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Abstract. The SIDH protocol is an isogeny-based key exchange proto-
col using supersingular isogenies, designed by Jao and De Feo in 2011.
The protocol underlies the SIKE algorithm which advanced to the fourth
round of NIST’s post-quantum standardization project in May 2022. The
algorithm was considered very promising: indeed the most significant at-
tacks against SIDH were meet-in-the-middle variants with exponential
complexity, and torsion point attacks which only applied to unbalanced
parameters (and in particular, not to SIKE).
This security picture dramatically changed in August 2022 with new
attacks by Castryck-Decru, Maino-Martindale and Robert. Like prior
attacks on unbalanced versions, these new attacks exploit torsion point
information provided in the SIDH protocol. Crucially however, the new
attacks embed the isogeny problem into a similar isogeny problem in a
higher dimension to also affect the balanced parameters. As a result of
these works, the SIKE algorithm is now fully broken both in theory and
in practice.
Given the considerable interest attracted by SIKE and related protocols
in recent years, it is natural to seek countermeasures to the new attacks.
In this paper, we introduce two such countermeasures based on partially
hiding the isogeny degrees and torsion point information in the SIDH
protocol. We present a preliminary analysis of the resulting schemes in-
cluding non-trivial generalizations of prior attacks. Based on this analysis
we suggest parameters for our M-SIDH variant with public key sizes of
4434, 7037 and 9750 bytes respectively for NIST security levels 1, 3, 5.

Keywords: Isogenies · SIDH attacks · Countermeasures · M-SIDH ·
MD-SIDH.

1 Introduction

In 1994, Peter Shor [35] described a polynomial quantum algorithm to solve
the integer factorization problem and the discrete logarithm problem. This im-
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plies that the widely deployed cryptographic protocols we use today would be-
come vulnerable in presence of a large-scale quantum computer. To mitigate this
threat, research on post-quantum cryptography, namely cryptographic protocols
that will hopefully remain secure against both classical and quantum comput-
ers, has considerably developed in the last two decades. Several standardization
competitions were initiated, among which the NIST PQC [29]. Many new can-
didates for post-quantum hard problems have been suggested to date based on
lattices, codes, isogenies, multivariate systems of equations, and other problems.

Isogenies are maps between elliptic curves. For cryptographic applications,
we restrict ourselves to curves defined over finite fields Fq. When there exists an
isogeny ϕ : E → E′, we say the elliptic curves E and E′ are isogenous. There
are infinitely many isogenies connecting two isogenous elliptic curves. The pure
isogeny problem is stated as follows.

Problem 1. Given two isogenous elliptic curves E and E′, compute an isogeny
from E to E′.

An isogeny from a curve E to itself is called an endomorphism of E, and the set
of all the endomorphisms of E (together with the 0 map) is called the endomor-
phism ring of E.

Over finite fields, there are two categories of elliptic curves, namely ordinary
elliptic curves and supersingular elliptic curves. The endomorphism ring of any
ordinary curve is an order in a quadratic imaginary field (hence is commutative),
whereas the endomorphism ring of a supersingular curve is a maximal order in
a quaternion algebra (hence is non-commutative). Isogenies connect ordinary
curves between themselves and supersingular curves between themselves.

There is a straightforward adaptation of the well-known Diffie-Hellman key
exchange protocol to isogenies in the ordinary/commutative case. This is in fact
what is done in isogeny based schemes like CRS [14,34], CSIDH [8], OSIDH [10]
and derivatives. The high level idea is as follows: there is a starting curve E0.
Alice selects a secret isogeny ϕA : E0 → EA, and Bob selects a secret isogeny
ϕB : E0 → EB . Both parties exchange EA and EB . Each party recomputes
their secret isogeny from the other party’s public curve. Since the isogenies ”are
commutative”, they get the same end curve EAB (up to isomorphism) whose
j-invariant is used as the shared secret. Note that the isogeny EA → EAB

computed by Alice is not exactly the isogeny ϕA since they do not have the
same domain and codomain. This isogeny is in general denoted by ϕ′A. Similarly,
Bob’s isogeny is also denoted by ϕ′B . This is illustrated in Figure 1 where we
have ϕ′A ◦ ϕB = ϕ′B ◦ ϕA.

When it comes to using supersingular curves, designing a Diffie-Hellman type
key exchange is less straightforward because their endomorphism rings are non-
commutative. In 2011, Jao and De Feo [24] had a brilliant idea on how to obtain
a commutative diagram in the supersingular case. To achieve this goal:

1. One fixes the respective degrees A and B of the isogenies ϕA and ϕB , with
A and B coprime;

2. Alice reveals the images of a basis of the B-torsion of E0 (that is E0[B]),
and Bob reveals the image of a basis of the A-torsion of E0 (that is E0[A]).
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E0 EA

EB EAB

ϕA

ϕ′
B

ϕB

ϕ′
A

Fig. 1. Generic commutative isogeny key exchange.

This idea led to the Supersingular Isogeny Diffie-Hellman protocol (SIDH),
which has received a lot of attention in the last decade. This protocol and other
isogeny-based schemes are attractive for their very compact secret and public
keys. This has been one of the most valuable advantages of SIKE, a Key Encapsu-
lation Mechanism (KEM) derived from SIDH, compared to other post-quantum
KEMs. SIKE became widely regarded as a promising post-quantum candidate
for standardization, and in particular the algorithm made it to the 4th round of
the NIST competition.

With the exception of the CGL hash function [9] and GPS signatures [21],
most isogeny-based protocols in the literature do not directly rely on the pure
isogeny problem, but on some variants of this problem. In the case of SIDH/SIKE,
an attacker is provided with additional non-trivial information: the degree of the
isogeny and the images of torsion points. More precisely, the security of SIDH
relies on the following problem.

Problem 2. Let E0 be a supersingular curve defined over Fp2 with p = AB−1. Set
E0[A] = ⟨P,Q⟩. Let ϕ : E0 → E′ be an isogeny of degree B and let P ′ = ϕ(P ),
Q′ = ϕ(Q). Given E0, P , Q, E′, P ′ and Q′, compute the isogeny ϕ.

Furthermore, in SIDH/SIKE, the starting curve E0 is special: its endomor-
phism ring is publicly available. In 2017, Petit [31] exploited the knowledge of
the endomorphism ring of E0 and the torsion point information to design attacks
that recover the secret isogeny in polynomial time assuming that A≪ B. After
a recent improvement [32], the attack still required imbalanced A and B, hence
it does not apply to SIDH where A ≈ B.

In July 2022, Castryck and Decru [7] described devastating attacks on SIDH
that recovered the secret key in SIDH and SIKE, instantiated with the NIST
parameters, in a few hours. The attacks were also developed in a concurrent
work by Maino and Martindale [26]. Various follow-up works by other authors
quickly improved the practical runtime time to minutes and seconds, and clari-
fied the asymptotic complexities. The best attacks on balanced SIDH parameters
had suddenly gone from exponential time to subexponential time, with a fur-
ther reduction to polynomial time complexity when the endomorphism ring of
the starting curve is available (as was the case in SIKE). Things could only get
worse for SIDH, and a few days later they did, when Robert described an im-
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proved attack with polynomial time complexity working for arbitrary starting
curves [33].

We note that like Petit’s attacks before them, the Castryck-Decru-Maino-
Martindale-Robert attacks exploit knowledge of both torsion point information
and the degree of the secret isogeny.

While the Castryck-Decru-Maino-Martindale-Robert attacks constitute a clear
cryptanalysis breakthrough on a flagship isogeny-based cryptographic protocol,
they do not apply to other isogeny-based schemes in which no torsion point
information is revealed: CRS [14,34], CSIDH [8] and CSIDH-based signatures
(SeaSign [15], SCI-FiSh [3], . . . ), CGL [9], GPS [21], SQISign [17], and many
more. The new attacks do not imply that the whole of isogeny-based cryptogra-
phy is insecure, but only that the field is getting mature! In particular, a natural
question now is whether one can find countermeasures against the Castryck-
Decru-Maino-Martindale-Robert attacks and repair the SIDH protocol.

Contributions1. In this paper, we propose and analyze two countermeasure can-
didates to the Castryck-Decru attack: Masked-Degree SIDH (MD-SIDH) and
Masked torsion points SIDH (M-SIDH).

The main idea in MD-SIDH is to mask the degree of the secret isogeny:
the degrees A and B of the secret isogenies in SIDH are no longer fixed, but
uniformly random divisors of A and B respectively. To prevent the degree from
being recovered by a pairing computation and some discrete logarithms in a
group of smooth order, the images of the torsion points are scaled by a random
integer.

The main idea in M-SIDH is to keep the degrees of the secret isogenies fixed
as in SIDH, and mask only the torsion point information: the images of the
torsion points are scaled by a random integer. To prevent an efficient recovery
of the secret scalar used in M-SIDH (using pairings and discrete logarithms), we
set the isogeny degrees A and B to have t ≥ 2λ distinct prime divisors, so that
the scalar cannot be recovered despite the fact that its square modulo A or B is
known.

We perform a thorough security analysis of the two countermeasures, includ-
ing non-trivial extensions of prior attacks. In particular, we give an expected
polynomial time attack on the M-SIDH variant when the starting curve has a
known small endomorphism, and a reduction from any MD-SIDH instance to
an M-SIDH instance. We also show that isogeny degrees in the M-SIDH variant
must have at least 2λ distinct factors, where λ is the security parameter. Finally,
we provide non-trivial variants of adaptive attacks on SIDH, including the GPST
attack and the Fouotsa-Petit attack.

Based on our analysis, the M-SIDH variant is the most promising one as it
features smaller keys at identical security levels. The variant must be used with
a randomly generated starting curve to avert the attack mentioned above (note
that this is not an issue in a key encapsulation mechanism as the starting curve
may be constructed by the key generation algorithm). Our analysis suggests
1 This paper is an extended merge of the preprints [18] and [27]
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that public key sizes of 4434, 7037 and 9750 bytes are sufficient to reach AES-
128, AES-192 and AES-256 security levels (NIST security levels 1, 3, 5), and
asymptotically public keys should be a factor O(log λ) larger than in SIDH.

1.1 Outline.

In Section 2 we briefly present the SIDH protocol and discuss attacks on SIDH.
In Section 3 we describe our two constructions Masked-degree SIDH and Masked
SIDH (M-SIDH). In Sections 4, 5 and 6, we do a security analysis of both schemes
and in Section 7 we suggest parameters. We conclude the paper in Section 8.

2 The SIDH protocol and attacks

The Supersingular Isogeny Diffie-Hellman protocol (SIDH) is a key exchange
protocol designed by Jao and De Feo [24], which underlies the SIKE submission
to NIST post-quantum cryptography project [23]. Interest in the SIDH protocol
grew steadily since 2011, but passive cryptanalytic success remained limited until
new attacks fully broke it in August 2022.

2.1 The SIDH protocol

The SIDH protocol is a Diffie-Hellman-like key exchange scheme that uses torsion
point information to complete a (pseudo) commutative diagram:

(E0, PA, QA, PB , QB)

��

// (EA, ϕA(PB), ϕA(QB))

��
(EB , ϕB(PA), ϕB(QA)) // EAB

∼= EBA

The precise scheme is as follows:

Public parameter: Let E0 be the elliptic curve of j-invariant 1728. Set a prime
p as p = 2eA3eB −1. Let PA and QA (resp. PB and QB) be points generating
E0[2

eA ] ∼= (Z/2eAZ)2 (resp. E0[3
eB ] ∼= (Z/3eBZ)2).

Public key (Alice): Alice first generates a random value kA ∈ (Z/2eAZ)× as
her secret key. Let RA = PA + kAQA. Alice computes an isogeny ϕA : E0 →
EA := E0/⟨RA⟩ and image points ϕA(PB), ϕA(QB). Alice sends to Bob EA

and these image points as a public key.
Public key (Bob): Bob first generates a random value kB ∈ (Z/3eBZ)× as

his secret key. Let RB = PB + kBQB . Bob computes an isogeny ϕB : E0 →
EB := E0/⟨RB⟩ and image points ϕA(PB), ϕA(QB). Bob sends to Alice EB

and these image points as a public key. Let kB be his secret key.
Shared key: LetR′

A = ϕB(PA)+kAϕB(QA), and letR′
B = ϕA(PB)+kBϕA(QB).

Alice computes EAB := EB/⟨R′
A⟩, and Bob computes an isogeny EBA :=

EA/⟨R′
B⟩. The value j(EAB) = j(EBA) is the shared key.

The SIDH protocol is the basis of the SIKE algorithm, which was selected
for Round 4 of NIST post-quantum standardization project in June 2022.
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2.2 Cryptanalysis attempts and successes

A natural problem to consider in the cryptanalysis of SIDH is the isogeny with
torsion problem: Problem 2 with A = 2eA and B = 3eB . One approach to solve
this problem is to entirely ignore the torsion point information, and recover
the isogeny with some advanced brute force strategy such as a meet-in-the-
middle algorithm or Van Oorschot-Wiener’s algorithm [36]. These approaches
have guided the parameter selection of SIKE submission to NIST [23].

The first passive attacks exploiting torsion point information2 were intro-
duced by Petit [31]. The key idea in his attack is to consider an endomorphism
Ψ of E′ of the form

ψ = d+ ϕ ◦ θ ◦ ϕ̂

where d ∈ Z and θ is a trace 0 non scalar endomorphism of E0 such that

degψ = d2 +B2 deg θ

divides A. Provided such parameters, one can use torsion point information on
ϕ to deduce torsion point information on ψ, then use this information to recover
kerψ via a (smooth order hence efficient) discrete logarithm computation, and
finally deduce ϕ. Note that this strategy requires at least partial knowledge of
the endomorphism ring of E0 (for θ) and moreover it only works if A is large
enough compared to B. (In particular, it does not work when A ≈ B as in SIKE.)
Improvements in later work increased the range of parameters vulnerable to these
attacks but they did not fundamentally change these limitations [5,32].

In August 2022, Castryck and Decru [7] (and independently Maino and Mar-
tindale [26]) introduced new powerful attacks against SIDH, with polynomial
time complexity when the endomorphism ring of E0 is known and subexpo-
nential complexity in general. Extensions by Robert [33] further reduced the
complexity to polynomial time in the general case. In a sense, these attacks can
be seen as generalizations of previous torsion point attacks3, but with a key ad-
ditional insight: they crucially embed the SIDH isogeny problem into a higher
dimensional isogeny problem, where more endomorphisms are readily available.
In a nutshell, Robert’s attack considers the genus 8 Abelian variety E4

0 × E′4,
and its endomorphism

Ψ =

(
α0 Φ̂
−Φ α̂′

)
,

2 Torsion point information was previously used in active attacks against SIDH [20]
and prompted the inclusion of a CCA transform (a variant of Fujisaki-Okamoto
transform) within SIKE.

3 The original Castryck-Decru’s paper did not initially make a connection with prior
torsion point attacks, but this connection then rapidly emerged and is clearly de-
scribed in [26,33]
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where Φ is the natural extension of ϕ on E4
0 , Φ̂ is its dual, and α0 and α′ are the

endomorphisms on E4
0 and E′4 with action given by the matrix

M =


a0 a1 a2 a3
−a1 a0 −a4 a3
−a3 a4 −a1 a2
−a4 −a3 a2 a1


with a0, a1, a2, a3 such that a := a20 + a21 + a22 + a23 = A−B. We then have

ΨΨ̂ = AI8

where Ψ̂ =

(
α̂0 −Φ̂
Φ α′

)
is the dual of Ψ , i.e., Ψ is an endomorphism of degree A.

As in previous torsion point attacks, one can evaluate Ψ on the A torsion using
torsion point information provided in the SIDH problem. One can then compute
Ψ and finally deduce ϕ.

From now on we will refer to these attacks as “the CD-MM-R attacks”. Com-
pared to previous torsion point attacks, these new attacks do not require any
knowledge on the endomorphism ring of the starting curve, and work whenever
A ≥ B. One can further improve this to A ≥

√
B as in the “dual isogeny variant”

of [32]: let a := A2 −B; recover the first halves of the endomorphisms Ψ and Ψ̂
using torsion point information; and finally deduce the whole of Ψ and ϕ [33].

While they do not require any knowledge of End(E0), the new attacks still use
torsion point information and general SIDH parameters, including the isogeny
degrees. In the following section, we describe two countermeasures: the first one
consists in making the torsion point images while the second one consists in
masking the isogeny degrees.

3 Masked SIDH variants

Recall that the CD-MM-R attack requires two main ingredients:

1. the degree A of the secret supersingular isogeny ϕ : E0 → E;
2. the images ϕ(P ), ϕ(Q) of a torsion basis (P,Q) of the B-torsion E0[B] where
B is an integer coprime to A such that B > A.

The countermeasures we suggest here consist in masking each of the above.
Firstly, we suggest Masked torsion points SIDH or M-SIDH for short, in which
one masks the torsion point images by scaling them with a random scalar. Sec-
ondly, we suggest Masked-degree SIDH or MD-SIDH for short, in which the
isogenies computed do not have a fixed degree.

In the rest of this paper, we will often use the following lemma.

Lemma 3. Let ϕ : E −→ E′ be an isogeny of unknown degree d and let B be a
smooth integer coprime to d such that E[B] ⊂ E(Fp2). Set E[B] = ⟨P,Q⟩. Then
given P, Q, ϕ(P ) and ϕ(Q), there exists a polynomial time algorithm to recover
d mod B.
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Proof. One computes the Weil pairing values eB(P,Q) and eB(ϕ(P ), ϕ(Q)) =
eB(P,Q)deg ϕ, then one solves a discrete logarithm instance between both quan-
tities to recover d mod B. Since E[B] ⊂ E(Fp2), the pairing computations run
in polynomial time. Since B is smooth, then using the Pohlig-Hellman algorithm
the discrete logarithm computation runs in polynomial time as well. ⊓⊔

3.1 Masked torsion points variant

The aim here is to instantiate SIDH such that the direct images ϕ(P ), ϕ(Q) of
P and Q are not available to adversaries, but the key exchange still succeeds:
this means that when given a point R ∈ E0[B], one should be able to compute
a generator of the group ϕ(⟨R⟩).

To achieve this goal, the images ϕ(P ), ϕ(Q) of P and Q are scaled by a
random integer α ∈ Z/BZ×. That is instead of revealing ϕ(P ), ϕ(Q), one reveals
[α]ϕ(P ), [α]ϕ(Q). Note that since the degree of the secret isogeny ϕ is fixed, one
can recover α2 deg ϕ by applying Lemma 3, from which one derives α2 mod B.
Taking a square root α0 of α2, one recovers [αα−1

0 ]ϕ(P ) and [αα−1
0 ]ϕ(Q) where

(αα−1
0 )2 = 1 mod B. Hence one can sample α directly from µ2(B) where

µ2(N) = {x ∈ Z/NZ | x2 = 1 mod N}.

Note that for the scheme to be secure against the CD-MM-R attack, it is nec-
essary that an attacker should not be able to recover the scalar α. The isogeny
degrees are chosen such that there is an exponential number of square roots of
1 modulo B. This leads to the following variant of SIDH: M-SIDH.

Public parameter: Let λ be the security parameter and let t = t(λ) ∈ N
be an integer depending on λ. Let p = ABf − 1 be a prime such that
A =

∏t
i=1 ℓi and B =

∏t
i=1 qi are coprime integers, ℓi, qi are distinct small

primes, A ≈ B ≈ √
p and f is a small cofactor. Let E0 be a supersingular

curve defined over Fp2 . Set E0[A] = ⟨PA, QA⟩ and E0[B] = ⟨PB , QB⟩. The
public parameters are E0, p, A, B, PA, QA, PB , QB .

Public key (Alice): Alice samples uniformly at random two integers α and a
from µ2(B) and Z/AZ respectively. She computes the cyclic isogeny ϕA :
E0 → EA = E0/ ⟨PA + [a]QA⟩. Her public key is the tuple
pkA = (EA, [α]ϕA(PB), [α]ϕA(QB)) and her secret key is skA = a. The inte-
ger α is deleted.

Public key (Bob): Analogously, Bob samples uniformly at random two inte-
gers β and b from µ(A) and Z/BZ respectively. His public key is pkB =
(EB , [β]ϕB(PA), [β]ϕB(QA)) where ϕB : E0 → EB = E0/ ⟨PB + [b]QB⟩ and
his secret key is skB = b. The integer β is deleted.

Shared key: Upon receiving Bob’s public key (EB , Ra, Sa), Alice checks that
eA(Ra, Sa) = eA(PA, QA)

B , if not she aborts. She computes the isogeny
ϕ′A : EB → EBA = EB/ ⟨Ra + [a]Sa⟩. Her shared key is j(EBA). Similarly,
upon receiving (EA, Rb, Sb), Bob checks that eB(Rb, Sb) = eB(PB , QB)

A, if
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not he aborts. He computes the isogeny ϕ′B : EA → EAB = EA/ ⟨Rb + [b]Sb⟩.
His shared key is j(EAB).

The problem underlying the security of M-SIDH is stated as follows.

Problem 4. Let A = ℓ1 · · · ℓt and let B = q1 · · · qt be two smooth coprime inte-
gers, let f be a small cofactor such that p = ABf − 1 is a prime, with A ≈ B.
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =
(ABf)2, set E0[B] = ⟨P,Q⟩. Let ϕ : E0 → E be a uniformly random A-isogeny
and let α be a uniformly random element of µ2(B).
Given E0, P,Q,EA, P

′ = [α]ϕ(P ), Q′ = [α]ϕ(Q), compute ϕ.

It is immediate that Problem 4 is not hard for too small values of t. Recall
that we want 1 to have an exponential number of square roots modulo A and
modulo B. At first, one may be tempted to set t = λ so that there are about 2λ
square roots of 1 modulo A and modulo B. But, as we will see in Section 4, this
is not secure and t needs to be larger.

The main difference between Problem 4 and Problem 2 is that in Problem 4
torsion point images are only provided up to a scalar multiple (more precisely, a
square root of unity). When trying to apply Robert’s attack, the endomorphism
Ψ appearing in this attack can no longer be evaluated exactly and its kernel
can no longer be computed directly. The same holds for the attacks described in
Castryck-Decru and Maino-Martindale papers.

3.2 Masked-degree variant

Rather than masking the torsion points as described in the previous section,
we suggest a second countermeasure where one masks the degree of the secret
isogeny.

Set the prime p to be of the form p = ABf − 1 where A and B are two
smooth coprime integers, and f is a small cofactor. Alice will use cyclic isogenies
of degree A′ dividing A and Bob will use cyclic isogenies of degree B′ dividing
B. In an SIDH prime A = ℓeAA and B = ℓeBB , hence A and B have only eA + 1
and eB + 1 divisors respectively. For this reason, one needs to move away from
SIDH primes and use CSIDH-style primes with A = ℓa1

1 · · · ℓat
t and B = qb11 · · · qbtt

where t, as well as the ais and the bis, depend on the security parameter λ.
To generate her public key, Alice samples a random degree A′ (divisor of

A) for her secret isogeny, samples a random point RA ∈ E0[A
′], computes the

A′-isogeny ϕA : E0 → EA := E0/⟨RA⟩ and ϕA(PB), ϕA(QB) where E0[B] =
⟨PB , QB⟩. But, by Lemma 3, any adversary can recover A′ = deg ϕA. In order
to avoid this, Alice also generates a uniformly random integer α ∈ Z/BZ× and
outputs (EA, [α]ϕA(PB), [α]ϕA(QB)) as her public key. More precisely, Masked-
degree SIDH (MD-SIDH) is as follows:

Public parameter: Let E0 be a supersingular elliptic curve. Let t = t(λ) ∈ N
be an integer depending4 on λ. Let A = ℓa1

1 · · · ℓat
t and B = qb11 · · · qbtt be

4 Note that we use the same notation t = t(λ) for M-SIDH and MD-SIDH. It will
always be clear from the context whether we are referring to M-SIDH or MD-SIDH.
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two smooth coprime integers such that p = ABf − 1 is a prime (where f is
a small cofactor). Set PA and QA (resp. PB and QB) be points generating
E0[A] = ⟨PA, QA⟩ and E0[B] = ⟨PB , QB⟩.

Public key (Alice): Alice samples a uniformly random divisor A′ of A and a
random point RA ∈ E0[A

′]. Her secret key is skA = RA. She computes the
isogeny ϕA : E0 → EA := E0/⟨RA⟩ together with ϕA(PB) and ϕA(QB).
She samples a uniformly random integer5 α ∈ Z/BZ× and her public key is
pkA = ([α]ϕA(PB), [α]ϕA(QB)).

Public key (Bob): Bob samples a uniformly random divisor B′ of B and a
random point RB ∈ E0[B

′]. His secret key is skB = RB . He computes the
isogeny ϕB : E0 → EB := E0/⟨RB⟩ together with ϕB(PA) and ϕB(QA).
He samples a uniformly random integer β ∈ Z/AZ× and his public key is
pkB = ([β]ϕB(PA), [β]ϕB(QA)).

Shared key: From [β]ϕB(PA) and [β]ϕB(QA), Alice recovers ⟨R′
A⟩ = ⟨ϕB(RA)⟩.

From [α]ϕA(PB), [α]ϕA(QB), Bob recovers ⟨R′
B⟩ = ⟨ϕA(RB)⟩. Alice com-

putes EAB := EB/⟨R′
A⟩, and Bob computes EBA := EA/⟨R′

B⟩. The value
j(EAB) = j(EBA) is the shared key.

The problem underlying the security of MD-SIDH is stated as follows.

Problem 5. Let A = ℓa1
1 · · · ℓat

t and let B = qb11 · · · qbtt be two smooth coprime
integers, let f be a small cofactor such that p = ABf−1 is a prime, with A ≈ B.
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =

(ABf)2, set E0[B] = ⟨P,Q⟩. Let A′ = ℓ
a′
1

1 · · · ℓa
′
t

t be a uniformly random divisor of
A and and let α be a uniformly random element of Z/BZ×. Let ϕ : E0 → EA be a
uniformly random isogeny of degree A′. Given E0, P,Q,EA, P

′ = [α]ϕ(P ), Q′ =
[α]ϕ(Q), compute ϕ.

The MD-SIDH protocol can be seen as a generalization of the M-SIDH pro-
tocol, where the degree is no longer fixed and the torsion point hidden scalars α
and β are no longer restricted to square roots of unity. From a security point of
view, hiding the isogeny degrees might present the attacker with an additional
obstacle in running the CD-MM-R attacks, since these degrees are explicitly
used to construct attack parameters.

3.3 On the effectiveness of the countermeasures

We provide some arguments on why we believe the CD-MM-R attacks do not
extend to the countermeasures.

The attacks embed the secret isogeny ϕ of degree B into a higher genus
isogeny Ψ of degree A = B+a where a = A−B and A is the order of the torsion
points. In M-SIDH, the degree of the secret isogeny is β2B where β is a secret

5 The integers α (for Alice) and β (for Bob) can be deleted immediately after key
generation.
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scalar and β2 (mod A) = 1. Embedding this isogeny into a higher genus isogeny
the same way would lead to an isogeny of degree

β2B + a = β2B +A−B = A+B(β2 − 1) = A

(
1 +B

β2 − 1

A

)
.

This degree is unknown to the attacker, because he does not know β. Now, since
the degree of Ψ is A(1+B β2−1

A ), then Ψ = Ψ2 ◦Ψ1 where Ψ1 has degree A and Ψ2

has degree 1+B β2−1
A . Evaluating Ψ on the A torsion (using the masked torsion

point information available) gives you Ψ1. The isogeny Ψ2 whose unknown degree
1+B β2−1

A is larger than B and probably non smooth remains unknown. Hence,
one cannot recover Ψ . Clearly, if β = ±1 then β2 = 1 and Ψ2 has degree 1 and
Ψ is fully recovered.

A similar argument applies for MD-SIDH as well. In MD-SIDH, the degree of
the secret isogeny is β2B′ where β is a secret scalar and B′ is a random divisor
of B (say B = B′B1). Embedding this isogeny into a higher genus isogeny the
same way would lead to an isogeny of degree

β2B′ + a = β2B′ +A−B′B1 = A+B′(β2 −B1).

This degree is unknown to the attacker, because he does not know neither β nor
B′ (or B1). Let d = gcd(A, β2 − B1), then Ψ = Ψ2 ◦ Ψ1 where Ψ1 has degree
d and Ψ2 has degree A

d + B′ β2−B1

d . Evaluating Ψ on the A torsion (using the
masked torsion point information available) gives you Ψ1. The isogeny Ψ2 whose
unknown degree A

d +B
′ β2−B1

d is larger than B and probably non smooth remains
unknown. Hence, one cannot recover Ψ .

Remark 6. One could try to use a different value a′ instead of a = A−B when
embedding the secret isogeny into a higher genus isogeny. This would only make
things more complicated. In fact the unknown degree of Ψ is β2B+a′ for M-SIDH
and β2B′ + a′ for MD-SIDH. As before, setting d to be the greatest common
divisor of this degree and A, then Ψ = Ψ2◦Ψ1 where Ψ1 has degree d. The isogeny
Ψ1, can be recovered, but Ψ2 whose unknown degree is larger than A and B, and
is probably non smooth cannot be efficiently recovered.

4 Security analysis of the masked torsion points variant

Recall that the M-SIDH variant differs from SIDH in that parties send torsion
point images only up to a constant α, which is a square root of unity.

We first describe a general attack that simply consists of guessing enough
exact torsion point information to run the CD-MM-R attacks. This attack has
exponential complexity in the number of prime divisors of A and B, and it works
for any starting curve, even when the endomorphism ring is unknown.

We then describe a polynomial time attack when the initial curve is j = 1728,
and we generalize it to starting curves with (known) small degree endomor-
phisms. We argue that it appears hard to extend this attack to the case where
the endomorphism ring of the starting curve is unknown.
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We end this section with a suggestion of parameters with respect to our
analysis. In what follows we consider an isogeny of degree B, with images of
torsion points of order A revealed up to a scalar α.

4.1 Guessing enough exact torsion point information

Since Bob’s isogeny has degree B ≈ A, then we only need the exact images of
the

√
B ≈

√
A torsion points to run the CD-MM-R attacks. We are provided

with the images of the A-torsion points where A = ℓ1 · · · ℓt.
Let n ≥ 1 be the largest index such that

√
B ≤ ℓn · · · ℓt. Set N = ℓn · · · ℓt.

Then Bob’s secret isogeny ϕB can be recovered from its action on the N -torsion
points. From the action of [α] ◦ ϕB on the A-torsion points, one deduces the
action of [α] ◦ ϕB on the N -torsion points. The only thing preventing us from
applying the CD-MM-R attack is the unknown square root of unity α. Since N
has t− n+ 1 prime factors, then there are at most 2t−n+1 square roots of unity
modulo N . One can hence try all these square roots of unity till one gets one for
which the CD-MM-R attack is successful.

The overall complexity of this attack is Õ(2t−n+1) using a classical computer.
Since N ≈

√
A and N is made up of the largest prime factors of A, then we

must have t/2 < n, which implies t− n+ 1 ≤ t/2. This attack is summarized in
Algorithm 1. We deduce Theorem 7.

Algorithm 1 Attack by using less torsion point information
Require: E0, PA, QA, EB , P ′ = [β]ϕB(PA), Q′ = [β]ϕB(QA) from an M-SIDH in-

stance.
Ensure: ϕB .
1: Set N = ℓn · · · ℓt where n ≥ 1 be the largest index such that

√
B ≤ ℓn · · · ℓt;

2: Compute P1 = [A
N
]P ′ and Q1 = [A

N
]Q′;

3: for each square root γ of unity modulo N do
4: try to run the CD-MM-R attack to recover ϕB from E0, PA, QA, EB , [γ−1]P1,
5: Q′ = [γ−1]Q1;
6: if The CD-MM-R attack is successful then
7: return ϕB .

Theorem 7. Algorithm 1 is correct and runs in time Õ(2t−n+1) using a clas-
sical computer with t− n+ 1 ≤ t/2.

The above discussion only considers classical security. When we use a quan-
tum computer, the complexity of the attack can be improved because Grover al-
gorithm [22] allows us to find the correct γ in Algorithm 1 in time Õ(2(t−n+1)/2).
We deduce Theorem 8.

Theorem 8. Algorithm 1 is correct and runs in time Õ(2(t−n+1)/2) using a
quantum computer with t− n+ 1 ≤ t/2.
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Remark 9. From Theorem 7 and 8, the value t should be greater than or equal
to 2λ for AES-λ security (i.e. λ bits of classical security and λ/2 bits of quantum
security).

4.2 Polynomial time attack when E0 has j-invariant = 1728

Castryck-Decru, Maino-Martindale and Robert’s new SIDH attacks seem to re-
quire exact knowledge of torsion point images, motivating the M-SIDH variant.
On the other hand, older torsion point attacks only required these images up
to a constant [2,19], though of course they also required A much larger than B.
This suggests looking for an improved attack combining the best of both worlds.

Let ι ∈ End(E0) : (x, y) → (−x, iy) be a non-trivial automorphism of E0 and
let

ψ := ϕ ◦ ι ◦ ϕ̂

be the "lollipop endomorphism" constructed in Petit’s attack and variants (see
Section 2.2). As the images of torsion points through ϕ are provided up to a
scalar α where α2 = 1 mod A, then we have that

[α]ϕ ◦ ι ◦ [̂α]ϕ = [α2] ◦ ϕ ◦ ι ◦ ϕ̂ = [α2] ◦ ψ.

Hence, from the action of [α]ϕ on the A-torsion, one can recover the action of
[α2] ◦ ψ on the A-torsion. Since α2 = 1 mod A, then the images of A−torsion
points through ψ are exact. Moreover as ψ has degree B2 ≈ A2 and images of
torsion points of order A are known, we can apply Robert’s attack to ψ instead
of ϕ! After recovering ψ, one can recover φ efficiently.

Remark 10. One can recover ψ from ϕ as in [31]: compute G := kerϕ ∩ E′[B]
and extract the largest cyclic subgroup in G. Generically this is a large subgroup
of kerϕ, and the remaining part of kerϕ is simply guessed. Note that the pow-
ersmooth case (as in M-SIDH) is considered a worst case in [31], but even in this
“worst case situation” the cost is shown to be polynomial time in expectation
(for randomly chosen ϕ).

4.3 Generalization to other starting curves

More generally, given the endomorphism ring of the starting curve, one can apply
the LLL algorithm to compute a short non scalar endomorphism in it. One can
then replace the endomorphism ι of degree 1 in the previous attack by another
higher degree endomorphism θ.

As degψ = B2 deg θ and Robert’s attack requires degψ ≤ A2, this strategy
would require to first guess the action of ϕ on a torsion A′ subgroup with A′ ≥√
deg θ, up to a scalar. This involves guessing the images of two cyclic A′-torsion

subgroups, hence it requires O(A′2) ≈ deg θ attempts.
The attack will be relevant for any starting curve with a small non-trivial

endomorphism. For generic curves, we will have deg θ ≈ √
p, so the attack will

not provide any improvement over a trivial guessing strategy.
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4.4 Generalization attempt to unknown endomorphism rings

When the endomorphism ring of the starting curve is unknown to the attacker,
one may hope to generalize the previous attack in the same way as previous tor-
sion point attacks were generalized by the Castryck-Decru’s, Maino-Martindale’s
and Robert’s attacks: by embedding the isogeny problem into an isogeny problem
of higher dimension.

In particular, one could try to achieve this is by considering the genus 3
product A := E0 × E0 × E′, and an endomorphism

ψ : (P1, P2, P3) → (P1, P2, ϕ2θ12ϕ̂1(P3))

where ϕi : E
(i)
0 → E′ for i = 1, 2 are two copies of the secret isogeny ϕ, and

θ12 : E
(1)
0 → E

(2)
0 is a small degree isogeny from one copy of E0 to the other

one. However, a closer look at this attempt reveals that ϕ2θ12ϕ̂1 is just a scalar
multiplication on E′, and it can therefore not help to recover ϕ. Other similar
strategies we tried led to the same issue.

5 Security analysis of the masked degree variant

In this section, we discuss the security of our second countermeasure MD-SIDH.
First, we prove that the square-free part of the degree of the secret isogeny can
be recovered efficiently; this is done in Subsection 5.1 below (together with 5.2
for a technical lemma). In Subsection 5.3 we show how to reduce any instance
of Masked-degree SIDH into an instance of Masked torsion points SIDH when
the square-free part of the secret isogeny is known. The latter implies that all
the attacks presented in Section 4 can be extended to MD-SIDH through this
reduction. Taking this into account, we suggest parameters for MD-SIDH in
Subsection 7.3.

Recall that in the MD-SIDH setting, A = ℓa1
1 · · · ℓat

t , B = qb11 · · · qbtt and
p = ABf − 1 where f is a small cofactor. We are targeting Bob’s secret isogeny
ϕ : E0 → EB whose degree B′ = q

b′1
1 · · · qb

′
t

t is an unknown divisor ofB, and we are
provided with E0, P,Q,EB , P

′ = [β]ϕ(P ), Q′ = [β]ϕ(Q) where E0[A] = ⟨P,Q⟩
and β ∈ Z/AZ× is unknown.

5.1 Recovering the degree up to squares

From Lemma 3, one can assume that β2B′ mod A is known. In this section we
show how to deduce a small set of candidates for the square-free part of B′.

Let D(B) be the set of positive divisors of B. Given b′ = (b′1, · · · , b′t) ∈ Zt,
we write B(b′) = q

b′1
1 · · · qb

′
t

t , and similarly if B′ = B(b′), we write b′ = b(B′).
These maps restrict to a one-to-one correspondence between

∏t
i=1 Z/(bi + 1)Z

and D(B). For simplicity, we suppose that the ℓis and the qis are odd primes6.
6 The case where ℓi = 2 in general does not fit our definition of χ since there are more

than two square roots of 1 modulo 2r for r > 2. Nevertheless, if the power of 2 diving
A or B is at least 4, then the security of the scheme is not affected.
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Let χℓ
ai
i

be the natural surjection χℓ
ai
i
: (Z/ℓai

i Z)× → (Z/ℓai
i Z)×/((Z/ℓai

i Z)×)2 ∼=
{−1, 1}. Consider the map

Φ : Zt −→ {−1, 1}t

b′ 7−→
(
χℓ

a1
1
(B(b′)), . . . , χℓ

at
t
(B(b′))

)
,

where we regard B(b′) as an element in (Z/ℓbii Z)×. Clearly, Φ is a group mor-
phism and (2Z)t ⊂ kerΦ. This implies that the following group homomorphism
is well-defined:

Φ : (Z/2Z)t −→ Im(Φ) ⊂ {−1, 1}t
b′ 7−→ Φ(b′).

Since the cardinality of the domain of the group morphism Φ is 2t, then
#kerΦ = 2tΦ for some 0 ≤ tΦ ≤ t. This implies that when given Φ(b(B′)),
we have #Φ

−1
(Φ(b(B′))) = 2tΦ . In other words, giving Φ(b(B′)) is the same as

giving t− tΦ bits of information about b(B′) mod 2. Furthermore, when tΦ = 0,
that is when Φ is an isomorphism, then Φ(b′) uniquely determines b(B′) mod 2.
Note that for any representative b′ in the class b(B′) + 2Zt, the integers B(b′)
and B′ have the same square-free factor.

Lemma 11. Consider the notations above. Let B′
1 be the square-free part of B′.

Then given E0, P, Q, EB , P
′ and Q′, there exists a probabilistic polynomial

time algorithm that reduces the search space for B′
1 to a set of order 2tΦ where

2tΦ = #kerΦ.

Proof. From P, Q,EB , P
′, and Q′, use Lemma 3 to recover d = β2B′ mod A.

Compute

Φ(b(d)) =
(
χℓ

a1
1
(β2B′), · · · , χℓ

at
t
(β2B′)

)
=

(
χℓ

a1
1
(B′), · · · , χℓ

at
t
(B′)

)
= Φ(b(B′)).

Compute kerΦ and a preimage b0 of Φ(b(d)) with respect to Φ. Return the set
{B(b) | b ∈ b0 + kerΦ} of square-free integers.

Clearly, all the computational steps described above run in polynomial time.
The correctness follows from the properties of the morphism Φ and Φ discussed
before the lemma. ⊓⊔

In the next subsection, we show that tΦ is expected to be small for most
parameters, and the squarefree part of B′ can therefore be guessed with a high
probability.

5.2 On the value of tΦ

In this section we estimate tΦ. We start by observing the following.

Lemma 12. Let t be an integer and let M be a random t × t matrix over F2.
Then as t tends towards ∞, we have have t − 2 ≤ rank(M) with probability
0.9947145498.
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Proof. Let pt(k) be the probability that a uniformly random t × t-matrix over
F2 has rank t− k. Then, from [25, p.33] and [11, Theorem 1], it holds that

π(k) := lim
t→∞

pt(k) =


∞∏
i=1

(
1− 1

2i

)
, (k = 0)∏∞

i=k+1(1− (1/2i))∏k
i=1(1− (1/2i))

1

2k2 , (k ≥ 1).

From [11, Table 1], we have π(0) is about 0.2887880951, π(1) is about 0.5775761902,
π(2) is about 0.1283502645, and π(k)’s for k ≥ 3 are less than 0.0052387863.
Therefore,

Pr(k ≤ 2) = π(0) + π(1) + π(2) ≈ 0.9947145498.

⊓⊔

Consider the matrix M∗ of the morphism (1−Φ̄)/2 (operations are done com-
ponent wise). Lemma 12 applies to random matrices and t needs to be somehow
large. In practice, t is relatively small, t ≈ O(λ) where λ is the security param-
eter, and, A and B are system parameters, which could in theory be chosen to
maximize tϕ. However, for the sake of the scheme’s practicality, the integers A
and B need to be as small as possible. Also, in order to not weaken one of the
participants, A and B need to satisfy A ≈ B. With these constraints, we do not
expect to have 2 < tΦ. Intuitively, if 2 < tΦ, then there are tΦ square-free inte-
gers that are all quadratic residues modulo all the t prime power divisors of A.
Given a random square-free integer N , N is a quadratic residue modulo a given
prime power with probability 1

2 , hence it is a quadratic residue modulo t "in-
dependent" distinct prime powers with probability roughly 1

2t . Since t ≈ O(λ),
then 1

2t is negligible. Hence the probability that there exists many such integers
N rapidly decreases below 1

2λ
. For example, given t, let ℓ1, q1, ℓ2, q2, . . . , ℓt, qt be

the smallest 2t odd primes. For t = 64, 96, 128, 192, 286, 420, 426, 566, 637, 856,
we obtained tΦ = 1, 0, 1, 2, 0, 0, 1, 0, 1, 0 respectively.

In conclusion, we believe that it is computationally hard in practice to come
up with integers A and B such that 2 ≪ tΦ. Also, if ever such integers were
computed, A and B would be too large, which would lead to an impractical
scheme.

5.3 Reduction to the M-SIDH variant

We now show how to reduce a MD-SIDH instance to an M-SIDH instance.
Recall that in the MD-SIDH case (Problem 5), we are given E0, P,Q,EB , P

′ =
[β]ϕ(P ), Q′ = [β]ϕ(Q), where E0[A] = ⟨P,Q⟩, ϕ is a random isogeny of degree
B′ with B′ being a random divisor of B, and β is a random integer coprime to
A; and we are asked to recover ϕ.

Following Subsections 5.1 and 5.2, we assume that the square-free part of the
degree of the secret isogeny is known. Let B′

1 be the square-free part of B′. Let
B0 be the largest divisor of B which is equal to B′ up to squares, and let β0 be
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the divisor of B such that B0 = β2
0B

′. Since B is a smooth integer and we know
B′

1, we can compute B0.
Let ϕ0 = [β0] ◦ ϕ. We then know deg ϕ0 = β2

0 deg ϕ = β2
0B

′ = B0 ≤ B.
Moreover, we have{

P ′ = [β]ϕ(P ) = [(ββ−1
0 ) · β0]ϕ(P ) = [ββ−1

0 ]ϕ0(P )
Q′ = [β]ϕ(Q) = [(ββ−1

0 ) · β0]ϕ(Q) = [ββ−1
0 ]ϕ0(Q)

From Lemma 3, we can recover β2B′ mod A, and compute

β2
1 = β2

0B
′ · (β2B′)−1 mod A = (β0 · β−1)2 mod A.

We sample a random square root β′
1 of β2

1 mod A, namely β′
1 = µβ1 where µ is

some square root of unity modulo A. We compute{
[β′

1]P
′ = [µ · β1]P ′ = [µ · β0 · β−1 · β]ϕ(P ) = [µ · β0]ϕ(P ) = [µ]ϕ0(P )

[β′
1]Q

′ = [µ · β1]P ′ = [µ · β0 · β−1 · β]ϕ(Q) = [µ · β0]ϕ(Q) = [µ]ϕ0(Q)

From here, one solves for ϕ0 where E0, P , Q, EB , [µ]ϕ0(P ), [µ]ϕ0(Q) and
deg ϕ0 = β2

0B
′ are provided. This is in fact an M-SIDH instance, with the only

difference that the secret isogeny is not cyclic. This is not a problem since the
higher genus torsion points attack has no restriction on the type of isogeny (cyclic
or not) in play.

5.4 Reduction impact: porting M-SIDH attacks to MD-SIDH

In this section we revisit the attacks of Section 4 and check that they still apply
when the secret isogeny is not cyclic. Recall that the isogeny to recover here is
ϕ0 = [β0] ◦ ϕ where β0 is an unknown integer such that the degree B0 = β2

0B
′

of ϕ0 divides B. We are provided with the B0 = deg ϕ0 and the action of ϕ0 on
the A torsion group up to a scalar (a root of unity modulo A).

We start with Robert’s attack (see Section 2.2), and observe that neither
the definition of the isogeny Ψ nor the way ϕ is deduced from this isogeny rely
on ϕ being a cyclic isogeny. The attack of Section 4.1 simply guesses the exact
torsion point images on the minimal amount of torsion point information needed
for Robert’s attack. As before, allowing for non cyclic isogenies does not affect
Robert’s attack.

Regarding the attack of Section 4.2, one first applies Robert’s attack on
ψ = ϕ0 ◦ ι ◦ ϕ̂0 = [β2

0 ] ◦ϕ ◦ ι ◦ϕ, then one deduces the isogeny ϕ0 using [31, §4.3].
The first part is again an application of Robert’s attack to a non cyclic isogeny.
The second part requires some clarification.

When ϕ0 = ϕ is cyclic (β0 = 1), in [31, §4.3], the attacker computes G :=
kerψ ∩ EB [B0], which clearly contains kerϕ, and is in general isomorphic to
Z/NZ×Z/N ′Z for some N ′|N |B0 such that NN ′ = B0. When N ′ = 1 we have
G = kerϕ. For a cyclic isogeny ϕ, we have N ′ > 1 exactly when ι leaves either
kerϕ ∩E0[N

′] or ker ϕ̂ ∩EB [N
′] invariant: this leaves at most 2r candidates for

kerϕ, where r is the number of prime factors in N ′. But, since ϕ is uniformly
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random (because it is the secret isogeny), then N ′ is relatively small and hence
has very few prime factors.

Let us return to the case where ϕ0 = [β0] ◦ ϕ with ϕ being cyclic and β0 > 1

is unknown, and let us assume that ψ = ϕ0 ◦ ι ◦ ϕ̂0 = [β2
0 ] ◦ ϕ ◦ ι ◦ ϕ has been

recovered. After evaluating ψ on the B0 torsion, we will get a group isomorphic
to Z/CZ × Z/C ′Z where C ′|C|B0. Since ψ is divisible by β2

0 , the β2
0 -torsion is

killed by ψ and the group Z/CZ×Z/C ′Z is the group one would have got if one
was evaluating ϕ ◦ ι ◦ ϕ on the B′ = B0/β

2
0 torsion. Hence CC ′ = B′ = deg ϕ as

discussed in the previous paragraph and β0 =
√
B0/B′. One then recovers ϕ as

in the previous paragraph.

6 Adaptive attacks

In this section, we show that M-SIDH and MD-SIDH, as SIDH, are vulnerable
to adaptive attacks. We also discuss the use of B-SIDH primes in M-SIDH and
future work. We first discuss the Fouotsa-Petit attack, then the GPST attack.

6.1 Fouotsa-Petit adaptive attack.

Fouotsa-Petit [19] adaptive attack consists in actively transforming a balanced
SIDH instance (A ≈ B) into an imbalanced one (B < A∗ = NA where N ≈ p),
then running Petit’s torsion point attacks [31,32] on the imbalanced SIDH (where
the secret isogeny has degree B and the torsion points have order A∗ = NA) to
recover the secret isogeny.

In [19, Section 3.2], the authors show that Petit’s torsion point attacks can
be run even when the torsion point images are scaled with an unknown scalar.
Petit’s attacks also apply to non cyclic isogenies. In fact, to recover an isogeny
ϕ : E −→ E′ from its action on large enough torsion points, Petit’s attack (see
Section 2.2) uses the torsion point information and a suitable endomorphism θ of
E to compute the endomorphism ψ = ϕ ◦ θ ◦ϕ of E′; then the techniques of [31,
§4.3] (also see Section 5.4) are used to recover ϕ. As before, ϕ not being cyclic
does not impact the first step where one recovers ψ. There are some subtleties
when trying to recover ϕ from ψ when ϕ is non cyclic, but they were already
covered in Section 5.4. However, Petit’s attacks do require knowledge of the
degree of the secret isogeny.

The generalization of the Fouotsa-Petit [19] adaptive attack to M-SIDH is
therefore straightforward. For MD-SIDH, one can use the techniques from Sec-
tion 5 to reduce the MD-SIDH instance to an M-SIDH instance, and then run
the Fouotsa-Petit attack on the M-SIDH instance.

6.2 GPST adaptive attack.

Recall that in the GPST attack on SIDH, Bob (the honest party) has a static
secret key/public key pair (b, (EB , ϕB(PA), ϕB(QA)). Alice (the dishonest party)
maliciously generates public keys (EA, R, S) with modified torsion points images,
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and repeatedly runs the key exchange with Alice using these malicious public
keys. The attack assumes that Alice is provided with an oracle O(EA, R, S,E

′)
that outputs 1 if E′ is the shared secret computed by the honest Bob when using
(EA, R, S) as Alice’s public key, and 0 otherwise. Then the GPST adaptive attack
recovers the secret b with only log b queries to the oracle O. The attack provides
the points (Ri, Si) to be used at each query. We refer to [20] for details about
the GPST adaptive attack.

One thing to notice here is that

O(EA, R, S,E
′) = 1 ⇐⇒ EA/⟨R+ [b]S⟩ = EA/⟨ϕA(PB) + [b]ϕA(QB)⟩

⇐⇒ ⟨R+ [b]S⟩ = ⟨ϕA(PB) + [b]ϕA(QB)⟩

where the second equivalence holds except with neglible probability. Hence, as-
suming EA is fixed, we can see O as an oracle that when given R,S, outputs 1 if
⟨R+[b]S⟩ = ⟨ϕA(PB)+ [b]ϕA(QB)⟩, and 0 if not. Note that the malicious points
R and S are obtained by doing a linear combination of ϕA(PB) and ϕA(QB),
say R = [e1]ϕA(PB) + [e2]ϕA(QB) and S = [f1]ϕA(PB) + [f2]ϕA(QB).

When it comes to M-SIDH, the image points are scaled with a secret invertible
scalar β. But, as the scalar is invertible and everything is linear, the attack can
proceed in the same way.

For MD-SIDH, the degree B′ of Bob’s secret isogeny is an unknown divisor
of B. The torsion points R and S are first scaled by the secret integer B1 = B

B′

before being used by Bob; that is Bob computes the isogeny EA → EA/⟨[B1](R+
[b]S)⟩. Hence our new oracle here acts as follows: when given R and S, it outputs
1 if ⟨[B1](R+ [b]S)⟩ = ⟨[B1](ϕA(PB) + [b]ϕA(QB))⟩, and 0 otherwise.

Here, blindly applying the GPST adaptive attack would not work, as the
attacker first needs to recover the degree B′ of the secret isogeny or equivalently
the integer B1 = B

B′ . Moreover unlike for the Fouotsa-Petit attack, one cannot
simply apply our reduction from Section 4 to recover the degree and then apply
GPST attack, because the GPST attack assumes a cyclic secret isogeny.

To recover the integer B1, we instead use the above oracle. Let qe be a prime
power divisor of B. We would like to recover the largest integer e′ ≤ e such that
qe

′
divides B′. We repeatedly query the oracle with the points

Ri = ϕA(PB) +

[
B

qi

]
ϕA(QB), Si = ϕA(QB), 1 ≤ i ≤ e.

We have the following lemma.

Lemma 13. With the notations as above, we have

O

(
ϕB(PA) +

[
B

qi

]
ϕA(QB), ϕA(QB)

)
= 1

if and only if qi divides B1.

Proof. Set Ri = ϕA(PB) +
[
B
qi

]
ϕA(QB) and Si = ϕA(QB). We have

⟨[B1](Ri + [b]Si)⟩ = ⟨[B1](ϕA(PB) +
[
B
qi

]
ϕA(QB) + [b]ϕA(QB))⟩

= ⟨[B1] (ϕA(PB) + [b]ϕA(QB)) + [Bqi ][B1]ϕA(QB)⟩.
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Clearly, the points [B1](ϕA(PB) + [b]ϕA(QB)) and [B1]ϕA(QB) have order B′

and are linearly independent. Hence

⟨[B1] (ϕA(PB) + [b]ϕA(QB))⟩ = ⟨[B1] (ϕA(PB) + [b]ϕA(QB))+

[
B

qi

]
[B1]ϕA(QB)⟩

if and only if B
qi = 0 mod B′, that is if and only if qi divides B1. The Lemma

then follows from the definition of the oracle O. ⊓⊔

Using Lemma 13, one recovers each prime power divisor qe
′
i

i of B1 = B
B′ with at

most ei queries, where B = qe11 · · · qett , i = 1, . . . , t. The total maximum number
of queries to recover the secret degree B′ is

∑t
i=1 ei. Once the degree is recovered,

one then runs the usual GPST attack.

7 Parameter selection and efficiency

In this section, we discuss the choice of the starting curve E0, and we use the
analysis from the previous sections to infer parameter selections for both M-
SIDH and MD-SIDH. We conclude that the M-SIDH variant is always more
secure than the MD-SIDH variant at comparable parameter sizes, and discuss
its efficiency.

7.1 Choosing the starting curve E0

From the attack in Section 4.2 and its generalization to MD-SIDH in Section 5.4,
an elliptic curve with a short-degree endomorphism (e.g., the curve of j-invariant
1728) should not be used for a starting curve in either scheme. Therefore the
setup algorithm needs to generate E0 as a curve with no short-degree endomor-
phism. There are three possibilities here:

1. the endomorphism ring of the curve is public,
2. the endomorphism ring of the curve is not public, but known by one party

(either Alice or Bob);
3. the endomorphism ring is unknown to everyone.

The advantage of the first possibility is that since the endomorphism ring of
E0 is public, everyone can verify that E0 does not have small endomorphisms
by determining the norm of the shortest element End(E0) (this is a dimension
4 lattice, so computing the shortest element is easy). One can use Bröker’s al-
gorithm [6] to generate E0, or obtain E0 by performing a random walk from
a supersingular curve computed using Bröker’s algorithm. The first option is
not secure since the supersingular curves generated using Bröker’s algorithm
have small endomorphisms. In the second option, the party that generates the
curve could backdoor it. In fact, they could generate a weak curve in the sense
of [32]. Weak curves are curves for which Petit’s torsion point attack has the
best efficiency for a given set of parameters.



M-SIDH and MD-SIDH: countering SIDH attacks by masking information 21

In the second scenario, one of the participants generates the curve and does
not reveal its endomorphism ring. This party could hence potentially cheat and
use a curve with small endomorphisms or a weak curve, then use it to attack the
other party. This is not acceptable for a key exchange protocol. Nevertheless, in
the setting of a SIKE-type key encapsulation mechanism or public key encryption
scheme, we can let the key generation algorithm generate the starting curve and
publish it together with their public key: indeed using a weak curve here would
only make their own secret key weaker.

Regarding the third scenario, one should note that generating a supersingu-
lar curve with unknown endomorphism ring is a hard problem [4,28]. Instead,
one can rely on a trusted third party (possibly simulated by a multiparty pro-
tocol [1]) to generate a truly random supersingular E0 curve by performing a
long random walk for a known supersingular curve, and forgets (deletes) the
walk they used. Then the obtained curve could be used as starting curve for the
schemes suggested in this scheme.

In conclusion, restricting E0 to curves which do not have small endomor-
phisms is sufficient when instantiating M-SIDH and MD-SIDH. Nevertheless,
one would need to trust the party generating the curve since they could backdoor
it (we could not find a method to generate curves with no small endomorphisms
in the literature). Since we would need to trust them anyway, it is better to just
ask this party to generate a curve with unknown endomorphism ring. This can
also be done using the MPC techniques described in [1].

7.2 Parameter selection for M-SIDH

Recall that the M-SIDH primes are of the form p = ABf − 1 where A = ℓ1 · · · ℓt
and B = q1 · · · qt are coprime integedoℓi, qi are distinct small primes, A ≈ B ≈√
p and f is a small cofactor. Let λ be the security parameter. From subsection

4.1, we need t− n+ 1 ≥ λ for classical security and t− n+ 1 ≥ 2λ for quantum
security, where n is the largest integer satisfying

√
B ≤ ℓn · · · ℓt, where λ is a

security parameter.
We now explain how to generate the public parameters of M-SIDH for AES-λ

security (i.e., classical λ bits security and quantum λ/2 bits security). Given λ,
we sample the 2t smallest primes for t ≥ 2λ, we partition them into two sets of
equal size, we use the first set to get A and we use the second to get B, such
that A ≈ B. We then check the value t − n + 1 described in subsection 4.1. If
λ < t− n+ 1, we restart with a larger t. If λ ≥ t− n+ 1, find a cofactor f such
that p = ABf − 1 is prime.

For AES-128 (NIST level 1), AES-192 (NIST level 3) and AES-256 (NIST
level 5) security levels, Table 1 presents the key sizes, including secret key, public
key and compressed public key. The suggested primes for M-SIDH are

p128 = 22 · ℓ1 · · · ℓ571 · 10− 1,

p192 = 22 · ℓ1 · · · ℓ851 · 207− 1
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and

p256 = 22 · ℓ1 · · · ℓ1131 · 13− 1

respectively; where ℓi is the ith odd prime. Alice uses A = 22 · ℓ2 · ℓ4 · · · ℓt−2 and
Bob uses B = ℓ1 · ℓ3 · · · ℓt−1.

AES NIST p (in bits) secret key public key compressed pk
128 level 1 5911 ≈ 369 bytes 4434 bytes ≈ 2585 bytes
192 level 3 9382 ≈ 586 bytes 7037 bytes ≈ 4103 bytes
256 level 5 13000 ≈ 812 bytes 9750 bytes ≈ 5687 bytes

Table 1. Suggested parameters for 128, 192 and 256 bits of security.

7.3 Parameter selection for MD-SIDH

We showed in previous sections that MD-SIDH can be broken by the same
attacks as M-SIDH. Therefore, t − n + 1 must be greater than or equal to λ
for AES-λ security, where n is the largest integer such that there is a subset
S ⊂ {1, . . . , t} satisfying

√
B ≤

∏
i∈S ℓ

ai
i and n = t+1−#S. Moreover, to mask

the degree of the secret isogeny, the size of the space of degrees needs to be 2λ+t

since the Weil pairing will reduce it by a factor 2t.
Given λ, we sample the 2t smallest primes for t ≥ λ, we set a1 = · · · = aλ =

b1 = · · · = bλ = 3 and the other exponents are 1, and we partition them into two
sets of equal size. We use the first set to get A and the second to get B, such that
A ≈ B. We check the value t−n+1 described above. If λ < t−n+1, we restart
with a larger t. If λ ≥ t− n+ 1, we find a cofactor f such that p = ABf − 1 is
prime.

For AES-128 (NIST level 1), AES-192 (NIST level 3) and AES-256 (NIST
level 5) security levels, Table 2 presents the key sizes: secret key, public key and
compressed public key. The suggested primes for M-SIDH are

p128 = 23 · ℓ31 · · · ℓ3255ℓ256 · · · ℓ839 · 537− 1,

p192 = 23 · ℓ31 · · · ℓ3383ℓ384 · · · ℓ1273 · 131− 1

and

p256 = 23 · ℓ31 · · · ℓ3511ℓ512 · · · ℓ1711 · 1485− 1

respectively; where ℓi is the ith odd prime. Alice uses A = 23·ℓ32 · · · ℓ3λ−2ℓλ · · · ℓt−2

and Bob uses B = ℓ31 · · · ℓ3λ−1ℓλ+1 · · · ℓt−1.
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AES NIST p (in bits) secret key public key compressed pk
128 level 1 13810 ≈ 863 bytes 10358 bytes ≈ 6040 bytes
192 level 3 22291 ≈ 1393 bytes 16719 bytes ≈ 9751 bytes
256 level 5 31226 ≈ 1951 bytes 23420 bytes ≈ 13660 bytes

Table 2. Suggested parameters for 128, 192 and 256 bits of security.

7.4 Preliminary efficiency analysis

From the two subsections above, it is clear that the M-SIDH variant is more
secure than the MD-SIDH variant for comparable parameter sizes.

Compressed public key sizes for M-SIDH have 2585, 4103 and 5687 bytes at
security levels 128, 192 and 256. This is roughly 6.8, 7.3 and 7.8 bigger than
previously suggested SIKE keys for the same security levels. Asymptotically,
Keys scale quasi-linearly in the security parameter, whereas SIKE keys scaled
linearly.

Computations required in M-SIDH are similar to those required in SIDH,
with additional (comparably negligible) scalar multiplications to mask torsion
points, individual isogeny steps of degrees O(λ log λ) instead of 2 and 3, and
larger parameter sizes. In SIDH, we have O(λ log λ) isogeny steps with optimal
strategies [16], with each step costing O(1) field operations. Field sizes are O(λ)
so each field operation costs O(λ log λ) bit operations asymptotically, neglecting
log log factors. This leads to a total asymptotic bit complexity of O(λ2 log2 λ)
bit operations. In M-SIDH, we use O(λ) primes each of size O(log λ), so the total
prime size is O(λ log λ). There are still O(λ log λ) steps involved with optimal
strategies. Each step requiresO(

√
λ log λ) field operations using square root Vélu

formulae. Field operations cost O(λ log2 λ) bit operations asymptotically, again
neglecting log log factors. This gives a total of O(λ2.5 log7/2 λ) bit operations.
Concrete efficiency should be determined in future work, but a slowdown com-
pared to SIDH should be expected, with a factor in the order of O(

√
λ log3/2 λ).

Most efficiency and implementation tricks developed for SIDH should also be
available for M-SIDH, and potentially more, but we argue in Appendix B that
the B-SIDH approach will not be applicable.

8 Conclusion and perspectives

We introduced two variants of the SIDH protocols aimed at defeating the Castryck-
Decru-Maino-Martindale-Robert recent attacks. The two variants respectively
hide the secret isogeny degree and the torsion point information to the attacker
(more precisely they only reveal an integer multiple of the degree, and they
reveal torsion point images only up to a scalar).

Our thorough security analysis of both variants suggests that the M-SIDH
variant offers the best security-efficiency tradeoff. Public key sizes are 4434, 7037
and 9750 bytes respectively for AES-128 (NIST level 1), AES-192 (NIST level 3)
and AES-256 (NIST level 5) security, and efficiency is expected to asymptotically
be a factor in the order of O(

√
λ log3/2 λ) slower compared to SIDH.
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Our work suggests that it may be possible to repair the SIDH protocol,
although at a non negligible efficiency cost, and it similarly offers a way forward
to the numerous cryptographic schemes based on SIDH that were developed in
recent years. Further work should aim at developing additional countermeasures
and at improving the efficiency and security analysis of our schemes.
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A On the claims of ePrint 2022/1667

The ePrint 2022/1667 vaguely claims attacks on M-SIDH. Reading through it,
it clearly does not contain any attack against M-SIDH; it is easy to see that the
"experimental evidence" provided there only applies to SIDH parameters and
does not generalize to the parameters we recommend.

This ePrint paper runs the Castryck-Decru attack on Masked SIDH instan-
tiated with SIDH primes, that is A = 2a and B = 3b. Note that using SIDH
primes in Masked SIDH is totally insecure at the first place. Nevertheless, when
the 2a torsion points are masked, intuitively, one expects the Castryck-Decru
attack to succeed 50% of the time. In fact, there are 4 roots of unity modulo 2a,
these are 1, −1, 2a−1 − 1 and 2a−1 + 1. As precised earlier in Section 3.3, the
attack succeeds when β = 1,−1, hence one expects the Castryck-Decru attack
to succeed when the masking scalar β is 1 or −1, and fail when β is 2a−1 − 1
or 2a−1 + 1. The ePrint 2022/1667 ran the attack and noticed that the attack
always succeeds, then claimed that this would be the case even when the cor-
rect parameters are used. We have already explained why we do not expect the
attack to work on Masked degree instantiated with the correct parameters (see
Section 3.3). Now, why does the Castryck-Decru attack works 100% of the time
(instead of 50%) when instantiated with SIDH parameters? Well, it turns out
it is because the Castryck-Decru attack does not fully use the torsion points
provided in the public key, but scales them by a small power of 2 first. This is
because the implementation of the attack needs a′ and b′ such that c = 2a

′ − 3b
′

is smooth and its prime factors are congruent to 1 mod 4 (this is required for the
attack to be efficient, see [7]). This implies that the order of the torsion points
actually used in the attack divides 2a−1. Therefore, the masking scalar β which
lies in {1,−1, 2a−1−1, 2a−1+1} becomes β mod 2a−1 = 1,−1 (mod 2a−1). This
justifies why the Castryck-Decru attack always succeeds when SIDH primes are
used.

The attack clearly does not succeed when the torsion point images having
order 2a

′
are masked with a scalar which is neither 1 nor −1 modulo 2a

′
. This

can be verified using the sage implementation of the attack provided in [30].
One goes to the line where the torsion point images of order 2a

′
are computed

(for example, in line 57 of the file castryck_decru_shortcut.sage in https://
github.com/jack4818/Castryck-Decru-SageMath), and replaces the torsion
points 2alp ∗PB and 2alp ∗QB by (2ai−1−1)∗2alp ∗PB and (2ai−1−1)∗2alp ∗QB

respectively.
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Note. The non-applicability of the attacks claimed in the ePrint 2022/1667 to
M-SIDH was also pointed out on Twitter by Luca De Feo, Steven Galbraith,
Péter Kutas, Benjamin Wesolowski and other isogenists, and we thank them for
that.

B Using B-SIDH primes in M-SIDH

B-SIDH is one variant of SIDH proposed by Costello [12]. The main characteristic
of B-SIDH is the use of quadratic twists. This allows us to use the torsion points
in E[p − 1] and E[p + 1] without extending the base field, while in the original
SIDH, points which we can use must be in E[p+ 1]. Thus, the size of the prime
for B-SIDH is at most half that for SIDH .

If we can adapt this technique to our scheme, then the size of the prime may
be at most halved. Since the MD-SIDH primes are larger than twice the M-SIDH
primes, we only consider the case of M-SIDH.

In the setting of SIDH, the size of A needs to be large enough for its security;
however, in the setting of M-SIDH, the number of primes dividing A needs to
large enough. Therefore, the restriction of smoothness is harder in M-SIDH than
in SIDH.

To use the B-SIDH method for M-SIDH, we need to find a prime p satisfying
the following property:

p+ 1 = ℓ1 · · · ℓt · f,
p− 1 = q1 · · · qt · f ′,

where t ≥ 2λ, and ℓ1, . . . , ℓt and q1, . . . , qt are distinct primes, respectively .
The basic approach to find the B-SIDH prime is to construct an integer m

such that both m and m+1 are smooth. If 2m+1 is prime, we set p = 2m+1.
In [12] and [13], some methods to find such m’s are proposed. The current most
useful method is the method proposed in [13]. The main idea of this method
is to use already known solutions of the Prouhet-Tarry-Escott (PTE) problem,
which provide pairs of integer coefficient polynomials a(x) = (x−a1) · · · (x−as)
and b(x) = (x− b1) · · · (x− bs) whose difference is a constant value c. If we find
an integer ℓ such that all ℓ− ai’s and ℓ− bi’s are smooth, and a(ℓ)/c and b(ℓ)/c
are integers, then b(ℓ)/c can be taken as m.

The main issue with this approach is that such ℓ’s have a very small proba-
bility to exist. For a polynomial a ∈ Z[x], define

Ψa(N,M) = #{1 ≤ m ≤ N | a(m) is M -smooth}.

Then, heuristically it holds that Ψa(N,N
1/u)/N ∼ ρ(d1u) · · · ρ(dku) as N → ∞,

where d1, . . . , dk are degrees of distinct irreducible factors of a, and ρ is the
Dickman–de Bruijn function.

Since t ≥ 2λ, both m and m + 1 are divided by at least 2λ distinct primes.
Then, we heuristically assume that the target value m is m1/λ-smooth. Since
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ℓ ≈ m1/s, the probability of target ℓ’s is

Ψa(m
1/s,m1/λ)

m1/s
∼ ρ(λ/s)s.

Note that s is less than or equal to 12 for an already known solution of the
PTE problem. With λ = 128, we have ρ(λ/s)s < 2−463; with λ = 192, we have
ρ(λ/s)s < 2−835; and with λ = 256, we have ρ(λ/s)s < 2−1246.
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