

University of Birmingham

Federated Learning for Tabular Data
Wu, Han; Zhao, Zilong; Chen, Lydia Y.; van Moorsel, Aad

DOI:
10.1109/ISSRE55969.2022.00028

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Wu, H, Zhao, Z, Chen, LY & van Moorsel, A 2022, Federated Learning for Tabular Data: Exploring Potential Risk
to Privacy. in 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE).
International Symposium on Software Reliability Engineering, IEEE, pp. 193-204.
https://doi.org/10.1109/ISSRE55969.2022.00028

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The final published version is available at https://doi.org/10.1109/ISSRE55969.2022.00028

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1109/ISSRE55969.2022.00028
https://doi.org/10.1109/ISSRE55969.2022.00028
https://birmingham.elsevierpure.com/en/publications/9635400f-7dd7-401e-8f30-14b005fd7597

Federated Learning for Tabular Data: Exploring
Potential Risk to Privacy

Han Wu∗
School of Computing
Newcastle University

Newcastle upon Tyne, UK
han.wu@ncl.ac.uk

Zilong Zhao∗
Department of Computer Science

Delft University of Technology
Delft, Netherlands
Z.Zhao-8@tudelft.nl

Lydia Y. Chen
Department of Computer Science

Delft University of Technology
Delft, Netherlands

lydiaychen@ieee.org

Aad van Moorsel
School of Computer Science

University of Birmingham
Birmingham, UK

a.vanmoorsel@bham.ac.uk

Abstract—Federated Learning (FL) has emerged as a po-
tentially powerful privacy-preserving machine learning method-
ology, since it avoids exchanging data between participants,
but instead exchanges model parameters. FL has traditionally
been applied to image, voice and similar data, but recently it
has started to draw attention from domains including financial
services where the data is predominantly tabular. However, the
work on tabular data has not yet considered potential attacks,
in particular attacks using Generative Adversarial Networks
(GANs), which have been successfully applied to FL for non-
tabular data. This paper is the first to explore leakage of private
data in Federated Learning systems that process tabular data. We
design a Generative Adversarial Networks (GANs)-based attack
model which can be deployed on a malicious client to reconstruct
data and its properties from other participants. As a side-effect
of considering tabular data, we are able to statistically assess the
efficacy of the attack (without relying on human observation
such as done for FL for images). We implement our attack
model in a recently developed generic FL software framework for
tabular data processing. The experimental results demonstrate
the effectiveness of the proposed attack model, thus suggesting
that further research is required to counter GAN-based privacy
attacks.

Index Terms—Federated Learning, GAN, Privacy, Tabular
Data

I. INTRODUCTION

Federated Learning (FL), or collaborative learning in some
literature, is an emerging paradigm for machine learning
models, specifically useful to maintain privacy for sensitive
personal information [1]. FL enables multiple clients (e.g., end
users, companies, institutes) to cooperatively train a machine
learning model without exposing their sensitive data (e.g. cus-
tomer identifiable information, healthcare records) [2]. During
the training process, each client iteratively trains a sub-model
using its local data and exchanges only the parameters of
the sub-model with a parameter server to construct a global
model. Clearly, this potentially alleviates or at least reduces the
privacy risks associated with traditional, centralised, machine
learning that rely on data sharing. Compelling use cases
of FL reported in the literature include a risk management
application for small and micro enterprise loans [3], an edge
computing platform for fire detection [4], and an anti-money
laundering system for banks [5].

∗Equal contribution

Despite the fact that in FL data itself is not exchanged, the
risk to privacy is not completely eliminated. Recent attack
models on FL have managed to reveal sensitive informa-
tion of the training data by studying the model parameters
exchanged [6]–[10]. These attacks have been performed on
image processing models, for instance, the attack model runs
on a malicious parameter server in [10] to reconstruct the
persons’ images owned by a specific client. To evaluate the
efficacy of such attack, one subjectively judges whether the
image generated by the attack model is close to the target one
[6].

In many application areas, such as financial services, data
does not come in the shape of images, but is tabular data, that
is, data consisting of information and values structured in rows
and columns (such as in spreadsheets). A typical example is
a table of customer records, and in such cases, tabular data
will typically contain sensitive information about individuals,
such as income and marital status. In recent years, researchers
have started to apply FL to tabular data, mostly focusing on
improving performance [2], [11], [12]. However, given the
sensitive nature of much tabular data, it is essential to consider
privacy implications of FL when applied to tabular data.

In this paper, we explore if it is possible to infer infor-
mation about the collective data of the various participants
based solely on the exchange of machine learning model
information. Particularly, our attack model assumes one of the
participants to be malicious, called adversary, aiming to infer
collective data properties about some data classes. We call
this a class property inference attack. The adversary adopts
advanced data synthesising technology, Generative Adversarial
Networks (GANs) [13], to construct samples of the target
class. Through these samples the adversary infers the statistical
property of the target class, i.e., the distributions of some
attributes.

Despite the great success that GANs have achieved in
image processing [14]–[16], GANs for tabular data synthesis
are still in the preliminary stage of development [17]–[19].
Therefore, attacks against FL for tabular data have not been
considered yet in the literature. In this paper, we therefore
propose a tabular GAN-based privacy attack approach against
FL systems. Our attack approach is inspired by GAN-based
attacks on image data such as studied by [20] and [9], but with

Bank A

Parameter Server

Bank B

Bank C

Central Server

Bank ABank B

Bank C

Local
data

Model
Parameters

(a) Centralised Learning (b) Federated Learning

Local
data

Fig. 1: Conventional Centralised Machine Learning and Federated Learning.

some differences: (i) Our attack model runs on a malicious
client, while [9] assumes the parameter server to be malicious;
(ii) [20] assumes that the adversary can change the architecture
of the global model (e.g., number of neurons), which is not
realistic and we deprecate this assumption in this paper; (iii)
[20] aims to reconstruct the class of images that look similar,
while our attack focuses on inferring statistic characteristics of
the specified class and we use quantitative methods to evaluate
the privacy risk, which is missing in [20].

To demonstrate the effectiveness of our attack, we perform
experiments on datasets that are not Independent and Identi-
cally Distributed (Non-IID). Non-IID means the data distribu-
tions of participating FL clients differ from each other or are
dependent. The Non-IID setting is particularly susceptible to
privacy leakage, as we will see. We introduce distance metrics
to quantitatively measure the statistical similarity between
the synthetic samples and target ones. In this sense, tabular
data allows for statistically more powerful assessment of the
success of attacks than image data, which relies on subjective
similarity assessment [6] using the human eye.

The results of our experiments show that an adversary
is able to infer considerable information about potentially
sensitive data properties. In tabular data for a finance scenario,
such data leakage could for instance pertain to income and
marital status of customers associated with the target class. We
also compare our GAN-based attack with the use of GANs
for synthetic data generation. Interestingly, an unexpected
outcome of our experiments is that for certain properties
associated with a data class, the data generated in our GAN-
based attack is more similar to the real data than that generated
by state-of-the-art synthetic tabular data generators. This is
particularly the case for data features that most influence the
classification.

In summary, the main contributions of this paper are:

• To the best of our knowledge, we are the first to explore
privacy risks in FL for tabular data. Related GAN-based
attacks have mainly focused on recovering image data
and the approaches are not directly applicable for tabular
data.

• We propose a class property inference attack on tabular
data classification models in FL, where the adversary
infers the property of the target class. Then we use
similarity metrics to evaluate the seriousness of such

private information leakage.
• We conduct extensive experimental evaluation to assess

the efficacy of our attack. On the Bank Loan and Credit
datasets, our model successfully infers private informa-
tion of the target class.

II. PRELIMINARY KNOWLEDGE

A. Federated Learning

Throughout this paper, we comprehend the machine learn-
ing model as a deterministic function Y = f(x1, x2, . . . , xd; θ)
parameterised by a set of parameters θ. We work with
the supervised learning models for tabular data classifica-
tion. Specifically, the input is a d-dimensional feature vector
(x1, x2, . . . , xd) such as the profile record of a customer
(e.g., age, gender, income). The output of the model Y has
a finite set of labels such as the types of customer’s loan
status (e.g., positive or negative). The training data is a set
of data records in the form of (x1, x2, . . . , xd, y), in which
y is the correct class label of the corresponding features.
The objective of model training is finding the optimal set of
parameters that fits the training data. In the training process,
the model normally starts from randomly selected parameters,
then the loss function L is computed to evaluate the distance
between the model output and the actual labels. We use
L(f(x1, x2, . . . , xd), y; θ) to denote the loss calculated on the
data record (x1, x2, . . . , xd, y) given the model parameters
θ. The model adopts the optimization function to iteratively
update its parameters, based on the loss computed on a
batch of training data records. The training finishes when the
parameters remain stable around certain values and the loss is
close to the minimum.

Considering the concrete example illustrated in Fig. 1, in
which multiple banks establish collaboration on developing
a machine learning model that predicts their customers’ loan
status. We assume such collaboration to be necessary because
each bank holds a small set of available customer data and
none of the banks is able to train a usable model on its own. In
the conventional machine learning approach, all banks upload
their local data to a central server for training, as depicted in
Fig. 1(a). The central server releases the final model to each
of the banks when the training is finished. This is effective
but under high privacy risk as the sensitive data is transferred
from one place to another.

2

Update
model

Generator
G

Real
Data

Synthetic
Data

Discriminator
D

Discriminator
 Loss

Generator
Loss

Random noise
z

Update model

Fig. 2: The general architecture of a GAN.

Federated Learning, introduced by McMahan et al. in [11],
is a distributed machine learning framework designed for
privacy preservation. Compared to the conventional training
methods that collect all data in one place for training, FL
allows multiple clients to jointly train a model, while keeping
their data stored locally. Fig. 1(b) presents the case of FL
paradigm, where each bank trains a model locally and shares
only the model parameters. We use θi to denote the parameters
of the local model fi on the i th client. As FL training starts,
each client trains the local model using the loss Li computed
on its local data, and then uploads its model parameters θi to
the parameter server. The parameter server aggregates these
local models based on the model averaging function:

θ∗ =

K∑
i=1

ωi · θi, (1)

where K is the total number of clients and ωi is the aggre-
gation weight assigned for the i th client. The clients download
the averaged model parameters θ∗ from the parameter server
to update its local model, and apply it for the next round
training. We use x to denote any input features in the shape
of (x1, x2, . . . , xd). The FL training finishes when the global
model, denoted by f∗(x; θ∗), converges and reaches a certain
accuracy on all clients.

In this paper we work on Horizontal FL, where the tabular
data on different clients share the same feature space but have
different sample space [21]. For instance, in the tabular dataset
held by the banks in Fig. 1, each row corresponds to one
particular customer. These banks have different rows of data,
i.e., different groups of customers, with the same personal
features. The case where the clients have different feature
spaces is called Vertical FL [2], [22], which is beyond the
scope of this paper.

B. Generative Adversarial Networks

In 2014, Goodfellow et al., for the first time, introduce
the Generative Adversarial Networks (GANs) to generate syn-
thetic image samples indistinguishable from the real ones [13].
The training strategy of the GAN is a zero-sum game between
two competing deep learning networks. The architecture of
this game is depicted in Fig. 2. The generator network G
takes random noise as input to generate synthetic samples,
which are fed to the discriminator network D together with the
real samples. D is trained to distinguish the synthetic samples
from the real ones, while G is trained to fool D. Both real
data and synthetic samples are fed into D and the output

is the predicted ’real’ or ’synthetic’ label of the input data,
which is combined with the actual input label to compute the
discriminator loss LD. The generator loss LG is computed to
evaluate the similarity between real and synthetic samples. LD
and LG are applied to update D and G respectively.

This game ends when D is unable to distinguish between the
samples from the real training data and the synthetic samples
generated by G. The objective of GANs can be summarised
as the equation below [13]:

min
G

max
D

E
x∼Pr

[logD(x)] + E
z∼Pz

[log(1−D(G(z)))] (2)

where Pr denotes the distribution of the real training dataset
x, and Pz is the distribution of the random input z for G. The
distribution of the generator’s output G(z) is denoted by Pg .
Ideally, the GAN expects to obtain Pr = Pg when the training
finishes.

III. RELATED WORK

Privacy Attacks on Federated Learning. Privacy attacks
on FL can be categorised into insider and outsider attacks
according to the sources of attacks [23]. Outsider attacks are
those carried out by eavesdroppers on the communication
network of FL system, or the users who can access the final
trained FL model. In this paper, the discussion of privacy
attacks on FL mainly focuses on the insider attacks, which
are launched by the FL server or the clients in the FL system.

Membership inference attacks have been extensively studied
[8], [24]–[26], in which the attacker aims to infer whether a
given data point has been used for training the model. Melis
et al. [8] first apply the membership inference attack against
FL to infer the presence of exact data points in other clients’
training data. The authors also managed to infer the properties
of a subset of the training data by using property classifiers.

Under the assumption that the final FL model is accessible,
previous reconstruction attacks on Machine Learning model,
such as the Model Inversion Attack (MIA), would apply [6],
[27]. MIA has been studied to reconstruct a recognisable
image of a person, given only access to the trained facial
recognition model and the person’s name. Hitaj et al. [20]
first apply GANs on the malicious client to reconstruct the
class representatives of other clients in FL. In [9] the authors
assume the parameter server to be the attacker and reconstruct
the training data on a specific client. However, only in the
special case where all class members are similar, the results
of those reconstruction attacks are close to the training data
[8]. For instance, all handwritten images of the digit ’3’ are
visually similar, thus the synthetic images of ’3’ look similar
to the real ones [20]. Additionally, the reconstruction attacks
mainly focus on image processing models, and the results are
just visually measured.

Tabular GANs. Beyond GAN’s success in generating
images [28], [29], generating realistic synthetic tabular data
using GANs has only recently been introduced. For instance,
medGAN is proposed in [30] to generate synthetic patient
records via a combination of an autoencoder and GANs. Park

3

et al. [17] propose table-GAN which adopts Convolutional
Neural Network (CNN) to synthesise tables in relational
databases. By contrast, conditional GAN is designed to gener-
ate a specific class of data [14]. CTGAN [18] constructs a spe-
cific conditional vector combined with a mechanism training-
by-sampling. For a chosen discrete column, CTGAN samples
training data by log-frequency which largely oversamples the
minor category. Zhao et al. design CTAB-GAN [19] and
CTAB-GAN+ [31] which can effectively synthesize diverse
data types in tabular data, including the mixed data type of
continuous and discrete variables and long-tail distribution.

IV. SCENARIOS AND ATTACK MODEL

A. Federated Learning Scenario

Our FL scenario follows the framework described in Sec-
tion II-A, additionally includes some details. We assume that
K(K ≥ 2) clients agree on a common learning objective and
collaboratively train a deep neural network model. The clients
reach a consensus on the structure of the neural network model
before training starts. We use Ti = {xi,yi}(1 ≤ i ≤ K) to
denote the tabular data stored locally on client i. The feature xi

consists of Nc columns with data from continuous variables,
namely continuous columns, and Nd columns with discrete-
valued data, called discrete columns. The target column, yi,
is a discrete column that contains the class labels of the rows.

In each round of FL, the client i trains its model locally
using Ti and uploads the model parameters θi to the param-
eter server, which aggregates these parameters according to
Equation (1). To simplify our experiments, we assume that
the parameter server should collect parameters from all clients
before aggregation, while in some work only a fraction of
clients is used [21].

B. Non-IID Data

We use xi = {Ci
1, . . . , C

i
Nc

, Di
1, . . . , D

i
Nd

} to denote the
features of tabular data on the i th client, where {Ci

1, . . . , C
i
Nc

}
are the continuous columns and {Di

1, . . . , D
i
Nd

} are the dis-
crete columns. The values in these columns are considered
as random variables that follow an unknown joint distribution
PTi

= {P(xi),P(yi)}. We study FL scenarios with data that is
not Independent and Identically Distributed (Non-IID), which
means PTi differs from client to client [21]. This is close to the
real world cases that none of the clients knows the distribution
of the overall dataset. Thus collaboration via FL is necessary
in order to obtain a usable prediction model.

Particularly, the Non-IID data in our FL scenario is label
skewed, that is, the distribution of labels, denoted by P(yi)
is imbalanced across clients. For instance, in Section VI we
design the case in which one client holds the dataset with 99%
negative class and 1% positive class, while the other client
holds 90% and 10% respectively.

Studies have shown that compared to centralised machine
learning, the performance degradation is almost inevitable for
FL processing Non-IID data [11], [32]. In our FL framework,
we design a similarity-based aggregation algorithm to com-
pute the aggregation weights assigned for the clients, which

mitigates the impact of Non-IID data. We discuss this further
in Section VI-B.

C. Malicious Client

Our attack model is actively conducted by a malicious
client, the adversary, in the FL scenario. Throughout the FL
process, the adversary pretends to be an honest client but aims
to extract the private information of a specific class, which the
adversary is not supposed to know. Note that there can be two
cases about the target class: (i) the adversary does not have
the data of the target class; (ii) the adversary has only a small
amount of the target class records, so the distribution cannot
represent the property of the class in the overall dataset. Both
cases are studied in Section VII.

Following the FL protocol, the adversary uploads its local
model parameters to the server and downloads the aggregated
results in each round. This way it behaves like a normal client
that collaborates with other clients to train the classification
model. To conduct the attack, the adversary runs the GAN
model locally, and manipulates its local dataset using the
generated samples. This ‘infects’ the model parameters that
the adversary uploads to the parameter server and affect
the aggregated model parameters based on an aggregation
function. Subsequently, the other clients are ‘infected’ and
their sub-models become ’too’ good at distinguishing the target
class, thus the parameters uploaded leak more information
of the target class. The details of the attack procedure is
introduced in the next section.

V. PROPOSED PRIVACY ATTACK

In this section, we introduce the workflow of the proposed
class property inference attack.

A. Attack Target and Outline

Our class property inference attack is not targeted at re-
constructing the actual rows in the real tabular data, e.g., the
records of some specific customers. Instead the adversary aims
to infer only the properties that characterise the target class.
Let class a be the target class of our attack, then the class
property refer to the distributions of the features in class a
data, i.e., P(x | y = a). Particularly, we focus on evaluating
the efficacy of our attack model to infer the distributions of
sensitive columns in the targeted real data. In our work, the
sensitive columns are selected based on the following criteria:

• The content of the column contains personal information
that needs to be protected from public view. The typical
examples include age, income and marital status infor-
mation of customers.

• The properties of the column values, e.g., range and
distribution, can be potentially exploited by scammers or
competitors.

• The column should have a certain effect on the classi-
fication model’s prediction. In other words, the selected
column has a correlation with the prediction target. Oth-
erwise in real FL scenarios, it can problematic to use
irrelevant private features for model training.

4

Samples for
Training

Client 1
(Adversary)

Client 2

b

c

Data Label

a

c

Data Label

Client 3
a

b

Data Label

Discriminator

Generator

Parameter
Server

θ*

Generator
 Loss

Discriminator
 Loss

Probabilities
of labels

Local Data

Copy θ*

Samples for Injection

Random noise

Data Poison

GAN training

Target label 'a'

Injected
samples

a b c
0.7 0.2 0.1

θ*

θ*θ
A

θ
2

θ
3

Fig. 3: GAN-based Attack on Federated Learning.

To conduct the attack, the adversary trains a GAN locally
to generate synthetic samples of class a. Specifically, the
network architecture of the generator G follows the tabular
GAN structure proposed in [18]. A GAN discriminator D
requires both the real and synthetic samples as input, as
illustrated in Fig. 2. However, in our attack, the GAN runs
locally on the adversary client and thus real samples of the
class a are not available. The solution is to let the adversary
employ the global model f∗(x; θ∗) as its GAN’s discriminator.
This is possible because the global model is an aggregation
of the classification models trained on all clients, some of
which use the class a data as input. The adversary exploits
this attribute to learn the distribution of the target class data
without directly accessing class a data.

Following the idea of image GAN-based attack in [20], we
employ a data poison method that surreptitiously influences the
FL process into leaking more information about the target class
a. However, [20] changes the global model output dimension
from M to M + 1 (the additional one for judging fake/real
data), given the fact that there are only M classes in the
dataset. This is not realistic in our case because it is suspicious
for the adversary to change the output dimension. In our
approach, the adversary injects a number of synthetic samples
into its local training dataset but changes the labels of those
injected samples to class b. When the adversary trains the local
classification model with the poisoned training dataset, the
model sees a number of samples whose distribution is similar
to class a but are actually labeled as b. Consequently, the
FL system needs to work harder in order to distinguish these
injected samples from the real class a data. The discriminator
finally benefits from this impact as the global model becomes
better at classifying class a.

B. Class Property Inference Attack

The procedure of our class property inference attack is
depicted in Fig. 3. For simplicity, we consider the case in
which three clients (client 1, 2, and 3) collaboratively train a

classification model. Overall, there are three types of labels
to be predicted in the training data, class a, b, and c. To
better elaborate our idea, the example in Fig. 3 follows the
label-skewed Non-IID data scenario discussed in Section IV-B.
Specifically, each client is assumed to own the data of only
two different classes, i.e., Client 1 has classes (b, c), Client 2
has classes (a, c), Client 3 has classes (a, b). As illustrated in
the figure, Client 1 is assumed to be the adversary in the FL
system, which aims to infer the properties of the class a data
(highlighted in green). The steps of the attack are summarised
as follows:

(i) The clients, including the adversary, establish a consensus
on the architecture of the classification model. The param-
eter server computes the aggregation weights based on
the statistic information collected from the clients. This
initialisation process is explained in Section VI-B.

(ii) The FL process runs for a number of rounds, following
the protocol introduced in Section IV-A. In each round
the parameter server aggregates the parameters of models
uploaded by all clients and distributes the global model
to each of them.

(iii) Specifically, within the above step, the normal partici-
pants Client 2 and Client 3 follow the steps below:

1) The client downloads the global model parameters θ∗

from the parameter server to update its local model.
2) The client trains the updated model for a few epochs

using its local data, i.e., Client 2 with class (a, c) data,
Client 3 with class (a, b) data.

3) The parameters of the trained local model θi is up-
loaded to the parameter server.

(iv) Meanwhile, the adversary uploads and downloads model
parameters in the same way as normal clients, but with
different training methods:

1) The adversary downloads the global model parameters
θ∗ to update its local model, and makes a copy of
f∗(x; θ∗) to be the discriminator D.

5

2) The generator G takes random noise as input, and
generates samples to emulate class a data. Note that
the output dimension of G is identical to the feature
dimension of the training data, since G aims to generate
one particular type of data.

3) The adversary trains D with both its local real data and
the samples generated by G. Here we need to train with
the real data because the performance of D is unstable
in the early stage of FL training. The output of D is a
multinomial probability distribution of being classified
into the three classes.

4) The discriminator loss and generator loss are computed
and used to update D and G respectively.

5) The adversary generates samples from the G and as-
signs label b to these samples.

6) The real training data is mixed with the generated
samples.

7) The adversary trains its local model on the poisoned
dataset.

8) The parameters of the adversary’s local model, θA is
uploaded to the parameter server.

(v) The FL system finishes training when the global model
f∗(x; θ∗) converges and reaches a predefined accuracy
on all clients.

C. Quantitative Analysis of Privacy Leakage

In our work, we evaluate the efficacy of the proposed attack
via similarity analysis. The more similar the synthetic samples
are to the targeted real data, the more serious the privacy
leakage is, i.e., the more effective the attack model is.

In the attacks on image data, the similarity between gen-
erated images and the target ones is normally evaluated
by people’s subjective opinions. For instance, in order to
quantify the efficacy of their attack on facial recognition
models, Fredrikson et al. perform experiments using Amazon’s
Mechanical Turk to see if human can use their generated
facial images to correctly pick the target person from a list
[6]. The authors take the accuracy of human judgement as
the evaluation metric of similarity. Such evaluation is not
applicable for tabular data since the class of the generated
records can not be simply judged by observation.

In this paper, two metrics are used to measure the sim-
ilarity between synthetic tabular samples and the targeted
real tabular data: the Jensen-Shannon Divergence (JSD) and
the Wasserstein Distance (WD). Specifically, we use JSD to
calculate the similarity distance between two discrete columns,
and WD for the distance between two continuous columns.
The JSD between two probability vectors p and q is defined
mathematically as:

JSD(p, q) =

√
KL(p||m) +KL(q||m)

2
(3)

where m is the point-wise mean of p and q, and KL is the
Kullback-Leibler divergence [33]. The JSD distance metric is
symmetric and bounded between 0 and 1 which makes it easier
to interpret the result. But one limitation of JSD is that it

TABLE I: Dataset used in our experiments.

Dataset Bank Loan Income Type

Number of Records 5,000 10,000
Target column Personal loan Income type

Sensitive columns

Age, income,
family members,
mortgage,
credit card usage

Gender, family members,
income, marital status,
number of children,
age, education type

Accuracy, AUC on CL 0.9850, 0.9951 0.9840, 0.9780
Accuracy, AUC on FL 0.9770, 0.9849 0.9725, 0.9921

is impossible to calculate JSD distance if two distributions
have no overlapping. In practice, the calculation demands the
vectors p and q have the same length, which makes it not
suitable for continuous columns.

The WD between two distributions u and v is defined as:

WD(u, v) = infπ∈Γ(u,v)

∫
R×R

|x− y|dπ(x, y) (4)

where Γ(u, v) is the set of probability distributions on R×R
whose marginals are u and v on the first and second factors,
respectively. It can be interpreted as the minimum cost to
transform one distribution into another where the cost is given
by amount of distribution to shift times the distance it must
be shifted. JSD and WD are also applied in the aggregation
function of our FL framework introduced in Section VI-B.

We use T ◦ = {x◦,y◦}(y◦ = a) to denote the tar-
geted tabular data. The sensitive columns in T ◦ consist of
n continuous and m discrete features, denoted by x◦

p =
{C◦

1 , . . . , C
◦
n, D

◦
1 , . . . , D

◦
m}. Let T ′ = {x′,y′} be the syn-

thetic tabular samples generated by the attack model, and x′
p =

{C ′
1, . . . , C

′
n, D

′
1, . . . , D

′
m} be the sensitive columns, then the

similarity between T ◦ and T ′ is quantitatively measured by
JSD(D◦

i , D
′
i)(i ∈ [1,m]) and WD(C◦

i , C
′
i)(i ∈ [1, n]).

VI. EXPERIMENTAL SETUP

In our experiments, we focus on the scenarios of digital
finance, where the data processed are financial data and the
sensitive columns are considered commercial confidentiality.
We note that the associated code is available upon request.

A. Datasets

Bank Loan dataset. The dataset contains the records of
5,000 customers from Thera Bank1. The prediction target is
a binary category that indicates whether the individual has
applied for the personal loan. After removing the irrelevant
features, the dataset has 11 features, as listed in Table I. In the
five selected sensitive columns, four are continuous columns
while family members is a discrete column.

Income Type dataset. The dataset is sampled from the
Credit Card dataset2 and contains the records of 10,000 credit
card applicants. Instead of the previous binary prediction

1https://www.kaggle.com/datasets/itsmesunil/bank-loan-modelling
2https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction

6

target, we choose the attribute income type as our target col-
umn, which has three different classes: working, commercial
associate, and state servant. There are 15 features in the
dataset, including seven sensitive columns, which consist of
five discrete columns and two continuous columns (age and
income), as depicted in Table I.

Bank Loan dataset is for binary classification scenario,
in which the records are classified into one of two classes,
normally positive or negative. The case of classifying records
into one of three or more classes is called multi-class classi-
fication, which we study using the Income Type dataset. As a
benchmark, we first train centralised machine learning models
with the datasets. On each dataset, we use a fully connected
deep neural network, known as multi-layer perceptron to
predict the target labels. Each dataset is split into training
set for model training and test set for evaluation. As listed
in Table I, the centralised learning (CL) prediction accuracy
reaches 0.9850 on the Bank Loan test set and 0.9840 on the
Income Type test set.

In the FL experiments we split the dataset into (K + 1)
subsets, where K is the number of clients in the FL system.
Each client owns one of the subsets, and the remaining subset
is used as the held-out test set. In the case of FL with
Non-IID data, the prediction accuracy of the classification
model is generally lower than in the centralised learning. We
mitigate this deterioration in accuracy by using a similarity
based aggregation algorithm in our FL system, which will be
introduced in the next section. Benefiting from this similarity
based aggregation algorithm, the FL prediction accuracy with
Non-IID data remains above 0.97.

B. Federated Learning Framework for Tabular Data

In previous FL work such as [8], [21], the authors compute
the aggregation weights based only on the size of local data,
which is not comprehensive, especially when it comes to
non-IID data. [34] proposes a way to calculate aggregation
weights based on class distribution, but it only works for single
label data. Since tabular data contains multiple columns, each
column can have different distribution and data type (e.g.,
discrete and continuous). Therefore, the previous weighting
algorithm cannot be directly applied. [12] designs a mecha-
nism to calculate aggregation weights in FL for tabular data
based on (i) data similarity between local and global and (ii)
size of data. When calculating data similarity, [12] evaluates
the distance between local and global distribution column by
column.

Discrete columns use the Jensen-Shannon Divergence
(JSD) [35] to calculate the distance between local and global
class distribution. For each discrete column j and client i,
[12] computes the similarity distance JSDij between local
and global class distribution according to Eq. (3). Concretely,
class distribution is represented by a probability vector (i.e.,
p and q in Eq. (3)) based on image class frequency. Local
and global vectors have the same length (i.e., the number of
all classes in the group) and corresponding bit in all vectors
should represent same class.

Parameter Server② Calculate WD/JSD for
each column

Client j

Continuous
columns

Discrete
columns

Category frequency distribution Variational Gaussian Mixture

③ Calculate ωj using
the normalised JSD/WD

Client 1

......

①

......

Client K

Local data

Fig. 4: The initialisation process before FL training.

Continuous columns use the Wasserstein Distance
(WD) [36]. For client i, it first estimates a Variational Gaussian
Mixture (VGM) for their continuous column j and sends the
V GMij to server. Server samples the continuous column Cij

using V GMij , sampling size is the same as the local data
size of client i. Server gathers all the samples: Cj = {C1j ,
C2j , ... CKj} where K is the number of clients, and uses Cj

as an approximation of global distribution of column j. Then
the distance between local and global distribution – WDij is
calculated by Eq. (4) between Tij and Tj for each client i of
continuous column j.

Once each client calculates the distances for all the columns,
a normalization process is applied on these distances com-
bined with size of local data to calculate the final aggrega-
tion weights in Eq. (1). The above initialisation process is
summarised in Fig. 4. The implication of this aggregation
algorithm is, the more similar the client’s local data is to
the overall dataset, the higher weight it gets in the model
aggregation.

Our FL framework is implemented using the Pytorch RPC
framework. This choice makes it easy to control the flow
of the training steps from the server. Clients just need to
join the group, then wait to be initialized and assigned work.
To parallelize the training across all clients, RPC provides
a function rpc async() which allows the server to make
nonblocking RPC calls to run functions at a client.

One drawback of current RPC framework from Pytorch
v1.8.1 is that it does not support the transmission of tensors
directly on GPU through RPC call. This means that each time
when we collect or update the model weights we need to pay
an extra time cost to detach the weights from GPU to CPU
or reload the weights from CPU to GPU. In this work we
ignore the communication cost and focus only on the privacy
concerns.

C. Model Setup

For all the experiments we conduct preprocessing on the
dataset to speed up the training process. The continuous
columns are scaled into the [−1, 1] range while the discrete

7

TABLE II: The Network Architectures in FL Experiments

Bank
Loan

dataset

Classifier/
Discriminator

LL(20, 32)
ReLU−−−−→ LL(32, 64)

ReLU−−−−→
LL(64, 128)

ReLU−−−−→ LL(128, 256)
ReLU−−−−→

LL(256, 128)
ReLU−−−−→ LL(128, 64)

ReLU−−−−→
LL(64, 32)

ReLU−−−−→ LL(32, 2) → Sigmoid()

Generator
LL(128, 256) → BN(256)

ReLU−−−−→
LL(384, 256) → BN(256)

ReLU−−−−→
LL(640, 20) → Tanh()

Income
Type

dataset

Classifier/
Discriminator

LL(62, 64)
ReLU−−−−→ LL(64, 128)

ReLU−−−−→
LL(128, 256)

ReLU−−−−→ LL(256, 128)
ReLU−−−−→

LL(128, 64)
ReLU−−−−→ LL(64, 3)

Generator
LL(128, 256) → BN(256)

ReLU−−−−→
LL(384, 256) → BN(256)

ReLU−−−−→
LL(640, 62) → Tanh()

columns are one-hot encoded. As introduced in Section V, the
FL system with an adversary involves three neural network
models: (i) the classification model (classifier), denoted by
f∗, (ii) the discriminator D which shares the same architec-
ture with the classification model, (iii) the generator G. The
network architectures for the Bank Loan and Income Type
datasets are depicted in Table II. LL represents the Linear
Layer and ReLU, arrows denote the links between the layers,
Sigmoid and Tanh are the activation functions used. Batch
normalisation, denoted by BN, is adopted at the intermediate
layers of the generator. The architecture of G refers to the
work in [18].

In the FL training process, we adopt Adam optimizer in f∗

with the learning rate of 0.0006 for the Bank Loan dataset, and
0.001 for the Income Type dataset. In the experiments where
the adversary is enabled, we use the Adam optimizer in D
with the learning rate of 0.0002 and the weight decay of 1e-6.
SGD optimizer is used in the G and the learning rate is set to
0.0002 with the momentum of 0.9. We arrived at these values
based on our experience running the experiments with the two
tabular datasets. In both normal and attack experiments, each
client trains f∗ for 10 epochs before uploading the model
parameters to the parameter server. We finish the FL training
and save the models for evaluation when the performance of
f∗ stops improving on each client.

In the experiment with an adversary client, we do the normal
FL training for the first few rounds and run the attack model
when the accuracy of f∗ reaches a specified threshold (e.g.
0.85) on the adversary’s local data. This makes the training of
the GANs more efficient as D, whose parameters are copied
from f∗, starts from a considerable accuracy. This schema is
reasonable in realistic as the adversary stays inactive until it
observes that f∗ reaches a functional level on its local data.
This threshold also works for the data poison process, which
means the adversary will not inject new samples to its local
dataset until f∗ achieves a certain accuracy to classify the
poisoned dataset.

VII. EXPERIMENTAL RESULTS

In this section we evaluate the efficacy of the proposed
attack by comparing the synthetic samples with the targeted
real data. We design use cases for both binary and multi-class
classification scenarios. We run two clients in the experiments
with the Bank Loan dataset, and three clients with the Income
Type dataset. One of the clients is selected to play the role of
adversary, and we report on the synthetic samples created in
each round. All experiments are performed on a workstation
running Ubuntu 20.04 LTS equipped with a 3.9 GHz CPU
Intel Xeon W-2245, 16 cores, 128GB RAM and an Nvidia
Quadro RTX6000 GPU card. In our experiments, each client
represents a finance company that joins the FL system. The
computing and communication resources are assumed to be
sufficient and stable since the hardware devices and network
are supposed to be deployed at enterprise level. Therefore, we
do not consider the case with heterogeneous clients, which
is commonly considered in FL system based on smartphone
devices [37].

A. Class Property Inference

Binary classification. We use the Bank Loan dataset to
study a binary classification model f∗

b . The prediction target
personal loan has two categories: negative indicates the cus-
tomer has never accepted a personal loan offer from the bank,
while positive indicate the customer has previously taken such
a loan. We select the positive class as the target class of our
inference attack. In our experiments, the adversary owns 50%
of the overall dataset, the other client holds 40%, and the
remaining 10% is used as the test set for evaluating f∗

b .
To demonstrate privacy leakage most effectively, the ad-

versary is designed to own only a small number of positive
records, i.e., 1% of its local data. Hence, the adversary has
relatively little knowledge about the properties of the positive
class due to the insufficient sample size. By contrast, the other
client owns most of the positive records in the overall dataset.

Fig. 5 illustrates the inference results of the positive cus-
tomers’ income distribution during the FL training process. In
the figures, the green (right-most) curve represents the income
distribution of all positive customers in the overall dataset. The
curve filled with blue (shaded) area is the income distribution
of the synthetic samples generated by the adversary’s GAN
in different FL training rounds. For comparison, we also plot
the positive customers’ income distribution that the adversary
observes from its local data, represented by the red (left-most)
curve. The figure displays the results for increasing number of
training rounds, from 200 to 1000. The FL training finishes
at round 1000 when the classification model f∗

b reaches
convergence.

An intuitive, indicative way to assess the efficacy of our at-
tack is to visually check how well the distribution of synthetic
samples (the curve filled with blue area) fits the distribution
of all target data (the green curve). (Note, a formal assessment
using distance measures is carried out in the next section.) We
observe that the synthetic samples are not yet able to emulate
the actual income distribution of positive customers at earlier

8

Real data (target class) on adversary

Synthetic
samples

Real overall data
(target class)

Fig. 5: The distribution of positive customers’ income, for increasing training rounds, using the Bank Loan dataset. The red
(left-most) curve is for the adversary’s local data; The green (right-most) curve is for the overall dataset; The curve filled with
blue (shaded) area is from the synthetic samples generated by the adversary’s GAN. For increasing FL training rounds, the
generated distribution increasingly matches the overall data.

rounds (round 200 to 600). As the FL training progresses,
the distribution of synthetic samples converges and stabilises
within the same range of the actual distribution (round 900 to
1000). This is because the classification model f∗

b becomes
better at distinguishing positive from negative records, and
consequently the GAN benefits from the discriminator D,
whose parameters are copied from f∗

b .
The results of the class property inference attack illustrates

how private information is leaked. The adversary constructs
a distribution that reasonably closely matches the distribution
the real data. More precisely, where the adversary initially
would conclude from its own data that positive customers
have an income level between about 50 and 150 (the red
curve in Fig. 5), by using the proposed attack, the adversary
manages to capture the information that it is not supposed
to know: positive customers actually have a income level
approximately between 100 and 200 (the blue shaded area).
Such privacy violation defeats the reliability of distributed
privacy-preserving learning.

Multi-class Classification. For FL for multi-class classi-
fication we us the Income Type dataset. The overall dataset
consists of three classes: Working (52.4%), Commercial as-
sociate (33.6%) and State servant (14%). The number of
participants (clients in FL context) is three, and each client
owns just two classes of data. Specifically, the adversary has
data about classes (Working, Commercial associate), while
the other two hold (Working, State servant) and (Commercial
associate, State servant) respectively. The target class of our
attack is the properties of the State servant data, e.g., marital
status, secondary education, etc.

Fig. 6 illustrates the inferred distribution of State servants’
marital status over FL training rounds. Marital status is a
discrete column including five categories. In early rounds,
the GAN is still generating relatively arbitrary outputs, as
illustrated by the red bars in round 200 and 240 (the red bar is
the right of the two bars for each value on the horizontal axis).
After 500 rounds of FL training, the attack model captures
the private information that most State servants are married.

Finally, the inferred distribution stabilises and approaches the
actual distribution, as observed from the figures in round 710
and 720. In addition to the example depicted in Fig. 6, the
adversary can infer other private properties from the synthetic
samples. For instance, in the synthetic samples, 64% of the
State servants have secondary education and 34% have higher
education. This observation is close to the characteristic in the
real overall dataset, where the proportions are 58% and 39%
respectively.

B. Similarity Analysis

As introduced in Section V-C, we use the distance measures
JSD and WD to quantify the similarity between synthetic
tabular samples T ′ and the targeted real tabular data T ◦. We
calculate JSD between T ′ and T ◦’s discrete columns, and
WD between continuous columns. A smaller value of JSD/WD
indicates that the values in the two columns are more closely
distributed (specifically, JSD/WD for two identical columns
equals to 0).

Fig. 7 depicts the WD of income between the T ◦ and
T ′, for increasing number of FL training rounds, for the
binary classification problem (the Bank Loan dataset). The
WD distance metric version of the results visualized in Fig. 5
for the income class property, is given in Fig. 7, the curve ’WD
with data poison’. The WD/JSD counterpart of the results for
multi-class classification after 720 rounds, visualized in the
right-most chart of Fig. 6, is in Fig. 9 (the left most column
for each of the properties given on the horizontal axis).

Data Poisoning. For the setting of data poisoning, it
is recommended that the amounts of poisoning data should
not exceed 5% of the adversary’s local training data size.
Otherwise it is difficult for the FL global model to converge.
Through our experimental results, it turns out that the use
of data poisoning (see Section V-A) is important for better
convergence of the distance metrics. To show this, we display
in Fig. 7 results with data poisoning enabled and with data poi-
soning disabled, respectively, while all other settings remain
the same. Fig. 7 indicates that without data poisoning (the

9

Fig. 6: The distribution of State servants’ marital status, for increasing training rounds, using the Income Type dataset. Each
bar denotes the density/proportion of records with the specific marital status. For increasing training rounds, the generated
distribution increasingly matches the overall data.

200 400 600 800 1000
FL training round

0.1

0.2

0.3

0.4

0.5

0.6

Si
m

ila
rit

y
di

st
an

ce

WD with data poison
WD without data poison

Fig. 7: The WD similarity distance between synthetic samples
and the targeted real data, for increasing FL training rounds,
using the Bank Loan dataset. Results are shown with and
without data poison, indicating that using data poison achieves
better convergence.

dashed curve), WD converges less than with data poisoning
enabled. It is observed that the WD fluctuates before the FL
system finishes training. This is due to the fact that every time
the adversary copies the parameters from the global model f∗,
it builds a new D which requires several rounds of training
before the GAN is stable.

C. Comparison with Tabular GANs for Synthetic Data

To the best of our knowledge, this paper is the first to use
tabular GANs for privacy attacks in FL, and therefore there is
no work we can directly compare our approach to. However, a
comparison is possible with GANs used for the generation of
synthetic tabular data, in particular CTGAN [18], CTAB-GAN
[19] and CTAB-GAN+ [31].

We train the advanced tabular GANs until convergence (300
epochs in our experiments) and calculate the JSDs and WDs
between T ◦ and the synthetic samples generated by these
advanced tabular GANs. Note that these advanced tabular
GANs are trained in a single process independent of the FL
system, and they all require the targeted real dataset T ◦ as

input. The synthetic samples of our approach are generated by
the adversary’s GAN in the last round of FL training, round
1000 for the Bank Loan dataset (last figure in Fig. 5) and
round 720 for the Income Type dataset (last figure in Fig. 6).

The similarity results for the targeted class in Bank Loan
dataset are depicted in Fig. 8. Note that in Fig. 5, we only
showed the results for income, here we present the results for
other class properties as well. One would have expected that
the synthetic samples in our approach have a larger similarity
distance than the advanced tabular GANs’ synthetic samples,
since our GAN is not trained with the targeted real data.
However, we can observe that the WD of our approach even
outperforms CTGAN and CTAB-GAN in terms of the age
and income class properties. We speculate that the reason
for this is that these two columns have significant impacts
on the FL classification model and consequently it becomes
easier for our GAN to capture the distributions. By contrast,
the mortgage and family members distributions show a larger
WD/JSD between the adversary’s constructed data and the
targeted real data. This is because the distributions are difficult
to emulate (mortgage is a long tail distribution and most
values are 0) and the features contribute less to the global
classification model.

The similarity results obtained for the multi-class classifica-
tion experiments are given in Fig. 9. With respect to the class
properties, only income and age are continuous values and the
rest are discrete. One can observe that the similarity of our
synthetic samples outperforms the advanced tabular GANs in
terms of the number of children, income and education type
features. In the targeted real dataset, the gender ratio of the
State servant class is approximately 0.3 (male/female). Our
approach fails to infer this property and generates samples
with the gender ratio of 0.84. The JSD/WDs of other sensitive
columns in our synthetic data are comparable with the results
obtained from the advanced tabular GANs.

D. Discussion

Our class property inference attack aims at inferring the
macro-level tabular data property of the target class. While

10

Age Income Credit card usage Mortgage Family members
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
JS

D/
W

D
Our approach
CTGAN

CTAB-GAN
CTAB-GAN+

Fig. 8: The similarity distance between the targeted real data
(positive class of Bank Loan dataset) and synthetic samples.

such information leakage does not reveal the actual private
data of any individual, it can be detrimental to the FL clients,
e.g., financial companies in a real-world setting. Moreover, it is
difficult to detect our attack from either the client or parameter
server perspective. Unlike attack models that rely on white-
box access to the global model [9], [22], [27], our adversary
only requires black-box access and does not modify the global
model directly. Thus our attack’s impact on the final trained
global model is negligible: throughout our experiments, the
accuracy of the global model is above 0.97.

One limitation of our attack is that the inference result
depends on the correlations between the features and the target
class. Therefore the distributions of ’weak’ features are not
likely to be reconstructed by the generator. In practice, the FL
clients are suggested to include as many ’weak’ features as
they can to mitigate such attack.

Existing record-level defenses such as Differential Privacy
are proven to be less effective on property inference attacks
[20], [38]. For other counter measures, we provide suggestions
from a software engineering perspective. FL is an emerging
technology and its Software Development Life Cycle is still
being explored. Our work encourages software engineers to
advance this life cycle and improve FL’s security. In the
requirement analysis phase, engineers will pay more attention
to the clients with highly imbalanced training data since these
clients have the motivation to conduct such attack. Counter
measures at the architecture design level may mitigate the
impact of our attack. For instance, if the clients’ training data
can be kept unchangeable throughout the FL process, then data
poison is prevented. Our work intends to point software and
system engineers to this potential threat and to inspire research
in effective detection methods.

VIII. CONCLUSION

In this paper, we propose, implement and evaluate a GAN-
based privacy attack against Federated Learning that processes
tabular data. The attack enables a malicious client to infer
properties that characterise a specific class, without actually
having access to the data. The malicious client runs a tabular
GAN locally, exchanges model parameters per the usual FL
protocol, and utilises the global model as its discriminator.

Gender

Number of Children Income
Education Type

Marital status
Family members Age

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

JS
D/

W
D

Our approach
CTGAN

CTAB-GAN
CTAB-GAN+

Fig. 9: The similarity distance between the targeted real data
(State servant class of Income Type dataset) and synthetic
samples.

Synthetic samples generated by our GAN reveal potentially
sensitive properties of the target class. We use similarity
metrics to evaluate the seriousness of this privacy risk in
our experiment. The results show that our GAN-based attack
manages to infer the distributions of continuous and discrete
properties exhibited by the target class data with increasing
accuracy for more rounds of model updates. Interestingly, our
approach to generate synthetic samples for a privacy attack at
times outperforms state-of-the-art GAN-based synthetic data
generators, which are trained with the actual targeted data.
This is especially the case for data properties that heavily
influence the classification outcome and it will be worth
investigating our approach for the generation of synthetic data.
We finally note that our attack is difficult to detect since the
adversary behaves like a normal client. In future work, we
aim to investigate counter measurements against this attack,
including client-level differential privacy.

IX. ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Physical
Sciences Research Council for the projects titled “Fintrust:
Trust Engineering for the Financial Industry” (EP/R033595/1).

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving ver-
tical federated learning for tree-based models,” in The 46th International
Conference on Very Large Data Bases (VLDB), 2020, pp. 2090–2103.

[3] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36,
2020.

[4] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen,
H. Yu, and Q. Yang, “Fedvision: An online visual object detection
platform powered by federated learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 08, 2020, pp. 13 172–
13 179.

[5] M. Alazab, S. P. RM, M. Parimala, P. Reddy, T. R. Gadekallu, and Q.-V.
Pham, “Federated learning for cybersecurity: concepts, challenges and
future directions,” IEEE Transactions on Industrial Informatics, 2021.

11

[6] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[7] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan,
“cpsgd: Communication-efficient and differentially-private distributed
sgd,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[8] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 691–706.

[9] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 2512–2520.

[10] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[12] Z. Zhao, R. Birke, A. Kunar, and L. Y. Chen, “Fed-tgan: Feder-
ated learning framework for synthesizing tabular data,” arXiv preprint
arXiv:2108.07927, 2021.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[14] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[15] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, 2016.

[17] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” in The 44th
International Conference on Very Large Data Bases (VLDB), 2018.

[18] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[19] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan: Effective table
data synthesizing,” in Asian Conference on Machine Learning. PMLR,
2021, pp. 97–112.

[20] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603–618.

[21] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data:
A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.

[22] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 181–192.

[23] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
arXiv preprint arXiv:2003.02133, 2020.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[25] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A.
Gunter, and K. Chen, “Understanding membership inferences on well-
generalized learning models,” arXiv preprint arXiv:1802.04889, 2018.

[26] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). IEEE, 2019, pp. 739–753.

[27] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An {End-to-End} case study of person-
alized warfarin dosing,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 17–32.

[28] S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Al-
barqouni, and A. Mukhopadhyay, “Gans for medical image analysis,”
Artificial Intelligence in Medicine, vol. 109, p. 101938, 2020.

[29] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[30] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” in Machine learning for healthcare conference. PMLR,
2017, pp. 286–305.

[31] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan+: Enhancing
tabular data synthesis,” arXiv preprint arXiv:2204.00401, 2022.

[32] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[33] J. M. Joyce, Kullback-Leibler Divergence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 720–722. [Online]. Available:
https://doi.org/10.1007/978-3-642-04898-2 327

[34] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L. Merrer, “Fegan:
Scaling distributed gans,” in Proceedings of the 21st International
Middleware Conference, ser. Middleware ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 193–206. [Online].
Available: https://doi.org/10.1145/3423211.3425688

[35] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.

[36] A. Ramdas, N. G. Trillos, and M. Cuturi, “On wasserstein two-sample
testing and related families of nonparametric tests,” Entropy, vol. 19,
no. 2, 2017. [Online]. Available: https://www.mdpi.com/1099-4300/19/
2/47

[37] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” in Proceedings of the Web Conference
2021, 2021, pp. 935–946.

[38] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential
privacy for robustness and privacy in federated learning,” in 29th
Network and Distributed System Security Symposium (NDSS 2022),
2022.

12

