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Hierarchical Reduced-Space Drift Detection

Framework for Multivariate Supervised

Data Streams
Shuyi Zhang , Peter Tino , and Xin Yao , Fellow, IEEE

Abstract—In a streaming environment, the characteristics of the data themselves and their relationship with the labels may change

over time. Most drift detection methods for supervised data streams are performance-based, that is, they detect changes only after the

classification accuracy deteriorates. This may not be sufficient in many application areas where the reason behind a drift is also

important. Another category of drift detectors are data distribution-based detectors. Although they can detect some drifts within the

input space, changes affecting only the labelling mechanism cannot be identified. Furthermore, little work is available on drift detection

for high-dimensional data streams. In this paper we propose an advanced Hierarchical Reduced-space Drift Detection (HRDD)

framework for supervised data streams which captures drifts regardless of their effects on classification performance. This framework

suggests monitoring both marginal and class-conditional distributions within a lower-dimensional space specifically relevant to the

assigned classification task. Experimental comparisons have demonstrated that HRDD not only achieves high-quality performance on

high-dimensional data streams, but also outperforms its competitors in terms of detection recall, precision and F-measure across a

wide range of different concept drift types including subtle drifts.

Index Terms—Concept drift, drift detection, data stream mining, online learning

Ç

1 INTRODUCTION

IN real-world applications such as weather prediction,
industrial quality control and fraud detection, data often

arrives in the form of a stream. Data streams are likely to be
time-varying. Concept drift refers to a change in the underly-
ing data distribution and/or its relationship with the target
label [1]. This problem has received growing attention not
only because it may greatly harm the reliability of real time
machine learning systems, but also because it is of practical
importance to understand the nature and the reason of the
change [2]. One way of categorizing drift is by its influence
on the target concept. Changes affecting the posterior
class probabilities P ðY jXXÞ are called real drifts, whereas
changes affecting the input distribution P ðXXÞ only are called
virtual drifts [3].

Various detection methods have been proposed to explic-
itly mark out the drifts [4], [5]. Nonetheless, current methods
cannot well address both types of drifts simultaneously. They

monitor over time either some classification performance-
related indicators [6], [7], [8], [9], [10], or some data distribu-
tion-related characteristics [11], [12], [13], [14], [15], [16]. Exist-
ing detectors for supervised data streams primarily belong to
the former category [4], [17]. They concentrate on addressing
real drifts which lead to a decline in classification perfor-
mance only. Two popular algorithms within this category are
drift detection method (DDM) [6] and early drift detection
method (EDDM) [7]. DDM detects abrupt drift by applying
statistical test on the false classification rate directly, whereas
EDDM monitors the distance between consecutive classifica-
tion errors. Linear four rate (LFR) [10] is another detector
which monitors all components of the confusion matrix.
Although these detectors can be used in conjunction with any
classifier since they utilize only the error stream, their detec-
tion performance is still dependent on the chosen base classi-
fier [18]. Besides, they neglect drifts not deteriorating the
classification performance, which may harm the interpreta-
tion of the data.

Unlike the above, change detection tests (CDTs) within
the latter category choose to monitor some underlying data
features regardless of label information. For instance, cumu-
lative sum (CUSUM) control chart [11] keeps track of the
cumulative sum of deviations, and intersection of confi-
dence intervals (ICI) CDT [13] carefully designs mean and
variance-related features that follow a Gaussian distribu-
tion. For multivariate data streams, detectors either com-
pare the estimated empirical density of two windows [12],
[16] or conduct univariate CDTs for each individual dimen-
sion [13], [19]. These approaches tend to be problematic for
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higher-dimensional data streams [9], [10]. Besides, while
these detectors can be directly applied to supervised data
streams, they do not consider any class information and
thus cannot detect real drifts affecting the data labelling
mechanisms only (e.g., a class swap) [20]. In addition, most
methods monitor the overall input space, hence they tend to
be insensitive to drifts affecting a sub-region only (e.g., a
single class drift).

Based on the vast scope of individual detectors existing
in the literature, more consolidated frameworks have been
developed recently. Hierarchical change detection test
(HCDT) presented in Fig. 1 is a general two-layered detect-
and-verify framework [21]. HCDT incorporates in Layer-I a
simple non-parametric online detector such as the CUSUM
or ICI CDT, and in Layer-II an offline two-sample test such
as the Hotelling T2 test [22]. Once a potential drift is
reported in Layer-I, Layer-II is activated to compare the
training set with the most recent set so as to confirm (or
deny) the validity of the suspected drift. HCDT has been
shown to achieve more advantageous false positive rate
(FPR) versus detection delay (DD) trade-off than its single
CDT counterpart, but it has only been tested on non-
labelled scalar data [21]. Direct application of this frame-
work to multivariate supervised data streams still suffers
from the aforementioned deficiencies of distribution-based
detectors.

Inspired by this framework, another hierarchical frame-
work named HLFR for supervised data streams is proposed
[23]. HLFR incorporates LFR as the base detector in Layer-I
and a permutation test in Layer-II. However, HLFR is
purely classification performance-based, therefore it cannot
detect real and virtual drifts simultaneously. Different from
the above-mentioned hierarchical frameworks, another
multiple-layered drift detection algorithm is also proposed
[24]. This test individually addresses the label drift, feature
drift and the decision boundary in three sequential layers.
The decision criteria are based on Information Value and
Jaccard similarity (IV-Jac). However, this algorithm tackles
the challenge of sparseness and high dimensionality of text
data streams. It is more suitable for data with discrete or cat-
egorical features.

Concept drifts can be incurred by many causes, and
they may present differently in different time periods [6].
Therefore, it is important to be aware of all drifts regard-
less of their effects on classification, especially in areas
such as condition monitoring, adversarial attack detection
and strategic planning. Furthermore, there is little work
on drift detection on high-dimensional continuous data
streams. In this paper, we adopt the hierarchical structure
and propose a new detection framework, HRDD

(Hierarchical Reduced-space Drift Detection framework),
to detect both real and virtual drift accurately and effi-
ciently for multi-dimensional data streams. The key idea is
to leverage the knowledge from supervised information to
discover changes that may not be detected by the existing
detection methods. To achieve this goal, first, a lower-
dimensional feature space for the given classification task
is explicitly constructed using the stationary training data.
Each incoming data is projected to this space upon arrival.
Next, we monitor not only the marginal distribution of the
data stream, but also each individual class-conditional dis-
tribution. Finally, a novel method to reconfigure more
informative retraining datasets after each detection is pre-
sented. HRDD can be used in conjunction with any base
CDT and classifier, and the performance is independent of
the choice of the classifier. The contributions of our work
include:

1) A new hierarchical detection framework proposed
for supervised data streams that detects both real
and virtual drifts.

2) Compared with the existing HCDT framework,
HRDD is more accurate and efficient in terms of a
high number of true detections, while maintaining a
low number of false alarms, when operating on
higher-dimensional data streams.

3) For both real and virtual drifts, HRDD performs no
worse, and in many cases better, than state-of-the-art
detection algorithms, whether they are performance-
based or distribution-based, in terms of more true
detections and fewer false alarms within any speci-
fied acceptable detection delay range.

It is worth pointing out that detecting concept drifts and
adapting the classification model to the data are two differ-
ent mechanisms. From the practical point of view, an accu-
rate detector is crucial for maintaining good classification
performance in the long run. The focus of this paper is to
detect drifts. How to build an appropriate classifier for a
specific data stream is beyond the scope of this study.

The rest of the paper is organized as follows. Section 2
formulates the problem of concept drift. Section 3 explains
each component of the proposed HRDD framework in
detail. In Section 4, four sets of experiments are carried out
on both synthetic and real-world data streams to demon-
strate the superiority of HRDD in comparison with some
state-of-the-art detectors, including both data distribution-
based and classification performance-based ones. Section 5
concludes the paper and points out potential future exten-
sions of this work.

2 TERMINOLOGY AND PROBLEM FORMULATION

In a streaming environment, a supervised data stream to
be inspected for change is formed by observations fðxxt; ytÞ;
t 2 Zþg. xxt 2 Rd represents the d-dimensional feature vector
of the observation at time t and yt is its class label. yt 2
f0; 1; . . . ; Qg where Qþ 1 is the number of available classes.
For a binary classification task, yt 2 f0; 1g. The generation
process of the observations can be denoted by the joint dis-
tribution P ðXX; Y Þ. A concept drift is said to occur when
there is a change in the joint probability P ðXX; Y Þ [17].

Fig. 1. General framework of HCDT [21].
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More specifically, consider a single drift scenario, concept
drift detection aims to find out the unknown change point
T � where ðxxt; ytÞ � PUðXX; Y Þ for t < T �, ðxxt; ytÞ � PVðXX; Y Þ
for t � T � and PVðXX; Y Þ 6¼ PUðXX; Y Þ. Analogous description
can be made for multiple drift scenarios.

The joint probability P ðXX; Y Þ can be written as

P ðXX; Y Þ ¼ P ðY jXXÞ � P ðXXÞ; (1)

where P ðXXÞ can be obtained through marginalization

P ðXXÞ ¼
XQ

q¼0

P ðY ¼ qÞ � P ðXXjY ¼ qÞ: (2)

Based on the probabilistic definition of a concept drift and
the above decomposition, it is not difficult to tell that the
change can manifest itself in different forms corresponding
to the different components of the joint probability [25],
[26]. Assuming P ðY Þ is stationary over time, drift can occur
in: 1) the marginal distribution over covariates P ðXXÞ; 2) the
posterior class probability or classification concept P ðY jXXÞ;
3) one or more class-conditional distributions P ðXXjY Þ.

Most existing work tackling drift in supervised data
streams focus on the second type of drifts (or real drifts),
since it is considered to be the most detrimental to classifica-
tion accuracy. However, we consider the detection of all
types of drift to be equally important for the following rea-
sons. First, even when a so-called virtual drift takes place
and classification accuracy is not negatively affected, the
optimal decision boundary is often likely to change. Retrain-
ing the classifier can still improve classification perfor-
mance. Second, detection of such drifts provides insight
into the underlying data streams, which can help under-
standing the behavior of the data generation source. This
information may also be beneficial when there is a pattern
in a series of multiple drifts. The systematic study [4] sup-
ported the view that all types of change are equally impor-
tant, but also claimed that there is a lack of research effort in
the investigation of drifts not affecting classification accu-
racy (or virtual drifts).

Therefore, in this paper we do not explicitly distinguish
between real and virtual drifts. We present a framework
aiming to detect all types of drifts regardless of whether
they affect classification or not. Then, practitioners can
decide whether it is worth modifying the current classifica-
tion model based on the specific application scenario.

3 HIERARCHICAL REDUCED-SPACE DRIFT

DETECTION FRAMEWORK FOR MULTIVARIATE

SUPERVISED DATA STREAMS

In this section we describe a novel drift detection framework
named HRDD (Hierarchical Reduced-space Drift Detection
framework) aiming to answer the following research questions.

1) How to detect both real and virtual drifts in super-
vised data streams regardless of their effect on classi-
fication performance?

2) How to improve the efficiency of data distribution-
based detector for high-dimensional data streams?

3) How to improve detection performance to achieve
high true detections and low false alarms within a

specified delay range for all types of drifts even
when the magnitude of drift is small?

HRDD adopts the hierarchical structure introduced in
[21] but with three major novel components, which will be
explained in this section. The general outline of HRDD is
presented in Fig. 2. The algorithmic version of HRDD is pre-
sented in Algorithm 1. This framework has a high degree of
flexibility and may be customized effortlessly. Since there
are no assumptions on the multivariate data streams, any
detection and validation tests can be used as long as they
are capable of detecting the same type of change. The choice
of individual test is independent of our proposed strategies.
Although we provide one possible realization for a binary
classification problem as an illustrative example in this
paper, it is worth noting that the general framework of
HRDD is also suitable for multi-class data streams.

Algorithm 1. General Framework of HRDD

Input: initial training sets TSM for the marginal CDT and
TS0; TS1; . . . for the class-conditional CDTs

Output: confirmed detections
1 Find the lower-dimensional feature space S;
2 Initialize the marginal and class-conditional CDTs with TSM

and TS0; TS1; . . . respectively;
3 while there is incoming data do
4 Project data onto S;
5 Perform concept drift detection within S;
6 if a change is detected by any of the CDTs at bT then
7 Estimate the potential drift starting point Tref ;
8 Activate the validation layer on the respective stream;
9 if change is validated then
10 Record bT as a confirmed detection;
11 Define TSM

C as fxxtjt 2 ½Tref ; . . . ; bT �g;
12 Update training sets TSM; TS0; TS1; . . . accordingly and

continue from line 1.
13 Output the confirmed changes.

3.1 Learning of a Lower-Dimensional Subspace

In this module, we take the information from class labels into
consideration and propose a preprocessing step specifically
designed for drift detection for supervised data streams. The

Fig. 2. General framework of our proposed HRDD. Detailed descriptions
for each novel component are provided in Sections 3.1, 3.2 and 3.3.
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aim of this step is to identify a lower-dimensional feature
space S that contains the most relevant information for the
given classification task. By identifying such a subspace
spanned by the training samples (line 1, Algorithm 1),
incoming multivariate data samples can be easily projected
onto this space (line 4, Algorithm 1). Then, instead of moni-
toring the original input space, the detection is carried out
within this reduced feature space for the particular classifica-
tion task. Comparing with the existing HCDT without this
step, HRDD inherently reduces the possibility of false alarms
as well as the computational burden because there are fewer
dimensions to examine. Meanwhile, valuable data character-
istics relevant to classification are preserved.

It is worth noting that subspace selection methods have
been used for change detection in signal processing applica-
tions [29], [30]. However, how a change is defined in such
applications is very different than that in our setting. Conse-
quently, the characteristics that the subspace shall possess
also vary. HRDD combines the information from both origi-
nal data space and the label space to identify the most
appropriate subspace for concept drift detection. Besides,
many subspace-based change detection algorithms for time
series data make particular assumptions on their data
streams [31], [32]. For instance, in [32], the data stream is
assumed to follow a Gaussian distribution. HRDD does not
make any assumptions on either the data stream or the
underlying subspace.

As one possible realization of HRDD within a bi-class
setting, we choose a recursive support vector machine
(RSVM) [27] as a tool for identification of the relevant
reduced-space S. The detailed RSVM algorithm is presented
in Algorithm 2, where l is the length of an initial training
dataset and fð�Þ is the kernel function. RSVM was initially
proposed for both dimensionality reduction and accuracy
improvement for offline classification problems. It starts as
a regular SVM [28] but can recursively derive new maxi-
mum margin features. The dimension R of the reduced-
space can either be set by the practitioner a priori, or be
automatically identified when the number of components is
sufficient to account for most of the differences in the classi-
fication task.

Algorithm 2. RSVM [27]

input: training set TSM of length l ; the desired dimension of
the reduced-space R (or threshold �)

output: projectors fwr 2 Rdj r ¼ 1; . . . ; Rg
1 Determine the vector ~w1 ¼

Pl
i¼1 a

1
ifðxxiÞ by solving the dual

optimization problem [28];
2 Letwr�1 ¼ ~wr�1=jj ~wr�1jj and generate the following training
set for SVM problem by projecting the training samples onto
a subspace that is orthogonal to

wr�1 : fðxxri Þ ¼ fðxxr�1
i Þ � hfðxxr�1

i Þ;wr�1iwr�1; (3)

3 Terminate if the desired number of dimensions R has been
reached (ormaxfjjfðxxri Þjj : 1 	 i 	 lg < �). Otherwise,
increment r by 1 and go back to line 2.

Based on an initial training set, Algorithm 2 provides us
with one or several orthogonal directions fwrjr ¼ 1; . . . ; Rg
which can be used as projectors to anR-dimensional subspace

S. Then each newly arrived instance xxt can be projected to S
as hfðxxtÞ;wri ¼

Pl
i¼1 a

r
ikðxxt; xxiÞ for r ¼ 1; . . . ; R. It is worth

pointing out that all computations involved in RSVM can be
based on kernel evaluation instead of the explicit fðxxtÞ. From
the second iteration, kðxxri ; xxrt Þ can be recursively computed by
using (3) and kðxxr�1

i ; xxr�1
t Þ, allowing different kernels to be

adopted.
In this paper, we select R ¼ 1 after some preliminary

experiments. In fact, the assumption of R ¼ 1 is realized by
many classificationmodels, starting from perceptrons, SVMs
through to classification based on Gaussian Processes. All
these models can be interpreted as imposing a single projec-
tion dimension where classification can be performed. Since
such 1-dimensional projection directions are integral part of
such classification machines, they are also good candidates
for 1-dimensional subspaces on which to perform statistical
test regarding concept drifts. Other supervised dimensional-
ity reduction methods may also be used. However, techni-
ques such as PCA are inherently unsupervised, and hence
do not, by definition, satisfy our requirement for a low-
dimensional subspace relevant to classification.

3.2 Class-Based Detection

While most existing detectors focus on detecting drifts by
monitoring P ðY jXXÞ or P ðXXÞ, there has been a lack of atten-
tion to P ðXXjY Þ. Supervised information can be better utilized
by class-conditional distributions because they focus on sub-
regions of the input space. In HRDD, we suggest not only
incorporating a distribution-based CDT to inspect data fea-
tures from the perspective of marginal distribution, but also
constructing one CDT for each class-conditional distribution
P ðXXjY ¼ qÞ, where q 2 f0; 1; . . . ; Qg. The CDTs are initial-
ized on its respective data stream (line 2, Algorithm 1). Note
that only the marginal detector and one of the class-condi-
tional detectors are activated each time an instance arrives.

Usually, the number of classes of a data stream is much
lower than the number of dimensions. Therefore, HRDD is
still expected to be computationally cheaper to implement
than existing multivariate detectors that either try to esti-
mate the distribution density or examine each dimension
individually. By monitoring also the class-conditional distri-
butions, HRDD captures both real and virtual drift, regard-
less of the effect on classification performance. Besides,
since it synchronizes sub-regions of the input space, it is
able to evaluate the effects on different classes and its detec-
tion sensitivity over smaller drifts is enhanced.

Different techniques can be chosen as the base CDT for
this component. ICI-based CDT can be used as a reference
example. A dominant advantage of this sequential CDT is
that it is endowed with a refinement procedure that directly
provides the estimated drift starting time Tref [33]. Thus, a
new dataset representing the most recent concept is auto-
matically identified. For other drift detectors, the method
introduced in [34] is recommended to identify Tref .

Comparing with IV-Jac [24] which also monitors P ðXXÞ
and P ðXXjY Þ, we emphasize the following differences: a) our
framework deals with continuous data features. IV-Jac can-
not be directly applied to our problem setting; b) our frame-
work can be used with various statistical CDTs and does not
require prior knowledge about the drift to determine

ZHANG ETAL.: HIERARCHICAL REDUCED-SPACE DRIFT DETECTION FRAMEWORK FOR MULTIVARIATE SUPERVISED DATA STREAMS 2631



detection threshold; c) our approach works within a reduced
feature subspace, hence is more robust against noise in the
original data and scales better for high-dimensional data.

3.3 Knowledge Base Reconfiguration

Once a suspicious change is reported in the detection layer
by at least one of the base detectors at time bT , a potential
drift starting time Tref is estimated (lines 6-7, Algorithm 1).
Then the validation layer is activated and an offline statisti-
cal test is used to compare the previous training set of the
respective detector and instances from Tref to bT to deter-
mine if the drift should be confirmed (line 8, Algorithm 1).
If a drift is validated, detection time point bT is recorded.
Afterwards, the existing HCDT framework discards all past
data and reconfigure based on the most recent data only.
This approach may be over-conservative for a supervised
data stream as a drift may have uneven effects on different
classes. Unnecessary rejection of data in a relatively station-
ary class leads to information loss, which can become prob-
lematic when available information is already scarce or
expensive to obtain. Here we propose a novel and more
flexible way of reconstructing the retraining sets in order to
maintain as much useful information as possible for detec-
tor reconfiguration. The idea can be summarized as follows.

1) For data streams where we can confirm that a change
has taken place (with a detected and validated
change), the respective detectors are immediately
reconfigured based on a latest dataset representing
the current concept. It should be noted that when
one class-conditional detector reports a validated
change, it subsequently impacts the marginal distri-
bution according to Equation (2), therefore in this
case the marginal detector is also retrained.

2) For data streams where there is ambiguity if a
change has taken place (a detected but invalidated
change), we do not make any amendments to the
existing detector.

3) For data streams where we are inclined to believe
that no drift has taken place, all available and rele-
vant instances are used as the new retraining set for
the respective detectors. For instance, when a detec-
tion is reported by Class 0 detector but no validated
detection from either the Class 1 detector or the mar-
ginal detector, we may combine the latest Class 1

instances in ½Tref ; bT � with the previously existed
Class 1 training set TS1 to form a more informative
retraining set. Hence, the performance of the detec-
tors is expected to improve as extra relevant instan-
ces are used for retraining.

Hotelling T2 test has been shown to be a suitable comple-
mentary validation test for ICI-based CDT in the existing
HCDT framework [21]. As a concrete realization under a bi-
class scenario, the reconstruction scheme for all detectors
after each detection can be summarized in Table 1. Based on
the results from both the detection layer and validation
layer, retraining datasets are constructed and the detectors
are retrained accordingly (lines 11-12, Algorithm 1). Finally,
all the validated changes are reported when there is no
more data to arrive (line 13, Algorithm 1).

4 COMPUTATIONAL STUDIES

This section presents four sets of experiments that evaluate
the effectiveness and efficiency of HRDD. Experiment 1
aims to demonstrate the effectiveness of each component of
the HRDD framework, especially when facing data streams
with various dimensionalities. Experiment 2 illustrates the
superiority of HRDD in drift detection on both real and vir-
tual drifts over state-of-the-art methods. Experiment 3 vali-
dates that the superior performance provided by HRDD
also benefits classification, even when integrated with a
very simple classifier. Experiments 1-3 are based on datasets
of synthetically generated sequences where the ground
truth of drift occurrences is available. In Experiment 4, we
demonstrate the role of HRDD on a real-world data stream.
Finally, we provide a brief analysis on the computational
time complexity of the approaches being considered in the
experiments. All experiments were run on a CentOS 7.6
Computer with v4 2.20 GHz processor and 128 GB memory.

4.1 Performance Metrics

A variety of performance metrics for drift detection have
been used in the literature. For instance, when counting the
number of True Positive (TP), False Negative (FN) and False
Positive (FP), some authors focus on if a detection is raised
on a drifted sequence, instead of the number of detections
raised [35], [36]. Differently, some authors pay attention to
whether there are redundant detections after a TP, and dis-
tinguish between Detected, Late, Missed and False detections
based on sliding windows [15], [37]. False detections before

TABLE 1
Construction of Retraining Sets After Detection

Without loss of generality, we assume the last instance received belongs to Class 0. Analogous definitions can be made for Class 1. TSM; TS0; TS1 are the existing
training sets for the marginal, Class 0 and Class 1 detectors, respectively. TSM

C is composed of all instances representing the current concept in [Tref , bT ].
TS0

C ðTS1
CÞ denotes the set of Class 1 (Class 0) instances in TSM

C .
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the first drifting point are neglected. In [9], all detections
raised on a stream are taken into account and each single
detection is categorized into TP or FP based on a specified
window size. The notion of acceptable delay Dwas formally
introduced in [38]. Here, FPs are defined as detections out-
side of the acceptable detection interval ½T �; T � þ D�, but
extra detections within the interval are neglected.

From a practical point of view, taking into account all
detections raised on a stream is important. Distinguishing
between various types of false alarms also helps to make tar-
geted modifications. Therefore, when analysing the results
of a reactive detector, we propose a more realistic and com-
prehensive definition paradigm as in Fig. 3a. Based on a pre-
defined acceptable detection delay range ½T �; T � þ D� where
T � is the real drifting time, we define a TP as the first detec-
tion within this range, a FN_missed as a missed alarm
throughout the concept. We also distinguish between three
types of FPs: FP_early, FP_duplicate and FP_late. A FP_early
is the first false alarm before T � related to algorithm initiali-
zation, FP_duplicate’s are redundant false alarms related to
algorithm reconfiguration, and a FP_late is the first detection
in ½T � þ D; T end�when there is no alarm raised in ½T �; T � þ D�.
An illustrative example is presented in Fig. 3b.

The total number of FPs and FNs are therefore FP =
FP_early + FP_duplicate + FP_late and FN = FN_late +
FP_late respectively. Performance of the detector is

evaluated via number of TPs, FPs, FNs or Recall, Precision
and F-measure as defined in Fig. 3c. For each synthetic data-
set in the experiments, 30 sequences are generated, and all
reported figures are summations (for TP and FP) or aver-
ages (for Recall, Precision, and F-Measure). Detection per-
formance is measured for several acceptable lengths D =
{500, 1000, 1500, 2000} so as to limit the maximum detection
delay allowed.

4.2 Experimental Results

Experiment 1: Understanding HRDD. In order to better under-
stand the novelty of HRDD relative to the existing hierarchi-
cal framework HCDT, we carry out a component-wise
evaluation on data streams with varying dimensionalities.
The characteristics of HRDD and several variations contain-
ing only partial components are presented in Table 2.
HCDT-M is the existing HCDT framework which monitors
the marginal input distribution only [21]. HCDT-CC is the
existing HCDT framework applied to the class-conditional
distributions. HDD is similar to HRDD in terms of inspec-
tion of both marginal and class-conditional distributions,
but without projection to a reduced-space.

Synthetic data generated for this experiment is a set of
d-dimensional moving hyperplanes y ¼ �a0 þ

Pd
i¼1 aixi,

xi 2 ½0; 1� and y 2 ½0; d�. This is a popular dataset in the field
of drift detection [39], [40]. The generation mechanism also
allows easy alteration of dataset dimensionality. To demon-
strate the ability of HRDD to handle high-dimensional data,
we considered d ¼ ½5; 10; 15; 20; 30; 40�. Data generation
details can be found in Table 3. The data stream is balanced
with 5% of class noise added. Each stream consists of 10,000
instances with one abrupt change at timestamp 5001.

Due to the page limit, we report only the results for D =
1000 and 2000 in Table 4. The following findings are also
applicable to D = 500 and 1500. First, we notice that HRDD
achieves the highest TP in almost all cases. This is true even
for a tight D, indicating that HRDD can not only detect the
drifts, but also detect them earlier than the existing HCDT
and other variations being considered. Meanwhile, HRDD
always reports the lowest FP. HDD, which is also based on
this novel reconfiguration scheme but does not project data
onto the low-dimensional space as HRDD does, always
ranked second in terms of both TP and FP. In contrast,
methods monitoring each dimension within the input space
lead to much higher FP.

Comparing with the results of HCDT-CC, we can con-
clude that HRDD is very different from the existing HCDT
applied on each class. The novelty of HRDD lies in not only
class-based inspections, but also the projection of data onto

Fig. 3. Detection performance definition paradigm.

TABLE 2
Compared Detection Frameworks in Experiment 1
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the reduced-space, and the utilization of both marginal
and class-conditional information for reconfiguration. As
dimensionality increases, the superiority of HRDD becomes
more dominant, confirming its ability to operate efficiently
even for high-dimensional data streams. Also, comparing
the performance presented in Table 4 horizontally, it can be
seen that HRDD is relatively insensitive to the parameter of
the base detector, making it a more reliable and stable
approach among the comparedmethods.

Experiment 2: Drift Detection Ability. In this section we aim
to compare the drift detection ability of HRDD on a wide
range of drifts with the latest hierarchical detection meth-
ods, HCDT [21] and HLFR [23] introduced in Section 1.
These consolidated frameworks have already been shown
to perform better than their individual base detector coun-
terparts. We also compare HRDD with two classic perfor-
mance-based benchmarks, DDM [6] and EDDM [7], which
have not been used as base change detectors in the above-
mentioned frameworks. Since the detection result from per-
formance-based detectors is contingent on the choice of clas-
sifier, two classifiers are adopted: an SVM and a decision
tree. All hyper-parameters of the comparative algorithms
were taken directly from the original papers. The setting of
HRDD follows the experimental setting for HCDT (Experi-
ment B in [21]). Detection Recall, Precision, and F-measure
are reported for D = {500, 1000, 1500, 2000}.

In this experiment we first test on data streams with one
abrupt drift only. With drift affecting P ðY jXXÞ or not and its

magnitude being small or large, there are 4 possible scenar-
ios for a single drift. These cases will be examined individu-
ally. Afterwards, data streams with multiple drifts are used
for testing. The following synthetic datasets are generated
for this experiment:

1) 4D Multivariate Gaussian (Fig. 4): This dataset contains
sequences with one drift only. We synthetically generate
drifts affecting the target concept differently by changing
one class-conditional distribution independently. Possible
drift scenarios are visualized in Fig. 4. In order to reflect the
4 scenarios, 4 subsets of 4D Multivariate Gaussian streams
are generated. Each data stream consists of 10,000 observa-
tions, and a single abrupt change takes place at 5001. The
magnitude of drift is controlled by the change in within-
class distance dw. The effect on the target concept is con-
trolled by the change in between-class distance db. The
ðdw; dbÞ pair for the initial concept is always (0,0). For

TABLE 3
Synthetic Data Generation of d-Dimensional Hyperplane Datasets

TABLE 4
Detection Performance on Data Streams With Increasing Dimensionality

Methods with high TP and low FP are preferred. Best results given the specified parameter G and acceptable delay length D are in bold. Cases where HRDD
achieves the best result among all the methods being compared are underlined.

Fig. 4. Illustration of various drift types of 4D Multivariate Gaussian. (a)
small drift affecting P ðY jXÞ; (b) small drift not affecting P ðY jXÞ; (c) large
drift affecting P ðY jXÞ; (d) large drift not affecting P ðY jXÞ. Data genera-
tion details are given in Table 5.

2634 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023



scenarios (a-d) in Fig. 4, the ðdw; dbÞ pair are set to (0.5, -0.9),
(0.5, 0.8), (1.0, -0.8), and (1.0, 1.1), respectively. Data genera-
tion details can be found in Table 5.

2) 6D Multivariate Gaussian (Fig. 5): This dataset contains
multiple-drift streams.We consider a scenario where a series
of drifts is not detrimental to classification at the beginning,
but eventually impairs the accuracy after several evolutions.
A simple illustration of this situation is presented in Fig. 5.
Each sequence is of length 25,000 and contains 5 concepts.
The evolution of concept can be summarized as the ðdw; dbÞ
pair being (0, 0), (0.4, 2.4), (0.4, 1.9), (0.4, -1.4), and (0.4, -2.1)
for each drift. Details of the data generation process can be
found in Table 6.

3) Rotating Checkerboard (Fig. 6): In this multiple-drift
benchmark dataset [41], all 4 drifts lead to a strong change
in classification boundary. Each stream is of length 25,000
and contains 5 concepts. Examples are sampled uniformly
from the unit square with a dimensionality of 2, and the
labels are set by a checkerboard with 0.5 tile width. At each
concept drift, the checkerboard is rotated by an angle of p=6
radians.

Detection performance for 4D Multivariate Gaussian is
summarized in Fig. 7. Overall, HRDD ranked first in 14 out
of the 16 cases (4 datasets and 4 D’s) in terms of F-measure,
indicating its ability to achieve the best trade-off between
recall and precision. Performance-based detectors HLFR,
EDDMandDDMonly secure high recall values for real drifts
affecting P ðY jXXÞ, which cause an evident degradation in
classification accuracy (Figs. 7a and 7c). For drifts not harm-
ing classification performance, i.e., drifts not affecting
P ðY jXXÞ (Figs. 7b and 7d), performance-based detectors fail

and the distribution-based detector HCDT becomes the sec-
ond best detector after HRDD in terms of detection F-mea-
sure. In addition, HRDD also surpasses HCDT by a great
amount when drift magnitude is small (Figs. 7a and 7b). This
is due to the fact that the detection mechanism monitoring
class-conditional distributions makes HRDD more sensitive
to even a lightest change in the overall input space. For drifts
with greater magnitude (Figs. 7c and 7d), the performance of
HCDT improves, but it still falls behind HRDD in all but one
case.

Table 7 presents how many times each individual detec-
tor is activated among all 30 TP detections. When a drift is
caused by Class 0 only, the class-conditional distribution of
Class 0 and the marginal distribution are both affected.
Results in Table 7 shows that 28 out of the 30 drifts can be
captured by the respective detector or the marginal detector,
which comes in line with our expectation. For scenarios b)
and d), Class 0 moves away from Class 1, leading to a rela-
tively greater change in the marginal distribution compar-
ing with scenarios a) and c), hence these two scenarios
result in more activations of the marginal detector. This also
demonstrates that the combination of both marginal and
class-conditional inspections in HRDD is indeed helpful.

Moving to the multiple-drift scenarios, HRDD also out-
performs its competitors in all 8 cases in terms of F-measure
as shown in Figs. 8 and 9. For 6D Multivariate Gaussian
(Fig. 8), since the magnitude of each single drift is relatively
small, HCDT requires two or more consecutive drifts in
order for the effect of the drift series to be sufficiently notice-
able on the marginal distribution. Performance-based detec-
tors HLFR, EDDM and DDM are only able to detect the last

TABLE 5
Synthetic Data Generation of 4D Multivariate Gaussian

The illustration is given in Fig. 4.

Fig. 5. Illustration of 6D Multivariate Gaussian. Data generation details
are given in Table 6.

TABLE 6
Synthetic Data Generation of 6D Multivariate Gaussian Datasets

The illustration is given in Fig. 5.

Fig. 6. Illustration of rotating checkerboard.

ZHANG ETAL.: HIERARCHICAL REDUCED-SPACE DRIFT DETECTION FRAMEWORK FOR MULTIVARIATE SUPERVISED DATA STREAMS 2635



one or two drifts in Fig. 5, since earlier drifts do not deterio-
rate classification performance.

On the Rotating Checkerboard dataset, the effectiveness of
HRDD can also be clearly identified in Fig. 9. As expected,
HCDT does not perform well because purely distribution-
based detectors fail to detect changes affecting the labelling
mechanism only [42]. The distribution of overall input space
of this dataset remains unchanged. This phenomenon dem-
onstrates that detecting concept drift by monitoring the
class-conditional distributions is helpful. For this dataset,
P ðY jXXÞ is significantly affected by all drifts, allowing the
performance-based detectors to capture the drifts more
acutely. Therefore HLFR, EDDM and DDM achieved very
high recall values. However, the precision plot reveals that
significantly more false alarms are triggered. Therefore,
HRDD, which secures the highest F-measure, is still the
most reliable choice. Another interesting finding from
Figs. 8 and 9 is that when a decision tree is used as the base
classifier, HLFR and EDDM achieve much better than when
an SVM classifier is used. This confirms that the choice of
classifier plays an important role in performance-based drift
detection. In contrast, the performance achieved by HRDD
is irrelevant to the base classifier.

Based on the above analysis, it can be concluded that for
real drifts affecting P ðY jXXÞ, HRDD performs no worse, and
in many cases better than existing performance-based detec-
tors. For virtual drifts not directly affecting P ðY jXXÞ, HRDD
performs better than both distribution-based and perfor-
mance-based detectors. HRDD also performs particularly bet-
ter than the comparative methods when the changes have
minor effect on the overall input distribution.

Experiment 3: Role in Classification. The focus of this paper
is to propose a new drift detection framework HRDD. Intui-
tively, accurate detection and localisation of drifts would
help to improve classification because it leads to just-in-time
model-retraining. What classification model and retraining
techniques achieve the lowest classification error in a reac-
tive streaming environment is a matter for future work.
However, in order to evaluate the role of a more accurate
and efficient detector in streaming data classification envi-
ronments, we present the prequential classification error1 at
the end of each sub-concept for 6DMultivariate Gaussian and
Rotating Chekerboard datasets. For performance-based detec-
tors (HLFR, EDDM and DDM), the classifier is always
retrained on a fixed-length recent window. For distribution-
based detectors (HCDT and HRDD), a simple detect-then-
retrain technique is adopted. Instances from the estimated
drift starting point Tref to detection point bT are used as the
retraining set. Experiments are carried out with two classi-
fiers, SVM and decision tree.

Tables 8 and 9 demonstrate that HRDD helps to achieve a
lower classification error on both datasets no matter which
base classifiers is adopted. For the 6D Multivariate Gaussian
dataset, recall that the first two drifts are virtual. The

Fig. 7. Detection performance for 4D Multivariate Gaussian against acceptable delay lengths. Subfigures (a-d) correspond to scenarios (a-d) in
Fig. 4, respectively.

TABLE 7
Number of Activations of Each CDT for 4D

Multivariate Gaussian

Drift types are shown in Fig. 4. Class 0 is the drifted class. Total
number of activations is 30.

1. As in [43], the prequential error at timestamp i is defined as Ei ¼
Si
Bi

¼ Lðyi;ŷiÞþ�Si�1
1þ�Bi�1

where Lðyi; ŷiÞ is the 0-1 classification loss function,
S1 ¼ L1, B1 ¼ 1 and � is a decay factor set to 0.999).
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classification task actually becomes easier as the classes
move further away from each other. Performance-based
detectors consider these drifts to be irrelevant and do not
detect such drifts. Even in these cases, HRDD, which accu-
rately detects all types of drifts, leads to an even lower error
than the performance-based detectors. This supports the
hypothesis that when the optimal decision boundary has
shifted but performance is not deteriorated, retraining the
classifier can still be beneficial. For the Rotating Chekerboard
dataset, recall that the drifts affect the labelling mechanism
only. The data distribution-based detector HCDT fails to
make accurate detections, hence the much worse classifica-
tion performance than the performance-based detectors.

Overall, HRDD can help in reducing classification error
regardless of the drift type. For both real and virtual drifts,
incorporating HRDD in a classification model can achieve a
lower or at least comparable classification error than both
performance-based and distribution-based detectors.

Experiment 4: Real-World Scenarios. In the above experi-
ments, synthetic data streams are used to better understand
the functionality, efficiency, and effectiveness of HRDD. For
real-world data streams, there is no ground truth regarding
the existence or location of drifts. Therefore, the performance
metrics used for synthetic datasets cannot be employed.
Here we report the number of detections and prequential
classification error to compare the methods. A classification
system that achieves the lowest number of detections as well
as the lowest classification error is preferred.

Electricity [44] is a dataset collected from the Australian
New South Wales Electricity Market. It contains 45,312
instances and each example is described by 8 features. The
class label identifies the change of the price relative to a mov-
ing average of the last 24 hours. (i.e., up and down). We note
that there has been a dispute regarding the usage of this data-
set for concept drift detection analysis due to the temporal
correlation within the data [45]. Nonetheless, it is still one of

Fig. 8. Detection performance for 6D Multivariate Gaussian. For detec-
tors HLFR, EDDM and DDM: Linear SVM as the base classifier (top);
decision tree as the base classifier (bottom).

Fig. 9. Detection performance for Rotating Checkerboard. For detectors
HLFR, EDDM and DDM: RBF SVM as the base classifier (top); decision
tree as the base classifier (bottom).

TABLE 8
Classification Error for 6D Multivariate Gaussian

Average prequential classification error (standard deviation in parenthesis) at the end of each sub-concept is presented. Best results are in bold. Cases where
HRDD achieves the best result among all the methods being compared are underlined.

TABLE 9
Classification Error for Rotating Checkerboard

Average prequential classification error (standard deviation in parenthesis) at the end of each sub-concept is presented. Best results are in bold. Cases where
HRDD achieves the best result among all the methods being compared are underlined.
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themost commonly used real-world data streams in this area
of research [46]. In order to mitigate this issue, we also com-
pare with situations where regular retraining takes place
andwhere no detector is adopted.

The number of detections and the classification error
obtained by the methods concerned are presented in Fig. 10.
RegS and RegL stand for regular retraining with small and
large intervals (500 and 1500), respectively. The selection of
interval length directly affects classification performance as
well as the computational cost.None indicates the no-detector
situation. From the line plot representing the classification
error, it can be seen that adding a drift detector always help
reducing the classification error since all methods lead to
lower errorwhen comparingwith the no-detector situation.

From the bar plot representing the number of detections,
it can be seen that HRDD always ranked first, with only 5
detections regardless of the choice of base classifier. In con-
trast, its competitors all raise many more detections, causing
higher overhead cost. HRDD not only bears a very low
computational burden from retraining, but also helps to
maintain a satisfactory classification performance. The line
plots in Fig. 10 demonstrate that when an SVM is used as
the base classifier, the error obtained by HRDD ranked first,
and is much lower than what has been achieved by its com-
petitors. When a decision tree is adopted, HRDD ranked
fourth with a classification error of 0.23, being only 0.02
higher than the best result achieved by EDDM. Examining
the number of detections and classification error together,
we may conclude that in summary, HRDD achieves the best
trade-off between classification performance and computa-
tional cost on this real-world data stream.

4.3 Time Complexity Analysis

DDM [6] and EDDM [7] have a constant time complexity
(O(1)) at each time point, since they monitor a single error-
rate based statistic. Although the base detector LFR [10] in
HLFR [23] also has complexity (O(1)), the validation layer
requires extra training of P classifiers (P=1000 in the origi-
nal paper). Assuming OðK) is the computational complex-
ity of training a new classifier, the time complexity for
HLFR is OðKP ), which is usually much higher than (Oð1)).

HCDT [21] adopts an univariate test on each dimension in
the detection layer and one offline test in the validation
layer. If the complexity of the base detector is (O(1)), the
complexity of the overall framework is (Oðd)) where d is the
dimensionality of input space. HRDD has a similar struc-
ture but adopts a univariate test on each dimension of the
reduced-space for each class in the detection layer. The time
complexity is (OðrQ)) (r = 1 and Q = 2 in this paper so
(OðrQ)) is close to (Oð1))).

For multivariate data streams of higher dimensionality,
the advantage of HRDD will become more significant since
the number of classes is usuallymuch lower than the number
of dimensions. The average runtime for a reported detection
is summarized in Table 10. It is worth noting that perfor-
mance-based detectors generally have longer runtime since
they also include a classifier training procedure which data
distribution-based detectors do not. Practitioners should
take this into consideration when choosing the appropriate
detector depending on the application scenario.

5 CONCLUSION

We have proposed a data distribution-driven and class-
based hierarchical drift detection frameworkHRDD for mul-
tivariate supervised data streams. The proposed framework
first maps the data to a lower dimensional subspace, and
then detects drifts in that space relevant to the given classifi-
cation task. It utilizes information from both marginal distri-
bution and class-conditional distributions of the supervised
data stream. Based on the effect of drift on each class, a novel
reconfiguration scheme aiming tomaintain asmany as possi-
ble relevant instances for retraining is incorporated within
the algorithm. HRDD detects both real and virtual drifts,
regardless of their effects on classification. It is also capable
of detecting subtle drifts which can hardly be captured by
existing distribution-based detectors. HRDD is computation-
ally light and efficient when operating on higher-dimen-
sional data streams. The proposed approach outperformed
others by achieving a better recall-precision trade-off within
the given acceptable delay length when compared with the
latest distribution-based and performance-based methods in
the literature.

In the current work, we only projected the data onto a
single-dimensional linear subspace. How various character-
istics of the subspace would affect the detection perfor-
mance should be further investigated in future work. In
fact, HRDD can also be used with many different settings.
How various combinations of detection and validation tests
will affect the performance on different data streams is

Fig. 10. Detection and classification performance for the electricity data stream. The bar plot represents the number of detections raised by each
method, and the line plot records the prequential classification error at the end of the data stream.

TABLE 10
Average Runtime for Each Reported Detection (s.)
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another topic worth further exploration. Besides, extension
to accommodate multi-class data streams and even imbal-
anced-class data streams are also future research directions
following this current work.
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