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The origin of jaws and teeth remains contentious in vertebrate
evolution. ‘Placoderms’ (Silurian-Devonian armoured jawed
fishes) are central to debates on the origins of these
anatomical structures. ‘Acanthothoracids’ are generally
considered the most primitive ‘placoderms’. However, they
are so far known mainly from disarticulated skeletal
elements that are typically incomplete. The structure of the
jaws—particularly the jaw hinge—is poorly known, leaving
open questions about their jaw function and comparison
with other placoderms and modern gnathostomes. Here we
describe a near-complete ‘acanthothoracid’ upper jaw,
allowing us to reconstruct the likely orientation and angle of
the bite and compare its morphology with that of other
known ‘placoderm’ groups. We clarify that the bite position
is located on the upper jaw cartilage rather than on the
dermal cheek and thus show that there is a highly conserved
bite morphology among most groups of ‘placoderms’,
regardless of their overall cranial geometry. Incorporation of
the dermal skeleton appears to provide a sound
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biomechanical basis for jaw origins. It appears that ‘acanthothoracid’ dentitions were fundamentally
similar in location to that of arthrodire ‘placoderms’, rather than resembling bony fishes. Irrespective
of current phylogenetic uncertainty, the new data here resolve the likely general condition for
‘placoderms’ as a whole, and as such, ancestral morphology of known jawed vertebrates.

1. Introduction
‘Placoderms’ are extinct fishes that ranged from the Silurian to the end of the Devonian period (444 to
359 Ma). Although their monophyly is highly debated [1–5], it is widely agreed that they are the only
known jaw-bearing stem-group gnathostomes. They are thus key to reconstructing character
transitions leading to modern (crown-group) gnathostomes. ‘Placoderms’ occupy a central role in
debates on the origin of both jaws and teeth—major gnathostome innovations that led to diverse
feeding ecologies. Recent discoveries from the Silurian and Early Devonian of south China [4,6,7] and
Czechia [8] have delivered significant advances that diminish the morphological gap between
‘placoderm’ and crown-group vertebrate jaw morphology. There is now a growing consensus that the
last common ancestor of crown gnathostomes possessed dermal jaw bones, a trait potentially
extending to the earliest appearance of jaws [9]. This has transformed perspectives of both jaw and
tooth evolution, which have long been modelled on shark-like conditions [10].

Owing to a lack of fossilized mandibular arch material in jawless fishes, the primitive structure of the
gnathostome jaw has been difficult to reconstruct using palaeontological evidence. ‘Placoderms’ exhibit
diverse jaw morphologies and presumed feeding ecologies [11–13]. These range from diverse biting
modes, suspension feeding and possible grazing in arthrodires; durophagy in ptyctodonts; ambush
predation in rhenanids; and benthic (detritus?) feeding in antiarchs. Most ‘placoderm’ dentitions were
relatively simple: tubercles added in rows (or files) or centripetally to growing jaw plates [14,15].
Despite this simplicity, ‘placoderm’ dentitions are diverse, and detailed anatomical investigations in
recent decades have highlighted similarities between some ‘placoderm’ groups (such as arthrodires)
and crown-group gnathostomes [14,16]. More recently, it has been proposed [8] that some
‘acanthothoracids’ bore marginal teeth aligned in rows along the jaw edge, as in most crown-group
gnathostomes. Understanding the relationship of ‘placoderm’ dentitions as well as overall jaw
morphology and functional diversity are thus key to understanding the origin of modern jaws and teeth.

Here we describe a nearly complete, fully three-dimensional upper jaw (palatoquadrate and
suborbital plate) of an ‘acanthothoracid’ from the Early Devonian (Pragian) of Mongolia. The
specimen reveals the most complete quadrate (articular condyle connecting the lower jaw) of any
‘acanthothoracid’ known to date. This allows us to reconstruct and compare the orientation and angle
of the bite in these ‘placoderms’, and we show that a highly similar jaw articulation and bite occurs
between three groups of ‘placoderms’ with disparate presumed ecomorphologies: ‘acanthothoracids’,
rhenanids and arthrodires, suggesting conservation of a shared ancestral morphology among these
groups. Furthermore, we clarify the evolution of gnathostome dentitions by revising the interpretation
of unusual dental morphology in a previously described ‘acanthothoracid’.
2. Material and methods
2.1. Specimens
The upper jaw described here occurs within a bedrock sample MPC-Fh200/10.4 from the Yamaat Gol
locality in western Mongolia [17–19]. The absence of endochondral bone and the tight spacing of the
tubercles indicate that this palatoquadrate does not belong to Minjinia, the only ‘placoderm’ taxon so
far named from that locality. The Yamaat Gol fauna contains at least three distinct ‘acanthothoracid’
taxa, but all are based on isolated fossils, making taxonomic assignments fraught. This paper makes
no further taxonomic attribution for the specimen as it lacks other diagnostic traits.

2.2. Synchrotron tomography
We performed synchrotron X-ray micro-computed tomography at the I12 beamline of the Diamond Light
Source, United Kingdom [20]. The X-ray beam was set to a monochromatic energy of 90 keV (double bent
Laue Si 111 monochromator). The regions of interest were scanned in I12 Experimental Hutch One using
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the beamline’s modular imaging system. This detector consists of a PCO.edge 5.5 sCMOS camera and
four user-selectable optical modules, each comprising a scintillator, 90-degree turning mirrors and a
visible light lens. We used module 2 with a magnification of 0.820, corresponding to a recorded pixel
size of 7.91 µm. Each acquisition consisted of 1800 projections, of 15 ms exposure time each, over a
180° rotation of the sample. Additionally, 50 flatfield images (sample out of the beam) were recorded
before and after the series of acquisition as well as 10 dark images (X-ray beam off to record the noise
of the camera).

The tomographs were reconstructed using the SAVU tomographic processing software [21,22]
developed at Diamond Light Source. In the reconstruction process, ring artefact removal [23] and
auto-centring [24] were applied, as well as distortion correction [25]. The low-pass filter approach [26]
was applied. Filtered back-projection reconstructions were performed using the Astra library [27,28],
and the whole process was applied on an HPC cluster system using the SAVU tomography pipeline.

2.3. Data segmentation and visualization
We segmented the data using Materialise Mimics version 23.0 (https://www.materialise.com/en/
healthcare/mimics-innovation-suite/mimics; Materialise, Leuven, Belgium). Three-dimensional models
were exported and rendered in Blender v.3.2.2 (Blender Foundation; https://www.blender.org).

2.4. Phylogenetic analysis
We reproduced the analysis of Vaškaninová et al. [8] with modified scorings for Radotina to reflect
uncertainties and interpretations presented here. A full list of score changes is provided in electronic
supplementary material, table S1. We restricted our data re-codings to eight characters relating to the
identification of teeth and sensory canals in Radotina. We analysed the matrix using TNT (v. 1.5) [29]
using a ‘new technology search’ (xmult) set to level 10 including the parsimony ratchet with 50
replicates. We then applied branch-swapping (bbreak) to the trees in memory. To analyse the
distribution of character states, we generated a fully resolved topology removing ‘wildcard’ taxa by
generating an agreement subtree in PAUP� (v. 4.0 alpha test version build 168) [30]. We visually
explored ancestral states conditions for jaw characters using parsimony with the ‘Trace Character
History’ function in Mesquite (v. 3.70) [31].
3. Results
3.1. Description
MPC-Fh200/10.4 is a nearly complete upper jaw unit consisting of the suborbital plate and
palatoquadrate ossification (figure 1). The palatoquadrate is preserved as a thin shell of perichondral
bone; endochondral bone is absent. The specimen is mostly undeformed, retaining its original three-
dimensional shape. The suborbital plate is covered in densely placed stellate tubercles. In lateral view,
the suborbital plate has a geometry similar to Radotina (figure 2b): the outline is roughly trapezoidal;
the posterior margin is deep (most of the depth of the plate) and slightly convex. There is no evidence
of an orbital process on the dorsal surface, but we cannot rule out the possibility that it was worn or
broken off. As in Radotina, the ventral margin of the suborbital plate is gently convex. This differs
from Romundina, where the ventral profile has a marked angle between the autopalatine (anterior)
portion and the adductor fossa area, contributing to a short posterior margin [32,33]. The most
prominent feature of the external face of the suborbital is the infraorbital canal, which follows a
course from the posterodorsal corner to the anterior margin of the plate. The upper margin of the
plate forms a pronounced overhang of the infraorbital sensory canal. As in Radotina, the dorsal
tubercles curl over the dorsal margin of this canal. The anterior end of the infraorbital canal curves
downward to meet the supra-oral sensory canal. The latter traces the preserved ventral margin of the
suborbital. This canal terminates between the autopalatine process and the quadrate.

In medial view, the palatoquadrate fills the perimeter of the suborbital plate. The surface of the
perichondral bone in the virtual models has a nodular texture. However, these appear to be ferrous
crystals formed on the surface. The palatoquadrate has the classic ‘placoderm’ omega shape, forming
a thick arch around an almost circular adductor muscle chamber. The geometry and proportions of
the palatoquadrate and adductor fossa again closely resemble Radotina [8]. The adductor fossa
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https://www.blender.org
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Figure 1. MPC-Fh200/10.4 upper jaw complex in virtual three-dimensional rendering from synchrotron tomography. (a) Lateral
view; (b) lateral view with in-fill of lateral line canals (red); (c) lateral view with suborbital plate rendered semi-transparent to
reveal internal cavities and canals; (d ) mesial view; (e) ventral (labial) view; ( f ) dorsal view; (g) posterior view. Blue-grey
indicates suborbital (dermal) plate; mauve indicates perichondral sheath of palatoquadrate. Exact boundaries between these
units are approximate. Dashed leader line indicates uncertain attribution.
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Figure 2. (a) Lateral line canal pattern on the cheek of ‘acanthothoracid’ placoderms showing the position of the canals relative to
the palatoquadrate (dotted line). (b) Drawing based on data from [8]; (c) interpretive drawing of specimen from [32].
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occupies about half of the internal face. The autopalatine is commensurately short and turns medially at
its anterior end. The ossification is well preserved, showing that it ended anteriorly with a single, open
articulation facet as in rhenanid ‘placoderms’ [34]. On the dorsal side of the autopalatine is a low, blunt
process, which we interpret as an anterodorsal articulation (figure 1d ).

Exceptionally among ‘acanthothoracid’ fossils, the quadrate area is almost entirely preserved
(figure 1d–f ). For the first time, it allows a complete understanding of the jaw articulation in these
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‘placoderms’. The quadrate is mediolaterally broad and possibly double-headed as in osteichthyans.
Slightly dorsal and anterior to the quadrate, a large-diameter canal pierces the element between the
dermal bone and the palatoquadrate. This canal corresponds to the mandibularis canal (nerve V)
described in Holonema [35]; a similar canal is seen but undescribed in Radotina [8]. Further anterior
along the dorsal side of the palatoquadrate, the top of the palatoquadrate is pierced by an oblique,
anteriorly directed canal similar to one seen in Radotina (figure 1f, ‘mandibularis nerve canal (anterior
branch)’). These canals branch into a multitude of ramules in the autopalatine cartilage (figure 1c).

The internal structure of the bone is relatively well preserved. Three rami of the mandibularis branch
are preserved. These extend to the labial margin of the suborbital plate. Two extend in a nearly parallel
course from the trunk canal in the posterior quarter of the plate all the way to the antero-labial corner,
where fine ramules underly the junction of the supra-oral and infraorbital sensory canal. The
suborbital plate of MPC-Fh200/10.4 carries short, buried dorsal and ventral cavities that parallel the
sensory canals. The chambers do not have any apparent opening to the outside. We are not aware of
any such structures in any other ‘placoderms’, but suggest they are homologues of the ‘cutaneous
sensory openings’ seen in various ‘placoderms’ [36]. Such canals have not been observed in the
suborbital plates of any ‘acanthothoracids’ so far, but no similarly complete examples have been
studied by computed tomography scanning. Nevertheless, a cutaneous sensory opening extends
parallel to the infraorbital canal in Romundina immediately posterior to the orbital margin (see Ørvig
[32]; Dupret et al., [37], termed ‘sensory pits’ by the latter). Examination of the tomograms by Dupret
et al. confirms that the sensory pits are connected to a tubular cavity.

3.2. Phylogenetic analysis
The phylogenetic analysis resulted in 16 800 trees with a score of 947 steps (see electronic supplementary
material, information). The strict consensus matches the topology recovered by Vaškaninová et al.,
placing the ‘acanthothoracids’ as an unresolved assemblage joining at the base of mandibulate stem-
group gnathostomes alongside antiarchs. However, the agreement subtree shows that the lack of
resolution in this part of the tree was attributable to the highly incomplete, unnamed acanthothoracid
snout from Drake Bay, referred to only by its specimen number CPW.9, and Brindabellaspis. Neither of
these taxa is represented by mandibular arch material. The removal of these two taxa reveals an
acanthothoracid clade immediately crownward of antiarchs. To view synapomorphies, we used the
describetrees function in PAUP�. This clade is supported by two unambiguous synapomorphies
according to this dataset (character numbers derive from the dataset of Qiao et al. [38]): character 97:
the presence of a ventral notch between the parachordals (consistency index: 0.125); and character 103:
the absence of complete dermal encirclement of the pectoral fin base (consistency index: 0.167).
4. Discussion
4.1. Comparative anatomy and function of upper jaws in ‘placoderms’
MPC-Fh200/10.4 allows us to accurately reconstruct the axis of jaw closing and the position of the bite in
an ‘acanthothoracid’. To date, this has generally been inferred from fragmented and incompletely
preserved fossils. Our material indicates that the lower jaw closed against the internal surface of the
autopalatine, likely against a ridge that traverses this face (figure 3). This contrasts with the recent
reconstruction of Radotina, which implied either that the bite was positioned on the labial margin of
the suborbital plate or that an overbite of the submarginal was involved in prey capture or
processing. Such a bite, where the suborbital carries the upper dentition, is anomalous compared with
disparate other ‘placoderms’ such as rhenanids and arthrodires. In those taxa, the bite closes against
the inner surface of the autopalatine and not the suborbital plate [34,39,41] (figure 3), regardless of
their dramatically different craniofacial geometries (figure 4). These taxa are known from articulated
specimens, or specimens in which the dental plates are intact. However, an alternative geometry is
seen in Bothriolepis, where articulated specimens suggest the suborbital plate may have been involved
in biting [40] superficially resembling the implied condition in Radotina [8]. Assessing the position of
the bite in ‘acanthothoracids’ could help address which of these two ‘bite models’ is more appropriate.

The well-preserved quadrate of MPC-Fh200/10.4 allows us to reconstruct the orientation of the jaw
hinge and mandible (electronic supplementary material, figure S2). As the quadrate is mediolaterally
wide and nearly co-planar with the inner surface of the autopalatine, the lower jaw almost certainly



autopalatine
ridge

autopalatine
ridge

quadrate quadrate quadrate quadrate

adductor
fossa

adductor 
fossa

adductor
fossa

adductor 
fossa

adductor 
fossa

orbital 
process

orbital 
process

supragnathal
attachment

supra-oral
canal

supra-oral
canal

(a) (b) (c) (d ) (e)

Figure 3. Upper jaws of placoderm fishes in internal view. (a) Jagorina (based on Museum für Naturkunde, Berlin, specimen
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closed against the latter surface. This is supported by taking a line perpendicular to the quadrate hinge
axis, corresponding to a hypothetical lower jaw which intersects the centre of the adductor chamber and
traverses the autopalatine surface. Thus, we consider the bite in ‘acanthothoracids’ inclusive of Radotina
to have been located on the autopalatine, not the suborbital. This agrees with the general morphological
similarities in overall structure between MPC-Fh200/10.4, Radotina, Jagorina and arthrodires (figures 3
and 4). The role of the submarginal plate in biting, ‘cleaver-shaped’ palatoquadrate, and small
adductor fossa of Bothriolepis represent a clear anatomical outlier (figures 3 and 4) and has been
attributed recently to ‘scraping’ feeding [42].

4.2. Implications for ‘placoderm’ dentitions
The new data from MPC-Fh200/10.4 show that the aligned tubercles interpreted as teeth in Radotina are
not associated with the oral margin. The evidence for this is twofold: firstly, as noted above, these
tubercles lie outside of a functional bite (figures 2–4). Second, we interpret the groove that these
tubercles lie in as being for the supra-oral sensory line canal rather than the oral margin (figures 2
and 3). This feature was described by Vaškaninová et al. as a ‘trough with vascular foramina and
grooves’ and interpreted as the oral margin. MPC-Fh200/10.4 shows unambiguously that, instead,
this is a sensory line canal connected to the infraorbital canal and facial innervation network. This is
topologically identical to the same canal in Romundina (figure 2). The tubercles previously identified
as teeth in Radotina lie dorsal to this supra-oral sensory line canal, and we propose that they are petal-
shaped dermal tubercles. Petal-shaped tubercles with identical external morphology occur along the
ventral margin of the infraorbital sensory canal in Radotina (see fig. S6 of the supplementary material
of [8]), as well as elsewhere on the cheek. The comparative and functional anatomy above implies that
the structures interpreted as teeth in Radotina could not have had a primary dental function and
therefore have no direct bearing on the condition of teeth and jaw evolution in early gnathostomes.

4.3. Phylogenetic and evolutionary implications
A palatoquadrate fused to a dermal suborbital plate is a general condition of ‘placoderms’, as shown by
numerous phylogenetically disparate examples (e.g. figures 3 and 4). Thus, this is very probably a
primitive condition for jawed vertebrates. This is supported by our phylogenetic analysis, with this
character (character 23) mapping to the ancestor of all jaw-bearing taxa. Although Radotina does not
provide evidence of osteichthyan-like sutured dental plates in the mouths of ‘acanthothoracids’,
Vaškaninová et al. convincingly demonstrate that tooth-bearing jaw bones were also more
phylogenetically widespread in placoderms than previously understood. Indeed, our revised
phylogenetic analysis supports an ancestral state of dermal bones borne on the jaws in jawed
vertebrates (character 43). Coupled with the discoveries of Silurian ‘placoderms’ from China with
osteichthyan-like jaw bones, there is an ever-growing case that heavily armoured jaws have an early
phylogenetic origin. Although Vaškaninova et al. homologized the gnathal elements of placoderms
with the dermal jaw bones of crown-group gnathostomes (e.g. premaxilla, maxilla and dentary), they
did not re-code other placoderms for this new homology scheme. Nevertheless, this proposal was
tested and further corroborated recently using a ‘dynamic homology’ approach [47]. If this is
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extrapolated to the origin of jaws themselves, it raises important evolutionary implications. Dermal-
associated jaws provide a functionally informative model for the origins of jaws themselves. Up to
now, debates on the origin of jaws have strongly emphasized the endoskeleton and questions of
whether the palatoquadrate and hyoid arch represent derived gill arches of a branchiomeric ancestor.
The absence of mineralized mandibular arches in fossil jawless fishes makes this scenario difficult to
evaluate. This fact points to an overlooked problem: unmineralized endoskeletal cartilages are flexible
and slightly elastic. Without support from the dermal skeleton, they would provide a structurally
weak basis for the origin of jaws. We suggest that the phylogenetically deep association between
exoskeletal and endoskeletal jaw presents a functionally plausible model.
5. Conclusion
The hypothesis that the ancestors of all jawed vertebrates possessed dermal jaw bones integrated with
other facial jaw bones [9] is an important advance in our understanding of the origin of jaws. Dermal
bone provides greater mechanical reinforcement than perichondrally ossified cartilage; it is therefore
plausible that dermal bones provided a structural basis for jaws. As a purportedly primitive
‘placoderm’ assemblage, ‘acanthothoracids’ reveal jaw conditions with an important bearing on this
hypothesis. Here we have shown that the morphology and function of ‘acanthoracid’ jaws resemble
generalized ‘placoderm’ conditions seen also in arthrodires and rhenanids, consistent with past
hypotheses [34]. Given the remote relationships between these assemblages, this indicates that jaw
morphology was phylogenetically conserved across most ‘placoderms’. At present, there remains no
evidence of an osteichthyan-like integration of tooth-bearing bones and dermal cheek plates deep in
‘placoderm’ evolution. A better understanding of jaw morphology in other ‘placoderms’, in
conjunction with more stable phylogenetic hypotheses [5,6,19,38,48], will help to clarify these
conditions further.

Data accessibility. The complete tomographic image data used in this analysis along with three-dimensional surface
models can be accessed at: https://doi.org/10.6084/m9.figshare.20581665.

The data are provided in the electronic supplementary material [49].
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