschitz function over a convex set C. Then with ηt = η
T 3/4 and βt = 1

t+1
,

CompSGD satisfies

E[FS(w̄T) − FS(w∗)] = O
(
∥C∥2 log(T) + L2

T 1/4

)
. (23)

Proof for Theorem 16. We apply Thm 19 with w = w∗ and have that for all t ≥ 1:

(1 − βt)∥wt+1 −w∗∥2 = ∥wt −w∗∥2 + 2ηt⟨∇f(wt; zit),w
∗ −wt⟩ + η2t ∥∇f(wt)∥2

≤ ∥wt −w∗∥2 + 2ηt(f(w∗; zit) − f(wt; zit)) + η2tL
2. (24)

Rearranging we have:

2ηt(f(wt; zit) − f(w∗; zit)) ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + η2tL
2.

(25)

We take expectations on both sides, and sum over the T iterates,

2
T∑
t=1

ηtE[FS(wt) − FS(w∗)] ≤ ∥w1 −w∗∥2 +
T∑
t=1

βtE[∥wt+1 −w∗∥2] + L2

T∑
t=1

η2t .

26 Z. Huang et al.

By choosing βt = 1/(t + 1) and using the bound ∥wt −w∗∥2 ≤ ∥C∥2, we obtain

2
T∑
t=1

ηtE[FS(wt) − FS(w∗)] = O

(
∥C∥2 + ∥C∥2

T∑
t=1

1

t + 1
+ L2

T∑
t=1

η2t

)

= O

(
∥C∥2 log(T) + L2

T∑
t=1

η2t

)
. (26)

Finally, choosing ηt = η
T 3/4 we obtain our result as

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[FS(wt) − FS(w∗)] = O
(
∥C∥2 log(T)

T 1/4
+

L2

T 3/4

)
. (27)

One can find from the proof of the optimisation bound that we can use the parameters

η = O(1/
√
t) and T ≍ n to yield convergence of O(1/

√
n). However, we need to balance

stability and optimisation so that we obtain the best generalisation convergence overall,

hence we choose a smaller learning rate.

Proof of Theorem 3. In the non-smooth setting, we no longer have all the properties of

CompSGD proved for the smooth case. However we still have the core result (Lemma 1)

and note that the probability that we pick a different sample at an iteration is 1/n as in

the smooth case. For the case where the selected sample is identical, we can make use

of the convexity of f and obtain the same convergence rate by carefully choosing the

learning rate ηt.

Let S and S ′ be two neighbouring sample sets of size n that differ in one single sample.

Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT and G′
1, . . . , G

′
T be the

updates induced by running the CompSGD on S and S ′ for T iterates, respectively. Let

δT = ∥wT −w′
T∥, by the Lipschitz condition,

E[|f(wT , z) − f(w′
T , z)|] ≤ LE[δT]. (28)

If at iteration t, the sample we selected is the same Gt = G′
t, then from Lemma 1 we have

the following (short notations ∇f(wt, zit) = ∇f(wt) for simplicity)

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − ηt(∇f(wt, zit) −∇f(w′
t, zit))∥2

= ∥wt −w′
t∥2 − 2ηt⟨∇f(wt) −∇f(w′

t),wt −w′
t⟩ + η2t ∥∇f(wt) −∇f(w′

t)∥2.

Generalisation of CompSGD 27

From the convexity of f we have that ⟨∇f(wt) − ∇f(w′
t),wt − w′

t⟩ ≥ 0 and from

Lipschitzness of f we also have ∥∇f(wt) −∇f(w′
t)∥ ≤ 2L. Hence we obtain the following

bound

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (29)

For the case where Gt ̸= G′
t, we use the inequality (a + b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 to

obtain

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − ηt(∇f(wt, zit) −∇f(w′
t, zi′t))∥

2

≤ (1 + p)∥wt −w′
t∥2 + 4(1 + 1/p)L2η2t ,

where we have again used the Lipschitz condition of f . Combining the two cases we have

(1 − βt)E[δ2t+1] ≤
(

1 − 1

n

)
(E[δ2t] + 4L2η2t) +

1

n

(
(1 + p)E[δ2t] + 4(1 + 1/p)L2η2t

)
≤ (1 + p/n)E[δ2t] +

(
4 +

4(1 + 1/p)

n

)
L2η2t . (30)

Denoting ∆t =
[∏t−1

j=1(1 − βj)
]

(1 + p/n)−t · E[δ2t] and multiplying both sides by[∏t−1
j=1(1 − βj)

]
(1 + p/n)−(t+1), we obtain

∆t+1 ≤ ∆t +

[
t−1∏
j=1

(1 − βj)

]
(1 + p/n)−(t+1)

(
4 +

4(1 + 1/p)

n

)
L2η2t . (31)

Choosing p = n/T and summing over T iterates we have

∆T ≤
T−1∑
t=1

[
t−1∏
j=1

(1 − βj)

]
(1 + 1/T)−(t+1)

(
4 +

4(1 + T/n)

n

)
L2η2t . (32)

By rearranging and choosing βj = 1
j+1

, we get
∏t−1

j=1(1 − βj) = 1/t. Hence we have

E[δ2T] ≤
T−1∑
t=1

T

t

(
1 +

1

T

)T−(t+1)
(

4+
4(1+T/n)

n

)
L2η2t = O

(
L2T

T−1∑
t=1

(1 + T/n2)

t
η2t

)
,

(33)

where we noted that the factor (1 + 1/T)T−(t+1) = 1 + O((T − (t + 1)/T) = O(1).

28 Z. Huang et al.

Using Eq. (28) and (33), letting ηt = η
T 3/4 for some absolute constant η and T ≍ n2,

we obtain our result by taking the square-root from both sides

E[|f(wT , z) − f(w′
T , z)|] = O

(
L2
√

log(n)√
n

)
. (34)

The generalisation result then follows as a direct consequence by combining it with Thm 16

and applying Thm. 1.

6.3 Proofs for DP-CompGD

Notation note: for simplicity of notation, we denote ∇FS(wt) by ∇Ft and ∇FS′(w′
t) by

∇F ′
t in this section.

Before proving the utility guarantee of the algorithm, we require the following lemma as

part of our proof. We will include the proof of this lemma in here due to its importance

to our main result.

Lemma 4. For wt in DP CompSGD algorithm, we have for all t,

E[⟨Φt(w −wt), stΦt∇f(wt)⟩] = ⟨w −wt,∇f(wt)⟩ · Cmt ,

where Cmt =
√

2
mt

Γ ((mt+1)/2)
Γ (mt/2)

∈
[√

mt

mt+1
, 1
]
, and Γ (·) is the gamma function.

Lemma 4 shows that the inner product between the projected weight vector and the

normalized projected gradient vector is almost identical to their inner product before

projection. Furthermore, lemma 4 also implies that the sign of the inner product is preserved

under Gaussian random projection in expectation. This lemma is a key observation that

allows us to prove a similar convergence result with projected gradients. We also state the

definition of Chi-distribution for the completeness of the proof:

Definition 5 (Chi-distribution). The probability density function of chi-distribution is

f(x; k) =

xk−1e−x2/2

2k/2−1Γ(k
2)
, if x ≥ 0,

0, otherwise,

(35)

where Γ (z) is the gamma function. It is known that the expected value of the chi-distribution

is
√
2Γ ((k+1)/2)
Γ (k/2)

.

Generalisation of CompSGD 29

Proof of Lemma 4. Note that e is independent from the rest of parameters and E[e] = 0.

Denote ∇FS(wt) by ∇Ft, we have

EΦt,e[⟨Φt(w −wt), stΦt∇Ft + e⟩] = EΦt,e[⟨Φt(w −wt), stΦt∇Ft⟩ + ⟨Φtw − Φwt, e⟩]

= EΦt [⟨Φt(w −wt), stΦt∇Ft⟩]. (36)

For simplicity let us denote (w−wt) by v. To bound the above quantity, we first consider

two special cases of ∇Ft: 1. ∇Ft is a scale multiple of v; 2. ∇Ft is perpendicular to v.

For the first case, ∇Ft = cv for some constant c. We have

∥∇Ft∥EΦt

[〈
Φtv,

Φt∇Ft

∥Φt∇Ft∥

〉]
= sign(c)∥cv∥EΦt

[〈
Φtv,

Φtv

∥Φtv∥

〉]
= sign(c)∥cv∥EΦt [∥Φtv∥]

= sign(c)
|c|∥v∥2
√
mt

EΦt

[
∥Φtv∥

√
mt

∥v∥

]
. (37)

Since Φt’s entries are randomly drawn from distribution N (0, 1/mt), this implies that

Φt(v/∥v∥)
√
mt ∼ N (0, Imt). Hence the norm ∥Φt(v/∥v∥)

√
mt∥ is Chi-distributed with

mt degrees of freedom. The expectation of a Chi-distributed random variable is

EΦt

[
∥Φtv∥

√
mt

∥v∥

]
=

√
2Γ ((mt + 1)/2)

Γ (mt/2)
.

With Cmt =
√
2Γ ((mt+1)/2)
Γ (mt/2)

√
mt

we get from equation (37) that

∥∇Ft∥EΦt

[〈
Φtv,

Φt∇Ft

∥Φt∇Ft∥

〉]
= Cmtc∥v∥2. (38)

The second special case of interest is when ∇Ft is perpendicular to v. Note that this

condition implies that Φt∇Ft is independent to Φtv. Indeed, if we consider their covariance:

covΦt(Φtv, Φt∇Ft) = EΦt [⟨Φtv, Φt∇Ft⟩] = ⟨v,∇Ft⟩, (39)

which equals to zero when v is perpendicular to ∇Ft. Hence we have

∥∇Ft∥EΦt

[〈
Φtv,

Φt∇Ft

∥Φt∇Ft∥

〉]
= ∥∇Ft∥⟨EΦt [Φtv] ,EΦt [Φt∇Ft]⟩ = 0. (40)

30 Z. Huang et al.

Now for any vector v, we can write v = v1 + v2 where v1 is a vector perpendicular to

∇Ft and v2 is a scalar multiple of ∇Ft. In this case we can split-up the inner product as

follows

∥∇Ft∥EΦt

[〈
Φtv,

Φt∇Ft

∥Φt∇Ft∥

〉]
= ∥∇Ft∥

(
EΦt

[〈
Φtv1,

Φt∇Ft

∥Φt∇Ft∥

〉]
+ EΦt

[〈
Φtv2,

Φt∇Ft

∥Φt∇Ft∥

〉])
. (41)

Now, using the properties of v1 and v2, we have

eq. (41) = ∥∇Ft∥EΦt

[〈
Φtv2,

Φt∇Ft

∥Φt∇Ft∥

〉]
= ∥∇Ft∥

〈
v2,

∇Ft

∥∇Ft∥

〉
· Cmt (42)

= ∥∇Ft∥
〈
v,

∇Ft

∥∇Ft∥

〉
· Cmt , (43)

where (42) used that v2 is a scalar multiple of ∇Ft with scalar multiple c = ±1 being

sufficient to consider (since otherwise we can divide and multiply with ∥v2∥), and the last

equality holds because v1 is perpendicular to ∇Ft. Hence we have for all v = w−wt that

EΦt [⟨Φt(w −wt), stΦt∇Ft⟩] = ⟨(w −wt),∇Ft⟩ · Cmt . (44)

Using Lemma 4, we now show the following optimisation bound for the differentially

private compressed gradient descent.

Proof of Theorem 11. Since after each update, wt ∈ C for all t, we can recall equation (74)

in the proof of Thm. 19, we have

(1 − βt)∥wt+1 −w∥2 ≤ EΦt

[
∥Φt(wt+1 −w)∥2

]
. (45)

Generalisation of CompSGD 31

Hence, by expanding out the RHS, we have (here we will denote ∇FS(wt) by ∇Ft)

(1 − βt)∥wt+1 −w∥2 ≤ EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Ft + e)) −ΠΦtC(Φtw)∥2

]
≤ EΦt,e

[
∥Φtwt − ηt(stΦt∇Ft + e) − Φtw∥2

]
= EΦt,e

[
∥Φtwt − Φtw∥2

]
+ 2ηtEΦt,e[⟨Φtw − Φtwt, stΦt∇Ft + e⟩]

+ η2tEΦt,e[∥stΦt∇Ft + e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Ft⟩ + η2tEΦt,e[∥stΦt∇Ft∥2]

+ 2η2tEΦt,e[⟨stΦt∇Ft, e⟩] + η2tEΦt,e[∥e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Ft⟩ + η2t (L2 + mtσ
2)

≤ ∥wt −w∥2 + 2Cmtηt(FS(w) − FS(wt)) + η2t (L2 + mtσ
2), (46)

where we have used Lemma 4 between the fourth and fifth line and the convexity of f in

the last step. Also note that since e is i.i.d. fresh Gaussian noise, the expectation of e is 0,

hence the expected inner product with e is also zero. Rearranging the last inequality and

let w = w∗ we have:

2Cmtηt(FS(wt) − FS(w∗)) ≤ ∥wt −w∗∥2 − (1 − βt)∥wt+1 −w∗∥2 + η2t (L2 + mtσ
2). (47)

Taking expectation and summing over T iterations we have

2Cmt

T∑
t=1

ηtE[FS(wt)−FS(w∗)] ≤ ∥w1−w∗∥2+
T∑
t=1

βtE[∥wt+1−w∗∥2]+
T∑
t=1

η2t (L2+mtσ
2).

Choosing βt = 1/(t + 1) we obtain that

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
∥C∥2 + log T∥C∥2 + (L2 + mTσ

2)
∑T

t=1 η
2
t∑T

t=1 ηt

)
, (48)

where we have used mT = maxt∈[T] mt.

Finally, let ηt = ∥C∥/
√

t(L2 + mTσ2) and σ2 = O(TL2 log(1/δ)/(ϵ2n2)) we have

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
log T∥C∥

√
L2 + mTσ2

√
T

)
≤ O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mTT log(1/δ)

nϵ
√
T

)

= O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mT log(1/δ)

nϵ

)
. (49)

32 Z. Huang et al.

Proof of Theorem 12. Since after each update, wt ∈ C for all t, by equation (76) in the

proof of lemma 1 (replacing w′
t+1 with w and taking expectation w.r.t. e) we have the

following

(1 − βt)∥wt+1 −w∥2 ≤ EΦt,e

[
∥Φt(wt+1 −w)∥2

]
= EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Ft + e)) −ΠΦtC(Φtw)∥2

]
≤ EΦt,e

[
∥Φtwt − ηt(stΦt∇Ft + e) − Φtw∥2

]
= EΦt,e

[
∥Φtwt − Φtw∥2

]
+ EΦt,e[⟨Φtw − Φtwt, stΦt∇Ft + e⟩]

+ η2EΦt,e[∥stΦt∇Ft + e∥2]. (50)

Hence using Lemma 4 and expanding out the last term, we have

(1 − βt)∥wt+1 −w∥2 = ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Ft⟩ + η2tEΦt,e[∥stΦt∇Ft∥2]

+ 2η2tEΦt,e[⟨stΦt∇Ft, e⟩] + η2tEΦt,e[∥e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Ft⟩ + η2t (∥∇Ft∥2 + mtσ
2)

≤ ∥wt −w∥2 + 2Cmtηt(FS(w∗
S) − FS(wt)) + η2t (∥∇Ft∥2 + mtσ

2),

(51)

where we have used the convexity of f in the second to last step. Also note that since e is

i.i.d. fresh Gaussian noise, the expectation of e is 0, hence the expected inner product with

e is also zero. Now we substitute w = w∗
S. Since w∗

S is an minimiser we have ∇FS(w∗
S) = 0.

Hence by smoothness, we have

∥∇FS(wt)∥2 = ∥∇FS(wt) −∇FS(w∗
S)∥2 ≤ 2µ(FS(wt) − FS(w∗

S)). (52)

Substituting equation (52) into (51) we have

(1 − βt)∥wt+1 −w∗
S∥2 ≤ ∥wt −w∗

S∥2 + (ηt − 2η2tµ)(FS(w∗
S) − FS(wt)) + η2tmtσ

2

(assuming ηt ≤ 1/(4µ)) ≤ ∥wt −w∗
S∥2 +

ηt
2

(FS(w∗
S) − FS(wt)) + η2tmtσ

2. (53)

Generalisation of CompSGD 33

Rearranging we have:

ηt
2

(FS(wt) − FS(w∗
S)) ≤ ∥wt −w∗

S∥2 − ∥wt+1 −w∗
S∥2 + βt∥wt+1 −w∗

S∥2 + η2tmtσ
2.

Taking expectation and summing over T iterates and choosing βt = 1/(t + 1) we have:

T∑
t=1

ηt
2
E[FS(wt) − FS(w∗

S)] ≤ ∥w1 −w∗
S∥2 +

T∑
t=1

βtE[∥wt+1 −w∗
S∥2] +

T∑
t=1

η2tmtσ
2

= O

(
∥C∥ + ∥C∥2

T∑
t=1

βt +
T∑
t=1

η2tmtσ
2

)

= O

(
∥C∥ + ∥C∥2 log(T) +

log(1/δ)T

n2ϵ2

T∑
t=1

η2tmt

)
, (54)

where we have used E[∥wt+1 −w∗
S∥]2 ≤ ∥C∥2.

Finally, taking ηt = ∥C∥
L
√
mT

where mT is the maximum projection dimension, we have our

final result

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[FS(wt) − FS(w∗
S)] = O

(
L∥C∥ log T

√
mT

T
+

LT
√
mT log(1/δ)

n2ϵ2

)
.

The proof is completed.

We now turn to the stability analysis of CompGD in the private setting. The analysis

begins similarly to the non-private setting, however DP introduces new challenges due

to the normalisation factor st we introduced to keep the projected gradient bounded

uniformly.

Proof of Theorem 13. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. W.l.o.g. assume that they differ on the j-th point denoted zj, z
′
j for

S and S ′, respectively. Fix a sample z, by the Lipschitz condition we get

E[|f(wT) − f(w′
T)|] ≤ LE[δT], (55)

where δT = ∥wT −w′
T∥.

Since after each update, wt ∈ C for all t, by equation (76) in the proof of lemma 1 we have

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ EΦt

[
∥Φt(wt+1 −w′

t+1)∥2
]
. (56)

34 Z. Huang et al.

Hence by expanding out the RHS, we have (here we will denote ∇FS(wt) by ∇Ft and

∇FS′(w′
t) by ∇F ′

t)

(56) = EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Ft + e)) −ΠΦtC(Φtw

′
t − ηt(s

′
tΦt∇F ′

t + e))∥2
]

≤ EΦt

[
∥Φtwt − ηt(stΦt∇Ft) − (Φtw

′
t − ηt(s

′
tΦt∇F ′

t))∥2
]

= EΦt

[
∥Φt(wt −w′

t)∥2
]

+ 2ηtEΦt [⟨Φt(w
′
t −wt), Φt(st∇Ft − s′t∇F ′

t)⟩]

+ η2tEΦt [∥Φt(st∇Ft − s′t∇F ′
t)∥2]

= EΦt

[
∥Φt(wt −w′

t)∥2
]

+ 2ηtEΦt [⟨Φt(w
′
t −wt), Φtst∇Ft⟩ − ⟨Φt(w

′
t −wt), Φts

′
t∇F ′

t⟩]

+ η2tEΦt [∥Φt(st∇Ft − s′t∇F ′
t)∥2]

= ∥wt −w′
t∥2 + 2Cmtηt⟨w′

t −wt,∇Ft −∇F ′
t⟩ + η2tEΦt [∥Φt(st∇Ft − s′t∇F ′

t)∥2] (57)

= ∥wt −w′
t∥2 + 2Cmtηt⟨w′

t −wt,∇Ft −∇F ′
t⟩ + 4η2tL

2, (58)

where the second-to-last line (57) follows by applying lemma 4 twice, the last line (58)

follows from the Lipschitz assumption.

Since S, S ′ only differs on the j-th point, we have (Cmt omitted here since Cmt ≤ 1.)

⟨w′
t −wt,∇Ft −∇F ′

t⟩ = ⟨w′
t −wt,∇FS∪{z′j}(wt) −∇FS′∪{zj}(w

′
t)⟩

+
1

n
⟨w′

t −wt,∇f(w′
t, zj) −∇f(wt, z

′
j)⟩

≤ 1

n
⟨w′

t −wt,∇f(w′
t, zj) −∇f(wt, z

′
j)⟩

≤ 2L

n
∥wt −w′

t∥, (59)

where the second line holds because the first term is negative by the convexity of FS, and

the last line follows from the Lipschitz condition.

We substitute the inequality (59) into equation (58) and multiply both sides by
∏t−1

j=1(1−βj).

It then follows that

[
t∏

j=1

(1 − βj)

]
δ2t+1 ≤

[
t−1∏
j=1

(1 − βj)

]
δ2t +

4ηtLδt
n

t−1∏
j=1

(1 − βj) + 4η2tL
2

[
t−1∏
j=1

(1 − βj)

]
. (60)

By summing over T iterates we have:

[
T−1∏
j=1

(1 − βj)

]
δ2T ≤

T−1∑
t=1

4ηtLδt
n

t−1∏
j=1

(1 − βj) +
T−1∑
t=1

4η2tL
2

[
t−1∏
j=1

(1 − βj)

]
. (61)

Generalisation of CompSGD 35

Taking βt = 1/t + 1 and rearranging we have:

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T
T−1∑
t=1

η2t
t
. (62)

Claim: The following inequality holds for all T :

δT ≤ 2L
√
T

√√√√T−1∑
t=1

η2t
t

+

(
2LT

n

T−1∑
t=1

ηt
t

)
. (63)

We prove this claim by induction: The base case T = 0 clearly holds as the right-hand

side is always positive. For the inductive step, if δT ≤ maxt∈[T] δt, then by the inductive

hypothesis we have

δT ≤ δT−1 ≤ 2L
√
T

√√√√T−2∑
t=1

η2t
t

+

(
2LT

n

T−2∑
t=1

ηt
t

)
≤ 2L

√
T

√√√√T−1∑
t=1

η2t
t

+

(
2LT

n

T−1∑
t=1

ηt
t

)
. (64)

For the other case where δT > maxt∈[T] δt, we have from (62):

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T
T−1∑
t=1

η2t
t

≤ 4LTδT
n

T−1∑
t=1

ηt
t

+ 4L2T
T−1∑
t=1

η2t
t
. (65)

Which after rearranging is equivalent to:

(
δT − 2LT

n

T−1∑
t=1

ηt
t

)2

≤

(
2LT

n

T−1∑
t=1

ηt
t

)2

+ 4L2T
T−1∑
t=1

η2t
t
. (66)

Taking square roots from both sides and the result follows from the sub-additivity of

square roots. The inductive step is complete.

Finally using the choice ηt = O(1/T 3/4) and T ≍ n2 together with our proved claim, we

have:

E[δT] ≤ 2L
√
T

√√√√T−1∑
t=1

η2t
t

+

(
2LT

n

T−1∑
t=1

ηt
t

)

= O
(
L
√

log T

T 1/4
+

LT 1/4 log T

n

)
= O

(
L log n√

n

)
.

For the excess risk bound, we have from Thm. 11

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
∥C∥2 + log T∥C∥2 +

∑T
t=1 η

2
t (L2 + mtσ

2)∑T
t=1 ηt

)
. (67)

36 Z. Huang et al.

Using the choice of ηt = η/T 3/4 and T ≍ n2 we have

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
log n(∥C∥2 + L2)√

n
+

log(1/δ)
∑n2

t=1mt√
nn3ϵ2

)
. (68)

Combining with the stability bound we obtain our final result.

7 Conclusions

We presented a rigorous analysis of the stability and generalisation guarantee of SGD with

compressed gradients. Our result shows that we can obtain almost optimal generalisation

convergence with compressed gradients in both smooth and non-smooth cases. We also

extend the analysis to the batch and mini-batch variants of CompSGD, and showed that

the same convergence can be achieved with these variants. In particular, the batch variant

achieves significantly better convergence rates compared to CompSGD with a constant

step size. Furthermore, we have presented two differentially private gradient descent

algorithms using compressed gradient only. Our result shows that we can significantly

reduce the dimensionality dependence in their optimisation and generalisation bounds if

the constraint set has a simple structure. A natural extension of the research is whether

CompSGD and its variants can achieve similar results in the non-convex setting. Using

the knowledge from the convex setting and extending the analysis to non-convex settings

will be an interesting open research problem.

Acknowledgments

The work was done when Yunwen was with the School of Computer Science, University of

Birmingham.

References

[Agarwal et al., 2018] Agarwal, N., Suresh, A. T., Yu, F., Kumar, S., and Mcmahan, H. B. (2018). cpsgd:

Communication-efficient and differentially-private distributed sgd. arXiv preprint arXiv:1805.10559.

[Alistarh et al., 2017] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). Qsgd: Communication-

efficient sgd via gradient quantization and encoding. NeurIPS, 30.

[Alistarh et al., 2018] Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat, S., and Renggli, C.

(2018). The convergence of sparsified gradient methods. In NeurIPS, pages 5973–5983.

[Bach et al., 2012] Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Structured Sparsity through

Convex Optimization. Statistical Science, 27(4):450 – 468.

Generalisation of CompSGD 37

[Balle et al., 2018] Balle, B., Barthe, G., and Gaboardi, M. (2018). Privacy amplification by subsampling: Tight

analyses via couplings and divergences. NeurIPS, 31.

[Bao et al., 2021] Bao, F., Wu, G., Li, C., Zhu, J., and Zhang, B. (2021). Stability and generalization of bilevel

programming in hyperparameter optimization. NeurIPS, 34:4529–4541.

[Bartlett et al., 2006] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification, and

risk bounds. Journal of the American Statistical Association, 101(473):138–156.

[Bassily et al., 2020] Bassily, R., Feldman, V., Guzmán, C., and Talwar, K. (2020). Stability of stochastic gradient

descent on nonsmooth convex losses. NeurIPS, 33:4381–4391.

[Bassily et al., 2014] Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient

algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of computer science,

pages 464–473. IEEE.

[Bottou et al., 2018] Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale

machine learning. Siam Review, 60(2):223–311.

[Bousquet and Elisseeff, 2002] Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. The Journal

of Machine Learning Research, 2:499–526.

[Charles and Papailiopoulos, 2018] Charles, Z. and Papailiopoulos, D. (2018). Stability and generalization of

learning algorithms that converge to global optima. In International Conference on Machine Learning, pages

745–754. PMLR.

[Chen et al., 2020] Chen, X., Wu, S. Z., and Hong, M. (2020). Understanding gradient clipping in private sgd: A

geometric perspective. NeurIPS, 33:13773–13782.

[Chen et al., 2018] Chen, Y., Jin, C., and Yu, B. (2018). Stability and convergence trade-off of iterative optimiza-

tion algorithms. arXiv preprint arXiv:1804.01619.

[Dasgupta and Gupta, 2003] Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of johnson

and lindenstrauss. Random Structures & Algorithms, 22(1):60–65.

[Devroye and Wagner, 1979] Devroye, L. and Wagner, T. (1979). Distribution-free performance bounds for

potential function rules. IEEE Transactions on Information Theory, 25(5):601–604.

[Dwork, 2006] Dwork, C. (2006). Differential privacy. Automata, Languages and Programming, pages 1–12.

[Dwork et al., 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity

in private data analysis. In Theory of cryptography conference, pages 265–284. Springer.

[Dwork and Roth, 2014] Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407.

[Elisseeff et al., 2005] Elisseeff, A., Evgeniou, T., and Pontil, M. (2005). Stability of randomized learning

algorithms. Journal of Machine Learning Research, 6(55-79).

[Gonçalves et al., 2014] Gonçalves, A. R., Das, P., Chatterjee, S., Sivakumar, V., Von Zuben, F. J., and Banerjee,

A. (2014). Multi-task sparse structure learning. In Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge Management, pages 451–460.

[Gordon, 1988] Gordon, Y. (1988). On milman’s inequality and random subspaces which escape through a mesh

in Rn. In Geometric aspects of functional analysis, pages 84–106. Springer.

[Hardt et al., 2016] Hardt, M., Recht, B., and Singer, Y. (2016). Train faster, generalize better: Stability of

stochastic gradient descent. In International conference on machine learning, pages 1225–1234. PMLR.

[Jaggi, 2011] Jaggi, M. (2011). Sparse convex optimization methods for machine learning. PhD thesis, ETH

Zurich.

[Kabán, 2016] Kabán, A. (2016). A new look at nearest neighbours: Identifying benign input geometries via

random projections. In Asian Conference on Machine Learning, pages 65–80. PMLR.

38 Z. Huang et al.

[Kasiviswanathan, 2021] Kasiviswanathan, S. P. (2021). Sgd with low-dimensional gradients with applications to

private and distributed learning. In Uncertainty in Artificial Intelligence, pages 1905–1915. PMLR.

[Kenthapadi et al., 2012] Kenthapadi, K., Korolova, A., Mironov, I., and Mishra, N. (2012). Privacy via the

johnson-lindenstrauss transform. arXiv preprint arXiv:1204.2606.

[Konečnỳ et al., 2015] Konečnỳ, J., Liu, J., Richtárik, P., and Takáč, M. (2015). Mini-batch semi-stochastic

gradient descent in the proximal setting. IEEE Journal of Selected Topics in Signal Processing, 10(2):242–255.

[Kuzborskij and Lampert, 2018] Kuzborskij, I. and Lampert, C. (2018). Data-dependent stability of stochastic

gradient descent. In International Conference on Machine Learning, pages 2815–2824. PMLR.

[Lei and Ying, 2020] Lei, Y. and Ying, Y. (2020). Fine-grained analysis of stability and generalization for

stochastic gradient descent. In International Conference on Machine Learning, pages 5809–5819. PMLR.

[Lei and Ying, 2021] Lei, Y. and Ying, Y. (2021). Sharper generalization bounds for learning with gradient-

dominated objective functions. In ICLR.

[Liu et al., 2009] Liu, J., Chen, J., and Ye, J. (2009). Large-scale sparse logistic regression. In ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, page 547–556, New York, NY, USA.

[Liu et al., 2017] Liu, T., Lugosi, G., Neu, G., and Tao, D. (2017). Algorithmic stability and hypothesis complexity.

In International Conference on Machine Learning, pages 2159–2167. PMLR.

[London et al., 2016] London, B., Huang, B., and Getoor, L. (2016). Stability and generalization in structured

prediction. The Journal of Machine Learning Research, 17(1):7808–7859.

[Maurya and Toshniwal, 2018] Maurya, C. K. and Toshniwal, D. (2018). Large-scale distributed sparse class-

imbalance learning. Information Sciences, 456:1–12.

[Nesterov, 2003] Nesterov, Y. (2003). Introductory Lectures on Convex Optimization, volume 87. Springer Science

& Business Media.

[Nikolakakis et al., 2022] Nikolakakis, K. E., Haddadpour, F., Karbasi, A., and Kalogerias, D. S. (2022). Beyond

lipschitz: Sharp generalization and excess risk bounds for full-batch gd. arXiv preprint arXiv:2204.12446.

[Richards and Kuzborskij, 2021] Richards, D. and Kuzborskij, I. (2021). Stability & generalisation of gradient

descent for shallow neural networks without the neural tangent kernel. NeurIPS, 34:8609–8621.

[Shalev-Shwartz et al., 2010] Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K. (2010). Learnability,

stability and uniform convergence. The Journal of Machine Learning Research, 11:2635–2670.

[Shamir and Zhang, 2013] Shamir, O. and Zhang, T. (2013). Stochastic gradient descent for non-smooth opti-

mization: Convergence results and optimal averaging schemes. In International conference on machine learning,

pages 71–79. PMLR.

[Showkatbakhsh et al., 2018] Showkatbakhsh, M., Karakus, C., and Diggavi, S. (2018). Privacy-utility trade-off

of linear regression under random projections and additive noise. In 2018 IEEE International Symposium on

Information Theory (ISIT), pages 186–190. IEEE.

[Song et al., 2013] Song, S., Chaudhuri, K., and Sarwate, A. D. (2013). Stochastic gradient descent with

differentially private updates. In 2013 IEEE Global Conference on Signal and Information Processing, pages

245–248. IEEE.

[Stich et al., 2018] Stich, S. U., Cordonnier, J.-B., and Jaggi, M. (2018). Sparsified sgd with memory. NeurIPS,

31:4447–4458.

[Tan et al., 2018] Tan, K. M., Wang, Z., Zhang, T., Liu, H., and Cook, R. D. (2018). A convex formulation for

high-dimensional sparse sliced inverse regression. Biometrika, 105(4):769–782.

[Wang et al., 2019] Wang, D., Chen, C., and Xu, J. (2019). Differentially private empirical risk minimization

with non-convex loss functions. In International Conference on Machine Learning, pages 6526–6535. PMLR.

Generalisation of CompSGD 39

[Wang et al., 2018] Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D., and Wright, S. (2018). Atomo:

Communication-efficient learning via atomic sparsification. NeurIPS, 31:9850–9861.

[Wang et al., 2022] Wang, P., Lei, Y., Ying, Y., and Zhang, H. (2022). Differentially private sgd with non-smooth

losses. Applied and Computational Harmonic Analysis, pages 306–336.

[Xing et al., 2021] Xing, Y., Song, Q., and Cheng, G. (2021). On the algorithmic stability of adversarial training.

NeurIPS, 34:26523–26535.

[Xu et al., 2017] Xu, C., Ren, J., Zhang, Y., Qin, Z., and Ren, K. (2017). Dppro: Differentially private high-

dimensional data release via random projection. IEEE Transactions on Information Forensics and Security,

12(12):3081–3093.

[Zhang et al., 2021] Zhang, J., Hong, M., Wang, M., and Zhang, S. (2021). Generalization bounds for stochastic

saddle point problems. In International Conference on Artificial Intelligence and Statistics, pages 568–576.

PMLR.

[Zhang, 2004] Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent

algorithms. In Proceedings of the twenty-first international conference on Machine learning, page 116.

[Zhao and Zhang, 2014] Zhao, P. and Zhang, T. (2014). Accelerating minibatch stochastic gradient descent using

stratified sampling. arXiv preprint arXiv:1405.3080.

A Missing Details and Proofs

In this section, we present the missing proofs for Section 3 and the proofs of our results

in Section 4.1 and Section 4.2. We first state the preliminary Theorems that we will use

during some steps of our analysis.

Theorem 17 ([Nesterov, 2003]). Let f : Rd → R be a convex and µ-smooth function.

We have ∀x, y ∈ Rd:

1. (upper bound) f(x) ≤ f(y) + ⟨∇f(y), x− y⟩ + µ
2
∥x− y∥2;

2. (co-coercivity) 1
µ
∥∇f(x) −∇f(y)∥2 ≤ ⟨∇f(x) −∇f(y), x− y⟩;

3. (lower bound) f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ + 1
2µ
∥∇f(x) −∇f(y)∥2.

Lemma 5 (Non-expansitivity of convex-smooth gradient updates). Let f be a

loss function that is convex and µ-smooth. For gradient updates of the form wt+1 =

wt − ηt∇f(wt, zit), assume that two gradient updates wt+1,w
′
t+1 uses the same samples

for update, i.e. w′
t+1 = w′

t − ηt∇f(w′
t, zit) . Then we have ∥wt+1 −w′

t+1∥ ≤ ∥wt −w′
t∥

for all ηt ≤ 1/(2µ).

40 Z. Huang et al.

Proof. We have

∥wt+1 −w′
t+1∥2 = ∥wt − ηt∇f(wt, zit) − (w′

t − ηt∇f(w′
t, zit))∥2

= ∥wt −w′
t∥2 − 2ηt⟨wt −w′

t,∇f(wt, zit) −∇f(w′
t, zit)⟩

+ η2t ∥∇f(wt, zit) −∇f(w′
t, zit)∥2

≤ ∥wt −w′
t∥2 − 2ηt

1

µ
∥∇f(wt, zit) −∇f(w′

t, zit)∥

+ η2t ∥∇f(wt, zit) −∇f(w′
t, zit)∥2

= ∥wt −w′
t∥2 + (η2t −

2ηt
µ

)∥∇f(wt, zit) −∇f(w′
t, zit)∥2, (69)

where the last inequality is by applying the co-coercivity of convex and smooth functions.

Now, by assuming that ηt ≤ 1
2µ

we eliminated the last term, we conclude our result

∥wt+1 −w′
t+1∥ ≤ ∥wt −w′

t∥.

Remark 8. From the proof of Lemma 5, we note we do not require the gradient to be

stochastic. Hence non-expansitivity holds for batch and mini-batch gradients using the

same argument, as long as the condition for ηt holds.

Theorem 18 (Gordon’s Theorem [Gordon, 1988]). Let m, d ∈ N, let Φ ∈ Rm×d be

a random matrix with independent N (0, 1/m) entries. Let B ⊂ Sd−1 be a subset of the

unit sphere in d dimensions. If m = Θ(ω(B)2/β2), then

EΦ

[
sup
x∈B

|∥Φx∥2 − 1|
]
≤ β, (70)

where ω(B) is the Gaussian width of B and the expectation EΦ[·] is over the randomness

in Φ.

Gordon’s Theorem is a key result to bound the expected norm of projected points

with respect to the norm of original points. We note that the projection dimension must

increase as β decreases, implying we need to project onto a higher dimension if we wish

to decrease the distortion.

The following result bounds the norm of the gradient update in CompSGD with a fixed

point w ∈ C which will be useful for the analysis of optimisation step. We provide the

proof here for completeness.

Generalisation of CompSGD 41

Theorem 19 ([Kasiviswanathan, 2021]). In Algorithm 1 CompSGD, for any t ∈ [T],

we have for all w ∈ C

(1 − βt)∥wt+1 −w∥2 ≤ ∥wt − ηt∇f(wt, z) −w∥2. (71)

Remark 9. Note that from the proof of Theorem 19, there are no requirements on the

gradient used (∇f) being stochastic. Hence the same result will hold for batch (∇FS) and

mini-batch gradients (∇FB).

Proof of Theorem 19. At iteration t, fix a RP matrix Φt. Define the normalizing map

u : Rd → Rd as u(w) = w
∥w∥ . Let w ∈ C be any vector. To simplify notation, note that

wt+1 − w ∈ C + C (the Minkowski sum) and denote C ′ = {u(w) | w ∈ C + C}. Since

u(wt+1 −w) ∈ C ′, we have

|∥Φtu(wt+1 −w)∥2 − 1| ≤ sup
w∈C′

|∥Φtw∥2 − 1|. (72)

Eq. (72) holds for all Φt. Taking expectation with respect to Φt, Gordon’s theorem implies

EΦt

[
|∥Φtu(wt+1 −w)∥2 − 1|

]
≤ EΦt

[
sup
w∈C′

|∥Φtw∥2 − 1|
]
≤ βt. (73)

The above inequality can be rearranged as

(1 − βt) ≤ EΦt

[
|∥Φtu(wt+1 −w)∥2|

]
≤ (1 + βt),

⇒(1 − βt)∥wt+1 −w∥2 ≤ EΦt

[
∥Φt(wt+1 −w)∥2

]
. (74)

Hence we obtain

(74) = EΦt

[∥∥∥∥ΠΦtC
(Φtwt − ηtΦt∇f(wt, zit) − Π

ΦtC
(Φtw)

∥∥∥∥2
]

≤ EΦt

[
∥(Φtwt − ηtΦt∇f(wt, zit) − (Φtw)∥2

]
= ∥(wt − ηt∇f(wt, zit)) −w∥2, (75)

where we have used the fact that the projection map ΠΦC is contractive in the second step,

i.e. distance between two points will not be larger after projection onto ΦC; and the final

step follows since Φt is independent from all the remaining variables, wt,w, ηt,zit .

42 Z. Huang et al.

A.1 Proofs for CompSGD in Section 3

Proof of Lemma 1. The proof of lemma 1 follows similar derivation as for Theorem 19

using Gordon’s Theorem. Except that we are bounding the distortion between two gradient

updates rather than a fixed point w ∈ C.

We start by replacing w with w′
t+1 from equation (74), we have

(1 − βt)∥wt+1−w′
t+1∥2 ≤ EΦt

[
∥Φt(wt+1 −w′

t+1)∥2
]

= EΦt

[∥∥∥∥ΠΦtC

(
Φtwt − ηtΦt∇f(wt, zit) −

(
Φtw

′
t − ηtΦt∇f(w′

t, z
′
it)
))∥∥∥∥2

]

≤ EΦt

[∥∥(Φtwt − ηtΦt∇f(wt, zit) − (Φtw
′
t − ηtΦt∇f(w′

t, z
′
it))
∥∥2]

= ∥(wt −w′
t) − (ηt∇f(wt, zit) − ηt∇f(w′

t, z
′
it))∥

2, (76)

where we have used the fact that the projection map ΠΦC is contractive in the second step,

i.e. distance between two points will not be larger after projection onto ΦC; and the final

step follows since Φt is independent from all the remaining variables, wt,w
′
t, ηt,zit ,z

′
it .

Remark 10. Similar to Thm. 19, there are no requirements on the gradient used (∇f)

being stochastic. Hence the same result will hold for batch (∇FS) and mini-batch gradients

(∇FB).

Proof of Lemma 2. Since we assumed zit = z′it in the runs of CompSGD, we use the

shorthand ∇f(wt) and ∇f(w′
t) for ∇f(wt, zit) and ∇f(w′

t, zit) as respectively. Denote

wt −w′
t by ∆t. From Lemma 1 we have

(1 − βt)∥∆t+1∥2 ≤ ∥∆t∥2 − 2ηt⟨∇f(wt) −∇f(w′
t), ∆t⟩ + η2t ∥∇f(wt) −∇f(w′

t)∥2.

By Part 2 of Lemma 17 (co-coercivity), the second term on the r.h.s. is further bounded

as

⟨∇f(wt) −∇f(w′
t), ∆t⟩ ≥

1

µ
∥∇f(wt) −∇f(w′

t)∥2. (77)

Hence, we have

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 −
(

2ηt
µ

− η2t

)
∥∇f(wt) −∇f(w′

t)∥2. (78)

Setting ηt ≤ 2/µ eliminates the last term in (78), and the result follows.

Generalisation of CompSGD 43

Proof of Lemma 3. By Theorem 19, we have that

(1 − βt)∥wt+1 −wt∥2 ≤ ∥wt − ηt∇f(wt, z) −wt∥2.

Hence, ∥wt+1−wt∥2 ≤ η2t
1−βt

∥∇f(wt, z)∥2 ≤ η2tL
2

1−βt
, where the last inequality is a consequence

of the L-Lipschitz assumption on f .

A.2 Proofs for Compressed Gradient Descent

In this section, we present the proofs for our result in section 4.1. We start with the

optimisation of CompGD in the smooth case, where we are able to obtain a faster

convergence compared to CompSGD with a larger step size parameter.

Proof of Theorem 4. By Thm. 19 with w = w∗
S we have

(1 − βt)∥wt+1 −w∗
S∥2 ≤ ∥wt − ηt∇FS(wt) −w∗

S∥2

= ∥wt −w∗
S∥2 + 2ηt⟨∇FS(wt),w

∗
S −wt⟩ + η2t ∥∇FS(wt)∥2

≤ ∥wt −w∗
S∥2 + 2ηt(FS(w∗

S) − FS(wt)) + η2t ∥∇FS(wt)∥2, (79)

where the last line follows from the convexity of f . From the smoothness we also have

FS(wt) − FS(w∗
S) ≥ ⟨wt −w∗

S,∇FS(wt)⟩ +
1

2µ
∥∇FS(wt) −∇FS(w∗

S)∥2

≥ 1

2µ
∥∇FS(wt) −∇FS(w∗

S)∥2,

where we have used ⟨wt−w∗
S,∇FS(wt)⟩ ≥ 0 by convexity and w∗

S is a minimiser of FS(w).

Applying this property we have

∥∇FS(wt)∥2 = ∥∇FS(wt) −∇FS(w∗
S)∥2 ≤ 2µ(FS(wt) − FS(w∗

S)). (80)

Substituting equation (80) into (79) we have

(79) ≤ ∥wt −w∗
S∥2 + 2ηt(FS(w∗

S) − FS(wt)) + η2t ∥∇FS(wt) −∇FS(w∗
S)∥2

≤ ∥wt −w∗
S∥2 + 2ηt(FS(w∗

S) − FS(wt)) + 2η2tµ(FS(wt) − FS(w∗
S))

≤ ∥wt −w∗
S∥2 +

ηt
2

(FS(w∗
S) − FS(wt)) (assuming ηt ≤ 1/(2µ)). (81)

44 Z. Huang et al.

Rearranging we have:

ηt
2

(FS(wt) − FS(w∗
S)) ≤ ∥wt −w∗

S∥2 − ∥wt+1 −w∗
S∥2 + βt∥wt+1 −w∗

S∥2.

Taking expectation and summing over T iterates and choosing βt = 1/(t + 1) we have:

T∑
t=1

ηt
2
E[FS(wt)−FS(w∗

S)] ≤ ∥w1−w∗
S∥2+

T∑
t=1

βtE[∥wt+1−w∗
S∥2]

= O

(
∥C∥2 + ∥C∥2

T∑
t=1

βt

)

= O
(
∥C∥2+∥C∥2 log(T)

)
, (82)

where we have used E[∥wt+1−w∗
S∥]2 ≤ ∥C∥2. Finally, for ηt = η being an absolute constant

we have (
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[FS(wt) − FS(w∗
S)] = O

(
∥C∥2 log(T)

T

)
. (83)

The proof is completed.

CompGD differs from CompSGD in the way that the gradient update used in CompGD

is non-stochastic, which implies that if we have two similar but different training sample set

S, S ′, then the gradient update rule G,G′ is guaranteed to be different at every iteration.

Hence our analysis here is a little different CompSGD, where we overcome this problem

by noting that the difference in the gradient is small from neighbouring sample sets. We

now formally prove Thm.5.

Proof of Theorem 5. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. WLOG we assume that the sample where S, S ′ differs is at index j:

we denote zj, z
′
j for the sample in S and S ′ respectively. Fix a sample z, by the Lipschitz

condition we get that

E[|f(wT , z) − f(w′
T , z)|] ≤ LE[δT], (84)

where δT = ∥wT −w′
T∥. At iteration t, we have from Lemma 1

√
1 − βt∥wt+1 −w′

t+1∥ ≤ ∥(wt −w′
t) − ηt(∇FS(wt) −∇FS(w′

t, S
′))∥. (∗)

Note that since S, S ′ only differ on the j-th point, we have S ∪ {z′j} = S ′ ∪ {zj}.

Generalisation of CompSGD 45

(∗) =

∥∥∥∥∥∥wt −w′
t −

ηt
n

∑
z∈S∪{z′j}

(∇f(wt, z) −∇f(w′
t, z)) +

ηt
n

(∇f(wt, z
′
j) −∇f(w′

t, zj))

∥∥∥∥∥∥
≤ ∥wt −w′

t∥ +
ηt
n

∥∥∇f(wt, zj) −∇f(w′
t, z

′
j)
∥∥ ≤ ∥wt −w′

t∥ +
2Lηt
n

, (85)

where we have used the non-expansitivity of the gradient update rule (Lemma 5) and

the sub-additivity of the norm on the second step. The last inequality is by applying the

L-Lipschitz condition of f . Therefore we have the recursion

∥wt+1 −w′
t+1∥ ≤ ∥wt −w′

t∥√
1 − βt

+
2Lηt

n
√

1 − βt

. (86)

By the same argument as in proof of Theorem 2 starting with equation (19), we have:

E[δT] ≤ 2L

n

T−1∑
t=1

ηt

T−1∏
j=t

(1 − βj)
−1/2. (87)

By letting βt = 1/(t + 1), ηt = η for some absolute constant η and T ≍
√
n, we have

E[δT] ≤ 2Lη
√
T

n

T−1∑
t=1

1√
t

= O
(
Lη√
n

)
. (88)

Proof of Theorem 6. Let ∇Ft denote the gradient 1
n

∑
z∈S ∇f(wt, z) at iteration t. By

Jensen’s inequality, we have

FS(w̄T) − FS(w∗) = FS

(T∑
t=1

ηt

)−1 T∑
t=1

ηtwt

− FS(w∗)

≤

(
T∑
t=1

ηt

)−1 T∑
t=1

ηt(FS (wt) − FS(w∗))

≤

(
T∑
t=1

ηt

)−1 T∑
t=1

ηt⟨∇Ft,wt −w∗⟩, (89)

46 Z. Huang et al.

where the last inequality is by the convexity of f . To bound the terms above, note that

we have for all t ≥ 1:

(1 − βt)∥wt+1 −w∗∥2 ≤ ∥(wt −w∗) − ηt∇Ft∥2

= ∥wt −w∗∥2 + 2ηt⟨∇Ft,w
∗ −wt⟩ + 4η2tL

2.

Rearranging we have:

2ηt⟨∇Ft,wt −w∗⟩ ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + 4η2tL
2. (90)

Taking expectation and summing over T iterates we have:

2
T∑
t=1

ηtE[⟨∇ft,wt −w∗⟩] ≤ ∥w1 −w∗∥2 +
T∑
t=1

βtE[∥wt+1 −w∗∥2] + 4L2

T∑
t=1

η2t

= O

(
∥C∥2 log(T) + L2

T∑
t=1

η2t

)
, (91)

where we have used E[∥wt+1 − w∗∥]2 ≤ ∥C∥2 and βt = 1
t+1

in the last line. Hence by

choosing ηt = η/
√
t for some absolute constant η, we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[⟨∇Ft,wt −w∗⟩] = O

(
∥C∥2 log(T)√

T
+

L2

√
T

T∑
t=1

1

t

)
. (92)

Finally, combining the above inequalities we have

E[FS(w̄T) − FS(w∗)] = O
(

(∥C∥2 + L2) log(T)√
T

)
. (93)

Proof of Theorem 7. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. W.l.o.g. assume that they differ on the j-th point denoted zj, z
′
j for

S and S ′, respectively. Fix a sample z, by the Lipschitz condition we get

E[|f(wT) − f(w′
T)|] ≤ LE[δT], (94)

where δT = ∥wT −w′
T∥.

Since after each update, wt ∈ C for all t, by Lemma 1 we have (here we will denote

Generalisation of CompSGD 47

∇FS(wt) by ∇Ft and ∇FS′(w′
t) by ∇F ′

t)

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − ηt(∇FS(wt) −∇FS′(w′
t))∥2

= ∥wt −w′
t∥2 + 2ηt⟨w′

t −wt,∇Ft −∇F ′
t⟩ + 4η2tL

2, (95)

where the last line follows from the Lipschitz assumption.

Since S, S ′ only differs on the j-th point, we have

⟨w′
t −wt,∇Ft −∇F ′

t⟩ = ⟨w′
t −wt,∇FS∪{z′j}(wt) −∇FS′∪{zj}(w

′
t)⟩

+
1

n
⟨w′

t −wt,∇f(w′
t, zj) −∇f(wt, z

′
j)⟩

≤ 1

n
⟨w′

t −wt,∇f(w′
t, zj) −∇f(wt, z

′
j)⟩

≤ 2L

n
∥wt −w′

t∥, (96)

where the second line holds because the first term is negative by the convexity of FS, and

the last line follows from the Lipschitz condition.

We substitute the inequality (96) into equation (95) and obtain:

(1 − βt)δ
2
t+1 = δ2t + 4Lηt

(
δt
n

+ Lηt

)
. (97)

By multiplying both sides by
∏t−1

j=1(1 − βj), we have

[
t∏

j=1

(1 − βj)

]
δ2t+1 ≤

[
t−1∏
j=1

(1 − βj)

]
δ2t +

4ηtLδt
n

t−1∏
j=1

(1 − βj) + 4η2tL
2

[
t−1∏
j=1

(1 − βj)

]
. (98)

By summing over T iterates we have:

[
T−1∏
j=1

(1 − βj)

]
δ2T ≤

T−1∑
t=1

4ηtLδt
n

t−1∏
j=1

(1 − βj) +
T−1∑
t=1

4η2tL
2

[
t−1∏
j=1

(1 − βj)

]
. (99)

Taking βt = 1/t + 1 and rearranging we have:

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T
T−1∑
t=1

η2t
t
. (100)

The rest of the proof follows from the same procedure as in the proof of Thm. 13, starting

with equation (62).

48 Z. Huang et al.

A.3 Proofs for Compressed Mini-batch SGD

Proof of Theorem 8. By Thm.19 with w = w∗, we have for all t ≥ 1:

(1 − βt)∥wt+1 −w∗∥2 ≤ ∥(wt −w∗) − ηt
b

∑
z∈Bt

∇f(wt, zit)∥2

= ∥wt −w∗∥2 + 2ηt

〈1

b

∑
z∈Bt

∇f(wt, z),w∗ −wt

〉
+ η2t ∥

1

b

∑
z∈Bt

∇f(wt, z)∥2

≤ ∥wt −w∗∥2 +
2ηt
b

∑
z∈Bt

(f(w∗, z) − f(wt, z)) + η2tL
2.

Rearranging the above inequality gives

2ηt
b

∑
z∈Bt

(f(wt) − f(w∗)) ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + η2tL
2.

Since each mini-batch Bt is drawn uniformly from the sample, we note that EA[FBt(w)] =

EA[FS(w)]. Hence, setting βt = 1/(t+ 1), taking expectation and summing over T iterates

give

2
T∑
t=1

ηtES,A[FS(wt) − FS(w∗)] ≤ ∥w0 −w∗∥2 +
T∑
t=1

βtE[∥wt+1 −w∗∥2] + L2

T∑
t=1

η2t

= O

(
∥C∥2 + ∥C∥2

T∑
t=1

1

t + 1
+ L2

T∑
t=1

η2t

)

= O

(
∥C∥2 log(T) + L2

T∑
t=1

η2t

)
,

where we have used E[∥wt+1 −w∗∥]2 ≤ ∥C∥2. Finally, choosing ηt = η√
t

we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[FS(wt) − FS(w∗)] = O
(
∥C∥2 log(T)√

T
+

L2 log(T)√
T

)
. (101)

The proof is completed.

Proof of Theorem 9. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Denote the gradient updates by G1, . . . , GT and G′
1, . . . , G

′
T induced

by running the CompSGD on S and S ′, respectively. Let δT = ∥wT −w′
T∥.

Observe that at step t, with probability 1− b/n, the mini-batch Bt, B
′
t selected is the same

in both S and S ′. In this case we have Gt = G′
t and we use the expansivity of the update

Gt by a similar proof as Lemma 2. With probability b/n the selected mini-batch Bt is

Generalisation of CompSGD 49

different in which case assume they differ by the j-th point and we have from Lemma 1

√
1 − βt∥wt+1 −w′

t+1∥ ≤ ∥(wt −w′
t) − ηt(∇FBt(wt) −∇FB′

t
(w′

t))∥. (∗)

Note that since Bt, B
′
t only differ on the j-th point, we have Bt ∪ {z′j} = B′

t ∪ {zj}.

(∗) =

∥∥∥∥∥∥(wt −w′
t) −

ηt
b

∑
z∈Bt∪{z′j}

(∇f(wt, z) + ∇f(w′
t, z)) − ηt

b
(∇f(wt, z

′
j) −∇f(w′

t, zj))

∥∥∥∥∥∥
≤ ∥wt −w′

t∥ +
ηt
b

∥∥∇f(wt, zj) −∇f(w′
t, z

′
j)
∥∥ ≤ ∥wt −w′

t∥ +
2Lηt
b

, (102)

where we have used the non-expansitivity of gradient update (Lemma 5) and the sub-

additivity of the norm on the second step. The last inequality is by applying the L-Lipschitz

condition of f . Hence, combining the two cases and by the linearity of expectation we

have the following:

E[δt+1] ≤
(

1 − b/n√
1 − βt

)
E[δt] +

b

n
√

1 − βt

(
E[δt] +

2Lηt
b

)
. (103)

The rest of the proof for stability then follows by the same argument as in the proof of

Theorem 2 starting with equation (19).

Proof of Theorem 10. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT

and G′
1, . . . , G

′
T be the updates induced by running the CompSGD on S and S ′ for T

iterates, respectively. Let δT = ∥wT −w′
T∥, by the Lipschitz condition,

E[|f(wT , z) − f(w′
T , z)|] ≤ LE[δT]. (104)

If at iteration t, the mini-batch Bt, B
′
t we selected is the same, i.e. Gt = G′

t, then from

Lemma 1 we have the following

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − ηt(∇FBt(wt) −∇FBt(w
′
t))∥2

= ∥wt −w′
t∥2 − 2ηt⟨∇FBt(wt) −∇FBt(w

′
t),wt −w′

t⟩

+ η2t ∥∇FBt(wt) −∇FBt(w
′
t)∥2.

50 Z. Huang et al.

From the convexity of f we have that ⟨∇FBt(wt) − ∇FBt(w
′
t),wt −w′

t⟩ ≥ 0 and from

Lipschitzness of f we also have ∥∇FBt(wt) − ∇FBt(w
′
t)∥ ≤ 2L. Hence we obtain the

following bound

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (105)

For the case where Gt ̸= G′
t, note that Bt and B′

t differ by a single sample, hence we have

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t) − ηt(∇FBt(wt) −∇FB′
t
(w′

t))∥2

≤ ∥wt −w′
t∥2 − 2ηt⟨∇FBt(wt) −∇FB′

t
(w′

t),wt −w′
t⟩

+ η2t ∥∇FBt(wt) −∇FB′
t
(w′

t)∥2

≤ ∥wt −w′
t∥2 +

4Lηt
b

∥wt −w′
t∥ + 4L2η2t , (106)

where the last inequality (106) follows by the same derivation as for equation (96), replacing

S, S ′ with Bt, B
′
t respectively. Combining the two cases we have

(1 − βt)E[δ2t+1] ≤
(

1 − b

n

)
(E[δ2t] + 4L2η2t) +

b

n

(
E[δ2t] +

4LηtE[δt]

b
+ 4L2η2t

)
= E[δ2t] + 4Lηt

(
E[δt]

n
+ Lηt

)
. (107)

The rest of the proof then follows by the same procedure as the proof for Theorem 13

starting from equation (97).

B Proofs for Differentially Private SGD

B.1 Privacy guarantees

We will use the composition theorem to guarantee DP over a series of steps that requires

to query the same sample, which is the setting for iterative gradient methods.

Theorem 20 (Strong composition [Dwork and Roth, 2014]). Let ϵ, δ, δ′ > 0 and

ϵ ≤ 1. A mechanism that permits T adaptive interactions with mechanisms that preserves

(ϵ, δ)-differential privacy ensures (ϵ
√

2T log(1/δ′) + 2kϵ2, T δ + δ′)-differential privacy.

The privacy guarantee of DP-CompGD now follows from the strong composition

theorem.

Theorem 21. The output of DP-CompGD in Alg. 4 satisfies (ϵ, δ)-differential privacy.

Generalisation of CompSGD 51

Proof. The proof follows a similar procedure as in [Bassily et al., 2014] (Thm. 2.1) with a

standard application of the Gaussian mechanism. Note that the norm of the projected

gradient Φt∇FS(wt) is normalized by the normalization factor st (line 7 of Alg. 4). Hence

the norm ∥stΦt∇FS(wt)∥ is upper bounded by the Lipschitz constant L which implies

a global sensitivity of 2L. The privacy guarantee then follows directly by applying the

Gaussian mechanism with the strong composition theorem (Thm. 20) over T iterations of

SGD.

In the case where we only use a random subset of the whole sample set in each iterate,

the sensitivity will increase due to a smaller sample set, however we can apply the following

result to strengthen our privacy guarantee:

Theorem 22 (Amplification by subsampling [Balle et al., 2018]). Let X be a data

domain and M : X n → X b be a procedure such that M(S) returns a random subset of b

records sampled uniformly without replacement from S. Let A be an (ϵ, δ)-DP algorithm.

Then A ◦ S satisfies (ϵ′, (b/n)δ)-DP with ϵ′ = log(1 + (b/n)(eϵ − 1)).

Theorem 23. The output of DP-CompMiniBatch in Alg. 5 satisfies (ϵ, δ)-differential

privacy.

Proof. The proof follows the same idea as for DP-CompGD. Note that since we only use

a random subset of S for each iteration (of size b), we can apply Thm. 22 to obtain a

stronger privacy guarantee relative to the size of the subsample at each iteration. The

privacy guarantee then follows similarly by the strong composition over T iterations.

B.2 Proof of DP-CompSGD with MiniBatch

Proof of Theorem 14. We start with the same procedure as in the derivation for the

optimisation convergence rate of DP-CompGD in equation (46). Note that we can replace

the batch gradient ∇FS with the mini-batch gradient ∇FBt without affecting the derivation

of the inequality

(1 − βt)∥wt+1 −w∥2 ≤ ∥wt −w∥2 + 2Cmtηt(FBt(w) − FBt(wt)) + η2t (L2 + mtσ
2).

Rearranging the inequality and let w = w∗ we have:

2Cmtηt(FBt(wt)−FBt(w
∗)) ≤ ∥wt−w∗∥2− (1−βt)∥wt+1−w∗∥2 +η2t (L2 +mtσ

2). (108)

52 Z. Huang et al.

Since Bt is a random subset drawn uniformly from S, we have EA[FBt(w)] = FS(w).

Hence by taking expectations and summing over T iterations, we have

2Cmt

T∑
t=1

ηtE[FS(wt)−FS(w∗)] ≤ ∥w1−w∗∥2+
T∑
t=1

βtE[∥wt+1−w∗∥2]+
T∑
t=1

η2t (L2+mtσ
2).

Choosing βt = 1/(t + 1) we obtain that

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
∥C∥2 + log T∥C∥2 +

∑T
t=1 η

2
t (L2 + mtσ

2)∑T
t=1 ηt

)
. (109)

Finally, note that mT = maxt∈[T] mt.

Let ηt = ∥C∥/
√

t(L2 + mTσ2) and σ2 = O(TL2 log(1/δ) log(4TB/(δn)/(ϵ2n2)) we have

∑T
t=1 ηtE[FS(wt) − FS(w∗)]∑T

t=1 ηt
= O

(
log T∥C∥

√
L2 + mTσ2

√
T

)
≤ O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mTT log(1/δ) log(4TB/(δn)

nϵ
√
T

)

= O

(
log T∥C∥L√

T
+

log T∥C∥L
√

mT log(1/δ) log(4TB/(δn)

nϵ

)
.

The proof is completed.

Proof of Theorem 15. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT

and G′
1, . . . , G

′
T be the updates induced by running the CompSGD on S and S ′ for T

iterates, respectively. Let δT = ∥wT −w′
T∥, by the Lipschitz condition we have

E[|f(wT , z) − f(w′
T , z)|] ≤ LE[δT]. (110)

If at iteration t, the mini-batch Bt, B
′
t we selected is the same, i.e. Gt = G′

t, then by the

same derivation for equation (58) we have the following bound

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 − 2ηt⟨∇FBt(wt) −∇FBt(w
′
t),wt −w′

t⟩ + 4η2tL
2.

From the convexity of f we have that ⟨∇FBt(wt) −∇FBt(w
′
t),wt −w′

t⟩ ≥ 0. Hence we

obtain the following bound

(1 − βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (111)

Generalisation of CompSGD 53

For the case where Gt ̸= G′
t, we use the fact that Bt and B′

t differ by a single sample.

Hence we have

(1 − βt)∥wt+1 −w′
t+1∥2

≤ ∥wt −w′
t∥2 − 2ηt⟨∇FBt(wt) −∇FB′

t
(w′

t),wt −w′
t⟩ + 4η2tL

2

≤ ∥wt −w′
t∥2 +

4Lηt
b

∥wt −w′
t∥ + 4L2η2t , (112)

where the last inequality (112) follows by the same derivation as for equation (96), replacing

S, S ′ with Bt, B
′
t respectively. Combining the two cases we have

(1 − βt)E[δ2t+1] ≤
(

1 − b

n

)
(E[δ2t] + 4L2η2t) +

b

n

(
E[δ2t] +

4LηtE[δt]

b
+ 4L2η2t

)
= E[δ2t] + 4Lηt

(
E[δt]

n
+ Lηt

)
. (113)

The rest of the stability proof then follows by the same procedure as the proof for Thm. 13

starting from equation (97). The generalization result also follows directly by combining

with Thm. 14 and Thm. 1 using the strategy discussed in section 2.2.

