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Abstract
We study the mirror symmetry on the singular locus of the Hitchin system at
two levels. First, by covering it by (supports of) (BBB)-branes, corresponding
to Higgs bundles reducing their structure group to the Levi subgroup of some
parabolic subgroupP, whose conjectural dual (BAA)-braneswe describe.Heuris-
tically speaking, the latter are given by Higgs bundles reducing their structure
group to the unipotent radical of P. Second, when P is a Borel subgroup, we are
able to construct a family of hyperholomorphic bundles on the (BBB)-brane and
study the variation of the dual under this choice. We give evidence of both fami-
lies of branes being dual under mirror symmetry via an integral functor induced
by Fourier–Mukai in the moduli stack of Higgs bundles.
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1 INTRODUCTION

1.1 Brief description

In this paper, we study the action of mirror symmetry on the singular locus of the moduli spaceM𝑛 of Higgs bundles. We
proceed first by describing hyperholomorphic subvarieties covering M

sing
𝑛 , those become (BBB)-branes after specifying

a hyperholomorphic bundle on them. Then, we construct complex Lagrangian subvarieties, supporting (BAA)-branes
after being equipped with a flat bundle, and we conjecture that behind these constructions stands a pair of mirror dual
branes. Each of the previous pairs of branes is naturally associated with a parabolic subgroup of GL(𝑛,ℂ). When this
parabolic is the Borel subgroup, we find ourselves over the locus of totally reducible spectral curves, namely, those with a
maximal number of irreducible components, cf. Equation (3.1). A more complete analysis is possible in this case and we
are able to construct families of flat (hence hyperholomorphic) bundles giving rise to (BBB)-branes. These (BBB)-branes
only intersect Hitchin fibers associated with coarse compactified Jacobians where no Fourier–Mukai transform has been
defined. We then consider the Fourier–Mukai transform between the associated stacks and prove that it restricts to a
transform whose source is the support of the (BBB)-branes associated with the Borel subgroup. Our biggest contribution
is the description of the behavior of these (BBB)-branes under such a transform, showing that it returns a sheaf supported
on the complex Lagrangian subvarieties we have previously described.

Math. Nachr. 2023;1–39. © 2023 Wiley-VCH GmbH. 1www.mn-journal.org

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202000267 by T
est, W

iley O
nline L

ibrary on [22/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-5133-7821
https://orcid.org/0000-0002-1743-7124
mailto:emilio.franco@tecnico.ulisboa.pt
mailto:a.peon-nieto@bham.ac.uk
http://www.mn-journal.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmana.202000267&domain=pdf&date_stamp=2023-02-21


2 FRANCO and PEÓN-NIETO

1.2 Mathematical background and motivation

Hitchin introduced in [35] Higgs bundles over a smooth projective curve 𝑋 and soon it was noted that their moduli space
M𝑛 carries a very interesting geometry [35, 52, 59, 60]. In particular, M𝑛 can be endowed with a hyperkähler structure
(𝑔, Γ1, Γ2, Γ3) [16, 20, 35, 59, 60] and fibers over a vector space ℎ ∶ M𝑛 → H with Lagrangian tori as generic fibers [36]. A
natural generalization is to consider Higgs bundles for complex reductive Lie groups other than GL(𝑛,ℂ). After the work
of [18, 19, 32], the moduli spaces of Higgs bundles for two Langlands dual groups equipped with the afore-mentioned
fibrations become SYZ mirror partners (as defined by [32] based on work by [61]) and mirror symmetry is expected to be
implemented by a Fourier–Mukai transform relative to the fibers of the Hitchin fibration. In this paper, we focus in the
case of GL(𝑛,ℂ), which is Langlands self-dual.
Branes in the Higgs moduli space were introduced in [41] and have since attracted great attention. A (BBB)-brane inM𝑛

is given by a pair (𝑁, 𝐅,∇𝐅), where 𝑁 ⊂ M𝑛 is a hyperholomorphic subvariety and (𝐅,∇𝐅) a hyperholomorphic sheaf on
N. This means that the connection∇𝐅 on the sheaf 𝐅 is of type (1,1) with respect to all three complex structures Γ1, Γ2, Γ3.
Additionally, a (BAA)–brane is a pair (𝑆,𝑊,∇𝑊)where 𝑆 ⊂ M𝑛 is a subvariety which is complex Lagrangian with respect
to the holomorphic symplectic form in the complex structure Γ1, and (𝑊,∇𝑊) is a flat bundle over 𝑆. It is conjectured
in [41] that mirror symmetry interchanges (BBB)–branes with (BAA)–branes. This context has motivated many authors
to construct (BBB) and (BAA)–branes [7, 8, 10, 11, 13, 14, 25–27, 34, 38, 39]. Papers such as [25, 26, 39] go a step further by
giving evidence of the duality between certain (BBB) and (BAA)–branes, however focusing on the smooth locus of the
Hitchin system.
Mirror symmetry is more obscure over singular Hitchin fibers, since it involves autoduality of compactified Jacobians

of singular curves. Such autoduality was stated via Fourier–Mukai equivalences by Arinkin [5, 6] in the case of integral
curves, and by Melo, Rapagnetta and Viviani [48, 49] in the case of fine compactified Jacobians. Kass [42] extended the
autoduality to the case of coarse compactified Jacobians, which is the one that concerns us, although his construction
does not provide a Fourier–Mukai transform.
Our main motivation is to extend the study of mirror symmetry for branes to the locus of singular Hitchin fibers. This

has been addressed also in some papers that appeared after the first preprint of the present one. In [24], written by the
authors along with Gothen and Oliveira, some pair of (BBB) and (BAA)–branes are considered, noting that the (BBB)–
branes play a crucial role in the topological mirror symmetry [32]. These branes are dense over Hitchin fibers associated
with integral curves so Arinkin’s Fourier–Mukai transform [5, 6] is enough to study, in this case, the behavior of these
branes under the mirror symmetry. Branco [14] studied the intersection of certain branes with the locus of Hitchin fibers
associated with non-reduced curves. In this case, the mirror symmetry is discussed in geometrical terms, by dualizing
a certain abelian variety inside the non-reduced Hitchin fibers. It is noteworthy to mention the work of Hausel, Mellit
and Pei [31], who showed that the pair of branes described by Hitchin in [38] satisfies an agreement of certain topological
invariants. This gives strong evidence for the duality of these branes, as proposed in [38], where such duality was only
checked over the locus of smooth Hitchin fibers.

1.3 Our work

We start by constructing a family of (BBB)–branes and complex Lagrangian subvarieties (support of (BAA)–branes)
indexed by a topologically trivial line bundle ℒ → 𝑋. Both lie over the locus of singular Hitchin fibers given by totally
reducible spectral curves and both constructions involve the Borel subgroup 𝐵 < GL(𝑛,ℂ).
We shall consider Car, the locus of Higgs bundles whose structure group reduces to the Cartan subgroup 𝐶 < 𝐵, as the

support of our (BBB)–brane. It is well known that this subvariety is naturally hyperholomorphic (being given by reduction
of the structure group to a reductive subgroup), the novel point of this piece of work is the construction of different flat
(hence hyperholomorphic) bundles, constructed from a chosen line bundleℒ → 𝑋. Our (BBB)–brane𝐂𝐚𝐫(ℒ) consists of
Car equipped with this bundle. The image of Car under the Hitchin fibration ℎ(Car) is the locus totally reducible spectral
curves 𝑋𝑏, making Schaub’s spectral correspondence [55] explicit over this subset of the singular locus.
We define as well a complex Lagrangian subvarietyUni(ℒ) consisting of Higgs bundles whose structure group reduces

to 𝐵, and whose associated graded bundle is constant and depends on ℒ. Thus, this complex Lagrangian subvariety
depends on ℒ → 𝑋, and, heuristically speaking, parameterizes Higgs bundles that reduce their structure group to the
unipotent radical of B. After specifying a flat bundle over Uni(ℒ), we shall obtain a (BAA)–brane.
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FRANCO and PEÓN-NIETO 3

To study the behavior of 𝐂𝐚𝐫(ℒ) and Uni(ℒ) under mirror symmetry one would like to transform 𝐂𝐚𝐫(ℒ) under
a Fourier–Mukai transform. These branes are supported on ℎ(Car), included in the locus of (singular) reducible curves.
Then,Car andUni(ℒ) only intersect Hitchin fibers ℎ−1(𝑏) ≅ Jac(𝑋𝑏) that are coarse compactified Jacobians, not fine, and
therefore a full Fourier–Mukai transform is not known to exist, not even after restricting ourselves to the open subset of
the Cartan locus whose associated spectral curves are nodal. Nevertheless, it is possible to construct a Poincaré sheaf over
the moduli stack of torsion-free sheaves over reducible nodal curves although it is yet not known whether the associated
integral functor is a derived equivalence or not. The restriction of this stacky Poincaré sheaf to the support of the stacky
version of 𝐂𝐚𝐫(ℒ) and the Jacobian can be lifted to a sheaf on the corresponding schemes. We then define the associated
integral functor

ΦCar ∶ 𝐷𝑏
(
Car ∩ Jac(𝑋𝑏)

)
⟶ 𝐷𝑏

(
Jac(𝑋𝑏)

)
.

Our main result (Corollary 6.4) consists on checking that this functor relates the generic loci of both branes.

Theorem 1. There is an equality

supp
(
ΦCar

(
𝐂𝐚𝐫(ℒ)|Jac(𝑋𝑏)

))
= Uni(ℒ) ∩ Jac(𝑋𝑏).

We finish by discussing how this construction can be generalized to a large class of branes in the moduli space 𝑀𝑛 of
rank 𝑛 Higgs bundles covering the whole singular locus. In the (BBB)-case, the support of these branes correspond to
the image of 𝑀𝑟1 × ⋯ × 𝑀𝑟𝑠 , or equivalently, the locus of those Higgs bundles reducing its structure group to the Levi
subgroupGL(𝑟1, ℂ) × ⋯ × GL(𝑟𝑠, ℂ). We observe that these subvarieties cover the singular locus of𝑁𝑛. The (BAA)–brane
is given by a complex Lagrangian subvariety constructed in a similar way as before, but substituting the Borel subgroup
with the parabolic subgroup associated to the partition 𝑛 = 𝑟1 + ⋯ + 𝑟𝑠. As in the case of the Borel group, we are able to
identify the spectral correspondence over the nodal locus.
A word should be said about the possible applications of the present piece of work. The branes hereby described are

used in a crucial way in [24] to prove that certain branes are of type (BAA). On the other hand, the analysis of spectral
data corresponding to reducible spectral curves furnishes a useful tool to study the geometry of these loci.

1.4 Structure of the paper

The greater completeness of the analysis for the Borel case is the first reason for the choice of the structure of the paper,
presenting first this case, then the case of a general parabolic subgroup. The second reason for this choice is of a more
prosaic nature and is linked to the complications in the geometry of these singular loci. Indeed, the singular locus consists
of several submanifolds which are nested into one another. The smallest, contained in all the others, is precisely the locus
of singular points over totally reducible spectral curves. Thus, a good understanding of the singular locus requires as a
first step a good understanding of the singular locus over totally reducible spectral curves.
This paper is organized as follows. Section 2.1 gives the necessary background on Higgs moduli spaces and the Hitchin

system. In Section 2.2, we address the construction of the Poincaré sheaf over the moduli stack of torsion-free rank 1
sheaves on nodal reduced curves. This construction is a natural generalization of that of [6] andmakes part of unpublished
work of Arinkin and Pantev [53]. The detailed description of this construction is included in Section 2.2 for the sake of
completeness of our paper.
In Section 3, we study the locus of singular Hitchin fibers associated with totally reducible spectral curves. We prove

that the preimage of this locus under ℎ coincides with the locus of Higgs bundles whose structure group reduces to the
Borel subgroup (Proposition 3.2) and describe the associated spectral data (Propositions 3.7 and 3.12).
We provide the construction of the (BBB)-brane𝐂𝐚𝐫(ℒ) in Section 4. We consider the Cartan locus,Car, given by those

Higgs bundles, whose structure group reduces to the Cartan subgroup C ≅ (ℂ×)
𝑛

< GL(𝑛,ℂ). The Cartan locus is given
by the image of 𝑐 ∶ Sym𝑛(M1) ↪ M𝑛, where M1 is the rank one Higgs moduli space. Also, we prove that the choice of a
topologically trivial lineℒ bundle on𝑋 yields a hyperholomorphic bundle onCar. This produces the (BBB)-brane𝐂𝐚𝐫(ℒ)

(cf. Proposition 4.3). Finally, we analyze the restriction of the brane 𝐂𝐚𝐫(ℒ) to a generic Hitcin fiber (Proposition 4.4),
which is crucial to study the behavior of 𝐂𝐚𝐫(ℒ) under the mirror symmetry.
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4 FRANCO and PEÓN-NIETO

Section 5 addresses the construction and description of the complex Lagrangian subvarietyUni(ℒ), supporting a (BAA)-
brane. Uni(ℒ) is defined as the subvariety of the locus of all the Higgs bundles reducing to the Borel subgroup B, whose
underlying vector bundle project to a certain C-bundle determined by ℒ. Then, we prove that Uni(ℒ) is isotropic by
gauge considerations, closed and half-dimensional, hence Lagrangian (Theorem 5.6). We finish this section by studying
the spectral data of the points of Uni(ℒ) in Proposition 5.7.
We have at this point a description of the generic restriction of 𝐂𝐚𝐫(ℒ) and Uni(ℒ) to a generic Hitchin fiber. In

this case, the generic Hitchin fibers are isomorphic to the coarse compactified Jacobian of reduced but reducible curves.
We study in Section 6 the transformation of the first under a Fourier–Mukai integral functor. To deal with the lack of a
Poincaré sheaf over coarse compactified Jacobians, we consider the Poincaré sheaf over the associated moduli stack that
we reviewed in Section 2.2 and observe in Proposition 6.1 that its restriction toCar and the Jacobian provides a sheaf𝒫Car.
It is then natural to study the behavior of𝐂𝐚𝐫(ℒ) under the Fourier–Mukai integral functor constructedwith𝒫Car, which
we do. We obtain that the generic restriction of 𝐂𝐚𝐫(ℒ) to a Hitchin fiber is sent to a sheaf over Uni(ℒ) (Corollary 6.4).
This leads us to conjecture that the (BBB)-brane 𝐂𝐚𝐫(ℒ) is dual under mirror symmetry to a (BAA)-brane supported on
Uni(ℒ).
In Section 7, we adapt the above results to arbitrary parabolic subgroups. Given a partition 𝑛 = 𝑟1 + ⋯ + 𝑟𝑠 we consider

the associated parabolic subgroup P𝑟 < GL(𝑛,ℂ) with Levi subgroup L𝑟 < P𝑟. In Section 7.1, we consider the subvariety
M𝑟 of M𝑛, consisting of Higgs bundles whose structure group reduces to L𝑟, and describe the intersection with generic
Hitchin fibers (Proposition 7.5). The varietyM𝑟 is a complex subscheme for Γ1, Γ2, and Γ3, hence the support of a (BBB)-
brane. By varying the partition 𝑟, we produce families of branes covering the strictly semistable locus ofM𝑛. On the other
hand, in Section 7.2 we consider Uni

𝑟
(𝐸1, … , 𝐸𝑠), consisting of Higgs bundles with structure group reducing to P𝑟 and

fixed associated graded bundle
⨁𝑠

𝑖=1 𝐸𝑖 . We prove that under the right conditions on 𝐸, this is a Lagrangian submanifold
(Theorem 7.14), and so a choice of flat bundle on it produces a (BAA)-brane. The imposed hypotheses are related to the
existence of a hyperholomorphic bundle on the hypothetical dualM𝑟 (see Remark 7.10). A look at the spectral data of both
M𝑟 and Uni

𝑟
(𝐸), as well as the comparison with the case 𝑃(1,…,1), indicates the existence of a duality.

2 PRELIMINARIES

2.1 Higgs bundles and their moduli

Let 𝑋 be a smooth projective curve over ℂ. A Higgs bundle over 𝑋 is a pair (𝐸, 𝜑) given by a holomorphic vector bundle 𝐸

over 𝑋 and a Higgs field 𝜑 ∈ 𝐻0(𝑋, End(𝐸) ⊗ 𝐾), which is a holomorphic section of the endomorphisms bundle twisted
by the canonical bundle 𝐾 of 𝑋 [35, 58–60].
A Higgs bundle (𝐸, Φ) of trivial degree is stable (resp. semistable) if every Φ-invariant subbundle 𝐹 ⊂ 𝐸 has negative

(resp. non-positive) degree, and it is polystable if it is semistable and decomposes as a direct sum of stable Higgs bundles.
The moduli space of rank 𝑛 and degree 0 semistable Higgs bundles on𝑋 was constructed in [35, 52, 59, 60]. We review this
construction in the following paragraphs.
Fix a topological bundle 𝔼 of degree 0 on 𝑋 and consider the space𝒜 of holomorphic structures on 𝔼. This is an affine

space modeled on Ω0,1(𝑋, ad(𝔼)), whose cotangent bundle is

𝑇∗𝒜 = 𝒜 × Ω0(𝑋, ad(𝔼) ⊗ 𝐾),

where we have identified ad(𝔼) and its dual by means of the Killing form (rather, a non-degenerate extension of it to
the center, to which we will henceforth refer as Killing form). Given a Hermitian metric ℎ on 𝔼 let us denote its Chern
connection by ∇ℎ. We consider the following conditions for pairs:

1. There exists a Hermitian metric ℎ such that ∇2
ℎ
+ [𝜑, 𝜑∗ℎ ] = 0,

2. 𝜕𝐴(𝜑) = 0,
3. 𝜕𝐴,ℎ(𝜑

∗,ℎ) = 0.

Observe that condition (2) implies that the pair determines a Higgs bundle and in that case (3) is automatically satisfied
for any choice of metric ℎ. We shall denote by (𝑇∗𝒜)𝐻 the subset of solutions to (2) (and, therefore, to (3)). Condition (1)
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FRANCO and PEÓN-NIETO 5

is known as the Hitchin equation and it follows from [35, 59, 60] that a Higgs bundle is polystable if and only if (1) holds,
so we will write (𝑇∗𝒜)

pst
𝐻 for the locus of pairs satisfying simultaneously (1) and (2) (hence (3) as well). Note that we have

(𝑇∗𝒜)st𝐻 ⊂ (𝑇∗𝒜)
pst
𝐻 ⊂ (𝑇∗𝒜)sst𝐻 , where st and sst stand for stable and semistable Higgs bundles. These loci are all preserved

by the action of the complex gauge group,

𝒢 = Ω0(𝑋,Aut(𝔼)),

and (𝑇∗𝒜)sst𝐻 and (𝑇∗𝒜)
pst
𝐻 classify semistable and closed orbits, respectively. Themoduli space of semistableHiggs bundles

over 𝑋 of rank 𝑛 and trivial degree is identified with

𝑀𝑛 ≅ (𝑇∗𝒜)𝐻∕∕𝒢 = (𝑇∗𝒜)
pst
𝐻 ∕𝒢, (2.1)

where the double quotient denotes the Geometric Invariant Theory (GIT) quotient. This is a quasi-projective variety of
dimension

dim𝑀𝑛 = 2𝑛2(𝑔 − 1) + 2, (2.2)

whose points represent isomorphism classes of polystable Higgs bundles and the smooth locus is given by the locus of
stable Higgs bundles [60]. The geometry of 𝑀𝑛 is surprisingly rich. In particular, it can be equipped with a hyperkähler
structure and becomes an integrable system by means of the Hitchin fibration.
We shall first study the hyperkähler structure of M𝑛. Let us fix a particular Hermitian metric ℎ0 on the topological

bundle 𝔼, this choice determines a Hermitian metric 𝜂 on 𝑇∗𝒜. Let

𝒢0 = Ω0(𝑋,Aut(𝔼, ℎ0)),

be the unitary gauge group of automorphisms of 𝔼 preserving the metric ℎ0. We can see that 𝜂 is preserved by 𝒢0. Also,
one can naturally define three complex structures Γ̃1, Γ̃2, and Γ̃3 on 𝑇∗𝒜 satisfying the quaternionic relations, together
with a hyperkähler metric preserved by 𝒢0. This action defines a moment map 𝜇𝑖 associated with each of the complex
structures Γ̃𝑖 , and one can see that 𝜂 is hyperkähler with respect to them. One can see that the vanishing of 𝜇1 coincides
with Equation (1), the vanishing of 𝜇2 with Equation (2) and the vanishing of 𝜇3 with Equation (3). Therefore, the moduli
space of Higgs bundles is identified with the hyperholomorphic quotient,

𝑀𝑛 ≅ 𝜇−1
1 (0) ∩ 𝜇−1

2 (0) ∩ 𝜇−1
3 (0)∕𝒢0,

as it follows from [35, 59, 60]. The complex structures Γ̃𝑖 descend to complex structures Γ𝑖 in the quotient and so does the
hyperkähler metric 𝜂, defining a hyperkähler structure on𝑀𝑛. Observe that natural the complex structure in𝑀𝑛 obtained
by the identification (2.1) coincides with Γ1. Additionally, [16, 20] proved that the moduli space of rank 𝑛 flat connections
on the 𝐶∞ vector bundle 𝔼 over𝑋 of degree 0 is isomorphic to the above hyperkähler quotient equipped with the complex
structure Γ2.
The hyperkähler structure defined on𝑀𝑛 induces a holomorphic 2-formΩ1 = 𝜔2 + i𝜔3 on𝑀𝑛, where𝜔2 and𝜔3 are the

Kähler forms associated with Γ2 and Γ3. We next give the expression of Ω1 by means of the gauge theoretic construction
of𝑀𝑛. Let (𝜕𝐴, 𝜑) ∈ (𝑇∗𝒜)st𝐻 , and consider two tangent vectors

(𝐴̇𝑖, 𝜑̇𝑖) ∈ 𝑇(𝜕𝐴,𝜑)𝑇
∗𝒜 𝑖 = 1, 2

we have

Ω1

(
(𝐴̇1, 𝜑̇1), (𝐴̇2, 𝜑̇2)

)
= ∫

𝑋

𝐴̇1∧̇𝜑̇2 − 𝐴̇2∧̇𝜑̇1, (2.3)
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6 FRANCO and PEÓN-NIETO

where to define the wedge product ∧̇, we identity Ω0,1(𝑋, ad(𝔼)) ≅ (Ω0(𝑋, ad(𝔼)) ⊗ Ω0,1
𝑋 ) and Ω0(ad(𝔼) ⊗ 𝐾) ≅

(Ω0(ad(𝔼) ⊗ Ω1,0
𝑋 ), and for 𝑍𝑖 ⊗ 𝜔𝑖 , 𝑖 = 1, 2, 𝑍𝑖 ∈ Ω0(𝑋, ad(𝔼)), 𝜔𝑖 ∈ Ω1(𝑋), we set

(𝑍1 ⊗ 𝜔1)∧̇(𝑍2 ⊗ 𝜔2) = ⟨𝑍1, 𝑍2⟩⊗ 𝜔1 ∧ 𝜔2

with ⟨ , ⟩ being the Killing form.
We recall now the Hitchin fibration and spectral construction given in [9, 36]. Let (𝑞1, … , 𝑞𝑛) be a basis of the algebra

ℂ[𝔤𝔩(𝑛, ℂ)]GL(𝑛,ℂ) of regular functions on 𝔤𝔩(𝑛, ℂ) invariant under the adjoint action ofGL(𝑛,ℂ). We choose them so that
deg(𝑞𝑖) = 𝑖. The Hitchin map is defined by

ℎ ∶ M𝑛 ⟶ 𝐻 ∶=
⨁𝑛

𝑖=1 𝐻0(𝑋, 𝐾𝑖)

(𝐸, 𝜑) ⟼ (𝑞1(𝜑), … , 𝑞𝑛(𝜑)).

It is a surjective proper morphism [36, 52] endowing the moduli space with the structure of an algebraically completely
integrable system. In particular, its generic fibers are abelian varieties and every fiber is a compactified Jacobian [55, 60]. To
describe these, consider the total space |𝐾| of the canonical bundle and the obvious algebraic surjection 𝜋 ∶ |𝐾| → 𝑋. We
note that the pullback bundle 𝜋∗𝐾 → |𝐾| admits a tautological section 𝜆. Given an element 𝑏 ∈ H, with 𝑏 = (𝑏1, … , 𝑏𝑛),
we construct the spectral curve 𝑋𝑏 ⊂ |𝐾| by considering the vanishing locus of the section of 𝜋∗𝐾𝑛

𝜆𝑛 + 𝜋∗𝑏1𝜆
𝑛−1 + ⋯ + 𝜋∗𝑏𝑛−1𝜆 + 𝜋∗𝑏𝑛. (2.4)

The restriction of 𝜋 ∶ |𝐾| → 𝑋 to 𝑋𝑏 is a ramified degree 𝑛 cover that which by abuse of notation we also denote by

𝜋 ∶ 𝑋𝑏 ⟶ 𝑋.

Since the canonical divisor of the symplectic surface |𝐾| is zero and𝑋𝑏 belongs to the linear system |𝑛𝐾|, one can compute
the arithmetic genus of 𝑋𝑏,

𝑔
(
𝑋𝑏

)
= 1 + 𝑛2(𝑔 − 1). (2.5)

By Riemann–Roch, the rank 𝑛 bundle 𝜋∗𝒪𝑋𝑏
is has degree

deg(𝜋∗𝒪𝑋𝑏
) = −(𝑛2 − 𝑛)(𝑔 − 1).

Given a torsion-free rank one sheafℱ over 𝑋𝑏 of degree 𝛿, where

𝛿 ∶= 𝑛(𝑛 − 1)(𝑔 − 1), (2.6)

we have that 𝐸ℱ ∶= 𝜋∗ℱ is a vector bundle on 𝑋 of rank 𝑛 and degree 0. Since 𝜋 is an affine morphism, the natural
𝒪|𝐾|-module structure onℱ, given by understandingℱ as a sheaf supported on |𝐾|, corresponds to a 𝜋∗𝒪|𝐾| = Sym∙(𝐾∗)-
module structure on 𝐸ℱ . Such structure on 𝐸ℱ is equivalent to a Higgs field

𝜑ℱ ∶ 𝐸ℱ ⟶ 𝐸ℱ ⊗ 𝐾. (2.7)

As expected, one has that

ℎ((𝐸ℱ, 𝜑ℱ)) = 𝑏.

A stability notionmay be defined for a torsion-free sheafℱ of rank one on the curve𝑋𝑏. If𝑋𝑏 is reduced and irreducible
(integral) thenℱ is automatically stable. For reduced but reducible curves, [55, Théorème 3.1] gives an easy characteriza-
tion of semistability, modulo some corrections pointed out in [15, Remark 4.2] and [17, Section 2.4]. A torsion-free rank one
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FRANCO and PEÓN-NIETO 7

sheafℱ on𝑋𝑏 of degree 𝛿 is stable (resp. semi-stable) if and only if for every closed sub-scheme 𝑍 ⊂ 𝑋𝑏 pure of dimension
one has that

deg𝑍 ℱ𝑍 > (𝑛2
𝑍 − 𝑛𝑍)(𝑔 − 1) (resp. ≥), (2.8)

where ℱ𝑍 ∶= ℱ|𝑍∕Tor(ℱ|𝑍) and 𝑛𝑍 = rk(𝜋∗𝒪𝑍). One can easily check that every line bundle is stable so the Jacobian
Jac𝛿(𝑋𝑏) is contained inside the moduli space of semistable torsion-free rank 1 degree 𝛿 sheaves on 𝑋𝑏. Furthermore, the

former is projective (see [59]) what explains that we refer to it as the compactified Jacobian and denote it by Jac
𝛿
(𝑋𝑏).

The previous construction provides a one-to-one correspondence between rank 1 torsion-free sheaves over a certain
spectral curve and Higgs bundles over the corresponding point of the Hitchin base. Furthermore, stability is preserved
under such correspondence.

Theorem 2.1 [55, 60]. A torsion-free rank one sheafℱ on the spectral curve 𝑋𝑏 is stable (resp. semistable, polystable) if and
only if the corresponding Higgs bundle (𝐸ℱ, 𝜑ℱ) on 𝑋 is stable (resp. semistable, polystable). Hence, the Hitchin fiber over
𝑏 ∈ H is isomorphic to the moduli space of semistable torsion-free rank one sheaves of degree 𝛿 = (𝑛2 − 𝑛)(𝑔 − 1) over 𝑋𝑏,

ℎ−1(𝑏) ≅ Jac
𝛿(

𝑋𝑏

)
.

For the case of trivial degree, one can construct a section of theHitchin fibration, namedHitchin section, associatedwith
any line bundle 𝒥 ∈ Jac𝛿∕𝑛(𝑋). This section is constructed by assigning to each 𝑏 ∈ 𝐵 the Higgs bundle whose spectral
data are the line bundle 𝜋∗𝒥 over the spectral curve 𝑋𝑏. In other words, we have a morphism

Σ𝒥 ∶ 𝐻𝑛 ⟶ 𝑀𝑛

𝑏 ⟼ (𝐸(𝒥,𝑏) ∶= 𝜋∗𝜋
∗𝒥, 𝜑(𝒥,𝑏)),

(2.9)

where 𝜑(𝒥,𝑏) = 𝜑𝐸(𝒥,𝑏)
as defined in Equation (2.7). One can check that the push-forward of the trivial sheaf of any spectral

curve is
⨁𝑛−1

𝑖=0 𝐾−𝑖 , applying the projection formula one has

𝐸(𝒥,𝑏) ≅ 𝒥 ⊗ 𝜋∗𝒪𝑋𝑏
≅ 𝒥 ⊗

(
𝑛−1⨁
𝑖=0

𝐾−𝑖

)
(2.10)

for all 𝑏 ∈ H𝑛.
When studying mirror symmetry beyond the generic locus, one is quickly brought to considering the moduli stack

of Higgs bundles. We thus finish this section with some elements about the geometry of the moduli stack 𝔐𝑛 of Higgs
bundles of rank 𝑛 and trivial degree over the smooth projective curve 𝑋, and its relation with the moduli space𝑀𝑛.
Let us recall that the stack𝔐𝑛 contains an open set𝔐sst

𝑛 of semistable objects.

Theorem2.2 [2].Themoduli space𝑀𝑛 is a goodmoduli space for𝔐sst
𝑛 in the sense of [1]. That is, there exists a quasi-compact

morphism

Ψ ∶ 𝔐sst
𝑛 ⟶ 𝑀𝑛

such that the push-forward functor is exact and induces an isomorphism of sheaves Ψ∗𝒪𝔐 ≅ 𝒪M.

The notion of a good moduli space recovers the usual properties of good quotients of finite-dimensional varieties by
group actions [51, 56]. In particular, Ψ is surjective and universally closed, and𝑀𝑛 has the quotient topology.
The proof of Theorem 2.2 combines a number of results: Alper proved that the stack of bundles has a good moduli

space [1, Theorem 13.6]. In [33, Section 1.F], Heinloth explained how the classical stability notion for bundles can be seen
in terms ofΘ-stability (notion developed also independently by Halpern–Leistner [29]). As explained in [2, Section 6], one
may deduce a similar result for Higgs bundles, so𝔐sst

𝑛 are Hilbert–Mumford semistable objects for a suitable line bundle.
Theorem C in [6] implies the existence of a good moduli space for𝔐sst

𝑛 .
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8 FRANCO and PEÓN-NIETO

2.2 Arinkin’s Poincaré sheaf and Fourier–Mukai transform

Arinkin constructed a Poincaré sheaf [6] on the compactified Jacobian of an integral curve with planar singularities,
yielding a Fourier–Mukai transform between these spaces and their duals. This was generalized by Melo, Rapagnetta
and Viviani [48, 49] to any fine compactified Jacobian of a reduced curve. The universal sheaf for the fine compactified
Jacobian is a crucial piece in Arinkin’s construction and, because of this, no Poincaré sheaf has been constructed for
coarse compactified Jacobians which is the situation that concern us in this paper. Nevertheless, Arinkin’s methods adapt
naturally to moduli stacks as we will review in this section. The construction of a Poincaré sheaf over the moduli stack
of torsion-free rank 1 sheaves over a reducible planar curve makes part of unpublished work by Arinkin and Pantev [53],
where they conjecture that the associated Fourier–Mukai transform gives rise to self-duality of the moduli stack. A sketch
of the construction appears in the preprints [45, 46].
Here, we restrict to the case of nodal curves. We do so because for these curves the construction of the Poincaré sheaf

is considerably simpler than in the case of an arbitrary reducible curve (see [6, Section 4.3]).
Let 𝑋 be a connected reduced curve with at most nodal singularities and pick an ample line bundle 𝒪𝑋(1) on it.

Let 𝔍𝔞𝔠
𝛿
(𝑋) be the moduli stack of rank 1 torsion-free sheaves over 𝑋 and denote by 𝔘 → 𝑋 × 𝔍𝔞𝔠

𝛿
(𝑋) the associ-

ated universal sheaf. Denote also by 𝔍𝔞𝔠
𝛿
(𝑋) the substack of those sheaves that are invertible (i.e., line bundles), and

by𝔘0 → 𝑋 × 𝔍𝔞𝔠
𝛿
(𝑋) the restriction of the universal bundle to it.

Recall that the Hilbert scheme is a fine moduli space represented by a universal subscheme𝒵𝑁 ⊂ 𝑋 × Hilb
𝑁
(𝑋). Write

ℐ𝑍 for the ideal sheaf associated with the zero-dimensional subscheme 𝑍 ⊂ 𝑋 and ℐ𝒵𝑁
→ 𝑋 × Hilb

𝑁
(𝑋) for the ideal

sheaf associated with the universal subscheme. Since 𝑋 is a nodal curve, we have thatℐ∨
𝑍 is a torsion-free sheaf. One can

use the universal subscheme𝒵𝑚 ∶= 𝒵𝑁𝑚
to construct the associated Abel–Jacobi map

𝛼𝑚 ∶ Hilb
𝑁𝑚(𝑋) ⟶ 𝔍𝔞𝔠

𝛿
(𝑋)

𝑍 ⟼ ℐ∨
𝑍 ⊗ 𝒪𝑋(−𝑚),

where 𝑁𝑚 = 𝑚deg𝒪𝑋(1) + 𝛿. Note that 𝛼𝑚 is given by

ℐ∨
𝒵𝑚

⊗ 𝑞∗
𝑚𝒪𝑋(−𝑚) → 𝑋 × Hilb

𝑁𝑚(𝑋), (2.11)

where 𝑞𝑚 denotes the projection 𝑋 × Hilb
𝑁𝑚(𝑋) → 𝑋. Denote by Hilb

𝑁𝑚(𝑋)′ the open subset of Hilb
𝑁𝑚(𝑋) given by

those zero-dimensional subschemes 𝑍 ⊂ 𝑆 that can be embedded in a smooth curve. Define 𝑊𝑚 to be the open subset
ofHilb

𝑁𝑚(𝑋)′ given by those subschemes 𝑍, whose ideal sheafℐ𝑍 satisfies the condition𝐻1(𝑋,ℐ∨
𝑍) = 0. For any positive

integer 𝑟, we set𝑊𝑟 ∶=
⨆∞

𝑚=𝑟 𝑊𝑚 and 𝛼𝑟 ∶=
∏∞

𝑚=𝑟 𝛼𝑚|𝑊𝑚
.

The following is well known although it appears in the literature [4, 6, 47] in different forms than how we present it
here.

Proposition 2.3. Let𝑋 be a connected reduced curvewith atmost nodal singularities. For any 𝑟, the Abel–Jacobimap induces
a smooth atlas

𝛼𝑟 ∶ 𝑊𝑟 → 𝔍𝔞𝔠
𝛿
(𝑋)

for the Artin stack𝔍𝔞𝔠
𝛿
(𝑋). Using this atlas, the universal sheaf is {𝒰𝑚 → 𝑋 × 𝑊𝑚}∞𝑚=𝑟 where the𝒰𝑚 are given by restricting

the sheaves (2.11) to 𝑋 × 𝑊𝑚.

Now, we construct the Poincaré bundle over the product𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋). Given a flat morphism 𝑓 ∶ 𝑌 → 𝑆 whose

geometric fibers are curves, for any 𝑆-flat sheaf ℰ on 𝑌, we can construct the determinant of cohomology 𝒟𝑓(ℰ) (see,
for instance, (see [43] and [22, Section 6.1])), which is an invertible sheaf on 𝑆 constructed locally as the determinant

of complexes of free sheaves locally quasi-isomorphic to 𝑅𝑓∗ℰ. Consider the triple product 𝑋 × 𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋) and

denote by 𝑓𝑖𝑗 the projection to the product of the 𝑖th and 𝑗th factors. We define the Poincaré bundle 𝔓 → 𝔍𝔞𝔠
𝛿
(𝑋) ×
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FRANCO and PEÓN-NIETO 9

𝔍𝔞𝔠
𝛿
(𝑋) as the invertible sheaf

𝔓 = 𝒟𝑓23

(
𝑓∗

12𝔘 ⊗ 𝑓∗
13𝔘

0
)
⊗ 𝒟𝑓23

(
𝑓∗

13𝔘
0
)−1

⊗ 𝒟𝑓23

(
𝑓∗

12𝔘
)−1

. (2.12)

Given a degree 𝛿 line bundle 𝐽 over 𝑋, denote by𝔓𝐽 ∶= 𝔓|
𝔍𝔞𝔠

𝛿
(𝑋)×{𝐽}

the restriction of𝔓 to the slice corresponding to 𝐽.

In fact, if we consider the obvious projections 𝑓1 ∶ 𝑋 × 𝔍𝔞𝔠
𝛿
(𝑋) → 𝑋 and 𝑓2 ∶ 𝑋 × 𝔍𝔞𝔠

𝛿
(𝑋) → 𝔍𝔞𝔠

𝛿
(𝑋), one has (see

[48, Lemma 5.1] for instance) that

𝔓𝐽 = 𝒟𝑓2
(𝔘 ⊗ 𝑓∗

1𝐽) ⊗ 𝒟𝑓2
(𝑓∗

1𝐽)
−1 ⊗ 𝒟𝑓2

(𝔘)−1. (2.13)

Remark 2.4. If 𝑋 is a smooth irreducible curve, rank 1 torsion-free sheaves over it are simple line bundles so

𝔍𝔞𝔠
𝛿
(𝑋) ≅ 𝔍𝔞𝔠

𝛿
(𝑋) ≅

[
Jac 𝛿(𝑋)∕ℂ∗

]
,

and𝔓 pulls-back to a bundle𝒫 → Jac𝛿(𝑋) × Jac𝛿(𝑋) under the projection Jac 𝛿(𝑋) → [Jac𝛿(𝑋)∕ℂ∗]. The integral functor
associated with𝒫 is a derived equivalence of categories [50], the Fourier–Mukai transform.

One can reverse the roles of 𝔍𝔞𝔠
𝛿
(𝑋) and 𝔍𝔞𝔠

𝛿
(𝑋) in Equation (2.12) to obtain a Poincaré bundle over 𝔍𝔞𝔠

𝛿
(𝑋) ×

𝔍𝔞𝔠
𝛿
(𝑋)which coincides with the one defined in Equation (2.12) over𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋). We then see that the Poincaré

bundle extends naturally to a bundle over

(
𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)♯

∶=

(
𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)
∪

(
𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)

that we denote by𝔓♯. Following [6], it is possible to extend𝔓♯ even further to a Cohen–Macaulay sheaf over 𝔍𝔞𝔠
𝛿
(𝑋) ×

𝔍𝔞𝔠
𝛿
(𝑋), as we will see below.

First, we need some definitions. Consider the projection to the Hilbert scheme of its associated universal scheme ℎ𝑚 ∶

𝒵𝑚 → Hilb
𝑁𝑚(𝑋), the coherent sheaf of algebras 𝒜𝑚 ∶= ℎ𝑚,∗𝒪𝒵𝑚

over Hilb
𝑁𝑚(𝑋) and denote by 𝒜∗

𝑚 the subsheaf of

invertible elements. Consider 𝑝1 to be the projection of Hilb
𝑁𝑚(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋) to the first factor and take the pull-back

𝑝−1
1 𝒜∗

𝑚. Given a sheaf, we use the subindex 𝑝−1
1 (𝒜∗

𝑚) to denote the maximal quotient of the sheaf, where 𝑝−1
1 (𝒜∗

𝑚) acts
via the norm character.
Consider also the triple product 𝑋 × 𝑊𝑚 × 𝔍𝔞𝔠

𝛿
(𝑋) and denote by 𝑔𝑖𝑗 the projections to the 𝑖th and 𝑗th factors.

Following [6], we define the sheaf over𝑊𝑚 × 𝔍𝔞𝔠
𝛿
(𝑋)

𝔓𝑚 ∶=

(
𝑁𝑚⋀

𝑔23,∗(𝑔
∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘)

)
𝑝−1
1 (𝒜∗

𝑚)

⊗

(
𝑁𝑚⋀

𝑔23,∗(𝑔
∗
12𝒪𝒵𝑚

)

)−1

. (2.14)

The following is an immediate adaptation of [6].

Proposition 2.5. The sheaves𝔓𝑚 → 𝑊𝑚 × 𝔍𝔞𝔠
𝛿
(𝑋) are Cohen–Macaulay and flat over𝔍𝔞𝔠

𝛿
(𝑋) for all positive integer𝑚.

Proof. Up to a base change, the construction of Equation (2.14) coincides with Arinkin’s definition of the sheaf 𝑄′ after
making the substitution of the fine compactified Jacobian (of an integral curve) and its universal sheaf by the moduli
stack of torsion-free sheaves (on a nodal curve) and its associated universal sheaf. After the same substitution, one can
also adapt Arinkin’s construction of another sheaf 𝑄 which he shows to be isomorphic to 𝑄′ in [6, Proposition 4.5]. The
proof of [6, Proposition 4.5] relies entirely on a result [6, Lemma 3.6] concerning isospectral Hilbert schemes of surfaces,
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10 FRANCO and PEÓN-NIETO

so [6, Proposition 4.5] extends to our case and both constructions coincide here as well. Using the construction of 𝔓𝑚

associated with𝑄 and [6, Lemma 2.1 and Proposition 4.2], we have that𝔓𝑚 is a Cohen–Macaulay sheaf, flat over𝔍𝔞𝔠
𝛿
(𝑋).

Note that [6, Lemma 2.1] is a statement for Cohen–Macaulay sheaves in general and [6, Proposition 4.2] works for any
reduced curve and any rank 1 torsion-free sheaf on it, so both are valid in our case. □

This construction recovers the Poincaré bundle.

Proposition 2.6. 𝔓 and𝔓𝑚|W𝑚×𝔍𝔞𝔠
𝛿
(𝑋)

are isomorphic up to the twisting by a line bundle over𝔍𝔞𝔠
𝛿
(𝑋).

Proof. Since the 𝒰𝑚 are defined as (the restriction to 𝑊𝑚 × Hilb
𝑁𝑚(𝑋) of) Equation (2.11), in terms of the Abel–Jacobi

atlas from Proposition 2.3,𝔓 reads

𝔓 ≅ 𝒟𝑔23
(𝑔∗

12ℐ
∨
𝒵𝑚

⊗ 𝑔∗
12𝑞

∗
𝑚𝒪𝑋(−𝑚) ⊗ 𝑔∗

13𝔘0) ⊗ 𝒟𝑔23
(𝑔∗

13𝔘0)
−1 ⊗ 𝒟𝑔23

(𝑔∗
12ℐ

∨
𝒵𝑚

⊗ 𝑔∗
12𝑞

∗
𝑚𝒪𝑋(−𝑚))−1.

We recall that 𝑊𝑚 is a subset of those subschemes 𝑍 such that the first cohomology space of its ideal sheaf is triv-
ial, 𝐻1(𝑋,ℐ𝑍) = 0. It then follows that 𝑅1𝑔23,∗(𝑔

∗
12𝒪𝒵𝑚

) vanishes and 𝑅0𝑔23,∗(𝑔
∗
12𝒪𝒵𝑚

) is locally free of rank 𝑁𝑚. Under
these conditions, the second term in the tensorization of the right-hand side of Equation (2.14) equals the determinant in
cohomology,

𝑁𝑚⋀
𝑔23,∗(𝑔

∗
12𝒪𝒵𝑚

) ≅ det 𝑅0𝑔23,∗(𝑔
∗
12𝒪𝒵𝑚

) ≅ 𝒟𝑔23
(𝑔∗

12𝒪𝒵𝑚
).

Also, 𝑔∗
13𝔘 is a line bundle over 𝑊𝑚 × 𝔍𝔞𝔠

𝛿
(𝑋). This implies, for large 𝑚, that 𝑅1𝑔23,∗(𝑔

∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘) vanishes and

𝑅0𝑔23,∗(𝑔
∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘) is locally free of rank 𝑁𝑚. Then,

𝑁𝑚⋀
𝑔23,∗(𝑔

∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘0) ≅ det 𝑅0𝑔23,∗(𝑔

∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘) ≅ 𝒟𝑔23

(𝑔∗
12𝒪𝒵𝑚

⊗ 𝑔∗
13𝔘0)

is a line bundle on which 𝑝−1
1 (𝒜∗

𝑚) acts via the norm character. Therefore, we have seen that

𝔓𝑚|W𝑚×𝔍𝔞𝔠
𝛿
(𝑋)

≅ 𝒟𝑔23
(𝑔∗

12𝒪𝒵𝑚
⊗ 𝑔∗

13𝔘0) ⊗ 𝒟𝑔23
(𝑔∗

12𝒪𝒵𝑚
)−1.

From the short exact sequence

0 → 𝑔∗
12𝒪𝑋×Hilb

𝑁𝑚 (𝑋)
→ 𝑔∗

12ℐ
∨
𝒵𝑚

→ 𝑔∗
12𝒪𝒵𝑚

→ 0,

and the additivity property of the determinant in cohomology, one can deduce

𝒟𝑔23
(𝑔∗

12𝒪𝒵𝑚
⊗ 𝑔∗

13𝔘0) ≅ 𝒟𝑔23
(𝑔∗

12ℐ
∨
𝒵𝑚

⊗ 𝑔∗
13𝔘0) ⊗ 𝒟𝑔23

(𝑔∗
13𝔘0)

−1

and

𝒟𝑔23
(𝑔∗

12𝒪𝒵𝑚
) ≅ 𝒟𝑔23

(𝑔∗
12ℐ

∨
𝒵𝑚

).

Therefore,

𝔓𝑚|W𝑚×𝔍𝔞𝔠
𝛿
(𝑋)

≅ 𝒟𝑔23
(𝑔∗

12ℐ
∨
𝒵𝑚

⊗ 𝑔∗
13𝔘0) ⊗ 𝒟𝑔23

(𝑔∗
13𝔘0)

−1 ⊗ 𝒟𝑔23
(𝑔∗

12ℐ
∨
𝒵𝑚

)−1.

Thanks to this description of 𝔓𝑚|W𝑚×𝔍𝔞𝔠
𝛿
(𝑋)

and the description of 𝔓 given at the beginning of the proof, the result
follows from [49, Claim after Equation (4.18)]. □
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FRANCO and PEÓN-NIETO 11

The following theoremwas explained to us by T. Pantev, who proved it in collaboration with D. Arinkin. Since the proof
is not published, we include one here.

Theorem 2.7 (D. Arinkin and T. Pantev). Let 𝑋 be a connected reduced curve with at most nodal singularities. For 𝑟 large

enough, the {𝔓𝑚 → 𝑊𝑚 × 𝔍𝔞𝔠
𝛿
(𝑋)}∞𝑚=𝑟 descend to a Cohen–Macaulay sheaf 𝔓 over 𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋), that extends 𝔓

up to a twist.

Proof. Thanks to Proposition 2.6 one has that the set of restrictions {𝔓𝑚|W𝑚×𝔍𝔞𝔠
𝛿
(𝑋)

}∞𝑚=𝑟 descend to a bundle over

the product of stacks 𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋). Let 𝑊𝓁

𝑚 denote that subset of 𝑊𝑚 ⊂ Hilb
𝑁𝑚(𝑋) given by those subschemes

whose ideal sheaf is invertible. One can proceed analogously as we did in the proof of Proposition 2.6 and show that

the restriction {𝔓𝑚|𝑊𝓁
𝑚×𝔍𝔞𝔠

𝛿
(𝑋)

}∞𝑚=𝑟 descend to a bundle over the product of stacks 𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋). Therefore,

the restriction of the 𝔓𝑚 to
(
𝑊𝑚 × 𝔍𝔞𝔠

𝛿
(𝑋)

)♯

∶=
(
𝑊𝑚 × 𝔍𝔞𝔠

𝛿
(𝑋)

)
∪

(
𝑊𝓁

𝑚 × 𝔍𝔞𝔠
𝛿
(𝑋)

)
descend to a bundle over(

𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)♯

that we denote by𝔓
♯

𝑚.

We now recall that 𝑖 ∶

(
𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)♯

↪ 𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋) has codimension at least 2. Thanks to

Proposition 2.5, we have that𝔓 is Cohen –Macaulay. Then, it follows that

𝔓𝑚 ≅ 𝑖∗𝔓
♯

𝑚 (2.15)

so the collection {𝔓
♯

𝑚}∞𝑚=𝑟 descend to a bundle on
(
𝔍𝔞𝔠

𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋)

)♯

. Thanks to Equation (2.15), one has that

𝔓 ≅ 𝑖∗𝔓
♯
.

Therefore, {𝔓𝑚}∞
𝑚=𝓁

descend to a sheaf over𝔍𝔞𝔠
𝛿
(𝑋) × 𝔍𝔞𝔠

𝛿
(𝑋). The rest of the proof is straightforward. □

When our curve 𝑋 is irreducible any rank 1 torsion-free sheaf is stable and simple. Therefore, the moduli stack of
torsion-free sheaves on a curve is the quotient stack associated with the fine compactified Jacobian Jac

𝛿
(𝑋) quotiented

by the trivial action of ℂ∗,

𝔍𝔞𝔠
𝛿
(𝑋) ≅

[
Jac

𝛿
(𝑋)∕ℂ∗

]
.

Let us denote by𝒫 → Jac
𝛿
(𝑋) × Jac

𝛿
(𝑋) the pull-back of the Poincaré sheaf𝔓 under the obvious projection Jac

𝛿
(𝑋) →

[Jac
𝛿
(𝑋)∕ℂ∗], and one can consider the integral functor given by it,

Φ ∶ 𝐷𝑏

(
Jac

𝛿
(𝑋)

)
⟶ 𝐷𝑏

(
Jac

𝛿
(𝑋)

)
ℰ∙ ⟼ 𝑅𝜋2,∗(𝜋

∗
1ℰ

∙ ⊗ 𝒫).

(2.16)

The Poincaré sheaf 𝒫 was first obtained by [23] for compactified Jacobians of irreducible nodal curves. Arinkin [6]
extended this construction to any irreducible reduced planar curve, showing also that Equation (2.16) is a derived
equivalence. Although his result does not extend to the context under consideration, we include it for the sake of
completeness:
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12 FRANCO and PEÓN-NIETO

Theorem 2.8 [6]. If 𝑋 is an irreducible reduced planar curve, then the Fourier–Mukai integrable functor Φ provides an
equivalence of categories.

The integral functor associated with 𝔓 is an eigenfunctor of the derived category of sheaves over the moduli stack of
torsion-free rank 1 sheaves over a reducible planar curve. It is being studied by Arinkin and Pantev [53] whether this
provides an equivalence or not.

3 TOTALLY REDUCIBLE SPECTRAL CURVES

3.1 The locus of totally reducible spectral curves and the Borel subgroup

We start by studying the Hitchin fibers associated with spectral curves that are totally reducible.
Recall from Section 2.1 that, for any 𝑏 ∈ H, the associated spectral curve 𝑋𝑏 is the 𝑛 ∶ 1 cover of the base curve 𝑋 given

by the vanishing of Equation (2.4). If 𝑋𝑏 is totally reducible, then, by definition, one can rewrite Equation (2.4) as

𝑛∏
𝑖=1

(𝜆 − 𝜋∗𝛼𝑖), (3.1)

where 𝛼𝑖 ∈ 𝐻0(𝑋, 𝐾). In view of this, consider the symmetric product

𝑉 ∶= Sym𝑛(𝐻0(𝑋,𝐾)
)
. (3.2)

Hence

dim𝑉 = 𝑛𝑔. (3.3)

There is an injection into the Hitchin base

𝑉 ↪ 𝐻

(𝛼1, … , 𝛼𝑛)𝔖 ⟼ (𝑞1(𝛼1, … , 𝛼𝑛), … , 𝑞𝑛(𝛼1, … , 𝛼𝑛)).
(3.4)

In the above: (𝛼1, … , 𝛼𝑛)𝔖 denotes the orbit of (𝛼1, … , 𝛼𝑛) under the 𝑛th symmetric group 𝔖, and 𝑞𝑖(𝛼1, … , 𝛼𝑛) is the
evaluation of 𝑞𝑖 on the diagonal Higgs field with entries 𝛼𝑖 . Note that the 𝑞𝑖 being invariant under the adjoint action, this
depends only on the orbit (𝛼1, … , 𝛼𝑛)𝔖.
Seen inside the Hitchin base, V describes the locus of totally reducible spectral curves.

Lemma 3.1. 𝑉 parameterizes all spectral curves that are totally reducible. Let 𝑣 ∈ 𝑉 be given by 𝑣 = (𝛼1,
𝑚1… , 𝛼1, … , 𝛼𝓁,

𝑚𝓁… , 𝛼𝓁)𝔖, where
∑𝓁

𝑖=1 𝑚𝑖 = 𝑛 and 𝛼𝑖 ≠ 𝛼𝑗 if 𝑖 ≠ 𝑗. Then, its corresponding spectral curve is

𝑋𝑣 =

𝓁⋃
𝑖=1

𝑋
𝑚𝑖

𝑖
, (3.5)

where each 𝑋
𝑚𝑖

𝑖
is a curve of multiplicity𝑚𝑖 whose reduced subscheme is 𝑋𝑖 ∶= 𝛼𝑖(𝑋), isomorphic to 𝑋.

Proof. This follows easily from Equation (3.1). □

Fix a Borel subgroup 𝐵 < GL𝑛(ℂ) containing 𝐶, so that 𝐵 = 𝐶 ⋉ 𝑈, where 𝑈 = [𝐵, 𝐵] is the unipotent radical of 𝐵. Let
us consider the subvariety given by those Higgs bundles whose structure group reduces to 𝐵,

Bor ∶=

{
(𝐸, 𝜑) ∈ 𝑀𝑛

|||||∃𝜎 ∈ 𝐻0(𝑋, 𝐸∕𝐵),

𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔟) ⊗ 𝐾)

}
,

where 𝐸𝜎 ∶= 𝜎∗𝐸 is the principal 𝐵-bundle on 𝑋 associated with the section 𝜎 ∈ 𝐻0(𝑋, 𝐸∕B).
We can see that Bor coincides with the preimage under the Hitchinmap of the locus of totally reducible spectral curves.
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FRANCO and PEÓN-NIETO 13

Proposition 3.2. One has the following

𝑀𝑛 ×H 𝑉 = Bor. (3.6)

Proof. We first see that Bor ⊂ 𝑀𝑛 ×H 𝑉. This is a consequence of the following fact: given the Jordan–Chevalley decom-
position of 𝑥 = 𝑥𝑠 + 𝑥𝑛 ∈ 𝔤𝔩𝑛(ℂ) into a semisimple 𝑥𝑠 and a nilpotent piece 𝑥𝑛, the invariant polynomials 𝑞𝑖 defining the
Hitchin fibration evaluate independently of the nilpotent part, namely 𝑞𝑖(𝑥) = 𝑞𝑖(𝑥𝑠).
For the other inclusion, one has to prove that any Higgs bundle (𝐸, 𝜑) ∈ 𝑀𝑛 ×H 𝑉 admits a full-flag decomposition.
Denote byℱ the torsion-free sheaf over the spectral curve𝑋𝑣 associated with (𝐸, 𝜑) under the spectral correspondence.

Recall that 𝑋𝑣 is described in Equation (3.5) and, using this notation, define

𝑌𝑖 ∶=

𝑖⋃
𝑗=1

𝑋
𝑚𝑗

𝑗
, 𝑍𝑖 ∶=

𝓁⋃
𝑘=𝑖+1

𝑋
𝑚𝑘

𝑘
. (3.7)

We consider the restriction ofℱ toℱ|𝑍𝑖
and denote its kernel byℱ𝑖 ,

0 ⟶ ℱ𝑖 ⟶ ℱ ⟶ ℱ|𝑍𝑖
⟶ 0. (3.8)

Since ℱ𝑖 is a subsheaf of ℱ, it gives the Higgs subbundle (𝐸𝑖, 𝜑𝑖) ⊂ (𝐸, 𝜑) under the spectral correspondence. Since ℱ𝑖−1

is a subsheaf ofℱ𝑖 we have that (𝐸𝑖−1, 𝜑𝑖−1) ⊂ (𝐸𝑖, 𝜑𝑖) so we obtain a filtration

0 ⊂ (𝐸1, 𝜑1) ⊂ ⋯ ⊂ (𝐸𝓁, 𝜑𝓁) = (𝐸, 𝜑). (3.9)

Note that a full-flag filtration for each of the (𝐹𝑖, 𝜙𝑖) ∶= (𝐸𝑖, 𝜑𝑖)∕(𝐸𝑖−1, 𝜑𝑖−1) will induce a full-flag filtration of (𝐸, 𝜑).
Note that the eigenvalues of 𝜙𝑖 are all equal to 𝛼𝑖 . Set 𝐹𝑖,1 = ker(𝜙𝑖 − 𝛼𝑖 ⊗ 𝟏𝐹𝑖

) and let 𝜙𝑖,1 be the restriction to 𝐹𝑖,1. Set
(𝐹′

𝑖 , 𝜙
′
𝑖 ) = (𝐹𝑖, 𝜙𝑖)∕(𝐹𝑖,1, 𝜙𝑖,1) and take 𝐹′

𝑖,2 = ker(𝜙′
𝑖 − 𝛼𝑖 ⊗ 𝟏𝐹′

𝑖
) and 𝜙′

𝑖,2 = 𝜙′
𝑖 |𝐹′

𝑖,2
. Note that (𝐹′

𝑖,2, 𝜙
′
𝑖,2) ⊂ (𝐹′

𝑖 , 𝜙
′
𝑖 ) lifts to a

subbundle (𝐹𝑖,2, 𝜙𝑖,2) of (𝐹𝑖, 𝜙𝑖) which contains (𝐹𝑖,1, 𝜙𝑖,1). Repeating this procedure one gets a filtration

0 ⊂ (𝐹𝑖,1, 𝜙𝑖,1) ⊂ ⋯ ⊂ (𝐹𝑖,𝑠, 𝜙𝑖,𝑠) = (𝐹𝑖, 𝜙𝑖),

where each quotient (𝐹𝑖,𝑗, 𝜙𝑖,𝑗)∕(𝐹𝑖,𝑗−1, 𝜙𝑖,𝑗−1) is isomorphic to a Higgs bundle of the form (𝐺𝑖,𝑗, 𝛼 ⊗ 𝟏𝐺𝑖,𝑗
).

Given an ample line bundle 𝒪𝑋(1), one has that, for sufficiently high 𝑁 > 0, that 𝒪𝑋(−𝑁) is a subbundle of 𝐺𝑖,𝑗 , and
the same is valid for the quotient 𝐺𝑖,𝑗∕𝒪𝑋(−𝑁). Hence, one can always construct a full-flag filtration for each of the 𝐺𝑖,𝑗 .
This provides a full-flag filtration for all the (𝐹𝑖, 𝜙𝑖), hence a full-flag filtration for (𝐸, 𝜑). □

Remark 3.3. Note that Proposition 3.2 generalizes to the correspondingmoduli stacks as stability plays no role on its proof.

Remark 3.4. The full-flag filtration of the Higgs bundle (𝐸, 𝜑) determines the reduction to the Borel subgroup 𝜎 ∈

𝐻0(𝑋, 𝐸∕B with 𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔟 ⊗ 𝐾)). Note that, in general, one cannot give a canonical such a full-flag filtration.

In the remaining of the section, we will focus on an open subset of 𝑉. Denote the big diagonal of 𝑉 by

Δ ∶= {(𝛼1, … , 𝛼𝑛)𝔖 ∈ 𝑉 such that 𝛼𝑖 = 𝛼𝑗 for some 𝑖, 𝑗}

and its complement in 𝑉 by

𝑉red ∶= 𝑉 ⧵ Δ.

Let us provide a description of the spectral curves parameterized by 𝑉red.

Lemma 3.5. 𝑉red is a dense open subset of 𝑉 parameterizing reduced, totally reducible, and nodal spectral curves. Further-
more, for any 𝑣 ∈ 𝑉red given by (𝛼1, … , 𝛼𝑛)𝔖𝑛

, the spectral curve 𝑋𝑣 is reduced and has the following decomposition into
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14 FRANCO and PEÓN-NIETO

irreducible components,

𝑋𝑣 =

𝑛⋃
𝑖=1

𝑋𝑖, (3.10)

with 𝑋𝑖 = 𝛼𝑖(𝑋) ≅ 𝑋. It is a singular curve with singularity divisor of length |𝐷| = (𝑛2 − 𝑛)(𝑔 − 1) = 𝛿. Its normalization,
𝑋𝑣 , is isomorphic to

𝑋𝑣 ≅

𝑛⨆
𝑖=1

𝑋𝑖 ≅

𝑛⨆
𝑖=1

𝑋, (3.11)

and the normalization morphism,

𝜈 ∶ 𝑋𝑣 → 𝑋𝑣, (3.12)

is the identity restricted to each of the 𝑋𝑖 .

Proof. Δ is a closed subset of 𝑉 of codimension 1, hence 𝑉red is open and dense. When 𝑣 ∈ 𝑉 ⧵ Δ, Equation (3.5) implies
that𝑋𝑣 is the union of 𝑛 different reduced and irreducible curves𝑋𝑖 all isomorphic to𝑋. It then follows that𝑋𝑣 is reduced
and its normalization is as described in Equation (3.11). The description of the normalization morphism follows form the
description of the spectral curve given in Equation (3.10). The length of𝐷 can be obtained after an easy computation using
Riemann–Roch. □

For any two 𝛼𝑖 and 𝛼𝑗 with 𝑖 ≠ 𝑗, denote the divisor 𝐷𝑖𝑗 = 𝛼𝑖(𝑋) ∩ 𝛼𝑗(𝑋). Consider also the following subset of 𝑉red,

𝑉nod ∶=

⎧⎪⎨⎪⎩
(𝛼1, … , 𝛼𝑛)𝔖 ∈ 𝑉redsuch that for every 𝑖 < 𝑗 < 𝑘

(a) there is no multiple point on𝐷𝑖𝑗, and
(b)𝐷𝑖𝑗 ∩ 𝐷𝑖𝑘 is empty.

⎫⎪⎬⎪⎭.

Lemma 3.6. 𝑉nod is a dense open subset of 𝑉 parameterizing reduced, totally reducible, and nodal spectral curves. For any
𝑣 ∈ 𝑉nod given by (𝛼1, … , 𝛼𝑛)𝔖𝑛

, the singularity divisor 𝐷 of the spectral curve 𝑋𝑣 is

𝐷 ∶=
⋃
𝑖,𝑗

𝐷𝑖𝑗

and consists only of simple points.

Proof. Since conditions (a) and (b) are open and generic,𝑉nod is a dense open subset of𝑉red. It then follows fromLemma3.5
that 𝑉nod is dense within 𝑉 too and the first statement follows.
Recall the description of 𝑋𝑣 given in Lemma 3.5. Take two irreducible components of 𝑋𝑣, 𝑋𝑖 , and 𝑋𝑗 , intersecting each

other at 𝐷𝑖𝑗 . Note that 𝐷 coincides with the set of intersection points and recall that we have imposed the condition
𝐷𝑖𝑗 ∩ 𝐷𝑖𝑘 = ∅ if 𝑗 ≠ 𝑘 in the definition of 𝑉nod, so 𝐷 is the union of the 𝐷𝑖𝑗 . □

Using the notation of Lemma 3.5, consider the following morphisms:

(3.13)
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FRANCO and PEÓN-NIETO 15

We have seen in Remark 3.4 that the reduction to the Borel subgroup cannot be defined canonically for an arbitrary
Higgs bundle in Bor. However, for those Higgs bundles lying over 𝑣 ∈ 𝑉nod, one can fix such a reduction after choosing
an ordering for the components of 𝑣.

Proposition 3.7. Let 𝑣 = (𝛼1, … , 𝛼𝑛)𝔖𝑛
∈ 𝑉nod and let (𝐸, 𝜑) ∈ ℎ−1(𝑣). For any ordering 𝐽 = (𝛼𝑗1 , … , 𝛼𝑗𝑛 ) of the set

{𝛼1, … , 𝛼𝑛}, one can chose canonically a filtration

(𝐸𝐽)∙ ∶ 0 ⊊ (𝐸1, 𝜑1) ⊊ ⋯ ⊊ (𝐸𝑛, 𝜑𝑛) = (𝐸, 𝜑),

such that the Higgs field induced by 𝜑 on 𝐸𝑖∕𝐸𝑖−1 is 𝛼𝑗𝑖 . Furthermore, if the associated spectral datum associated with (𝐸, 𝜑)

is a line bundle over the spectral curve, 𝐿 ∈ Jac𝛿(𝑋𝑣), then

𝐸𝑖∕𝐸𝑖−1 ≅ (𝛼∗
𝑗𝑖
𝜄∗
𝑗𝑖
𝐿) ⊗ 𝐾𝑖−𝑛.

Proof. Using the ordering 𝐽 set𝑌𝑖 =
⋃𝑖

𝑘=1 𝑋𝑗𝑘 , 𝑍𝑖 =
⋃𝑛

𝑘=𝑖+1 𝑋𝑗𝑘 as in Equation (3.7). After the choice of 𝐽, the filtration for
the spectral data given in Equation (3.8) is canonical and so is the filtration (3.9) of (𝐸, 𝜑). Since 𝑣 ∈ 𝑉nod, Equation (3.9)
is a full-flag filtration what proves the first statement.
For the second statement, recall that the filtration of 𝐿 is defined by the subsheaves 𝐿𝑖 = 𝐿 ⊗ ℐ𝑋,𝑍𝑖

whereℐ𝑋,𝑍𝑖
denotes

the ideal defining the subscheme 𝑍𝑖 ⊂ 𝑋. Now,ℐ𝑋,𝑍𝑖
≅ 𝒪𝑌𝑖

⊗ ℐ𝑌𝑖,𝑍𝑖∩𝑌𝑖
, thus

𝐿𝑖 ≅ 𝐿|𝑌𝑖
⊗ ℐ𝑌𝑖,𝑍𝑖∩𝑌𝑖

.

Note that

0 ⟶ 𝐿𝑖∕𝐿𝑖−1 ⟶ 𝐿|𝑍𝑖−1
⟶ 𝐿|𝑍𝑖

⟶ 0

is exact, so that

𝐿𝑖∕𝐿𝑖−1 ≅ 𝐿|𝑍𝑖
⊗ ℐ𝑍𝑖−1,𝑍𝑖

≅ 𝐿|𝑍𝑖
⊗ 𝒪𝑋𝑖

⊗ ℐ𝑋𝑖,𝑍𝑖∩𝑋𝑖

≅ 𝐿|𝑋𝑖
(−

𝑛∑
𝑘=𝑖+1

𝐷𝑖𝑘).

Now, the push-forward of

0 ⟶ 𝐿𝑖−1 ⟶ 𝐿𝑖 ⟶ 𝐿𝑖∕𝐿𝑖−1 ⟶ 0

gives under the spectral correspondence

(𝐸𝑖, 𝜑𝑖)∕(𝐸𝑖−1, 𝜑𝑖−1) ≅

(
𝛼∗

𝑗𝑖
𝜄∗
𝑗𝑖
𝐿

(
−

𝑛∑
𝑘=𝑖+1

𝐷𝑖𝑘

)
, 𝛼𝑗𝑖

)
,

where we abuse notation by identifying the divisor 𝐷𝑗𝑘 and its image under 𝜋. Naturally, 𝐾 ≅ 𝒪𝑋(𝐷𝑗𝑘), which yields the
result. □

3.2 Totally reducible nodal spectral curves and their desingularization

We study in this section the relation between the Hitchin fibers associated with totally reducible spectral curves with only
nodal singularities and their partial and complete desingularizations.
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16 FRANCO and PEÓN-NIETO

F IGURE 1 Partial desingularization
along 𝑅.

We first recall some well-known facts about rank one torsion-free sheaves on a reduced connected nodal curve 𝑋 with
divisor of singularities 𝐷. We start by studying the particular case of line bundles which admit a simple description in
terms of their pullback to partial (and complete) desingularization. Consider 𝑅 ⊂ 𝐷 a subdivisor of the singular divisor of
the reduced curve 𝑋, and let

𝜈𝑅 ∶ 𝑋𝑅 → 𝑋 (3.14)

be the partial desingularization at 𝑅 (see Figure 1). Note that 𝜈𝐷 ∶ 𝑋𝐷 → 𝑋 is just the normalization map 𝜈 that appeared
in Equation (3.12). Denote by

𝜈̂𝑅 ∶ Jac(𝑋) ⟶ Jac(𝑋𝑅)

𝐿 ⟼ 𝜈∗
𝑅𝐿

the pullbackmap. The fibers of thismap are described in the following lemmadue toGrothendieck [28, Proposition 21.8.5],
that we reproduce adapted to our notation.

Lemma 3.8 [28]. For any subdivisor 𝑅 ⊂ 𝐷 of the singular divisor of the reduced nodal curve 𝑋, the pullback map 𝜈̂𝑅 is a
smooth fibration with fiber (ℂ×)|𝑅|−𝑛𝑅+1, where 𝑛𝑅 is the number of connected components of 𝑋𝑅.

One can give the following geometrical interpretation of Lemma 3.8: line bundles on reduced nodal curves can be
described in terms of line bundles on each of the 𝑛𝑅 irreducible components of the (partial) desingularization, together
with |𝑅| gluing data (i.e., an element of ℂ× identifying the two local components of the nodal point) for each of the
intersection points, taking into account the identification given by scalar automorphisms on each of the components.
In the case of 𝑅 = 𝐷, we have that 𝑋𝑅 = 𝑋𝑣 is the normalization of the spectral curve and 𝜈𝑅 coincides with the

normalization map 𝜈. One has the following description adapted to that case.

Corollary 3.9. The pullback map

𝜈̂ ∶ Jac(𝑋𝑣) ⟶ Jac(𝑋𝑣)

𝐿 ⟼ 𝜈∗𝐿
(3.15)

is a smooth fibration with fiber (ℂ×)𝑛(𝑛−1)(𝑔−1)−(𝑛−1).
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FRANCO and PEÓN-NIETO 17

It can be checked that that the degree of a line bundle 𝐿 on a connected nodal curve𝑋 with irreducible components𝑋𝑖 is
given by the sum of the degrees of the line bundles obtained by restricting to each of the components, deg 𝐿 =

∑
𝑖 deg 𝐿|𝑋𝑖

.
In view of this, we refer to themultidegree of a line bundle 𝐿 on 𝑋 as the degree on each of the connected components of
𝑋. In other words, the multidegree of 𝜈̂(𝐿) = 𝜈∗𝐿 over the disconnected curve 𝑋.
A rank one torsion-free sheaf on𝑋 is either a line bundle or a push-forward of a line bundle on a partial desingularization

𝜈𝑅 of𝑋 (see [57], for instance). Consider 𝐿 ∈ Jac(𝑋𝑅) be given by the line bundles 𝐿𝑖 on each connected component𝑋𝑅,𝑖 of
𝑋𝑅. Geometrically, the (rank one torsion-free coherent) sheaf 𝜈𝑅,∗𝐿 on𝑋 is obtained by considering 𝑛𝑅-tuples of 𝐿𝑖 → 𝑋𝑅,𝑖 ,
together with identifications at all points 𝑥 ∈ 𝐷 ⧵ 𝑅. One can also check that

deg(𝜈𝑅,∗𝐿) = deg(𝐿) + |𝑅|. (3.16)

We now study in more detail the spectral curves parameterized by 𝑉nod and their corresponding Hitchin fibers. Let us
first fix some notation. Recall that, for 𝑣 ∈ 𝑉nod given by (𝛼1, … , 𝛼𝑛)𝔖𝑛

we denote the associated spectral curve by 𝑋𝑣.
After Lemmas 3.5 and 3.6, 𝑋𝑣 =

⋃𝑛

𝑖=1 𝑋𝑖 , where 𝑋𝑖 = 𝛼𝑖(𝑋) ≅ 𝑋 and be the divisor of singularities 𝐷 has length 𝛿 and
it is given by the union of the two-by-two intersection of the smooth irreducible components. For any subdivisor 𝑅 ⊂ 𝐷

consider the partial desingularization along 𝑅,

(3.17)

Consider the decomposition 𝑋𝑅 =
⨆𝑛𝑅

𝑖=1 𝑋𝑅,𝑖 into connected components and denote as 𝑋𝑅,𝑖 = 𝜈𝑅(𝑋𝑅,𝑖). Therefore, one
has the decomposition 𝑅 = 𝑅1 ⊔ ⋯ ⊔ 𝑅𝑛𝑅

⊔ 𝑅𝑠 such that

𝜈𝑅,𝑖 ∶ 𝑋𝑅,𝑖 ⟶ 𝑋𝑅,𝑖

is a partial desingularization of 𝑋𝑅,𝑖 along a non-separating divisor 𝑅𝑖 , and 𝑅𝑠 is the separating divisor in 𝑅 (i.e., the
divisor along which connected components are to appear after desingularization). Denote by 𝑝𝑅,𝑖 the restriction of 𝑝𝑅 to
the corresponding connected component. For each irreducible component 𝑋𝑗 = 𝛼𝑗(𝑋) ≅ 𝑋 of 𝑋𝑣, and its corresponding
connected component 𝑋𝑗 ≅ 𝑋𝑗 ≅ 𝑋 of the normalization 𝑋𝑣, consider the commuting diagram

(3.18)

We then see that 𝑋𝑗 ≅ 𝑋 are the irreducible components of 𝑋𝑅,𝑖 and denote by 𝐶𝑖 the index set of these components,
hence 𝑋𝑅,𝑖 =

⋃
𝑗∈𝐶𝑖

𝑋𝑗 has |𝐶𝑖| irreducible components. Write 𝐷̃𝑖 ⊂ 𝑋𝑅,𝑖 for the singular divisor of 𝑋𝑅,𝑖 and observe that
it coincides with the ramification divisor of 𝑝𝑅,𝑖 ∶ 𝑋𝑅,𝑖 ⟶ 𝑋. Observe as well that

𝐷𝑖 ∶= 𝜈𝑅,𝑖(𝐷̃𝑖) =
∑

𝑗,𝑘∈𝐶𝑖

𝐷𝑗𝑘 − 𝑅𝑖 ⊂ 𝐷 (3.19)
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18 FRANCO and PEÓN-NIETO

and

𝐷 =
∑
𝑖

(𝐷𝑖 + 𝑅𝑖) + 𝑅𝑠. (3.20)

We provide in the following lines a description of the Jacobians over 𝑋𝑅. Choose an ordering (𝑋𝑅,1, … , 𝑋𝑅,𝑛𝑅
) of the

connected components of 𝑋𝑅 and, with respect to it, denote

Jac 𝜂(𝑋𝑅) ≅ Jac𝜂1(𝑋𝑅,1) × ⋯ × Jac𝜂𝑛𝑅 (𝑋𝑅,𝑛𝑅
)

for each multidegree 𝜂, and set |𝜂| = ∑𝑛𝑅

𝑖=1 𝜂𝑖 . Consider the decomposition

Jac 𝜂(𝑋𝑅) ≅
⋃
|𝜂|=𝜂

Jac 𝜂(𝑋𝑅). (3.21)

Let also

Jac𝜂𝑖 (𝑋𝑅,𝑖) =
⋃

∑
𝑑
𝑗
𝑖
=𝜂𝑖

Jac(𝑑
1
𝑖
,…,𝑑

|𝐶𝑖 |
𝑖

)(𝑋𝑅,𝑖),

be the decomposition in terms of the multidegree associated with the irreducible components.
With the notation being settled, we now study push-forward of line bundles under 𝜈𝑅. Recall that every rank one torsion-

free sheaf on 𝑋𝑣 is either of this form or a line bundle.

Lemma 3.10. Let 𝑣 ∈ 𝑉nod. Only if

𝜂𝑖 =

|𝐶𝑖|∑
𝑘=1

𝑑𝑘
𝑖

= |𝐷𝑖|, (3.22)

one has that the push-forward map

𝜈̌𝑅 ∶ Jac(𝑑
1
1,…,𝑑

|𝐶1|
1 )(𝑋𝑅,1) × ⋯ × Jac(𝑑

1
𝑛𝑅

,…,𝑑
|𝐶𝑛𝑅 |
𝑛𝑅

)(𝑋𝑅,𝑛𝑅
) ⟶ Jac

𝛿
(𝑋𝑣)

𝐿 ⟼ 𝜈𝑅,∗𝐿,
(3.23)

is well defined and an injection. Furthermore, when 𝑅𝑠 ≠ ∅, the Higgs bundles whose corresponding spectral data is in the
image of 𝜈̌𝑅 are strictly polystable.

Proof. Assume first that 𝑅𝑠 = ∅ hence 𝑛𝑅 = 1 so𝑋𝑅 is connected. In that case, 𝜈𝑅,∗𝐿 is stable. Otherwise, as any destabiliz-
ing subsheaf of 𝜈𝑅,∗𝐿 will come from a destabilizing subsheaf of 𝐿 and this would imply that 𝐿 is unstable. But 𝐿 is a line
bundle so it is forcely stable. One also has that 𝜈𝑅,∗𝐿 ≇ 𝜈𝑅,∗𝐿

′ if 𝐿 ≇ 𝐿 so it only remains to prove that the degree 𝜈𝑅,∗(𝐿)

is 𝛿 = |𝐷|. Note that this follows from Equations (3.16) and (3.20), since Equation (3.22) is equivalent to 𝜂 = |𝐷1| as 𝑋𝑅

is connected.
Now, we study the case where 𝑅𝑠 ≠ ∅, so 𝑋𝑅 has 𝑛𝑅 > 1 connected components. Denote 𝜄̃∗

𝑘
𝐿 = 𝐿𝑘, where the notation

is as in Equation (3.18). Note that

𝜋∗𝜈𝑅,∗𝐿 = 𝑝𝑅,∗𝐿 =

𝑛𝑅⨁
𝑖=1

𝑝𝑅,𝑖,∗𝐿𝑖,

where the notation is as in Equation (3.18). Note that the direct sum is invariant by the Higgs field, since the Higgs field
is equivalent to a 𝜋∗𝒪𝑋𝑣

module structure on 𝜋∗𝜈𝑅,∗𝐿, and the latter factors through a 𝜋∗𝜈𝑅,∗𝒪𝑋𝑅
-module structure. This

proves that the Higgs bundle associated with 𝐿 is decomposable. Note that, as before, 𝜈𝑅,𝑖,∗𝐿𝑖 is stable as 𝐿𝑖 is a line bundle,
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FRANCO and PEÓN-NIETO 19

hence stable. Therefore, it must happen that

deg 𝑝𝑅,𝑖,∗𝐿𝑖 = deg𝜋𝑖,∗𝜈𝑅,𝑖,∗𝐿𝑖 = 0 (3.24)

for the Higgs bundle to be polystable. Note that we have used 𝑝𝑅,𝑖 = 𝜋𝑖◦𝜈𝑅,𝑖 .
Given that 𝑋𝑅,𝑖 is a totally reducible nodal spectral curve with |𝐶𝑖| irreducible components, arguing as in Lemma 3.1

(compare with Equation (2.6)) we find that Equation (3.24) is equivalent to

deg 𝜈𝑅,𝑖,∗𝐿𝑖 = (|𝐶𝑖|2 − |𝐶𝑖|)(𝑔 − 1) =

||||||
∑

𝑗,𝑘∈𝐶𝑖

𝐷𝑗𝑘

||||||.
Now, considering

0 ⟶ 𝜈∗
𝑅,𝑖

𝒪𝑋𝑅,𝑖
⟶ 𝒪𝑋𝑅,𝑖

⟶ 𝒪𝑅𝑖
⟶ 0,

we have that ||||||
∑

𝑗,𝑘∈𝐶𝑖

𝐷𝑗𝑘

|||||| = deg 𝜈𝑅,𝑖,∗𝐿𝑖 = deg 𝐿𝑖 + |𝑅𝑖|,
which together with Equation (3.19) implies that Equation (3.24) is equivalent to Equation (3.22). In that case Equa-
tion (3.23) is well defined and it is injective since, as before, we have that 𝜈𝑅,𝑖,∗𝐿𝑖 ≇ 𝜈𝑅,𝑖,∗𝐿

′
𝑖
whenever 𝐿𝑖 and 𝐿′

𝑖
are not

isomorphic. □

As a corollary of Lemma 3.10, one can derive the following well-known fact when 𝑅 = 𝐷. Hence, after Lemma 3.5 the
normalization 𝑋𝑣 = 𝑋𝑅 of 𝑋 decomposes into 𝑛 connected components, each of them isomorphic to the base curve 𝑋.

Corollary 3.11. The push-forward map

𝜈̌ ∶ Jac(0,…,0)(𝑋𝑣) ⟶ Jac
𝛿
(𝑋𝑣)

𝐿 ⟼ 𝜈∗𝐿,
(3.25)

is well defined and an injection. Furthermore, 𝜈̌
(
Jac(0,…,0)(𝑋𝑣)

)
classifies those strictly polystable Higgs bundles that

decompose into direct sum of line Higgs bundles.

In Proposition 3.7, we provided a description of the dense open subset of the Hitchin fiber over 𝑣 ∈ 𝑉nod corresponding
to line bundles. Recalling that every torsion-free sheaf is given by the push-forward of a line bundle under a partial nor-
malization 𝜈𝑅, we complete in the following lines the description initiated in Proposition 3.7 of Higgs bundles lying over
𝑉nod.

Proposition 3.12. Take any 𝑣 ∈ 𝑉nod given by 𝑣 = (𝛼1, … , 𝛼𝑛)𝔖𝑛
and suppose that the multidegree 𝑑 satisfies Equa-

tion (3.22). One has the following,

1. Assume 𝑅𝑠 ≠ ∅. Then, the Higgs bundles corresponding to spectral data in 𝜈̌𝑅

(
Jac𝑑(𝑋𝑅)

)
admit a reduction of their

structure group to 𝐵1 × ⋯ × 𝐵𝑛𝑅
⊂ 𝐵, where B𝑖 is the Borel subgroup of GL(|𝐶𝑖|, ℂ).

2. Consider the Higgs bundle (𝐸, 𝜑) =
⨁𝑛𝑅

𝑘=1(𝐸𝑘, 𝜑𝑘) in ℎ−1(𝑣) ∩ 𝜈̌𝑅

(
Jac𝑑(𝑋𝑅)

)
. Suppose that the spectral data of (𝐸, Φ)

are 𝜈𝑅,∗𝐿, where 𝐿 is a line bundle over 𝑋𝑅. Then, for any ordering 𝐽𝑘 = (𝛼𝑗1 , … , 𝛼𝑗|𝐶𝑘 |) of 𝐶𝑘 , one can chose canonically a
filtration for (𝐸𝑘, 𝜑𝑘), for all 𝑘 ∈ {1, … , 𝑛𝑅},

(𝐸𝐽𝑘 )∙ ∶ 0 ⊊ (𝐸𝑘,1, 𝜑1) ⊊ ⋯ ⊊ (𝐸𝑘,|𝐶𝑘|, 𝜑𝑘,|𝐶𝑘|) = (𝐸𝑘, 𝜑𝑘)
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20 FRANCO and PEÓN-NIETO

such that

(𝐸𝑘,𝑖, 𝜑𝑘,𝑖)∕(𝐸𝑘,𝑖−1, 𝜑𝑘,𝑖−1) =

(
𝐿|𝑋𝑗𝑖

⊗ 𝒪

(
−

∑
𝑖′≥𝑖+1

𝑋𝑗𝑖 ∩ 𝑋𝑗𝑖′

)
, 𝛼𝑗𝑖

)

where we abuse notation by identifying the subdivisors 𝑋𝑗𝑖 ∩ 𝑋𝑗𝑖′
⊂ 𝐷𝑖′ Equation (3.19) and their images under 𝑝𝑖′ , and

𝐿|𝑋𝑗𝑖
with its pullback under 𝛼𝑗𝑖◦(𝜈

𝑗𝑖
𝑅,𝑘

)−1.

Proof.

(1) Follows from Proposition 3.2 and Lemma 3.10.
(2) To simplify notation, take the orderings ((𝛼1, … , 𝛼|𝐶1|), … (𝛼|𝐶𝑛𝑅−1|, … , 𝛼𝑛)). The reasoning that follows adapts just the

same way to any other choice of orderings. The statement is proven as Proposition 3.7, taking the following remarks
into account:

First note that the subscheme 𝑍𝑖 ⊂ 𝑋𝑣 appearing in the proof of Proposition 3.7 is the image of its partial desingularization
𝑍𝑖 ⊂ 𝑋𝑅, onwhich the filtrationwill be given on each of the connected components. This restricts the proof to line bundles
over connected curves 𝑋𝑅.
By the previous remark, we may assume that 𝑋𝑅 is connected and 𝐽 is an ordering for {𝛼1, … , 𝛼𝑛}. We obtain a full flag

in the same way as in the proof of Proposition 3.7, the difference with this case being that the ideal

ℐ𝑍𝑖−1,𝑍𝑖
≅ 𝒪𝑋𝑖

(−𝑋𝑖 ∩ 𝑍𝑖)

depends on the ordering (and 𝑅) and so does

𝑋𝑖 ∩ 𝑍𝑖 =
∑

𝑖′≥𝑖+1

𝑋𝑖 ∩ 𝑋𝑖′ . □

4 A (BBB)-BRANE FROM THE CARTAN SUBGROUP

In this section, we construct a (BBB)-brane of𝑀𝑛, which is, by definition (cf. [41]), a pair (𝑁, (𝐅,∇𝐅)) given by:

∙ A hyperholomorphic subvariety 𝑁 ⊂ 𝑀𝑛, that is, a subvariety which is holomorphic with respect to the three complex
structures Γ1, Γ2, and Γ3.

∙ A hyperholomorphic sheaf (𝐅,∇𝐅) supported on 𝑁, that is, a sheaf 𝐅 equipped with a connection whose curvature ∇𝐅

is of type (1,1) in the complex structures Γ1, Γ2, and Γ3.

Remark 4.1. A flat connection is trivially of type (1,1) in any complex structure.

The embedding of the Cartan subgroup C ≅ (ℂ×)𝑛 into GL(𝑛,ℂ) induces the Cartan locus of the moduli space of
semistable Higgs bundles

Car =

{
(𝐸, 𝜑) ∈ 𝑀𝑛

|||||∃ 𝑠 ∈ 𝐻0(𝑋, 𝐸∕𝐶),

𝜑 ∈ 𝐻0(𝑋, 𝐸𝑠(𝔠) ⊗ 𝐾).

}
,

where 𝐜 = Lie(𝐶) and 𝐸𝑠 is the principal 𝐶-bundle on 𝑋 constructed from the section 𝑠. Observe that Car is the image of
the injective morphism

𝑐 ∶ Sym𝑛(𝑀1) ⟶ 𝑀𝑛,

which is hyperholomorphic, so Car is a hyperholomorphic subvariety.
Now,we address the construction of the hyperholomorphic sheaf onCar for any topologically trivial line bundleℒ → 𝑋.

Since a flat bundle is hyperholomorphic and the morphism 𝑐 is a hyperholomorphic morphism, it will suffice to construct
a flat bundle on Sym𝑛(𝑀1) and take its direct image under 𝑐.
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FRANCO and PEÓN-NIETO 21

After fixing a point 𝑥0 ∈ 𝑋 we get an embedding 𝑋 ↪ Jac0(𝑋). Consider our initial line bundleℒ → 𝑋, and let ∇ℒ be
a flat connection on it. Denote by (ℒ̌, ∇̌ℒ) the unique flat line bundle in Jac0(𝑋) that restricts to (ℒ,∇ℒ). From a flat line
bundle on Jac0(𝑋) one can define a flat line bundle on Sym𝑛(Jac0(𝑋)) as we explain in the following lemma.

Lemma 4.2. Let (ℒ̌, ∇̌ℒ) be a flat line bundle on Jac0(𝑋). Consider

𝜋𝑖 ∶ (Jac0(𝑋))×𝑛 → Jac0(𝑋)

the projection onto the 𝑖th factor. Let

ℒ̌⊠𝑛 ∶=

𝑛⨂
𝑖=1

𝜋∗
𝑖
ℒ̌

and

∇̌⊠𝑛
ℒ

∶=

𝑛∑
𝑖=1

𝜋∗
𝑖 ∇̌ℒ̌ ⊗

⨂
𝑗≠𝑖

𝟏𝜋∗
𝑗
ℒ̌.

Then,
(
ℒ̌⊠𝑛, ∇̌⊠𝑛

ℒ

)
is a flat bundle that descends to a flat bundle

(
ℒ̌(𝑛), ∇̌

(𝑛)
ℒ

)
on Sym𝑛(Jac0(𝑋)).

Proof. The bundle ℒ̌⊠𝑛 is invariant by the action of 𝔖𝑛 and moreover the natural linearization action derived from the
one on the bundle⊕𝑛

𝑖=1ℒ̌ satisfies that over point 𝑝 ∈ (Jac0(𝑋))×𝑛 with nontrivial centralizer 𝑍𝑝 ⊂ 𝔖, the centralizer 𝑍𝑝

acts trivially on ℒ̌⊠𝑛
𝑝 . It follows fromKempf’s descent lemma that ℒ̌⊠𝑛 descends to a line bundle ℒ̌(𝑛) on Sym𝑛(Jac0(𝑋))

ℒ̌(𝑛) ∶=
(
𝑞∗ℒ̌

⊠𝑛
)𝔖𝑛

,

where 𝑞 denotes the projection Jac0(𝑋)×𝑛 → Sym𝑛(Jac0(𝑋)).
Note that ∇̌⊠𝑛

ℒ
is flat since the 𝜋∗

𝑖
∇̌ℒ are flat and for any two 𝑖 ≠ 𝑗, one has that 𝜋∗

𝑖
∇̌ℒ and 𝜋∗

𝑗
∇̌ℒ commute. By

equivariance with respect to the action of the symmetric group𝔖𝑛, it descends to a flat connection ∇̌
(𝑛)
ℒ

on ℒ̌(𝑛). □

Recall that the moduli space of topologically trivial rank 1 Higgs bundles fibers over the Jacobian,M1 ⟶ Jac0(𝑋). This
fibration extends to the symmetric product

𝑝 ∶ Sym𝑛(M1) ⟶ Sym𝑛
(
Jac0(𝑋)

)
.

Then, the flat line bundle (ℒ̌(𝑛), ∇̌(𝑛)) gives a flat line bundle 𝑝∗
(
ℒ̌(𝑛), ∇̌

(𝑛)
ℒ

)
on Sym𝑛(M1) and further a hyperholomor-

phic sheaf

(𝐋,∇𝐋) = 𝑐∗𝑝
∗(ℒ̌(𝑛), ∇̌

(𝑛)
ℒ

)

on the Cartan locus Car. Consider the pair

𝐂𝐚𝐫(ℒ) ∶= (Car, (𝐋,∇𝐋)).

The above discussion implies the following.

Proposition 4.3. 𝐂𝐚𝐫(ℒ) is a (BBB)-brane on M𝑛, which we call Cartan (BBB)-brane associated with the line bundle
ℒ → 𝑋.
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22 FRANCO and PEÓN-NIETO

Note that the image of the Cartan locus under the Hitchin map coincides with the locus of totally reducible spectral
curves,

ℎ(Car) ≅ V.

We finish this section with a description of the intersection of the Cartan locus with a generic Hitchin fiber associated
with a nodal curve. Recall that the push-forward map 𝜈̌ is an injective morphism as we have seen in Lemma 3.10.

Proposition 4.4. For any 𝑣 ∈ Vnod, one has

ℎ−1(𝑣) ∩ Car = 𝜈̌
(
Jac0(𝑋𝑣)

)
≅ Jac0(𝑋𝑣).

Consider the isomorphism

𝑚 ∶ Jac0(𝑋𝑣) ≅ Jac0(𝑋)×𝑛 (4.1)

induced by the ordering (𝑋1, 𝑋2, … , 𝑋𝑛) of the connected components of 𝑋. One has that under the isomorphism𝑚:

1. The spectral datum 𝐿 ∈ 𝜈̌
(
Jac0(𝑋𝑣)

)
corresponding to

⨁𝑛

𝑖=1(𝐿𝑖, 𝛼𝑖) ∈ Car is taken to (𝐿1, … , 𝐿𝑛) ∈ Jac0(𝑋)×𝑛. Namely,
𝐿 = 𝜈∗𝐹 =

⨁
𝑗(𝜄𝑗)∗𝐿𝑗 where 𝜄𝑗 is as in Equation (3.13) and 𝐹 ∈ Jac(𝑋) restricts to 𝐹|𝑋𝑗

= 𝐿𝑗 .
2. The restriction of 𝐋 → Car to ℎ−1(𝑣) ∩ Car corresponds to ℒ̌⊠𝑛 → Jac0(𝑋)×𝑛 defined in Lemma 4.2.

Proof.

(1) By construction, a Higgs bundle in Car decomposes as a direct sum of line bundles,

(𝐸, 𝜑) ≅

𝑛⨁
𝑖=1

(𝐿𝑖, 𝛼𝑖).

After Corollary 3.11, 𝜈̌(Jac0) ⊂ ℎ−1(𝑣) ∩ Car. Now, let 𝐿 ∈ Jac
𝛿
(𝑋𝑣) be the spectral datum corresponding to and

element (𝐸, 𝜑) ∈ ℎ−1(𝑣) ∩ Car. It is easy to see that the Higgs bundle is totally decomposable if and only if its
𝜋∗𝒪𝑋𝑣

-module structure factors through a 𝜋∗𝜈∗𝒪𝑋 ≅ 𝒪⊕𝑛
𝑋 -module structure. Hence, 𝐿 = 𝜈∗𝐹 for some 𝐹 ∈ Jac(𝑋).

Corollary 3.11 finishes the proof, as the only possible multidegree is (0, … , 0).
(2) In order to prove the second statement, note that the isomorphism (4.1) is totally determined by a choice of an ordering

of the connected components of𝑋, in this case (𝑋1, … , 𝑋𝑛). Now, the choice of such an ordering induces an embedding
𝑗 ∶ (Jac0(𝑋))×𝑛 ↪ Sym𝑛(Jac0(𝑋))making the following diagram commute:

with 𝑞 = 𝑝◦𝑗 being the usual quotient map. We need to check that

𝑚∗𝑖∗𝐋 ≅ ℒ̌⊠𝑛.

But, since the above diagram commutes and 𝑐 is an injection, the left-hand side is equal to 𝑗∗𝑐∗𝐋 = 𝑗∗𝑐∗𝑐∗𝑝
∗ℒ̌(𝑛) ≅

𝑗∗𝑝∗ℒ̌(𝑛) ≅ 𝑞∗ℒ̌(𝑛) and the statement follows by the construction of ℒ̌(𝑛). □
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FRANCO and PEÓN-NIETO 23

5 (BAA)-BRANES FROM THE UNIPOTENT RADICAL OF THE BOREL SUBGROUP

Recall from Section 2.1 that𝑀𝑛 is a hyperkähler scheme with ((Γ1, 𝜔1), (Γ2, 𝜔2), (Γ3, 𝜔3)) being its Kähler structures. After
[41], a (BAA)-brane on𝑀𝑛 is a pair (𝑊, (𝒢,∇𝒢)), with:

∙ 𝑊 being a complex Lagrangian subvariety of𝑀𝑛 for the holomorphic symplectic form Ω1 = 𝜔2 + 𝑖𝜔3.
∙ (𝒢,∇𝒢) being a flat bundle supported on𝑊.

Starting from the line bundle ℒ → Jac0(𝑋), we construct in this section a complex Lagrangian subvariety Uni(ℒ) of
the moduli space of Higgs bundles, mapping to the Cartan locus 𝑉 ⊂ 𝐻 of the Hitchin base. As we have seen, Uni(ℒ) is
the support of a (BAA)-brane after specifying a flat vector bundle on it.
Recall that we have fixed a point 𝑥0 ∈ 𝑋. Denote by ℒ̂ our topologically trivial line bundle ℒ → 𝑋 tensored 𝛿∕𝑛 =

(𝑛 − 1)(𝑔 − 1) times by 𝒪𝑋(𝑥0),

ℒ̂ ∶= ℒ ⊗ 𝒪𝑋(𝑥0)
(𝑛−1)(𝑔−1). (5.1)

Having in mind Proposition 3.2, we define the subvariety of𝑀𝑛 ×H 𝑉,

Uni(ℒ) =

⎧⎪⎨⎪⎩(𝐸, 𝜑) ∈ Bor

||||||||
∃𝜎 ∈ 𝐻0(𝑋, 𝐸∕B),

𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔟) ⊗ 𝐾),

𝐸C ∶= 𝐸𝜎∕U ≅ (ℒ̂ ⊗ 𝐾⊗1−𝑛) ⊞ ⋯ ⊞ (ℒ̂ ⊗ 𝐾−1) ⊞ ℒ̂.

⎫⎪⎬⎪⎭. (5.2)

Proposition 5.1. Uni(ℒ) is closed in𝑀𝑛.

Proof. Recall that we denoted by 𝔐𝑛 the moduli stack of rank 𝑛 and degree 0 Higgs bundles and its semistable locus by
𝔐sst

𝑛 ⊂ 𝔐𝑛. Recall as well that Theorem 2.2 (see also the discussion following it) states that 𝑀𝑛 is a good moduli space
for𝔐sst

𝑛 and there is a morphism

Ψ ∶ 𝔐sst
𝑛 ⟶ 𝑀𝑛

which induces the quotient topology.
Let us denote by𝔅𝔬𝔯 the moduli stack of B-Higgs bundles, that is, the moduli stack classifying pairs (𝐸B, 𝜑B), where 𝐸B

is a holomorphic B-bundle and 𝜑B is an element of𝐻0(𝑋, 𝐸B(𝔟) ⊗ 𝐾). By extension of the structure group B ↪ GL(𝑛,ℂ),
one gets a morphism

𝔦 ∶ 𝔅𝔬𝔯 → 𝔐𝑛.

Recalling Theorem 2.2, and the definition of Bor, we see that the restriction of 𝔦(𝔅𝔬𝔯) to the semistable locus𝔐sst
𝑛 of𝔐𝑛

surjects to Bor. Also, one can construct the following projection:

𝔧 ∶ 𝔅𝔬𝔯 ⟶ Jac(𝑋)𝑛

(𝐸B, 𝜑B) ⟼ 𝐸C = 𝐸B∕U.

Both 𝔦 and 𝔧 are algebraic morphisms hence smooth. Consider the substack of𝔐𝑛 given by

𝔘𝔫𝔦(ℒ) ∶= 𝔦
(
𝔧−1((ℒ̂ ⊗ 𝐾⊗1−𝑛) ⊞ ⋯ ⊞ (ℒ̂ ⊗ 𝐾−1) ⊞ ℒ̂)

)
.

Again, thanks to Theorem 2.2 and the construction of Uni(ℒ), we have that the restriction to the semistable locus,
𝔘𝔫𝔦(ℒ)sst ∶= 𝔘𝔫𝔦(ℒ) ∩ 𝔐sst

𝑛 , surjects to Uni(ℒ). Note that 𝔧−1((ℒ̂ ⊗ 𝐾⊗1−𝑛) ⊞ ⋯ ⊞ (ℒ̂ ⊗ 𝐾−1) ⊞ ℒ̂) is a closed sub-
stack of𝔅𝔬𝔯 as it is the preimage of a closed point, then𝔘𝔫𝔦(ℒ) is closed inside 𝔦 (𝔅𝔬𝔯). We now observe that it is enough
to prove that 𝔦(𝔅𝔬𝔯) is closed in𝔐𝑛 as this would imply that𝔘𝔫𝔦(ℒ) is closed in𝔐𝑛. Now, by Theorem 2.2 the previous
discussion implies that𝔘𝔫𝔦(ℒ)sst is closed inside𝔐sst

𝑛 , and thus maps onto a closed subset, proving the statement.
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24 FRANCO and PEÓN-NIETO

Now, universal closedness of 𝔦(𝔅𝔬𝔯) follows from the valuative criterion, as the image of 𝔅𝔬𝔯 has a universal bundle
(𝔈,𝚽) admitting a reduction of the structure group to B. Given a discrete valuation ring 𝑅with fraction field 𝑘, properness
of GL𝑛(ℂ)∕B ensures that the existence of a reduction of the structure group over Spec(𝑘) extends uniquely to Spec(𝑅).
This proves the valuative criterion for the bundle. Now, assume that the universal Higgs field defines a B-equivariant
morphism

𝜙 ∶ 𝔈B|Spec(𝑘) ⟶ 𝔟 ⊗ 𝐾,

where𝔈B denotes the universal bundle together with a reduction to 𝐵. Since 𝜙 extends to 𝜙′ ∶ 𝔈|Spec(𝑅) ⟶ 𝔤𝔩(𝑛, ℂ) ⊗ 𝐾,
closedness of 𝔟 ⊂ 𝔤𝔩(𝑛, ℂ) étale local triviality of 𝔈|Spec(𝑅) do the rest. □

In order to prove thatUni(ℒ) is an isotropic submanifold of (𝑀𝑛,Ω1)we first give a description of it in gauge theoretic
terms. Let 𝔼 denote the topologically trivial rank 𝑛 vector bundle; choose a reduction of the structure group to 𝐵 (which
always exists), and let𝔼B be the corresponding principalB-bundle, so that𝔼 ≅ 𝔼B(GL(𝑛, ℂ)). Define𝔼C = 𝔼B∕U. It follows
from Equation (5.2) that

Uni(ℒ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜕𝐴, 𝜑) ∈ M𝑛

||||||||||||||

∃𝑔 ∈ 𝒢 satisfying

1) 𝑔 ⋅ 𝜕 = 𝜕C + 𝑁,where

𝑁 ∈ Ω0,1(𝑋, 𝔼B(𝔫)),

(𝔼C, 𝜕C) = (ℒ̂ ⊗ 𝐾⊗1−𝑛) ⊞ ⋯ ⊞ (ℒ̂ ⊗ 𝐾−1) ⊞ ℒ̂;

2) 𝑔 ⋅ 𝜑 ∈ Ω0(𝑋, 𝔼B(𝔟) ⊗ 𝐾).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (5.3)

Remark 5.2. BothCar andUni(ℒ) are subvarieties of𝑀𝑛 ×H 𝑉, but they do not intersect, as the elements ofCar ∩ Uni(ℒ)

would have underlying bundle of the form 𝐸C in Equation (5.2), which is unstable, and totally decomposable Higgs field,
conditions which yield unstable Higgs bundles.

Proposition 5.3. The complex subvariety Uni(ℒ) of 𝑀𝑛 is isotropic with respect to the symplectic form Ω1 defined in
Equation (2.3).

Proof. It is enough to prove the statement for open subset of stable points in Uni(ℒ). We will check that this subset is
non-empty in Proposition 5.7.
So let (𝐸, 𝜑) ∈ Uni(ℒ) be a stable point. By Equation (5.3), a vector (𝐴̇, 𝜑̇) ∈ 𝑇(𝐸,𝜑)M𝑛 satisfies that, up to the adjoint

action of the gauge Lie algebra,

(𝐴̇, 𝜑̇) ∈ Ω0,1(𝑋, 𝔼B(𝔫)) × Ω0(𝑋, 𝔼B(𝔟) ⊗ 𝐾).

The result follows from gauge invariance of the symplectic formΩ1 and the fact that 𝔫 ⊂ 𝔟⟂, where orthogonality is taken
with respect to the Killing form. □

We now give a description of the spectral data of the Higgs bundles corresponding to the points of Uni(ℒ). We will
focus on the open subset of those Higgs bundles whose spectral data are a line bundle. This will allow us to show that this
subvariety is mid-dimensional, and, after Proposition 5.3, Lagrangian.

Proposition 5.4. Let ℒ̂ be defined as in Equation (5.1). For every 𝑣 ∈ 𝑉nod, one has the following identification inside
ℎ−1(𝑣),

Uni(ℒ) ∩ Jac𝛿(𝑋𝑣) =
{
𝐿 ∈ Jac𝛿(𝑋𝑣) such that 𝜈∗𝐿 = 𝑝∗ℒ̂ ≅

(
ℒ̂, … , ℒ̂

)}
. (5.4)

Furthermore, Higgs bundles described in Equation (5.4) are stable.
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FRANCO and PEÓN-NIETO 25

Proof. Thanks to Proposition 3.7, we have that the spectral datum 𝐿 of any (𝐸, 𝜑) ∈ Uni(ℒ) ∩ Jac𝛿(𝑋𝑣) satisfies

ℒ̂ = 𝛼∗
𝑖
𝜄∗
𝑖
𝐿.

Now, since any line bundle on 𝑋𝑣 is totally determined by its restriction to all the connected components, it is enough to
check that 𝑗∗

𝑖 𝑝
∗ℒ̂ = 𝑗∗

𝑖 𝜈
∗𝐿, which follows from commutativity of the arrows in Equation (3.13) and the fact that 𝛼𝑖 ∶ 𝑋 →

𝑋𝑖 is an isomorphism. This concludes the proof. □

The description of the spectral data given in Proposition 5.4 allows us to study the dimension of Uni(ℒ), which turns
up to be one half of dimM𝑛.

Proposition 5.5. The complex subvarietyUni(ℒ) of𝑀𝑛 has dimension

dimUni(ℒ) = 𝑛2(𝑔 − 1) + 1 =
1

2
dim𝑀𝑛.

Proof. First, we observe that Uni(ℒ) is a fibration over 𝑉 and recall that dim𝑉 = 𝑛𝑔. By Proposition 5.7, over the dense
open subset 𝑉nod ⊂ V, the fiber of Uni(ℒ)|Vnod → 𝑉nod at 𝑣 has a dense open subset

𝜈̂−1(ℒ̂, … , ℒ̂) ⊂ Jac
𝛿
(𝑋𝑣) ≅ ℎ−1(𝑣),

where we recall the pull-back map described in Equation (3.15). Now, by Corollary 3.9,

𝜈̂−1(ℒ̂, … , ℒ̂) ≅ (ℂ×)
𝛿−𝑛+1

.

By smoothness of the point, the Hitchin fiber is transverse to the (local) Hitchin section, so

dimUni(ℒ)|Vnod = dim𝑉nod + dim 𝜈̂−1
(
ℒ̂, … , ℒ̂

)
=𝑛𝑔 + 𝛿 − 𝑛 + 1

=𝑛𝑔 + (𝑛2 − 𝑛)(𝑔 − 1) − 𝑛 + 1

=𝑛2(𝑔 − 1) + 1,

which is half of the dimension of 𝑀𝑛, as we recall from Equation (2.2). This finishes the proof since by Proposition 5.3,
Uni(ℒ) is isotropic, so its dimension cannot be greater than 1

2
dim𝑀𝑛. □

Finally, we can state the main result of the section.

Theorem 5.6. The complex subvarietyUni(ℒ) of𝑀𝑛 is a closed complex Lagrangian with respect toΩ1.

Proof. This is clear after Propositions 5.1, 5.3, and 5.5. □

Thanks to Proposition 3.12, we have at hand a description of every point in the Hitchin fibers over 𝑉nod. Hence, we can
study the intersection of these fibers with Uni(ℒ) as we will do in the remaining of the section. Before stating the result
we need some extra definitions. Let 𝑣 = (𝛼1, … , 𝛼𝑛)𝔖𝑛

in 𝑉nod giving the spectral curve 𝑋𝑣 with singular divisor 𝐷 ⊂ 𝑋𝑣,
and let 𝑅 ⊂ 𝐷 be a subdivisor. We have seen that 𝑋𝑣 has 𝑛 irreducible components 𝑋𝑖 = 𝛼𝑖(𝑋) and recall that we have set
𝐷𝑖𝑗 = 𝑋𝑖 ∩ 𝑋𝑗 . For each ordering 𝐽 = (𝛼𝑗1 , … , 𝛼𝑗𝑛 ) of the set {𝛼1, … , 𝛼𝑛}, define the divisors

𝐵𝐽,𝑖 ∶=
∑

𝑖′≥𝑖+1

𝐷𝑗𝑖𝑗𝑖′
∩ 𝑅. (5.5)
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26 FRANCO and PEÓN-NIETO

Set also

𝑏𝐽,𝑖 ∶= |𝐵𝐽,𝑖|.
Proposition 5.7. Let ℒ̂ be defined as in Equation (5.1) and let 𝑣 ∈ Vnod with spectral curve 𝑋𝑣 and divisor of singularities
𝐷. Chose 𝑅 ⊂ 𝐷 and consider the associated desingularization𝑋𝑅 of𝑋𝑣 . Then, for any 𝑛-tuple of integers 𝑑 = (𝑑1, … , 𝑑𝑛), we
have the following identifications inside ℎ−1(𝑣),

Uni(ℒ) ∩ 𝜈̌𝑅

(
Jac𝑑(𝑋𝑅)

)
=

⎧⎪⎪⎨⎪⎪⎩
𝐿 ∈ Jac𝑑(𝑋𝑅)

|||||||||||

∃ 𝐽 = (𝛼𝑗1 , … , 𝛼𝑗𝑛 ) ordering of {𝛼1, … , 𝛼𝑛}

such that, for all 1 ≤ 𝑖 ≤ 𝑛, we have:
𝑎) 𝑑𝑖 = 𝛿 − 𝑏𝐽,𝑖 and
𝑏) 𝐿|𝑋𝑗𝑖

≅ ℒ̂ ⊗ 𝒪(𝐵𝐽,𝑖).

⎫⎪⎪⎬⎪⎪⎭
, (5.6)

when 𝑅𝑠 = ∅ and 𝑑 satisfies 𝑏) for some ordering 𝐽, and

Uni(ℒ) ∩ 𝜈̌𝑅

(
Jac𝑑(𝑋𝑅)

)
= ∅,

in contrary case.

Proof. Recall the notation of Proposition 3.2. Take (𝐸, 𝜑) ∈ ℎ−1(𝑣) where 𝑣 ∈ 𝑉nod is given by (𝛼1, … , 𝛼𝑛)𝔖𝑛
. Note that

(𝐸, 𝜑) ∈ Uni(ℒ) if and only there exists an ordering 𝐽 = (𝛼𝑗1 , … , 𝛼𝑗𝑛 ) and a filtration

0 = (𝐸0, 𝜑0) ⊊ (𝐸1, 𝜑1) ⊊ ⋯ ⊊ (𝐸𝑛, 𝜑𝑛) = (𝐸, 𝜑)

such that

(𝐸𝑖, 𝜑𝑖)∕(𝐸𝑖−1, 𝜑𝑖−1) ≅ (ℒ̂ ⊗ 𝐾𝑖−1, 𝛼𝑗𝑖 ).

The statement then follows from Proposition 3.12, noting that

𝜈∗
𝑅

(
𝐾𝑖−𝑛 ⊗ 𝒪(−𝐵𝐽,𝑖)

)
= 𝒪

( ∑
𝑖′≥𝑖+1

𝑋𝑗𝑖 ∩ 𝑋𝑗𝑖′

)
. □

6 DUALITY

In this section, we discuss about the duality under mirror symmetry of the (BBB)-brane 𝐂𝐚𝐫(ℒ), and a (BAA)-brane
supported on Uni(ℒ). Ideally, we would like to transform them under a Fourier–Mukai transform between coarse com-
pactified Jacobians of reducible curves. Since such a tool is unavailable, wewill make use of the integral functorΦ between
the corresponding moduli stacks. Since the Cartan locus Car and the Jacobian Jac𝛿(𝑋) are both fine moduli spaces, we
will restrict the Poincaré sheaf𝔓 to Car on one side and Jac0(𝑋) on the other, obtaining an integral functor ΦCar between
their derived categories of sheaves. As we will see in this section, ΦCar sends our (BBB)-brane 𝐂𝐚𝐫(ℒ) to the trivial sheaf
supported on Uni(ℒ) what provides evidence of a duality statement between them. A note of warning should be added
here: ongoing work by Arinkin and Pantev [53] shows that the integral functorΦ on the stack of Higgs bundles over totally
reducible spectral curves need not preserve semistability [53]. We do not see this phenomenon occurring here, as we pick
the target of ΦCar to be the Jacobian, although this should be taken into account when studying the transform of 𝐂𝐚𝐫(ℒ)

under the whole integral functor Φ.
Recall that in our case, the normalization 𝑋𝑣 is the disjoint union

⨆
𝑖 𝑋𝑖 of copies of the base curve 𝑋, which is smooth.

Then, the direct product of Jacobians
∏

𝑖 Jac
0(𝑋𝑖) is the moduli space classifying line bundles of multidegree 0, which is

a fine moduli space with universal line bundle 𝒰̃. The restriction of each 𝑋𝑖 is a line bundle over an irreducible smooth
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FRANCO and PEÓN-NIETO 27

curve, hence simple. It then follows that the associated moduli stack is

𝔍𝔞𝔠
0
(𝑋𝑣) ≅

[
Jac0(𝑋𝑣)∕(ℂ

∗)×𝑛
]
≅

𝑛∏
𝑖=1

[
Jac0(𝑋𝑖)∕ℂ

∗
]
,

where eachℂ∗ acts trivially. Recall also that the restriction of the Cartan locus Car to the Hitchin fiber associated with 𝑋𝑣

is 𝜈̌
(
Jac0(𝑋𝑣)

)
. Note that this is a fine moduli space with universal sheaf

𝒰Car ∶= (𝜈 × 𝜈̌)∗𝒰̃ ⟶ 𝑋𝑣 × 𝜈̌
(
Jac0(𝑋𝑣)

)
.

We consider the substack 𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
of𝔍𝔞𝔠

𝛿
(𝑋𝑣). By all of the above, we have that

𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
≅
[
𝜈̌
(
Jac0(𝑋𝑣)

)
∕(ℂ∗)×𝑛

]
,

and the restriction of the universal sheaf𝔘|
𝑋𝑣×𝜈̌

(
Jac0(𝑋𝑣)

) pulls-back to𝒰Car under the obvious projection

𝜈̌
(
Jac0(𝑋𝑣)

)
⟶

[
𝜈̌
(
Jac0(𝑋𝑣)

)
∕(ℂ∗)×𝑛

]
. (6.1)

It follows from a result of Mumford (see, for instance, [12, Theorem 2, Section 8.2]) that the Jacobian of degree 𝛿 line
bundles over a reduced curve 𝑋𝑣 is a fine moduli space Jac𝛿(𝑋𝑣) with universal line bundle 𝒰0 → 𝑋𝑣 × Jac𝛿(𝑋𝑣). Since
line bundles are simple, one has that the corresponding moduli stack is the quotient stack

𝔍𝔞𝔠
𝛿
(𝑋𝑣) ≅

[
Jac 𝛿(𝑋𝑣)∕ℂ

∗
]
,

for the trivial action of ℂ∗. One trivially has that𝒰0 is the pull-back of𝔘0 under the projection

Jac 𝛿(𝑋𝑣) ⟶
[
Jac 𝛿(𝑋𝑣)∕ℂ

∗
]
. (6.2)

With 𝒰0 and 𝒰Car we already have all the ingredients for the following definition, analogous to Equation (2.12), of a
Poincaré bundle over 𝜈̌

(
Jac0(𝑋𝑣)

)
× Jac𝛿(𝑋𝑣),

𝒫Car ∶= 𝒟𝑓23

(
𝑓∗

12𝒰
Car ⊗ 𝑓∗

13𝒰
0
)−1

⊗ 𝒟𝑓23

(
𝑓∗

13𝒰
0
)
⊗ 𝒟𝑓23

(
𝑓∗

12𝒰
Car
)
, (6.3)

where the 𝑓𝑖𝑗 are the corresponding projections from 𝑋𝑣 × 𝜈̌
(
Jac0(𝑋𝑣)

)
× Jac𝛿(𝑋𝑣) to the product of the 𝑖th and

𝑗th factors.
We can see that 𝒫Car is obtained from the restriction of the Poincaré sheaf 𝔓 to the Cartan locus and the Jacobian of

𝑋𝑣.

Proposition 6.1. The sheaf 𝒫Car is the pull-back of 𝔓|
𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
×𝔍𝔞𝔠

𝛿
(𝑋)

under the product of morphisms (6.1)

and (6.2).
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28 FRANCO and PEÓN-NIETO

Proof. Since𝔓 extends𝔓 → 𝔍𝔞𝔠
𝛿
(𝑋𝑣) × 𝔍𝔞𝔠

𝛿
(𝑋𝑣), we have from Equation (2.12) that

𝔓|
𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
×𝔍𝔞𝔠

𝛿
(𝑋)

≅ 𝔓|
𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
×𝔍𝔞𝔠

𝛿
(𝑋)

≅ 𝒟𝑓23

⎛⎜⎜⎝𝑓∗
12𝔘|𝑋𝑣×𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

) ⊗ 𝑓∗
13𝔘

0
⎞⎟⎟⎠⊗ 𝒟𝑓23

(
𝑓∗

13𝔘
0
)−1

⊗ 𝒟𝑓23

⎛⎜⎜⎝𝑓∗
12𝔘|𝑋𝑣×𝜈̌

(
𝔍𝔞𝔠

0
(𝑋𝑣)

)⎞⎟⎟⎠
−1

.

Then, the result follows from the observation that𝒰Car is the pull-back of 𝜈̌
(
𝔍𝔞𝔠

0
(𝑋𝑣)

)
under Equation (6.1), and𝒰0 is

the pull-back of𝔘0 under Equation (6.2). □

Let us consider the integral functor associated with𝒫Car,

ΦCar ∶ 𝐷𝑏
(
𝜈̌
(
Jac0(𝑋𝑣)

))
⟶ 𝐷𝑏

(
Jac𝛿(𝑋𝑣)

)
ℰ∙ ⟼ 𝑅𝜋2,∗(𝜋

∗
1ℰ

∙ ⊗ 𝒫Car),
(6.4)

where 𝜋1 and 𝜋2 to be, respectively, the projection from 𝜈̌
(
Jac0(𝑋𝑣)

)
× Jac𝛿(𝑋𝑣) to the first and second factors.

Recall that our (BBB)-brane 𝐂𝐚𝐫(ℒ) is given by the hyperholomorphic bundle 𝐋 supported on Car. By Proposition 4.4,
over the dense open subset 𝑉nod of the Cartan locus of the Hitchin base 𝑉 = ℎ(Car) ⊂ 𝐻, the hyperholomorphic sheaf 𝐋
restricted to a certain Hitchin fiber Jac

𝛿
(𝑋𝑣) is 𝜈̌∗ℒ̌

⊠𝑛, supported on 𝜈̌(Jac𝛿(𝑋𝑣)). The main result of this section is the
study of the behavior of 𝜈̌∗ℒ̌

⊠𝑛 under 𝜑Car, but first we need some technical results.
Fix 𝑥0 and take the line bundle 𝒪(𝑥0)

(𝑛−1)(𝑔−1). Denote

𝜏 ∶ Jac0(𝑋)
≅

⟶ Jac𝛿(𝑋)

the isomorphism given, on each of the components, by tensorization by the previous line bundle.We can define a Poincaré
bundle 𝒫̃ → Jac0(𝑋𝑣) × Jac𝛿(𝑋𝑣).
Consider the projections to the first and second factors

and, using 𝒫̃, one can construct another Fourier–Mukai integral functor

Φ̃ ∶ 𝐷𝑏(Jac0(𝑋𝑣)) ⟶ 𝐷𝑏(Jac𝛿(𝑋𝑣))

ℰ∙ ⟼ 𝑅𝜋2,∗(𝜋
∗
1ℰ

∙ ⊗ 𝒫̃).

Note that Φ̃ is governed by the usual Fourier–Mukai transform on each of the Jac0(𝑋𝑖). We need the following lemma in
order to describe the interplay between ΦCar and Φ̃.
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FRANCO and PEÓN-NIETO 29

Lemma 6.2. One has that

(𝜈̌ × 𝟏Jac)
∗
𝒫Car ≅ (𝟏J̃ac × 𝜈̂)∗𝒫̃.

Proof. Note that (𝜈̌ × 𝟏Jac)
∗
𝒫Car is a family of line bundles over Jac0(𝑋) parameterized by Jac𝛿(𝑋𝑣). Since 𝒫̃ → Jac0(𝑋𝑣) ×

Jac0(𝑋𝑣) is a universal family for these objects, there exists a map

𝑡 ∶ Jac𝛿(𝑋𝑣) ⟶ Jac0(𝑋𝑣),

such that

(𝜈̌ × 𝟏Jac)
∗
𝒫Car ≅ (𝟏J̃ac × 𝑡)∗𝒫̃.

Recall the description of 𝒫𝐽 given in Equation (2.13) for each 𝐽 ∈ Jac𝛿(𝑋𝑣). Recall as well the projections 𝑓1 ∶ 𝑋𝑣 ×

Jac
𝛿
(𝑋𝑣) → 𝑋𝑣 and 𝑓2 ∶ 𝑋𝑣 × Jac

𝛿
(𝑋𝑣) → Jac

𝛿
(𝑋𝑣), and consider the following commuting Cartesian diagram

We know from [22, Proposition 44 (1)] that the determinant of cohomology commutes with base change, that is,

𝜈̌∗𝒟𝑓2
= 𝒟𝑓′

2
(𝟏𝑋 × 𝜈̌)∗. (6.5)

Consider the obvious projection 𝑓2 ∶ 𝑋𝛾 × Jac0(𝑋𝑣) → Jac0(𝑋𝑣). Since the following diagram commutes,

the definition of the determinant of cohomology ensures that

𝒟𝑓′
2
(𝜈 × 𝟏J̃ac)∗ ≅ 𝒟𝑓2

. (6.6)

One also has that the following diagrams commute:

(6.7)

and
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30 FRANCO and PEÓN-NIETO

As a consequence, one has that 𝑓′
1((𝑓

′
2)

−1(𝑈)) = 𝜈𝑓1(𝑓
−1
2 (𝑈)) for every open subset 𝑈 ⊂ Jac0(𝑋𝑣). It then follows from

the definition of pull-back and push-forward that, for any 𝐽 ∈ Jac𝛿(𝑋𝑣),

(𝑓′
2)∗(𝑓

′
1)

∗𝐽(𝑈) = lim
𝑊⊇𝑓′

1((𝑓
′
2)

−1(𝑈))
𝐽(𝑊)

= lim
𝑊⊇𝑓′

1((𝑓
′
2)

−1(𝑈))
𝐽(𝑊)

=(𝑓2)∗(𝜈◦𝑓
1)∗𝐽(𝑈),

so (𝑓′
2)∗(𝑓

′
1)

∗ = (𝑓2)∗(𝜈◦𝑓1)
∗ and therefore,

𝒟𝑓′
2
(𝑓′

1)
∗ ≅ 𝒟𝑓2

𝑓∗
1𝜈

∗. (6.8)

Recalling the definition of𝒰Car as (𝜈 × 𝜈̌)∗𝒰̃, we observe that

(𝟏𝑋 × 𝜈̌)∗𝒰Car ≅ (𝜈 × 𝟏J̃ac)∗𝒰̃. (6.9)

Using the projection formula and Equations (6.5)–(6.9), we have that, for any 𝐽 ∈ Jac𝛿(𝑋𝑣),

𝒫̃𝑡(𝐽) ≅ 𝜈̌∗𝒫Car
𝐽

≅ 𝜈̌∗
(
𝒟𝑓2

(
𝒰Car ⊗ 𝑓∗

1𝐽
)−1

⊗ 𝒟𝑓2
(𝑓∗

1𝐽) ⊗ 𝒟𝑓2

(
𝒰Car

))
≅ 𝜈̌∗𝒟𝑓2

(
𝒰Car ⊗ 𝑓∗

1𝐽
)−1

⊗ 𝜈̌∗𝒟𝑓2
(𝑓∗

1𝐽) ⊗ 𝜈̌∗𝒟𝑓2

(
𝒰Car

)
≅𝒟𝑓′

2

(
(𝟏𝑋 × 𝜈̌)∗

(
𝒰Car ⊗ 𝑓∗

1𝐽
))−1

⊗ 𝒟𝑓′
2

(
(𝟏𝑋 × 𝜈̌)∗(𝑓∗

1𝐽)
)
⊗ 𝒟𝑓′

2

(
(𝟏𝑋 × 𝜈̌)∗𝒰Car

)
≅𝒟𝑓′

2

(
(𝟏𝑋 × 𝜈̌)∗𝒰Car ⊗ (𝑓′

1)
∗𝐽
)−1

⊗ 𝒟𝑓′
2

(
(𝑓′

1)
∗𝐽)

)
⊗ 𝒟𝑓′

2

(
(𝟏𝑋 × 𝜈̌)∗𝒰Car

)
≅𝒟𝑓′

2

(
(𝜈 × 𝟏J̃ac)∗𝒰̃ ⊗ (𝑓′

1)
∗𝐽
)−1

⊗ 𝒟𝑓′
2

(
(𝑓′

1)
∗𝐽)

)
⊗ 𝒟𝑓′

2

(
(𝜈 × 𝟏J̃ac)∗𝒰̃

)
≅𝒟𝑓′

2

(
(𝜈 × 𝟏J̃ac)∗

(
𝒰̃ ⊗ 𝑓∗

1𝜈
∗𝐽
))−1

⊗ 𝒟𝑓′
2

(
(𝑓′

1)
∗𝐽)

)
⊗ 𝒟𝑓′

2

(
(𝜈 × 𝟏J̃ac)∗𝒰̃

)
≅𝒟𝑓2

(𝒰̃ ⊗ 𝑓∗
1𝜈

∗𝐽)−1 ⊗ 𝒟𝑓2

(
𝑓∗

1𝜈
∗𝐽
)
⊗ 𝒟𝑓2

(𝒰̃)

≅ 𝒫̃𝜈∗𝐽

≅ 𝒫̃𝜈̂(𝐽).

This implies that 𝑡 = 𝜈̂, thus completing the proof. □

We can now study the image of 𝜈̌∗(ℒ̌
⊠𝑛) under Equation (6.4).

Proposition 6.3. One has the isomorphism

ΦCar(𝜈̌∗(ℒ̌
⊠𝑛)) ≅ 𝜈̂∗Φ̃(ℒ̌⊠𝑛),

and furthermore, 𝜈̂∗Φ̃(ℒ̌⊠𝑛) is a complex supported on degree 𝑔 given by 𝜈̂∗𝒪(ℒ̌⊠𝑛).
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FRANCO and PEÓN-NIETO 31

Proof. Let us also consider the following maps:

and observe that

∙ 𝜋′
2 = 𝜋2◦(𝜈̌ × 𝟏Jac),

∙ 𝜋′
1 = 𝜋1◦(𝟏J̃ac × 𝜈̂),

∙ 𝜋1◦(𝜈̌ × 𝟏Jac) = 𝜈̌◦𝜋′
1, and

∙ 𝜋2◦(𝟏J̃ac × 𝜈̂) = 𝜈̂◦𝜋′
2.

Recalling Lemma 6.2, that 𝜈̌ is an injection and that 𝜈̂ is flat by Lemma 3.8, one has the following,

ΦCar(𝜈̌∗(ℒ̌
⊠𝑛)) =𝑅𝜋2,∗

(
𝜋∗

1 𝜈̌∗(ℒ̌
⊠𝑛) ⊗ 𝒫Car

)
≅𝑅𝜋2,∗

(
𝑅(𝜈̌ × 𝟏Jac)∗(𝜋

′
1)

∗
(ℒ̌⊠𝑛) ⊗ 𝒫Car

)
≅𝑅𝜋2,∗𝑅(𝜈̌ × 𝟏Jac)∗

(
(𝜋′

1)
∗
(ℒ̌⊠𝑛) ⊗ (𝜈̌ × 𝟏Jac)

∗
𝒫Car

)
≅𝑅𝜋2,∗𝑅(𝜈̌ × 𝟏Jac)∗

(
(𝜋′

1)
∗
(ℒ̌⊠𝑛) ⊗ (𝟏J̃ac × 𝜈̂)

∗
𝒫̃
)

≅𝑅𝜋′
2,∗

(
(𝜋′

1)
∗
(ℒ̌⊠𝑛) ⊗ (𝟏J̃ac × 𝜈̂)

∗
𝒫̃
)

≅𝑅𝜋′
2,∗

(
(𝟏J̃ac × 𝜈̂)

∗
𝜋∗

1(ℒ̌
⊠𝑛) ⊗ (𝟏J̃ac × 𝜈̂)

∗
𝒫̃
)

≅𝑅𝜋′
2,∗(𝟏J̃ac × 𝜈̂)

∗(
𝜋∗

1(ℒ̌
⊠𝑛) ⊗ 𝒫̃

)
≅𝜈̂∗𝑅𝜋2,∗

(
𝜋∗

1(ℒ̌
⊠𝑛) ⊗ 𝒫̃

)
≅𝜈̂∗Φ̃(ℒ̌⊠𝑛).

Finally, recalling that the usual Fourier–Mukai transform on Jac0(𝑋) × Jac𝛿∕𝑛(𝑋) sends the line bundle ℒ̌ to the (complex
supported on degree 𝑔 given by) sky-scraper sheaf 𝒪ℒ̂ , we have that Φ

Car(𝜈̌∗ℒ̌
⊠𝑛) is (the complex supported on degree 𝑔

given by)

𝜈̂∗Φ̃(ℒ̌⊠𝑛) ≅ 𝜈̂∗𝒪(ℒ̂⊠𝑛),

and the proof is complete. □

Recalling Proposition 5.7, we arrive to the main result of the section, which shows that our (BBB)-brane 𝐂𝐚𝐫(ℒ) and
our (BAA)-brane𝐔𝐧𝐢(ℒ) are related under the Fourier–Mukai integral functor ΦCar.

Corollary 6.4. For every 𝑣 ∈ 𝑉nod, the support of the image under ΦCar of the (BBB)-brane 𝐂𝐚𝐫(ℒ) restricted to a Hitchin
fiber ℎ−1(𝑣), is the support of our (BAA)-brane 𝐔𝐧𝐢(ℒ) restricted to the open subset of the (dual) Hitchin fiber given by the
locus of invertible sheaves,

supp
(
ΦCar

(
𝜈̌∗(ℒ̌

⊠𝑛)
))

= Uni(ℒ) ∩ Jac𝛿(𝑋𝑣).
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32 FRANCO and PEÓN-NIETO

Remark 6.5. Corollary 6.4 points at a duality between 𝐂𝐚𝐫(ℒ) and𝐔𝐧𝐢(ℒ). The piece of work [24] has provided evidence
for this fact via a Fourier–Mukai transform. Indeed, when 𝑋 is an unramified cover of a smooth curve 𝑌, there exist
submanifolds of 𝐂𝐚𝐫(ℒ) and (unions of)𝐔𝐧𝐢(ℒ) covering two Fourier–Mukai dual branes on the moduli space of Higgs
bundles on 𝑌.

7 PARABOLIC SUBGROUPS AND BRANES ON THE SINGULAR LOCUS

Cartan branes are the simplest example of branes supported on the singular locus 𝑀
sing
𝑛 of the moduli space of Higgs

bundles. In this section, we first study the other hyperholomorphic subvarieties covering the singular locus, and, in second
place, we construct Lagrangian subvarieties paired to them.

7.1 Levi subgroups and the singular locus

Consider the 𝑛-tuple of positive integers

𝑟 =
(
𝑟1,

𝑚1… , 𝑟1, … , 𝑟𝑠,
𝑚𝑠…, 𝑟𝑠

)
where 0 < 𝑟1 < ⋯ < 𝑟𝑠 and set |𝑟| = ∑𝑠

𝓁=1 𝑚𝓁𝑟𝓁 and 𝑚𝑟 =
∑𝑠

𝓁=1 𝑚𝓁. Any maximal rank reductive subgroup of GL(𝑛,ℂ)

is conjugate to

L𝑟 ∶= GL(𝑟1, ℂ)× 𝑚1… ×GL(𝑟1, ℂ) × ⋯ × GL(𝑟𝑠, ℂ)× 𝑚𝑠… ×GL(𝑟𝑠, ℂ),

where |𝑟| = 𝑛. Denote by𝑀𝑟 ⊂ M𝑛 the image of the moduli spaceML𝑟
of L𝑟-Higgs bundles. Note that𝑀𝑟 is the image of

the injective morphism,

𝑐 𝑟 ∶ Sym𝑚1(𝑀𝑟1) × …⋯ × Sym𝑚𝑠(𝑀𝑟𝑠 ) ⟶ 𝑀𝑛.

Remark 7.1. In particular, Car = 𝑀(1,𝑛…,1) for 𝑟 = (1, 𝑛…, 1).

The same arguments as in the case of Cartan subgroups show that this is a complex subscheme in all three complex
structures of𝑀𝑛.

Proposition 7.2. Fix 𝑟 with |𝑟| = 𝑛, and consider 𝑀𝑟 ⊂ 𝑀𝑛. This subvariety is complex in all three complex structures
Γ1, Γ2, Γ3, and therefore hyperholomorphic.

The union of these subvarieties covers the singular locus of the moduli space of Higgs bundles.

Proposition 7.3 [60], Section 11. The singular locus is the locus of strictly polystable bundles,

𝑀
sing
𝑛 =

⋃
|𝑟|=𝑛

𝑀𝑟.

Denote

𝐻𝑟 ∶= Sym𝑚1(𝐻𝑟1) × ⋯ × Sym𝑚𝑠(𝐻𝑟𝑠 )

and, relating the invariant polynomials of L𝑟 with those of GL(𝑛,ℂ), construct an injective morphism

𝐻𝑟 ⟶ 𝐻𝑛.

Note that the image ℎ(𝑀𝑟) under the Hitchin map of𝑀𝑟 coincides with the image of𝐻𝑟 under this morphism. Write𝐻sm
𝑟

for the locus of smooth spectral curves in the Hitchin base and set

𝑉𝑟 ∶= Sym𝑚1(𝐻sm
𝑟1

) × ⋯ × Sym𝑚𝑠(𝐻sm
𝑟𝑠

).
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FRANCO and PEÓN-NIETO 33

Every point 𝛽 ∈ 𝑉𝑟 is of the form 𝛽 = (𝛽1, … , 𝛽𝑠), being 𝛽𝓁 ∈ Sym𝑚𝓁(𝐻𝑟𝓁) given by 𝛽𝓁 = (𝑏𝓁
1 , … , 𝑏𝓁

𝑚𝓁
)𝔖 with 𝑏𝓁

𝑖
=

(𝑏𝓁
𝑖1, … , 𝑏𝓁

𝑖𝑟𝑖
) and 𝑏𝓁

𝑖𝑗 ∈ 𝐻0(𝑋, 𝐾𝑗).
Denote by Δ𝑟 the big diagonal of Sym

𝑟(𝐻𝑟) and set

𝑉red
𝑟

∶=
(
Sym𝑚1(𝐻sm

𝑟1
) ⧵ Δ𝑟1

)
× ⋯ ×

(
Sym𝑚𝑠(𝐻sm

𝑟𝑠
) ⧵ Δ𝑟𝑠

)
.

Proceeding as in Lemmas 3.1 and 3.5, one can prove that, for every 𝛽 ∈ 𝑉red
𝑟
, the corresponding spectral curve𝑋𝛽 is reduced

with 𝑚𝑟 irreducible components 𝑋𝑏1
1
, … , 𝑋𝑏1

𝑚1
, … , 𝑋𝑏𝑠

1
, … , 𝑋𝑏𝑠

𝑚𝑠
, which are in turn spectral curves for 𝑏𝓁

𝑖
∈ 𝐻𝑟𝑖 . Observe

that the corresponding 𝑟𝑖-to-1 spectral covers 𝜋𝓁
𝑖

∶ 𝑋𝑏𝓁
𝑖
→ 𝑋 coincide with the restriction of 𝜋 ∶ 𝑋𝛽 → 𝑋 to each of the

irreducible components, so that

commutes. We consider the nodal locus 𝑉nod
𝑟

⊂ 𝑉𝑟, consisting of spectral curves with smooth irreducible components
intersecting only in nodal points. Note that 𝑉nod

𝑟
is dense within 𝑉𝑟 and the latter is dense in 𝐻𝑟.

Lemma 7.4. Let 𝛽 ∈ 𝑉𝑟. Then 𝐷𝓁,𝓁′

𝑖,𝑖′
= 𝑋𝑏𝓁

𝑖
∩ 𝑋

𝑏𝓁′

𝑖′
is a divisor linearly equivalent to 𝐾𝑟𝑖𝑟𝑖′ , thus of length 2𝑟𝑖𝑟𝑖′ (𝑔 − 1).

Moreover, if 𝛽 ∈ 𝑉nod
𝑟

, then the divisor of singularities of 𝑋𝛽 has simple points, and is given by the union 𝐷 =⋃
𝓁<𝓁′,𝑖<𝑖′ 𝐷

𝓁,𝓁′

𝑖,𝑖′
, and the normalization is 𝜈𝛽 ∶ 𝑋𝛽 = 𝑋𝑏1

1
⊔ ⋯ ⊔ 𝑋𝑏1

𝑚1
⊔ ⋯ ⊔ 𝑋𝑏𝑠

1
⊔ ⋯ ⊔ 𝑋𝑏𝑠

𝑚𝑠
→ 𝑋𝛽 .

Proof. To see the first statement, deform the plane curve 𝑋𝑏𝑖
to 𝜆𝑟𝑖 = 0. Then, the intersection with 𝑋𝑏𝑖′

is the vanishing
locus of a section of 𝜋∗𝐾𝑟𝑖′ along 𝑋 with multiplicity 𝑟𝑖 . The second and third statements are obvious. □

The following proposition is proved as Proposition 4.4.

Proposition 7.5. Let 𝛽 ∈ 𝑉nod
𝑟

, and let 𝛿𝑖 = (𝑟2
𝑖
− 𝑟𝑖)(𝑔 − 1). Then

ℎ−1(𝛽) ∩ 𝑀𝑟 = 𝜈̌
(
Jac𝛿(𝑋𝛽)

)
,

where 𝛿 = (𝛿1,
𝑚1… , 𝛿1, … , 𝛿𝑠,

𝑚𝑠…, 𝛿𝑠).

7.2 Parabolic subgroups and complex Lagrangian subvarieties

Let 𝑃𝑟 be the parabolic subgroup whose Levi subgroup is 𝐿𝑟. Recall that the corresponding unipotent radical is 𝑈𝑟 =

[𝑃𝑟, 𝑃𝑟], and one has the identification 𝑃𝑟 = 𝐿𝑟 ⋉ 𝑈𝑟. In this section, we construct Lagrangian subvarieties associated
with the choice of the parabolic subgroup of the form 𝑃𝑟.
Denote the locus of those Higgs bundles reducing its structure group to 𝑃𝑟 by

Par 𝑟 =

{
(𝐸, 𝜑) ∈ M𝑛

|||||∃𝜎 ∈ 𝐻0(𝑋, 𝐸∕𝑃𝑟),

𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔭𝑟) ⊗ 𝐾).

}
.

Proceeding as in Proposition 3.2, one can prove that Par𝑟 coincides with the preimage of𝐻𝑟 under the Hitchin map.
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34 FRANCO and PEÓN-NIETO

Proposition 7.6. One has the following,

𝑀𝑛 ×H 𝐻𝑟 = Par 𝑟.

For 𝑟 = (𝑟1,
𝑚1… , 𝑟1, … , 𝑟𝑠,

𝑚𝑠…, 𝑟𝑠) fixed, we say that 𝐽 is an ordering of 𝑟 if it is an ordering of the positive integers
{𝑟1,

𝑚1… , 𝑟1, … , 𝑟𝑠,
𝑚𝑠…, 𝑟𝑠}. Let us denote by Ord𝑟 the set of orderings of 𝑟. Given 𝛽 ∈ 𝑉𝑟 one can consider an ordering

𝐽𝛽 =
(
𝑋1,… , 𝑋𝑚

)
of the irreducible components of 𝑋𝛽 , where the 𝑗th element is the irreducible component indexed

by 𝑏
𝓁𝑗

𝑖𝑗
. Accordingly with 𝐽𝛽 denote by 𝜋𝑗 the restriction to the irreducible component 𝑋𝑗 of the projection 𝜋 ∶ 𝑋𝛽 → 𝑋

and abbreviate by 𝑟𝑗 ∶= 𝑟𝓁𝑗
the degree of the covering of 𝑋 associated with 𝑋𝑗

𝑟𝑗∶1
→ 𝑋. We say that the ordering 𝐽𝛽 respects

𝐽 if we obtain 𝐽 out of 𝐽𝛽 by setting at the 𝑗th position, the rank 𝑟𝑗 of the corresponding irreducible component 𝑋𝑗 .
In order to state the equivalent to Proposition 3.7 some extra care is needed, as the fact that the integers 𝑟𝑖 are different,

breaks the symmetry we have in the case of Borel groups, so that orderings of the indices need to be taken into account.

Proposition 7.7. Let 𝛽 ∈ 𝑉𝑟 be associated with a spectral curve 𝑋𝛽 has 𝑚 = 𝑚𝑟 irreducible components
𝑋𝑏1

1
, … , 𝑋𝑏1

𝑚1
, … , 𝑋𝑏𝑠

1
, … , 𝑋𝑏𝑠

𝑚𝑠
. Let (𝐸, 𝜑) be a Higgs bundle, whose spectral data consist of a line bundle 𝐿 over 𝑋𝛽 .

For any ordering of 𝑟, 𝐽 ∈ Ord𝑟, and any ordering 𝐽𝛽 of the irreducible components of 𝑋𝛽 respecting 𝐽, one can choose
canonically a filtration

(𝐸𝐽𝛽 )∙ ∶ 0 ⊊ (𝐸1, 𝜑1) ⊊ …⋯ ⊊ (𝐸𝑚, 𝜑𝑚) = (𝐸, 𝜑),

such that

(𝐸𝑗, 𝜑𝑗)∕(𝐸𝑗−1, 𝜑𝑗−1) = (𝜋𝑗,∗𝐿|𝑋𝑗
⊗ 𝐾

−𝑅𝐽
𝑗 , 𝜑𝑗∕𝜑𝑗−1),

where 𝑅𝐽
𝑗
=
∑

𝑘≥𝑗+1 𝑟𝑘𝑟𝑗 depends only on 𝐽 and 𝜑𝑗∕𝜑𝑗−1 is determined by 𝑋𝑗 as explained in Equation (2.7). Note that in the
expression of 𝑅𝐽

𝑗 𝑟𝑘 may be equal to 𝑟𝑗 .

Given a line bundle of zero degreeℒ ∈ Jac0(𝑋) and a point 𝑥0, we define for every 𝑟,

ℒ̂𝑟 ∶= ℒ ⊗ 𝒪(𝑥0)
(𝑟−1)(𝑔−1).

Recall from Equation (2.9) the description of the Hitchin section of ℎ ∶ 𝑀𝑟 → 𝐻𝑟 associated with a line bundle of degree
(𝑟 − 1)(𝑔 − 1) over 𝑋. Observe that one has

Σℒ̂𝑟
∶ 𝐻𝑟 → 𝑀𝑟.

For a givenℒ ∈ Jac0(𝑋), we define the subvariety of Par 𝑟

Uni 𝑟(ℒ) ∶=

⎧⎪⎨⎪⎩(𝐸, 𝜑) ∈ Par 𝑟

|||||||||
∃𝜎 ∈ 𝐻0(𝑋, 𝐸∕P𝑟), and 𝐽 ∈ Ord𝑟 ∶

𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔭𝑟) ⊗ 𝐾);

(𝐸𝜎, 𝜑)∕U𝑟 ∶= Σℒ̂𝑟1
(𝛽) ⊗ 𝐾−𝑅𝐽

1 ⊞ ⋯ ⊞ Σℒ̂𝑟𝑚
(𝛽) ⊗ 𝐾−𝑅𝐽

𝑚 .

⎫⎪⎬⎪⎭. (7.1)

Using Proposition 7.7, we can study the spectral data of the Higgs bundles contained in Uni 𝑟(ℒ).

Proposition 7.8. One has the following,

1. The restriction ofUni 𝑟(ℒ) to 𝑉nod
𝑟

is surjective.
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FRANCO and PEÓN-NIETO 35

2. Let 𝛽 ∈ 𝑉nod
𝑟

, we have that

Uni 𝑟(ℒ) ∩ ℎ−1(𝛽) ∩ Jac(𝑋𝛽) = 𝜈̂−1(ℒ̂𝑟1 ,
𝑚1… , ℒ̂𝑟1 , … , ℒ̂𝑟𝑠 ,

𝑚𝑠…, ℒ̂𝑟𝑠 ).

We are now in a position to prove thatUni 𝑟(ℒ) is Lagrangian, hence a suitable choice for the support of a (BAA)-brane.

Theorem 7.9. The subschemeUni 𝑟(ℒ) is Lagrangian.

Proof. It is enough to prove that the open subset Uni𝑟(ℒ)nod given by the restriction of Uni𝑟(ℒ) to 𝑉nod
𝑟

, is Lagrangian.
Fix 𝛽 ∈ 𝑉nod

𝑟
. By Proposition 7.8 (2) the intersection ofUni𝑟(ℒ) ∩ ℎ−1(𝛽)with Jac(𝑋𝛽) is non-empty, so there are Higgs

bundles (𝐸, 𝜑) which have a line bundle as spectral data. Those (𝐸, 𝜑) are stable hence are smooth points in Uni 𝑟(ℒ).
With all this, we prove isotropicity as we did in Proposition 5.3.
By Lemmas 7.4 and Lemma 3.8, there is an exact sequence

0 ⟶ (ℂ×)𝛿𝑟−𝑠+1 ⟶ Jac(𝑋𝑏)
𝜈̂

⟶ Jac(𝑋𝑏) ⟶ 0

where 𝛿𝑟 =
∑

1≤𝑖<𝑗≤𝑠 2𝑟𝑖𝑟𝑗(𝑔 − 1). It then follows by Proposition 7.8 (2) that

dimUni𝑟(ℒ) ∩ ℎ−1(𝛽) = dim Jac(𝑋𝛽) = 𝛿𝑟 − 𝑠 + 1.

By Proposition 7.8 (1), one has that

𝑉nod
𝑟

⊂ ℎ(Uni 𝑟(ℒ)),

and recall that 𝑉nod
𝑟

is dense in 𝐻𝑟, so they both have the same dimension. Since there are smooth points in Uni 𝑟(ℒ), it
follows that the dimension is

dimUni
𝑟
(ℒ) = 𝛿𝑟 − 𝑠 + 1 + dim𝐻𝑟 = 𝛿𝑟 − 𝑠 + 1 +

∑
𝑖

(𝑟2
𝑖
(𝑔 − 1) + 1)

= 𝑛2(𝑔 − 1) + 1,

which is half of the dimension of𝑀𝑛. □

Remark 7.10. Propositions 7.5 and 7.8 indicate that a suitable choice of a hyperholomorphic bundle on 𝑀𝑟 and a flat
bundle on Uni 𝑟(ℒ) would produce a pair of dual (BBB) and (BAA) branes. This would happen similarly to the case of
Borel subgroups (i.e., 𝑟 = (1, … , 1)) in Section 6. The construction involves downward flows to very stable points of higher
components of the nilpotent cone [30]. We hope to get back to this in future work.

Now, it is also possible to construct more general unitary Lagragian submanifolds, even in the absence of Hitchin sec-
tions. The key is to use very stable bundles to produce Lagrangianmultisections of the Hitchinmap. Given a vector bundle
𝐸 we say, after Drinfeld [21, 44], that 𝐸 is very stable if it has no non-zero nilpotent Higgs fields. This implies that 𝐸 is sta-
ble [44, Proposition 3.5] (provided 𝑔 ≥ 2). Furthermore, very stable bundles are dense within the moduli space of vector
bundles [44, Proposition 3.5]. Gathering the results of Pauly and the second author (see [54, Theorem 1.1 and Corollary
1.2]) with the remark [24, Corollary 7.3], one gets

Theorem7.11. Let𝐸 be a stable bundle. Then,𝐸 is very stable if and only if the Lagrangian subvariety given by the embedding

𝐻0(𝑋, End(𝐸) ⊗ 𝐾) ⟶ 𝑀𝑛

𝜙 ⟼ (𝐸, 𝜙),
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36 FRANCO and PEÓN-NIETO

provides a Lagrangian multisection of the Hitchin fibration (i.e., the restriction of the Hitchin fibration to 𝐻0(𝑋, End(𝐸) ⊗

𝐾) ↪ 𝑀𝑛 is finite and surjective).

Set 𝑚 = 𝑚𝑟. Given an ordering 𝐽 ∈ Ord𝑟 consider an 𝑚-tuple of very stable vector bundles over 𝑋, 𝐸 = (𝐸1, … , 𝐸𝑚),
whose 𝑖th element has rk 𝐸𝑖 = 𝑟𝑖 given by the 𝑖th position of 𝐽. Denote deg𝐸𝑖 = 𝑒𝑖 and

𝑓𝐽
𝑖 = 𝑒𝑖 + (𝑟2𝑖 − 𝑟𝑖)(𝑔 − 1) + 2𝑅𝐽

𝑖 (𝑔 − 1),

where 𝑅𝐽
𝑖
=
∑

𝑘≥𝑖+1 𝑟𝑗𝑖 𝑟𝑗𝑘 are defined as in Proposition 7.7. From now on, we shall assume that the choice of 𝐽 and 𝐸 is
done under the following numerical condition on the degrees 𝑒𝑖 .

Assumption 7.12. Let 𝑒 = (𝑒1, … , 𝑒𝑚) be an 𝑚-tuple of integers and pick 𝐽 ∈ Ord𝑟. Suppose that, for all subset 𝐼 ⊂

{1, … ,𝑚}, there are inequalities ∑
𝑖∈𝐼

𝑓𝐽
𝑖
> (𝑟2𝐼 − 𝑟𝐼)(𝑔 − 1), (7.2)

where 𝑟𝐼 =
∑

𝑖∈𝐼 𝑟𝑗𝑖 , and when 𝐼 = {1, … ,𝑚} one has the equality

𝑚∑
𝑖=1

𝑓𝐽
𝑖
= (𝑛2 − 𝑛)(𝑔 − 1).

Given an𝑚-tuple of very stable bundles 𝐸 whose degrees 𝑒 satisfy Assumption 7.12, we define the following subvariety
of Par 𝑟,

Uni𝑟(𝐸) ∶=

⎧⎪⎨⎪⎩(𝐸, 𝜑)

||||||||
∃𝜎 ∈ 𝐻0(𝑋, 𝐸∕P𝑟) ∶

𝜑 ∈ 𝐻0(𝑋, 𝐸𝜎(𝔭𝑟) ⊗ 𝐾);

𝐸𝜎∕U𝑟 ∶= 𝐸L𝑟
≅
⨁𝑚

𝑖=1 𝐸𝑖.

⎫⎪⎬⎪⎭. (7.3)

In what follows, we prove that Uni
𝑟
(𝐸) is a Lagrangian submanifold. As in the case of Uni 𝑟(ℒ), this is proven through

the study the associated spectral data.
Consider restriction of the Hitchin map ℎ toUni 𝑟(𝐸). After Proposition 7.6, one has that the image is contained in𝐻𝑟,

ℎ ∶ Uni𝑟(𝐸) ⟶ 𝐻𝑟.

Before we can give the analogous to Proposition 5.7, we need an intermediate result.

Proposition 7.13. Let 𝛽 ∈ 𝑉nod. Assume that 𝐸 satisfies Assumption 7.12 and denote by 𝑆𝑖,𝛽 the finite set of Higgs bundles
over 𝛽 admitting 𝐸𝑖 as underlying vector bundle. Let 𝒮𝑖,𝛽 the associated set of spectral data over 𝑋𝛽 associated with each of
the Higgs bundles in 𝑆𝑖,𝛽 . For each 𝐽 ∈ Ord𝑟, pick

ℒ̂𝐽

𝐸,𝛽
= (ℒ1 ⊗ 𝜋∗

1𝐾
𝑅𝐽

1 , … ,ℒ𝑚 ⊗ 𝜋∗
𝑚𝐾𝑅𝐽

𝑚), (7.4)

whereℒ𝑖 ∈ 𝒮𝑖,𝛽 . Let us denote by 𝒮𝐽
𝛽
the set of all tuples of the form (7.4).

Assume that 𝐸 satisfies Assumption 7.12 𝑖). Let 𝑏 ∈ 𝐻nod
𝑟

, and let 𝒪𝑟𝑑𝑠 denote the set of orderings of {1, … , 𝑠}. For each

𝐽 ∈ 𝒪𝑟𝑑𝑠, let ℒ̂𝐽 be as in Equation (7.4). Then,Uni 𝑟(𝐸) ∩ ℎ−1(𝑏) ∩ Jac𝑑(𝑋𝛽) is either empty or

Uni 𝑟(𝐸) ∩ ℎ−1(𝑏) ∩ Jac𝑑(𝑋𝛽) =
⋃

ℒ̂𝐽

𝐸,𝛽
∈𝒮𝐽

𝛽

𝜈̂−1(ℒ̂𝐽

𝐸,𝛽
)
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FRANCO and PEÓN-NIETO 37

where we identify Jac𝑑(𝑋𝑏) with an open subset of ℎ−1(𝑏) and define

𝜈̂ ∶ Jac𝑑(𝑋𝑏) ⟶ Jac𝑑(𝑋𝑏)

to be the pullback map.

Proof. After checking that Equation (7.2) ensures the stability of the points of Uni𝑟(𝐸) ∩ ℎ−1(𝑏), the proof follows as in
Proposition 5.7. □

Continuing the parallelism with Uni(ℒ), we next prove Lagrangianity of the submanifold Uni𝑟(𝐸).

Theorem 7.14. Under Assumption 7.12, the subschemeUni𝑟(𝐸) is Lagrangian.

Proof. The proof is analogous to that of Theorem 7.9. □

Remark 7.15. For the sake of clarity, we have chosen to work with the moduli space of degree 0 Higgs bundles. Note
however that the subvarieties M𝑟 and Uni

𝑟 make sense in a larger context. Indeed, consider the moduli space of rank 𝑛,
degree 𝑑Higgs bundles𝑀𝑋(𝑛, 𝑑)with (𝑛, 𝑑) ≠ 1. Then,𝑀𝑋(𝑛, 𝑑)𝑠𝑖𝑛𝑔 ≠ ∅, and so there will exist partitions 𝑟 of 𝑛 for which
M𝑟 ≠ ∅. Note that in that case the (semi)stability condition for torsion-free sheaves should then be modified accordingly.
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