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1 | INTRODUCTION
1.1 | Briefdescription

In this paper, we study the action of mirror symmetry on the singular locus of the moduli space M,, of Higgs bundles. We
proceed first by describing hyperholomorphic subvarieties covering Mflmg, those become (BBB)-branes after specifying
a hyperholomorphic bundle on them. Then, we construct complex Lagrangian subvarieties, supporting (BAA)-branes
after being equipped with a flat bundle, and we conjecture that behind these constructions stands a pair of mirror dual
branes. Each of the previous pairs of branes is naturally associated with a parabolic subgroup of GL(n, C). When this
parabolic is the Borel subgroup, we find ourselves over the locus of totally reducible spectral curves, namely, those with a
maximal number of irreducible components, cf. Equation (3.1). A more complete analysis is possible in this case and we
are able to construct families of flat (hence hyperholomorphic) bundles giving rise to (BBB)-branes. These (BBB)-branes
only intersect Hitchin fibers associated with coarse compactified Jacobians where no Fourier-Mukai transform has been
defined. We then consider the Fourier-Mukai transform between the associated stacks and prove that it restricts to a
transform whose source is the support of the (BBB)-branes associated with the Borel subgroup. Our biggest contribution
is the description of the behavior of these (BBB)-branes under such a transform, showing that it returns a sheaf supported
on the complex Lagrangian subvarieties we have previously described.

Math. Nachr. 2023;1-39. www.mn-journal.org © 2023 Wiley-VCH GmbH. 1
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1.2 | Mathematical background and motivation

Hitchin introduced in [35] Higgs bundles over a smooth projective curve X and soon it was noted that their moduli space
M,, carries a very interesting geometry [35, 52, 59, 60]. In particular, M,, can be endowed with a hyperkihler structure
(g,T1,T,,T3) [16, 20, 35, 59, 60] and fibers over a vector space h : M,, — H with Lagrangian tori as generic fibers [36]. A
natural generalization is to consider Higgs bundles for complex reductive Lie groups other than GL(n, C). After the work
of [18, 19, 32], the moduli spaces of Higgs bundles for two Langlands dual groups equipped with the afore-mentioned
fibrations become SYZ mirror partners (as defined by [32] based on work by [61]) and mirror symmetry is expected to be
implemented by a Fourier-Mukai transform relative to the fibers of the Hitchin fibration. In this paper, we focus in the
case of GL(n, C), which is Langlands self-dual.

Branes in the Higgs moduli space were introduced in [41] and have since attracted great attention. A (BBB)-brane in M,,
is given by a pair (N, F, Vi), where N C M,, is a hyperholomorphic subvariety and (F, V¢) a hyperholomorphic sheaf on
N. This means that the connection Vg on the sheaf F is of type (1,1) with respect to all three complex structures I'y, I';, T's.
Additionally, a (BAA)-brane is a pair (S, W, Vi) where S C M,, is a subvariety which is complex Lagrangian with respect
to the holomorphic symplectic form in the complex structure I'y, and (W, Vy,) is a flat bundle over S. It is conjectured
in [41] that mirror symmetry interchanges (BBB)-branes with (BAA)-branes. This context has motivated many authors
to construct (BBB) and (BAA)-branes [7, 8, 10, 11, 13, 14, 25-27, 34, 38, 39]. Papers such as [25, 26, 39] go a step further by
giving evidence of the duality between certain (BBB) and (BAA)-branes, however focusing on the smooth locus of the
Hitchin system.

Mirror symmetry is more obscure over singular Hitchin fibers, since it involves autoduality of compactified Jacobians
of singular curves. Such autoduality was stated via Fourier—-Mukai equivalences by Arinkin [5, 6] in the case of integral
curves, and by Melo, Rapagnetta and Viviani [48, 49] in the case of fine compactified Jacobians. Kass [42] extended the
autoduality to the case of coarse compactified Jacobians, which is the one that concerns us, although his construction
does not provide a Fourier-Mukai transform.

Our main motivation is to extend the study of mirror symmetry for branes to the locus of singular Hitchin fibers. This
has been addressed also in some papers that appeared after the first preprint of the present one. In [24], written by the
authors along with Gothen and Oliveira, some pair of (BBB) and (BAA)-branes are considered, noting that the (BBB)-
branes play a crucial role in the topological mirror symmetry [32]. These branes are dense over Hitchin fibers associated
with integral curves so Arinkin’s Fourier-Mukai transform [5, 6] is enough to study, in this case, the behavior of these
branes under the mirror symmetry. Branco [14] studied the intersection of certain branes with the locus of Hitchin fibers
associated with non-reduced curves. In this case, the mirror symmetry is discussed in geometrical terms, by dualizing
a certain abelian variety inside the non-reduced Hitchin fibers. It is noteworthy to mention the work of Hausel, Mellit
and Pei [31], who showed that the pair of branes described by Hitchin in [38] satisfies an agreement of certain topological
invariants. This gives strong evidence for the duality of these branes, as proposed in [38], where such duality was only
checked over the locus of smooth Hitchin fibers.

1.3 | Our work

We start by constructing a family of (BBB)-branes and complex Lagrangian subvarieties (support of (BAA)-branes)
indexed by a topologically trivial line bundle & — X. Both lie over the locus of singular Hitchin fibers given by totally
reducible spectral curves and both constructions involve the Borel subgroup B < GL(n, C).

We shall consider Car, the locus of Higgs bundles whose structure group reduces to the Cartan subgroup C < B, as the
support of our (BBB)-brane. It is well known that this subvariety is naturally hyperholomorphic (being given by reduction
of the structure group to a reductive subgroup), the novel point of this piece of work is the construction of different flat
(hence hyperholomorphic) bundles, constructed from a chosen line bundle & — X. Our (BBB)-brane Car(<¥) consists of
Car equipped with this bundle. The image of Car under the Hitchin fibration h(Car) is the locus totally reducible spectral
curves X, making Schaub’s spectral correspondence [55] explicit over this subset of the singular locus.

We define as well a complex Lagrangian subvariety Uni(&) consisting of Higgs bundles whose structure group reduces
to B, and whose associated graded bundle is constant and depends on &. Thus, this complex Lagrangian subvariety
depends on & — X, and, heuristically speaking, parameterizes Higgs bundles that reduce their structure group to the
unipotent radical of B. After specifying a flat bundle over Uni(&), we shall obtain a (BAA)-brane.
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To study the behavior of Car(¥) and Uni(Z) under mirror symmetry one would like to transform Car(&) under
a Fourier-Mukai transform. These branes are supported on h(Car), included in the locus of (singular) reducible curves.
Then, Car and Uni(%) only intersect Hitchin fibers A~ (b) 2 Jac(X},) that are coarse compactified Jacobians, not fine, and
therefore a full Fourier-Mukai transform is not known to exist, not even after restricting ourselves to the open subset of
the Cartan locus whose associated spectral curves are nodal. Nevertheless, it is possible to construct a Poincaré sheaf over
the moduli stack of torsion-free sheaves over reducible nodal curves although it is yet not known whether the associated
integral functor is a derived equivalence or not. The restriction of this stacky Poincaré sheaf to the support of the stacky
version of Car(&) and the Jacobian can be lifted to a sheaf on the corresponding schemes. We then define the associated
integral functor

oCar : pb (Car N Ja_c()_(b)) — Db (Jac()_(b)>.
Our main result (Corollary 6.4) consists on checking that this functor relates the generic loci of both branes.

Theorem 1. There is an equality

supp (rbcar (Car(&’) |E()_(b)> ) = Uni(%) nJac(X ).

We finish by discussing how this construction can be generalized to a large class of branes in the moduli space M,, of
rank n Higgs bundles covering the whole singular locus. In the (BBB)-case, the support of these branes correspond to
the image of M, X --- X M, , or equivalently, the locus of those Higgs bundles reducing its structure group to the Levi
subgroup GL(7;, C) X --- X GL(rg, C). We observe that these subvarieties cover the singular locus of N,,. The (BAA)-brane
is given by a complex Lagrangian subvariety constructed in a similar way as before, but substituting the Borel subgroup
with the parabolic subgroup associated to the partition n = r; + --- + r,. As in the case of the Borel group, we are able to
identify the spectral correspondence over the nodal locus.

A word should be said about the possible applications of the present piece of work. The branes hereby described are
used in a crucial way in [24] to prove that certain branes are of type (BAA). On the other hand, the analysis of spectral
data corresponding to reducible spectral curves furnishes a useful tool to study the geometry of these loci.

1.4 | Structure of the paper

The greater completeness of the analysis for the Borel case is the first reason for the choice of the structure of the paper,
presenting first this case, then the case of a general parabolic subgroup. The second reason for this choice is of a more
prosaic nature and is linked to the complications in the geometry of these singular loci. Indeed, the singular locus consists
of several submanifolds which are nested into one another. The smallest, contained in all the others, is precisely the locus
of singular points over totally reducible spectral curves. Thus, a good understanding of the singular locus requires as a
first step a good understanding of the singular locus over totally reducible spectral curves.

This paper is organized as follows. Section 2.1 gives the necessary background on Higgs moduli spaces and the Hitchin
system. In Section 2.2, we address the construction of the Poincaré sheaf over the moduli stack of torsion-free rank 1
sheaves on nodal reduced curves. This construction is a natural generalization of that of [6] and makes part of unpublished
work of Arinkin and Pantev [53]. The detailed description of this construction is included in Section 2.2 for the sake of
completeness of our paper.

In Section 3, we study the locus of singular Hitchin fibers associated with totally reducible spectral curves. We prove
that the preimage of this locus under h coincides with the locus of Higgs bundles whose structure group reduces to the
Borel subgroup (Proposition 3.2) and describe the associated spectral data (Propositions 3.7 and 3.12).

We provide the construction of the (BBB)-brane Car(&¥) in Section 4. We consider the Cartan locus, Car, given by those
Higgs bundles, whose structure group reduces to the Cartan subgroup C = (C9)" < GL(n, C). The Cartan locus is given
by the image of ¢ : Sym"(M;) < M,,, where M, is the rank one Higgs moduli space. Also, we prove that the choice of a
topologically trivial line £ bundle on X yields a hyperholomorphic bundle on Car. This produces the (BBB)-brane Car(<%)
(cf. Proposition 4.3). Finally, we analyze the restriction of the brane Car(Z) to a generic Hitcin fiber (Proposition 4.4),
which is crucial to study the behavior of Car(Z) under the mirror symmetry.
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Section 5 addresses the construction and description of the complex Lagrangian subvariety Uni(&), supporting a (BAA)-
brane. Uni(<¥) is defined as the subvariety of the locus of all the Higgs bundles reducing to the Borel subgroup B, whose
underlying vector bundle project to a certain C-bundle determined by &£. Then, we prove that Uni(&) is isotropic by
gauge considerations, closed and half-dimensional, hence Lagrangian (Theorem 5.6). We finish this section by studying
the spectral data of the points of Uni(&) in Proposition 5.7.

We have at this point a description of the generic restriction of Car(¥) and Uni(¥) to a generic Hitchin fiber. In
this case, the generic Hitchin fibers are isomorphic to the coarse compactified Jacobian of reduced but reducible curves.
We study in Section 6 the transformation of the first under a Fourier-Mukai integral functor. To deal with the lack of a
Poincaré sheaf over coarse compactified Jacobians, we consider the Poincaré sheaf over the associated moduli stack that
we reviewed in Section 2.2 and observe in Proposition 6.1 that its restriction to Car and the Jacobian provides a sheaf %',
It is then natural to study the behavior of Car(#) under the Fourier-Mukai integral functor constructed with %©%", which
we do. We obtain that the generic restriction of Car(<) to a Hitchin fiber is sent to a sheaf over Uni(%) (Corollary 6.4).
This leads us to conjecture that the (BBB)-brane Car(&Z) is dual under mirror symmetry to a (BAA)-brane supported on
Uni(<Z).

In Section 7, we adapt the above results to arbitrary parabolic subgroups. Given a partition n = r; + --- + ry we consider
the associated parabolic subgroup P; < GL(n, C) with Levi subgroup L; < P;. In Section 7.1, we consider the subvariety
My of M,,, consisting of Higgs bundles whose structure group reduces to Ly, and describe the intersection with generic
Hitchin fibers (Proposition 7.5). The variety My is a complex subscheme for I'y, T'5, and I';, hence the support of a (BBB)-
brane. By varying the partition r, we produce families of branes covering the strictly semistable locus of M,,. On the other

hand, in Section 7.2 we consider Uni' (E,, ..., E;), consisting of Higgs bundles with structure group reducing to P; and
fixed associated graded bundle @le E;. We prove that under the right conditions on E, this is a Lagrangian submanifold
(Theorem 7.14), and so a choice of flat bundle on it produces a (BAA)-brane. The imposed hypotheses are related to the
existence of a hyperholomorphic bundle on the hypothetical dual M; (see Remark 7.10). A look at the spectral data of both

.....

2 | PRELIMINARIES
2.1 | Higgs bundles and their moduli

Let X be a smooth projective curve over C. A Higgs bundle over X is a pair (E, ¢) given by a holomorphic vector bundle E
over X and a Higgs field ¢ € H°(X, End(E) ® K), which is a holomorphic section of the endomorphisms bundle twisted
by the canonical bundle K of X [35, 58-60].

A Higgs bundle (E, @) of trivial degree is stable (resp. semistable) if every ®-invariant subbundle F C E has negative
(resp. non-positive) degree, and it is polystable if it is semistable and decomposes as a direct sum of stable Higgs bundles.
The moduli space of rank n and degree 0 semistable Higgs bundles on X was constructed in [35, 52, 59, 60]. We review this
construction in the following paragraphs.

Fix a topological bundle E of degree 0 on X and consider the space & of holomorphic structures on E. This is an affine
space modeled on Q%!(X, ad(E)), whose cotangent bundle is

T = o x Q°(X,ad(E) ® K),

where we have identified ad(E) and its dual by means of the Killing form (rather, a non-degenerate extension of it to
the center, to which we will henceforth refer as Killing form). Given a Hermitian metric h on E let us denote its Chern
connection by V. We consider the following conditions for pairs:

1. There exists a Hermitian metric h such that Vfl + [p,p*r] =0,

2' 5A(§0) = 07
3. dun(e™h) = 0.

Observe that condition (2) implies that the pair determines a Higgs bundle and in that case (3) is automatically satisfied
for any choice of metric h. We shall denote by (T* ) the subset of solutions to (2) (and, therefore, to (3)). Condition (1)
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is known as the Hitchin equation and it follows from [35, 59, 60] that a Higgs bundle is polystable if and only if (1) holds,

so we will write (T*d )EISt for the locus of pairs satisfying simultaneously (1) and (2) (hence (3) as well). Note that we have

(T*A );} C (T*A )Eft C (T*A );S,t, where st and sst stand for stable and semistable Higgs bundles. These loci are all preserved

by the action of the complex gauge group,

€ = Q°%X, Aut(E)),

and (T"d )Zs,t and (T*d )?;t classify semistable and closed orbits, respectively. The moduli space of semistable Higgs bundles
over X of rank n and trivial degree is identified with

M, = (T*d)y |6 = (T /€, 2.1)

where the double quotient denotes the Geometric Invariant Theory (GIT) quotient. This is a quasi-projective variety of
dimension

dimM, =2n%(g—1) + 2, (2.2)

whose points represent isomorphism classes of polystable Higgs bundles and the smooth locus is given by the locus of
stable Higgs bundles [60]. The geometry of M,, is surprisingly rich. In particular, it can be equipped with a hyperkihler
structure and becomes an integrable system by means of the Hitchin fibration.

We shall first study the hyperk&hler structure of M,,. Let us fix a particular Hermitian metric h, on the topological
bundle E, this choice determines a Hermitian metric  on T* . Let

?0 = QO(X9 Aut([E’ hO))’

be the unitary gauge group of automorphisms of E preserving the metric hy. We can see that 7 is preserved by €. Also,
one can naturally define three complex structures T, T, and I’y on T*d satisfying the quaternionic relations, together
with a hyperkdhler metric preserved by €,. This action defines a moment map y; associated with each of the complex
structures T';, and one can see that 7 is hyperkihler with respect to them. One can see that the vanishing of y; coincides
with Equation (1), the vanishing of x, with Equation (2) and the vanishing of u; with Equation (3). Therefore, the moduli
space of Higgs bundles is identified with the hyperholomorphic quotient,

My, = p77(0) N p31(0) N 31 (0)/,

as it follows from [35, 59, 60]. The complex structures I'; descend to complex structures I; in the quotient and so does the
hyperkihler metric 7, defining a hyperkihler structure on M,,. Observe that natural the complex structure in M,, obtained
by the identification (2.1) coincides with I';. Additionally, [16, 20] proved that the moduli space of rank n flat connections
on the C* vector bundle E over X of degree 0 is isomorphic to the above hyperkéhler quotient equipped with the complex
structure I',.

The hyperkéhler structure defined on M,, induces a holomorphic 2-form Q; = w, + iw; on M,,, where w, and ws are the
Kéhler forms associated with I', and I's. We next give the expression of ; by means of the gauge theoretic construction
of M,,. Let (04, 9) € (T*A )IS,}, and consider two tangent vectors

(A1, ¢1) € T, T i=1,2
we have

Q1 ((Ay, 1), (Ay, 7)) = /A1/\¢2 — AyAgy, (2.3)
X
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where to define the wedge product A, we identity Q%!(X,ad(E))~ (Q°(X,ad(E)) ® Q?(’l) and Q°d(E) ® K) =
(Q°(ad(E) ® Q;°), and for Z; ® w;, i = 1,2, Z; € Q%(X, ad(E)), w; € Q'(X), we set

(Z) @ w)A(Z, ® ;) =(Z1,2,) @ wy A w;
with (, ) being the Killing form.
We recall now the Hitchin fibration and spectral construction given in [9, 36]. Let (g, ... , g,) be a basis of the algebra

Clgl(n, C)]°MO of regular functions on gl(n, C) invariant under the adjoint action of GL(n, C). We choose them so that
deg(q;) = i. The Hitchin map is defined by

h: M, — H:=@_ HXK)
E,9) —  (qi(®)s - qn(9)).

It is a surjective proper morphism [36, 52] endowing the moduli space with the structure of an algebraically completely
integrable system. In particular, its generic fibers are abelian varieties and every fiber is a compactified Jacobian [55, 60]. To
describe these, consider the total space |K| of the canonical bundle and the obvious algebraic surjection 7 : |K| — X. We
note that the pullback bundle 7*K — |K| admits a tautological section 4. Given an element b € H, with b = (by, ..., by),
we construct the spectral curve X;, C |K| by considering the vanishing locus of the section of 7*K"

A"+ b A s + b, A + 7Dy, (24)
The restriction of 7 : |K| — X to X}, is a ramified degree n cover that which by abuse of notation we also denote by

ﬂ:)_(b—)X.

Since the canonical divisor of the symplectic surface |K| is zero and X, belongs to the linear system |nK |, one can compute
the arithmetic genus of X,

g()_(b> =1+n¥g—1). 2.5)
By Riemann-Roch, the rank n bundle 7, C()}—(b is has degree
deg(r.Og,) = —(n* = n)(g — 1).
Given a torsion-free rank one sheaf F over X p of degree &, where
§:=nhn-1)(g-1), (2.6)
we have that Eg := 7, is a vector bundle on X of rank n and degree 0. Since 7 is an affine morphism, the natural
0k -module structure on %, given by understanding & as a sheaf supported on |K|, corresponds to a 77,0 x| = Sym"(K*)-
module structure on Eg. Such structure on Eg is equivalent to a Higgs field
¢ : Ez — Eg ® K. 2.7
As expected, one has that
h((Ez, ¢7)) = b.
A stability notion may be defined for a torsion-free sheaf & of rank one on the curve X . If X, is reduced and irreducible

(integral) then & is automatically stable. For reduced but reducible curves, [55, Théoréme 3.1] gives an easy characteriza-
tion of semistability, modulo some corrections pointed out in [15, Remark 4.2] and [17, Section 2.4]. A torsion-free rank one
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sheaf & on X, of degree & is stable (resp. semi-stable) if and only if for every closed sub-scheme Z C X, pure of dimension
one has that

deg, F; > (nZ —ny)(g—1) (resp. 2), 238)

where ¥, := F|;/Tor(¥|,) and n, = rk(,.0,). One can easily check that every line bundle is stable so the Jacobian
J ac‘s(X p) is contained inside the moduli space of semistable torsion-free rank 1 degree & sheaves on X;. Furthermore, the

former is projective (see [59]) what explains that we refer to it as the compactified Jacobian and denote it by Ea()_( b)-

The previous construction provides a one-to-one correspondence between rank 1 torsion-free sheaves over a certain
spectral curve and Higgs bundles over the corresponding point of the Hitchin base. Furthermore, stability is preserved
under such correspondence.

Theorem 2.1 [55, 60]. A torsion-free rank one sheaf F on the spectral curve X, is stable (resp. semistable, polystable) if and
only if the corresponding Higgs bundle (Es, p) on X is stable (resp. semistable, polystable). Hence, the Hitchin fiber over
b € H is isomorphic to the moduli space of semistable torsion-free rank one sheaves of degree 5 = (n*> — n)(g — 1) over X,

hl(b) = E5()?b).

For the case of trivial degree, one can construct a section of the Hitchin fibration, named Hitchin section, associated with
any line bundle ¥ € Jac o/n (X). This section is constructed by assigning to each b € B the Higgs bundle whose spectral
data are the line bundle 7* ¥ over the spectral curve X. In other words, we have a morphism

Y>¢: H, — M
I n n (2.9)
—>

b Egp) =TT T 95 ,0))s

where ¢y ) = ¢ E(s.) A8 defined in Equation (2.7). One can check that the push-forward of the trivial sheaf of any spectral

curve is EB::Ol K%, applying the projection formula one has
n—1
Egpn=J @m0z =J® <@ K—f> (2.10)
i=0

for all b € H,,.

When studying mirror symmetry beyond the generic locus, one is quickly brought to considering the moduli stack
of Higgs bundles. We thus finish this section with some elements about the geometry of the moduli stack I,, of Higgs
bundles of rank n and trivial degree over the smooth projective curve X, and its relation with the moduli space M,,.

Let us recall that the stack 9, contains an open set M5 of semistable objects.

Theorem 2.2 [2]. The moduli space M,, is a good moduli space for WM™ in the sense of [1]. That is, there exists a quasi-compact
morphism

vt — M,
such that the push-forward functor is exact and induces an isomorphism of sheaves ¥, Ogy =2 Oy.

The notion of a good moduli space recovers the usual properties of good quotients of finite-dimensional varieties by
group actions [51, 56]. In particular, ¥ is surjective and universally closed, and M,, has the quotient topology.

The proof of Theorem 2.2 combines a number of results: Alper proved that the stack of bundles has a good moduli
space [1, Theorem 13.6]. In [33, Section 1.F], Heinloth explained how the classical stability notion for bundles can be seen
in terms of @-stability (notion developed also independently by Halpern-Leistner [29]). As explained in [2, Section 6], one
may deduce a similar result for Higgs bundles, so 3™ are Hilbert-Mumford semistable objects for a suitable line bundle.
Theorem C in [6] implies the existence of a good moduli space for 5.

85UB0| 7 SUOLLLIOD BAIER. B|deot (dde au Aq peusenob are sapfife YO ‘88N Jo S9N 10} Areiq18uljuO AB|1/ UO (SUORIPUOD-PUR-SWIBYLLIOD A8 | 1M ARe.q)1Bu1UO//SOY) SUORIPUOD pue SWd | 8U3 88S *[£202/20/22] U0 A%iqiauliuo A8|1m ‘88 L Aq 292000202 BUeW/Z00T OT/I0p/W00 A8 1M Aeiq1jeuljuo//sdny woy pepeojumoq ‘0 9T922ZST



3 &A:gﬁlglhéﬁ%%ﬁHE FRANCO AND PEON-NIETO
[NACHRICHTEN |

2.2 | Arinkin’s Poincaré sheaf and Fourier-Mukai transform

Arinkin constructed a Poincaré sheaf [6] on the compactified Jacobian of an integral curve with planar singularities,
yielding a Fourier-Mukai transform between these spaces and their duals. This was generalized by Melo, Rapagnetta
and Viviani [48, 49] to any fine compactified Jacobian of a reduced curve. The universal sheaf for the fine compactified
Jacobian is a crucial piece in Arinkin’s construction and, because of this, no Poincaré sheaf has been constructed for
coarse compactified Jacobians which is the situation that concern us in this paper. Nevertheless, Arinkin’s methods adapt
naturally to moduli stacks as we will review in this section. The construction of a Poincaré sheaf over the moduli stack
of torsion-free rank 1 sheaves over a reducible planar curve makes part of unpublished work by Arinkin and Pantev [53],
where they conjecture that the associated Fourier-Mukai transform gives rise to self-duality of the moduli stack. A sketch
of the construction appears in the preprints [45, 46].

Here, we restrict to the case of nodal curves. We do so because for these curves the construction of the Poincaré sheaf
is considerably simpler than in the case of an arbitrary reducible curve (see [6, Section 4.3]).

Let X be a connected reduced curve with at most nodal singularities and pick an ample line bundle O%(1) on it.

Let %5()_() be the moduli stack of rank 1 torsion-free sheaves over X and denote by U — X x%a()_( ) the associ-
ated universal sheaf. Denote also by 3ac5()_( ) the substack of those sheaves that are invertible (i.e., line bundles), and
by 4% - X x Sacd()_( ) the restriction of the universal bundle to it.

Recall that the Hilbert scheme is a fine moduli space represented by a universal subscheme £ C X x Hile()_( ). Write
F, for the ideal sheaf associated with the zero-dimensional subscheme Z ¢ X and Iz, = X X Hile()_( ) for the ideal
sheaf associated with the universal subscheme. Since X is a nodal curve, we have that J} is a torsion-free sheaf. One can
use the universal subscheme Z,,, :=Zy  to construct the associated Abel-Jacobi map

_ —5
a, . Hb""X) — Sac (X)

where N, = mdeg Ox(1) + &. Note that «,,, is given by
Iy ® g 0x(~-m) > X x Hilb" " (X), (211)

where g, denotes the projection X x Hile’"()_() — X. Denote by Hile’"()_()’ the open subset of Hilb"" (X) given by
those zero-dimensional subschemes Z C S that can be embedded in a smooth curve. Define W, to be the open subset
of Hilb™" (X)' given by those subschemes Z, whose ideal sheaf .7, satisfies the condition H'(X, J}) = 0. For any positive
. [So] o]
integerr,weset W’ := || _ Wyanda ;=[] _ anulw,,

The following is well known although it appears in the literature [4, 6, 47] in different forms than how we present it
here.

Proposition 2.3. Let X be a connected reduced curve with at most nodal singularities. For any r, the Abel-Jacobi map induces
a smooth atlas

— 5 _
a’ i W' Face (X)

— 5 _ —
forthe Artin stack Jac (X). Using this atlas, the universal sheafis{U,, - X X W, }_, where the U, are given by restricting
the sheaves (2.11) to X X W,.

—0 —
Now, we construct the Poincaré bundle over the product Fac (X) X Sacé(X ). Given a flat morphism f : Y — S whose
geometric fibers are curves, for any S-flat sheaf € on Y, we can construct the determinant of cohomology 9 /() (see,
for instance, (see [43] and [22, Section 6.1])), which is an invertible sheaf on S constructed locally as the determinant

N —
of complexes of free sheaves locally quasi-isomorphic to R f,.%. Consider the triple product X X Jac (X) x 3ac5(X ) and

—5 _
denote by f;; the projection to the product of the ith and jth factors. We define the Poincaré bundle  — Fac (X) X
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Saca()_( ) as the invertible sheaf

-1

P =97, (UG F1U) @Dy, (FRU0) @Dy, (f14) - 212)

Given a degree ¢ line bundle J over X, denote by P; := Bl_—s the restriction of P to the slice corresponding to J.

Fac X)x{J}
_ 5 _ _ 5 _ 5 _
In fact, if we consider the obvious projections f; : X X Jac (X) » X and f, : X X Jac (X) —» Jac (X), one has (see
[48, Lemma 5.1] for instance) that

By =D, U 1) @Dy, (f1) @Dy, (2.13)

Remark 2.4. If X is a smooth irreducible curve, rank 1 torsion-free sheaves over it are simple line bundles so
__ 5 _ 5 — 5=
Fac (X) = Fa’(X) = [Jac X /a:*],

and P8 pulls-back to a bundle & — J aca()_( )xJ aca()_( ) under the projection Jac 5(}_( ) = [Jac 5()_( )/C*]. The integral functor
associated with & is a derived equivalence of categories [50], the Fourier-Mukai transform.

— — 5 _ —
One can reverse the roles of 3ac5(X ) and Jac (X) in Equation (2.12) to obtain a Poincaré bundle over 3ac5(X ) X

5 _ _ _
Jac (X) which coincides with the one defined in Equation (2.12) over Saca(X ) X Saca(X ). We then see that the Poincaré
bundle extends naturally to a bundle over

s _—s5_\F — 5 _ 5 — 5= —0
<Sac X) x Fac (X)> 1= <Sac X)X Fac (X)> U <Sac X)X Fac (X))

—0
that we denote by ¥ Following [6], it is possible to extend p* even further to a Cohen-Macaulay sheaf over Jac (X) x
s

Sac (X), as we will see below.
First, we need some definitions. Consider the projection to the Hilbert scheme of its associated universal scheme hy,, :
En— Hilb"™ (X), the coherent sheaf of algebras o, := hy, O  over Hilb™ (X) and denote by of;;, the subsheaf of

S
invertible elements. Consider p; to be the projection of Hilb"" (X) x Jac (X) to the first factor and take the pull-back
pl_l,szi .. Given a sheaf, we use the subindex pl_l(&f ) to denote the maximal quotient of the sheaf, where pl_l(sﬂ ) acts
via the norm character.

— .
Consider also the triple product X X W,, X Fac (X) and denote by g;; the projections to the ith and jth factors.

— 5 _
Following [6], we define the sheaf over W,,, X Jac (X)

-1

N, Np
q}m = </\ g23,*(gi2®zm ® g;3u)> ® </\ g23,*(g;2@zm)> . (214)
py (st

The following is an immediate adaptation of [6].

— — 5 _ .
Proposition 2.5. The sheaves B, — W, X Jac (X) are Cohen-Macaulay and flat over Fac (X) for all positive integer m.

Proof. Up to a base change, the construction of Equation (2.14) coincides with Arinkin’s definition of the sheaf Q" after
making the substitution of the fine compactified Jacobian (of an integral curve) and its universal sheaf by the moduli
stack of torsion-free sheaves (on a nodal curve) and its associated universal sheaf. After the same substitution, one can
also adapt Arinkin’s construction of another sheaf Q which he shows to be isomorphic to Q' in [6, Proposition 4.5]. The
proof of [6, Proposition 4.5] relies entirely on a result [6, Lemma 3.6] concerning isospectral Hilbert schemes of surfaces,
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so [6, Proposition 4.5] extends to our case and both constructions coincide here as well. Using the construction of ﬁm

_ — 5 _
associated with Q and [6, Lemma 2.1 and Proposition 4.2], we have that B, is a Cohen-Macaulay sheaf, flat over Fac (X).
Note that [6, Lemma 2.1] is a statement for Cohen-Macaulay sheaves in general and [6, Proposition 4.2] works for any
reduced curve and any rank 1 torsion-free sheaf on it, so both are valid in our case. O

This construction recovers the Poincaré bundle.

Proposition 2.6. B and $m| are isomorphic up to the twisting by a line bundle over JFac S(Y ).

W, XJac 5()_()

Proof. Since the U, are defined as (the restriction to W, X Hilb™ (X) of) Equation (2.11), in terms of the Abel-Jacobi
atlas from Proposition 2.3, 8 reads

P Dy, (87,75, ©20nO7m) B 8,10 ® Ty, (8, M0) ! © Dy, (81,75, ® 87,05 O5(-m) ™

We recall that W, is a subset of those subschemes Z such that the first cohomology space of its ideal sheaf is triv-
ial, H'(X, % ;) = 0. It then follows that R 823,:(81,0%, ) vanishes and R0g23,*(gi‘2®gm) is locally free of rank N,,,. Under
these conditions, the second term in the tensorization of the right-hand side of Equation (2.14) equals the determinant in
cohomology,

N,

N\ 823.4(85,05,) = det Rgy; (g}, 05, ) = Dy, (85,0%,).

Also, gi, U is a line bundle over W, X Sacé()_( ). This implies, for large m, that R'g,; (87,05, ® gi,U) vanishes and
Rg);.(8},0%, ® g}, 1) is locally free of rank N,,,. Then,

N
N\ 828,02, ® g}, Uo) = det R%8,3.,.(g},0z,, ® g7, = Dy, (g],0,, ® g32o)

is a line bundle on which pl‘l(gzﬂ ».) acts via the norm character. Therefore, we have seen that

~ % -1
s‘Bm|wm><3ac5()_() = Dg,,(81,0%,, ® &13U0) ® Dy, (8,0%,)™-

From the short exact sequence
0— g,0

— _ * \% *
XxHilb"m (X) gujzm - 81,0z, =0,

and the additivity property of the determinant in cohomology, one can deduce
De,, (87,07, ® 81;U0) = Dy, (81,75 ® 8132o) ® Dy, (87, 0) ™!
and
@823 (gikz @zm )= %gu (g;j;'jm )-

Therefore,

s’Bmlwm><3ac5()_() = @gzs(gikzj;fm ® g>1k3u0) ® gbgzs (gTSHO)_l ® @323 (gTZJém B

Thanks to this description of %m |l *Sacd () and the description of % given at the beginning of the proof, the result
follows from [49, Claim after Equation (4.18)]. O
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The following theorem was explained to us by T. Pantev, who proved it in collaboration with D. Arinkin. Since the proof
is not published, we include one here.

Theorem 2.7 (D. Arinkin and T. Pantev). Let X be a connected reduced curve with at most nodal singularities. For r large

— —0 — — 6 _ —5 _
enough, the B, — W, X Fac (X)};_, descend to a Cohen-Macaulay sheaf*B over Fac (X) X Fac (X), that extends B
up to a twist.

Proof. Thanks to Proposition 2.6 one has that the set of restrictions {$m| descend to a bundle over

mei}aca()_()}xﬂ'
— 5 _ _ —

the product of stacks Fac (X) X Saca(X ). Let Wf;l denote that subset of W, C Hilb™ (X) given by those subschemes

whose ideal sheaf is invertible. One can proceed analogously as we did in the proof of Proposition 2.6 and show that

the restriction {$m| descend to a bundle over the product of stacks Saca()_( )% Fac (X). Therefore,

anx:}ac“(?()mﬂ
— — 5 _\* 5 — — 5 _
the restriction of the B, to <Wm X Jac (X)> i= <Wm X Jac (X)) U <Wf;l X Jac (X)> descend to a bundle over
— 5 _ —65 _ —f
<3ac (X) x ac (X)> that we denote by B, .
6 — s N\ s ___s5_
We now recall that i : <Sac X)X Jac (X)) & Fac (X)X Fac (X) has codimension at least 2. Thanks to

Proposition 2.5, we have that $ is Cohen -Macaulay. Then, it follows that

B, = i*ﬁi (2.15)

#
_t — 5 _  —5 _
so the collection {¥B,,};;;—, descend to a bundle on <3ac X)X Jac (X )> . Thanks to Equation (2.15), one has that

—
P=i*P .
_ — 5 _  —5_
Therefore, {’Bm}ﬁz . descend to a sheaf over Fac (X ) X Jac (X). The rest of the proof is straightforward. O

When our curve X is irreducible any rank 1 torsion-free sheaf is stable and simple. Therefore, the moduli stack of

— 5 _
torsion-free sheaves on a curve is the quotient stack associated with the fine compactified Jacobian Jac (X) quotiented
by the trivial action of C*,

— 5 _ 5 _
Jac X) = [Jac (X)/C*].

— 5 _ _—5_ — 5 —
Let us denote by & — Jac (X) xJac (X) the pull-back of the Poincaré sheaf *8 under the obvious projection Jac (X) —

—5 —
[Jac (X)/C*], and one can consider the integral functor given by it,

. Db<ﬁ5o—<)> . Db<ﬁ5o?))
é* — RT[Z’*(T[T%'®§).

(2.16)

The Poincaré sheaf % was first obtained by [23] for compactified Jacobians of irreducible nodal curves. Arinkin [6]
extended this construction to any irreducible reduced planar curve, showing also that Equation (2.16) is a derived
equivalence. Although his result does not extend to the context under consideration, we include it for the sake of
completeness:
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Theorem 2.8 [6]. If X is an irreducible reduced planar curve, then the Fourier-Mukai integrable functor ® provides an
equivalence of categories.

The integral functor associated with $ is an eigenfunctor of the derived category of sheaves over the moduli stack of
torsion-free rank 1 sheaves over a reducible planar curve. It is being studied by Arinkin and Pantev [53] whether this
provides an equivalence or not.

3 | TOTALLY REDUCIBLE SPECTRAL CURVES
3.1 | Thelocus of totally reducible spectral curves and the Borel subgroup
We start by studying the Hitchin fibers associated with spectral curves that are totally reducible.

Recall from Section 2.1 that, for any b € H, the associated spectral curve X, is the n : 1 cover of the base curve X given
by the vanishing of Equation (2.4). If X, is totally reducible, then, by definition, one can rewrite Equation (2.4) as

ﬁ(/l — ), 3.1)
i=1
where a; € H(X, K). In view of this, consider the symmetric product
V 1= Sym"(H’(X,K)). (3.2)
Hence
dimV = ng. (3.3)
There is an injection into the Hitchin base
1% N H 34)

(@, tn)e = (@, @ Gu(@s e Q).

In the above: (ay, ..., a,)g denotes the orbit of (ay, ..., a,) under the nth symmetric group &, and g;(ay, ..., ;) is the
evaluation of g; on the diagonal Higgs field with entries ;. Note that the g; being invariant under the adjoint action, this
depends only on the orbit (ay, ..., &,)e-

Seen inside the Hitchin base, V describes the locus of totally reducible spectral curves.

Lemma 3.1. V parameterizes all spectral curves that are totally reducible. Let v € V be given by v = (a1, ™1, ¢y, ..., g
¢ pe s . . .
¢ ar)e, where Zi:l m; = nand a; # a; if i # j. Then, its corresponding spectral curve is

XM (3.5)

i

X, =

-

Il
—

where each X l.mi is a curve of multiplicity m; whose reduced subscheme is X; := o;(X), isomorphic to X.
Proof. This follows easily from Equation (3.1). O

Fix a Borel subgroup B < GL,(C) containing C, so that B = C X U, where U = [B, B] is the unipotent radical of B. Let
us consider the subvariety given by those Higgs bundles whose structure group reduces to B,

Bor := {(E,qo) e M,

Jo € H'(X,E/B),
¢ € H'X,E;(0) ®K) |’

where E, := o*E is the principal B-bundle on X associated with the section ¢ € H(X, E/B).
We can see that Bor coincides with the preimage under the Hitchin map of the locus of totally reducible spectral curves.

85UB0| 7 SUOLLLIOD BAIER. B|deot (dde au Aq peusenob are sapfife YO ‘88N Jo S9N 10} Areiq18uljuO AB|1/ UO (SUORIPUOD-PUR-SWIBYLLIOD A8 | 1M ARe.q)1Bu1UO//SOY) SUORIPUOD pue SWd | 8U3 88S *[£202/20/22] U0 A%iqiauliuo A8|1m ‘88 L Aq 292000202 BUeW/Z00T OT/I0p/W00 A8 1M Aeiq1jeuljuo//sdny woy pepeojumoq ‘0 9T922ZST



FRANCO AND PEON-NIETO MATHEMATISCHE 13
NACHRICHTEN

Proposition 3.2. One has the following
M, Xy V = Bor. (3.6)

Proof. We first see that Bor C M,, Xy V. This is a consequence of the following fact: given the Jordan-Chevalley decom-
position of x = x; + x,, € g!,(C) into a semisimple x, and a nilpotent piece x,,, the invariant polynomials g; defining the
Hitchin fibration evaluate independently of the nilpotent part, namely gq;(x) = q;(x;).
For the other inclusion, one has to prove that any Higgs bundle (E, ) € M,, Xy V admits a full-flag decomposition.
Denote by F the torsion-free sheaf over the spectral curve X, associated with (E, ) under the spectral correspondence.
Recall that X, is described in Equation (3.5) and, using this notation, define

i ¢
m;
Y; :=UXJ.’, z = J x™ (3.7)
j=1 k=i+1
We consider the restriction of F to |, and denote its kernel by F;,
0 —F —F — F|; —0. (3.8)

Since F; is a subsheaf of &%, it gives the Higgs subbundle (E;, ;) C (E, ) under the spectral correspondence. Since F;_;
is a subsheaf of %; we have that (E;_1, ¢;_1) C (E;, ¢;) so we obtain a filtration

0C (E1,91) C -+ C(Ep,90) = (E, ). (3.9)
Note that a full-flag filtration for each of the (F;, ¢;) := (E;, ¢;)/(Ei_1, ;—1) Will induce a full-flag filtration of (E, p).

Note that the eigenvalues of ¢; are all equal to «;. Set F;; = ker(¢; — a; ® 15,) and let ¢; ; be the restriction to F; ;. Set

(F!,¢)) = (F;, 1)/ (Fy1,$:1) and take Fi/,z = ker(¢! —o; ® lFf) and ¢;, = ¢§|Fi/2. Note that (Fl.’,2,¢lf,2) C (Fi,¢)) lifts to a

subbundle (F; ,, ¢; ») of (F;, ¢;) which contains (F; 1, ¢; ;). Repeating this procedure one gets a filtration
0C (Fi1,$i1) C - C(Fis¢i5) = (Fi, d0),
where each quotient (F; j, ¢; ;)/(F; j_1,¢; j—1) is isomorphic to a Higgs bundle of the form (G; j,a ® le_).
Given an ample line bundle Ox(1), one has that, for sufficiently high N > 0, that Ox(—N) is a subbundle of G; ;, and
the same is valid for the quotient G; ;/Ox(—N). Hence, one can always construct a full-flag filtration for each of the G; ;.
This provides a full-flag filtration for all the (F;, ¢;), hence a full-flag filtration for (E, ¢). O

Remark 3.3. Note that Proposition 3.2 generalizes to the corresponding moduli stacks as stability plays no role on its proof.

Remark 3.4. The full-flag filtration of the Higgs bundle (E, ¢) determines the reduction to the Borel subgroup o €
H°(X,E/Bwith ¢ € H'(X, E,(b ® K)). Note that, in general, one cannot give a canonical such a full-flag filtration.

In the remaining of the section, we will focus on an open subset of V. Denote the big diagonal of V' by
A :={(,...,xy)g € V such that a; = a; for some i, j}

and its complement in V by

vred = v\ A
Let us provide a description of the spectral curves parameterized by V4,

Lemma 3.5. V™4 is a dense open subset of V parameterizing reduced, totally reducible, and nodal spectral curves. Further-
more, for any v € V'™ given by (a1, ..., a,)e,, the spectral curve X, is reduced and has the following decomposition into
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irreducible components,

n
X, =Jx: (3.10)
i=1

with X; = a;(X) = X. It is a singular curve with singularity divisor of length |D| = (n?> — n)(g — 1) = 8. Its normalization,
Xy, is isomorphic to

n n
Xo=| x| |x (3.11)
i=1 i=1
and the normalization morphism,
v:X, > X, (3.12)

is the identity restricted to each of the X;.

Proof. Ais a closed subset of V of codimension 1, hence V™ is open and dense. When v € V' \ A, Equation (3.5) implies
that X, is the union of n different reduced and irreducible curves X; all isomorphic to X. It then follows that X, is reduced
and its normalization is as described in Equation (3.11). The description of the normalization morphism follows form the
description of the spectral curve given in Equation (3.10). The length of D can be obtained after an easy computation using
Riemann-Roch. O

For any two «; and a; with i # j, denote the divisor D;; = o;(X) N oj(X). Consider also the following subset of yred,

(a1, ..., ay)e € V™such that for everyi < j < k

ymod - = {(a) there is no multiple point on D;;, and

Jj»
(b)DU N D;y is empty.

Lemma 3.6. V"% is a dense open subset of V parameterizing reduced, totally reducible, and nodal spectral curves. For any
v € V™ given by (ay, ..., %y, the singularity divisor D of the spectral curve X, is

D = U Dl]
L,
and consists only of simple points.

Proof. Since conditions (a) and (b) are open and generic, V"°? is a dense open subset of V"¢, It then follows from Lemma 3.5
that V"°d is dense within V too and the first statement follows.

Recall the description of X v given in Lemma 3.5. Take two irreducible components of X vs Xi>and X js intersecting each
other at D;;. Note that D coincides with the set of intersection points and recall that we have imposed the condition
D;j N Dy = @if j # k in the definition of V™, so D is the union of the D;;. O

Using the notation of Lemma 3.5, consider the following morphisms:

(3.13)
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We have seen in Remark 3.4 that the reduction to the Borel subgroup cannot be defined canonically for an arbitrary
Higgs bundle in Bor. However, for those Higgs bundles lying over v € V%4, one can fix such a reduction after choosing
an ordering for the components of v.

Proposition 3.7. Let v = (ay,...,Q,)g, € vood and let (E, @) € h™'(v). For any ordering J = (ocjl,...,ocjn) of the set
{ay, ..., a,}, one can chose canonically a filtration

(E])- :0¢ (El’ qol) ¢ < (En’(pn) = (E, fP),

such that the Higgs field induced by ¢ on E; /E;_, is a;,. Furthermore, if the associated spectral datum associated with (E, ¢)

i

is a line bundle over the spectral curve, L € J aca(f L), then

Ei/Ei—l = (CC;[;L) 02 Ki_n.

Proof. Using the orderingJ setY; = U;{zl X Zi = UZ:i +1Xj, asin Equation (3.7). After the choice of J, the filtration for

the spectral data given in Equation (3.8) is canonical and so is the filtration (3.9) of (E, ). Since v € vmod Equation (3.9)
is a full-flag filtration what proves the first statement.
For the second statement, recall that the filtration of L is defined by the subsheaves L; = L ® j)—( 7 where J)—( 7 denotes

the ideal defining the subscheme Z; C X. Now, j)_(,z,- = Oy, ® Iy, z,ny,, thus
Li=Lly, ® Iy, znv;-
Note that
0— L;/Liy — Llz_ , — Llz;, —0
is exact, so that
Li/Li 2Lz ® 57,z

=Llz, ® Ox, ® Ix, z:nx,

> Llx,(= ), Dy).

k=i+1

Now, the push-forward of
0— L, — L —L/L1—0
gives under the spectral correspondence
n
(E, ¢1)/(Ei1, Pi-1) = (a;l}iL (— k=zi-:FlDik> ’O‘j,->’

where we abuse notation by identifying the divisor D, and its image under 7. Naturally, K = Ox (D), which yields the
result. U
3.2 | Totally reducible nodal spectral curves and their desingularization

We study in this section the relation between the Hitchin fibers associated with totally reducible spectral curves with only
nodal singularities and their partial and complete desingularizations.
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G FIGURE 1 Partial desingularization
/M along R.
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We first recall some well-known facts about rank one torsion-free sheaves on a reduced connected nodal curve X with
divisor of singularities D. We start by studying the particular case of line bundles which admit a simple description in
terms of their pullback to partial (and complete) desingularization. Consider R C D a subdivisor of the singular divisor of
the reduced curve X, and let

VR . XR d )_( (314)

be the partial desingularization at R (see Figure 1). Note that v, : XP — X is just the normalization map v that appeared
in Equation (3.12). Denote by

Pg 1 JacX) — Jac(XR)
L — vRL

the pullback map. The fibers of this map are described in the following lemma due to Grothendieck [28, Proposition 21.8.5],
that we reproduce adapted to our notation.

Lemma 3.8 [28]. For any subdivisor R C D of the singular divisor of the reduced nodal curve X, the pullback map vy is a
smooth fibration with fiber (C*)IRI="=*+1 \where ny is the number of connected components of X .

One can give the following geometrical interpretation of Lemma 3.8: line bundles on reduced nodal curves can be
described in terms of line bundles on each of the ny irreducible components of the (partial) desingularization, together
with |R| gluing data (i.e., an element of C* identifying the two local components of the nodal point) for each of the
intersection points, taking into account the identification given by scalar automorphisms on each of the components.

In the case of R = D, we have that Xz = X, is the normalization of the spectral curve and vy coincides with the
normalization map v. One has the following description adapted to that case.

Corollary 3.9. The pullback map

P Jac(X,) — Jac(X,)

L — v*L

(3.15)

is a smooth fibration with fiber (C¥)"(~1D(g-1)-(n-1)
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It can be checked that that the degree of a line bundle L on a connected nodal curve X with irreducible components X; is
given by the sum of the degrees of the line bundles obtained by restricting to each of the components, deg L = 3. degL|y,.
In view of this, we refer to the multidegree of a line bundle L on X as the degree on each of the connected components of
X. In other words, the multidegree of $(L) = v*L over the disconnected curve X.

A rank one torsion-free sheaf on X is either a line bundle or a push-forward of a line bundle on a partial desingularization
vy of X (see [57], for instance). Consider L € Jac(Xy) be given by the line bundles L; on each connected component X R of
Xg. Geometrically, the (rank one torsion-free coherent) sheaf VgL on X is obtained by considering ng-tuples of L; — X Ris
together with identifications at all points x € D \ R. One can also check that

deg(vg L) = deg(L) + |R]. (3.16)

We now study in more detail the spectral curves parameterized by V"°¢ and their corresponding Hitchin fibers. Let us
first fix some notation. Recall that, for v € V"4 given by (ay, ..., a,)e, We denote the associated spectral curve by X,.
After Lemmas 3.5 and 3.6, X, = U?le i» where X; = o;(X) = X and be the divisor of singularities D has length 6 and
it is given by the union of the two-by-two intersection of the smooth irreducible components. For any subdivisor R C D
consider the partial desingularization along R,

X .

/2

VR
R
K

Consider the decomposition X = |_]Lnj1 X r,; into connected components and denote as X Ri = vr(X r.i)- Therefore, one
has the decomposition R = R; Ll --- U R, U R, such that

< I

(3.17)

Vri - Xgi — Xgj

is a partial desingularization of X g, along a non-separating divisor R;, and Ry is the separating divisor in R (i.e., the
divisor along which connected components are to appear after desingularization). Denote by pg ; the restriction of pg to
the corresponding connected component. For each irreducible component X; = a;(X) = X of X,, and its corresponding
connected component X; = X; = X of the normalization X, consider the commuting diagram

55
i Xj

PRrii

X. (3.18)

We then see that X j = X are the irreducible components of X r; and denote by C; the index set of these components,
hence Xp; = Ujec, X, has |C;| irreducible components. Write D; € Xy ; for the singular divisor of X ; and observe that

it coincides with the ramification divisor of pg; : X ri — X. Observe as well that

Di = VR,i(Di) = Z D]k - Ri cD (319)
j,keCi
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and
D= ) D +R)+R,. (3.20)
i

We provide in the following lines a description of the Jacobians over X. Choose an ordering (X Rl X Rng) Of the
connected components of X r and, with respect to it, denote

Jacﬁ(fR) = Jac” (Xg 1) X -+ X Jac""® (Xg )
for each multidegree 7, and set || = Z?jl 7;. Consider the decomposition

Jac"(Xg) = | J Jac"(%p). (3.21)
[71=n
Let also
ni (% @,..d" &
Jac™(Xg;) = U Jac™ i (X ),
Zdij=7)i

be the decomposition in terms of the multidegree associated with the irreducible components.
With the notation being settled, we now study push-forward of line bundles under vy. Recall that every rank one torsion-
free sheaf on X, is either of this form or a line bundle.

Lemma 3.10. Letv € V"4, Only if

ICil

=Y df =Dy, (322)
k=1

one has that the push-forward map

1 IC1l 1 ‘ "Rl
(d}...d, (G

)(Xg) x -+ x Jac e R n) — T (Xy)

L — VR L,

(3.23)

is well defined and an injection. Furthermore, when Ry # @, the Higgs bundles whose corresponding spectral data is in the
image of vy are strictly polystable.

Proof. Assume first that Ry = @ hence ng = 150 X is connected. In that case, VgL is stable. Otherwise, as any destabiliz-
ing subsheaf of vy . L will come from a destabilizing subsheaf of L and this would imply that L is unstable. But L is a line
bundle so it is forcely stable. One also has that vg L 2 vg L’ if L 2 L so it only remains to prove that the degree vz ,(L)
is § = |D|. Note that this follows from Equations (3.16) and (3.20), since Equation (3.22) is equivalent to 7 = |D; | as Xy
is connected.

Now, we study the case where R, # @, so X r has np > 1 connected components. Denote 7/ [ L = L;, where the notation
is as in Equation (3.18). Note that

ng
ﬂ*VR,*L = pR,*L = @pR,i,*Li’
i=1

where the notation is as in Equation (3.18). Note that the direct sum is invariant by the Higgs field, since the Higgs field
is equivalent to a 7,03 'module structure on 7, v ,.L, and the latter factors through a 7,.vg . O, -module structure. This
proves that the Higgs bundle associated with L is decomposable. Note that, as before, vy ; . L; is stable as L; is a line bundle,
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hence stable. Therefore, it must happen that
deg pr,iLi = degm; . vg;.Li = 0 (3.24)

for the Higgs bundle to be polystable. Note that we have used pg; = m;ovg ;.
Given that Xy ; is a totally reducible nodal spectral curve with |C;| irreducible components, arguing as in Lemma 3.1
(compare with Equation (2.6)) we find that Equation (3.24) is equivalent to

degvg,.Li = (1G> = ICD@E -1 =] Y Dyl.

j,keCi

Now, considering
* _ ~
00— VR,zoXm — ®XR,i — O, — 0,

we have that

Z Djy| = degvg;.L; = degL; + |Ry,

JkeC;

which together with Equation (3.19) implies that Equation (3.24) is equivalent to Equation (3.22). In that case Equa-
tion (3.23) is well defined and it is injective since, as before, we have that vy ; ,L; % VR’I-,*L{ whenever L; and Llf are not
isomorphic. O

As a corollary of Lemma 3.10, one can derive the following well-known fact when R = D. Hence, after Lemma 3.5 the
normalization X, = X of X decomposes into n connected components, each of them isomorphic to the base curve X.

Corollary 3.11. The push-forward map

(3.25)

decompose into direct sum of line Higgs bundles.

In Proposition 3.7, we provided a description of the dense open subset of the Hitchin fiber over v € V"°¢ corresponding
to line bundles. Recalling that every torsion-free sheaf is given by the push-forward of a line bundle under a partial nor-

malization vy, we complete in the following lines the description initiated in Proposition 3.7 of Higgs bundles lying over
VnOd.

Proposition 3.12. Take any v € V™4 given by v = (ay, > y)g, and suppose that the multidegree d satisfies Equa-
tion (3.22). One has the following,

1. Assume Ry # (. Then, the Higgs bundles corresponding to spectral data in vy (Jacd(f R)) admit a reduction of their
structure group to By X -+ X B, C B, where B, is the Borel subgroup of GL(|C;|, C).
2. Consider the Higgs bundle (E,p) = EBZ’;I(Ek, @r) in h=1(v) N g (Jacd()?R)) Suppose that the spectral data of (E, ®)

are vy L, where L is a line bundle over Xg. Then, for any ordering J;, = (@jys s cleckl) of Cy, one can chose canonically a
filtration for (Ey, ¢i), forallk € {1, ... ,ng},

(Er). * 0C (B, & - & (Bx e Pricel) = (B Pi)
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such that

i">i+1

(B> P,i)/ (Bri—15 Prjim1) = <L|)?ji ® ®<— Z X, ani’)’aL‘)

where we abuse notation by identifying the subdivisors X i n X j» C Dy Equation (3.19) and their images under py, and

Lig, with its pullback under «;, o(vljg D
Proof.

(1) Follows from Proposition 3.2 and Lemma 3.10.

(2) To simplify notation, take the orderings (a1, ..., @ |), --- (oqcnR_1 > --»@pn))- The reasoning that follows adapts just the
same way to any other choice of orderings. The statement is proven as Proposition 3.7, taking the following remarks
into account:

First note that the subscheme Z; € X, appearing in the proof of Proposition 3.7 is the image of its partial desingularization
Z; C Xg, on which the filtration will be given on each of the connected components. This restricts the proof to line bundles
over connected curves Xg.

By the previous remark, we may assume that Xy is connected and J is an ordering for {«j, ..., &, }. We obtain a full flag
in the same way as in the proof of Proposition 3.7, the difference with this case being that the ideal

I 702 = 0x,(=XinZ)
depends on the ordering (and R) and so does

Xinzi: Z )?infi/. I:l
i">i+1

4 | A (BBB)-BRANE FROM THE CARTAN SUBGROUP

In this section, we construct a (BBB)-brane of M,,, which is, by definition (cf. [41]), a pair (N, (F, Vg)) given by:

* A hyperholomorphic subvariety N C M,,, that is, a subvariety which is holomorphic with respect to the three complex
structures I';, I'5, and I's.

* A hyperholomorphic sheaf (F, Vg) supported on N, that is, a sheaf F equipped with a connection whose curvature Vg
is of type (1,1) in the complex structures I';, 'y, and T';.

Remark 4.1. A flat connection is trivially of type (1,1) in any complex structure.

The embedding of the Cartan subgroup C = (C*)" into GL(n,C) induces the Cartan locus of the moduli space of
semistable Higgs bundles

Car = {(E, p)EM,

3s € HY(X,E/C),
» € H'X,E{(c) ®K). |’

where ¢ = Lie(C) and E; is the principal C-bundle on X constructed from the section s. Observe that Car is the image of
the injective morphism

¢ : Sym"(M;) — M,,

which is hyperholomorphic, so Car is a hyperholomorphic subvariety.

Now, we address the construction of the hyperholomorphic sheaf on Car for any topologically trivial line bundle # — X.
Since a flat bundle is hyperholomorphic and the morphism c is a hyperholomorphic morphism, it will suffice to construct
a flat bundle on Sym" (M;) and take its direct image under c.
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After fixing a point x, € X we get an embedding X < J ac’(X). Consider our initial line bundle & — X, and let Vo be
a flat connection on it. Denote by (2, Wg) the unique flat line bundle in J acO(X ) that restricts to (£, Vg ). From a flat line
bundle on J acO(X ) one can define a flat line bundle on Sym"(J acO(X )) as we explain in the following lemma.

Lemma 4.2. Let (¥, V<) be a flat line bundle on J ac’(X). Consider
7; + (Jac’(X))*" — Jac’(X)

the projection onto the ith factor. Let

and

n
“Kn . v
AREDNAT ®®1n;§/-
i=1 i

Then, <95@", 65") is a flat bundle that descends to a flat bundle (95(”), W?) on Sym"(Jac’(X)).

Proof. The bundle £™" is invariant by the action of &, and moreover the natural linearization action derived from the
one on the bundle @?:155 satisfies that over point p € (J acO(X ))*" with nontrivial centralizer Z, C @, the centralizer Z,

acts trivially on 9?". It follows from Kempf’s descent lemma that FH" descends to a line bundle £ on Sym"(J acO(X )

g(}’l) c= (q*ff&”)@"

s

where g denotes the projection J acO(X PN — Sym”(JacO(X ).
Note that ?5" is flat since the 77V, are flat and for any two i # j, one has that 7'V, and n;.‘vg commute. By

equivariance with respect to the action of the symmetric group &,,, it descends to a flat connection VECZ) on 2", |

Recall that the moduli space of topologically trivial rank 1 Higgs bundles fibers over the Jacobian, M; — J ac’(X). This
fibration extends to the symmetric product

p : Sym"(M;) — Sym" (JacO(X)>.

Then, the flat line bundle (™, V(M) gives a flat line bundle p* (EZ’(”), Vg?) on Sym"(M,) and further a hyperholomor-
phic sheaf

(L, Vy) = ¢,p"(&™, V)
on the Cartan locus Car. Consider the pair

Car(¥) :=(Car, (L, V).
The above discussion implies the following.

Proposition 4.3. Car(Z) is a (BBB)-brane on M,,, which we call Cartan (BBB)-brane associated with the line bundle
< - X.
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Note that the image of the Cartan locus under the Hitchin map coincides with the locus of totally reducible spectral
curves,

h(Car) =V

We finish this section with a description of the intersection of the Cartan locus with a generic Hitchin fiber associated
with a nodal curve. Recall that the push-forward map ¥ is an injective morphism as we have seen in Lemma 3.10.

Proposition 4.4. Foranyv € vnrod ope has
h~'(v) N Car = ﬁ(]aca()?v)) =~ Jaca()?v).
Consider the isomorphism
m : Jac’(X,) = Jac’(X)*" (4.1)
induced by the ordering (X,,X,, ..., X,,) of the connected components of X. One has that under the isomorphism m:

1. The spectral datum L € v <Jaco(fv)> corresponding to @?zl(Li, a;) € Car is taken to (L4, ..., L,) € Jac’(X)*". Namely,
L=v,F= @j(tj)*Lj where 1 is as in Equation (3.13) and F € Jac(X) restricts to F|Xj =L;.
2. The restriction of L — Car to h~1(v) n Car corresponds to SN | acO(X Y" defined in Lemma 4.2.

Proof.

(1) By construction, a Higgs bundle in Car decomposes as a direct sum of line bundles,
n
(Ea gD) = @(Lia c\(i)'
i=1

After Corollary 3.11, ﬁ(JacO) c h™'(v)n Car. Now, let L € Eé()_( ») be the spectral datum corresponding to and
element (E, ) € h™'(v) N Car. It is easy to see that the Higgs bundle is totally decomposable if and only if its
7, O% -module structure factors through a 7,v, 0% = @eB -module structure. Hence, L = v,F for some F € Jac(X).
Corollary 3.11 finishes the proof, as the only possible multldegree is (0, ..., 0).

(2) Inorder to prove the second statement, note that the isomorphism (4.1) is totally determined by a choice of an ordering
of the connected components of X, in this case (X4, ..., X,,). Now, the choice of such an ordering induces an embedding
j: (Jac’ (X)) o Sym”(Jaco(X )) making the following diagram commute:

Jac’(X)y" —2— h~(u)
J i
a(  Sym"(M,;) ——— Car

g

Sym”(Jac’(X)),
with g = poj being the usual quotient map. We need to check that

m*i*L & PR,

But, since the above diagram commutes and c is an injection, the left-hand side is equal to j*c*L = j*c*c,p*% " =~
J* p*ﬁ’ ) ~ q*&v’ () and the statement follows by the construction of Fm, |
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5 | (BAA)-BRANES FROM THE UNIPOTENT RADICAL OF THE BOREL SUBGROUP

Recall from Section 2.1 that M,, is a hyperk&hler scheme with ((I'y, w;), (I'5, @,), (I'3, w3)) being its K&hler structures. After
[41], a (BAA)-brane on M,, is a pair (W, (4, Vg)), with:

* W being a complex Lagrangian subvariety of M,, for the holomorphic symplectic form Q; = w, + iws.
* (€, V) being a flat bundle supported on W.

Starting from the line bundle & — J ac’(X), we construct in this section a complex Lagrangian subvariety Uni(¥) of
the moduli space of Higgs bundles, mapping to the Cartan locus V' C H of the Hitchin base. As we have seen, Uni(%) is
the support of a (BAA)-brane after specifying a flat vector bundle on it.

Recall that we have fixed a point x, € X. Denote by & our topologically trivial line bundle & — X tensored &/n =
(n —1)(g — 1) times by Ox(x,),

P =L Q Ox(xy)VED), (5.1
Having in mind Proposition 3.2, we define the subvariety of M,, Xy V,

3o € H'(X,E/B),
Uni(%) = { (E, ¢) € Bor |p € HO(X, E,(b) ® K), : (5.2)
Ec :=E,/Ux(Z®K®""@-- B K HEZ.

Proposition 5.1. Uni(<Z) is closed in M,,.

Proof. Recall that we denoted by I,, the moduli stack of rank n and degree 0 Higgs bundles and its semistable locus by
Mt C IM,,. Recall as well that Theorem 2.2 (see also the discussion following it) states that M,, is a good moduli space
for M and there is a morphism

vt — M,

which induces the quotient topology.

Let us denote by Bor the moduli stack of B-Higgs bundles, that is, the moduli stack classifying pairs (Eg, ¢g), where Eg
is a holomorphic B-bundle and ¢y is an element of H(X, Eg(b) ® K). By extension of the structure group B < GL(n, C),
one gets a morphism

i: Bor - IM,,.

Recalling Theorem 2.2, and the definition of Bor, we see that the restriction of i(Bor) to the semistable locus M5 of M,
surjects to Bor. Also, one can construct the following projection:

i: Bor —> Jac(X)"
(Eg,¢g) +—— Ec=Eg/U.

Both 1 and j are algebraic morphisms hence smooth. Consider the substack of I,, given by
Uni(P) =i (Z ®K®""MH - B @K HED)).

Again, thanks to Theorem 2.2 and the construction of Uni(&), we have that the restriction to the semistable locus,
Ui (L) = Wni(L) N M, surjects to Uni(¥). Note that (X @ K" - H (X ® K1) H P) is a closed sub-
stack of Bor as it is the preimage of a closed point, then Lni(&) is closed inside i (Bor). We now observe that it is enough
to prove that i(Bor) is closed in I, as this would imply that 2ni(Z) is closed in IN,,. Now, by Theorem 2.2 the previous
discussion implies that Uni(£)*! is closed inside M5, and thus maps onto a closed subset, proving the statement.
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Now, universal closedness of i(Bor) follows from the valuative criterion, as the image of Bor has a universal bundle
(€, @) admitting a reduction of the structure group to B. Given a discrete valuation ring R with fraction field k, properness
of GL,(C)/B ensures that the existence of a reduction of the structure group over Spec(k) extends uniquely to Spec(R).
This proves the valuative criterion for the bundle. Now, assume that the universal Higgs field defines a B-equivariant
morphism

¢ GB|Spec(k) — b®K,

where €y denotes the universal bundle together with a reduction to B. Since ¢ extends to ¢’ : € Ispecr) — 8l(n, C) @ K,
closedness of b C gl(n, C) étale local triviality of €|gyec(g) do the rest. O

In order to prove that Uni(&) is an isotropic submanifold of (M,,, Q) we first give a description of it in gauge theoretic
terms. Let E denote the topologically trivial rank »n vector bundle; choose a reduction of the structure group to B (which
always exists), and let Eg be the corresponding principal B-bundle, so that E = Eg(GL(n, C)). Define E¢ = Eg/U. It follows
from Equation (5.2) that

dg € ¢ satisfying

g 4= 5C + N, where

Uni(%)=304,¢) €M, | N Q" (X, Ex(n)), L. (5.3)
(Ec.00) = (Z @K' H- B (Z ®K HHZ;

2)g- ¢ € QUX,Ex(b) ® K).

g J

Remark 5.2. Both Car and Uni(&) are subvarieties of M,, Xy; V, but they do not intersect, as the elements of Car N Uni(&)
would have underlying bundle of the form E in Equation (5.2), which is unstable, and totally decomposable Higgs field,
conditions which yield unstable Higgs bundles.

Proposition 5.3. The complex subvariety Uni(<Z) of M,, is isotropic with respect to the symplectic form Q, defined in
Equation (2.3).

Proof. 1t is enough to prove the statement for open subset of stable points in Uni(Z). We will check that this subset is
non-empty in Proposition 5.7.

So let (E, ¢) € Uni(Z) be a stable point. By Equation (5.3), a vector (A, ) € T, (..M, satisfies that, up to the adjoint
action of the gauge Lie algebra,

(A, 9) € Q"1(X, Eg(n)) x Q°(X, Eg(b) ® K).

The result follows from gauge invariance of the symplectic form Q, and the fact that n C b, where orthogonality is taken
with respect to the Killing form. O

We now give a description of the spectral data of the Higgs bundles corresponding to the points of Uni(Z). We will
focus on the open subset of those Higgs bundles whose spectral data are a line bundle. This will allow us to show that this
subvariety is mid-dimensional, and, after Proposition 5.3, Lagrangian.

Proposition 5.4. Let & be defined as in Equation (5.1). For every v € V"%, one has the following identification inside
h=(v),

Uni(%) nJac’(X,) = {L € Jac’(X,) such that v*L = p*P =~ (Z,...2) } (5.4)

Furthermore, Higgs bundles described in Equation (5.4) are stable.
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Proof. Thanks to Proposition 3.7, we have that the spectral datum L of any (E, ¢) € Uni(Z£) N J acé()_( ) satisfies

& = ot L.
Now, since any line bundle on X, is totally determined by its restriction to all the connected components, it is enough to
check that j s = Jiv*L, which follows from commutativity of the arrows in Equation (3.13) and the fact that; : X —

X; is an isomorphism. This concludes the proof. O

The description of the spectral data given in Proposition 5.4 allows us to study the dimension of Uni(&), which turns
up to be one half of dim M,,.

Proposition 5.5. The complex subvariety Uni(<Z) of M,, has dimension
dim Uni(%) = n2(g — 1) +1 = % dim M,

Proof. First, we observe that Uni(&) is a fibration over V' and recall that dim V' = ng. By Proposition 5.7, over the dense
open subset V"°4 C V, the fiber of Uni(%)|ynea — V¢ at v has a dense open subset

. R
P UL,...,Z) CJac (X,)=h(v),

where we recall the pull-back map described in Equation (3.15). Now, by Corollary 3.9,

By smoothness of the point, the Hitchin fiber is transverse to the (local) Hitchin section, so

dim Uni(£)lynes =dim V"¢ + dim9~1(Z, ..., %)
=ng+d—-n+1
=ng+m’>-n)g—-1)—-n+1

=n*(g-1+1,

which is half of the dimension of M,,, as we recall from Equation (2.2). This finishes the proof since by Proposition 5.3,
Uni(&) is isotropic, so its dimension cannot be greater than % dim M,,. O

Finally, we can state the main result of the section.

Theorem 5.6. The complex subvariety Uni(Z) of M,, is a closed complex Lagrangian with respect to Q.

Proof. This is clear after Propositions 5.1, 5.3, and 5.5. O
Thanks to Proposition 3.12, we have at hand a description of every point in the Hitchin fibers over V"4, Hence, we can

study the intersection of these fibers with Uni(&) as we will do in the remaining of the section. Before stating the result
we need some extra definitions. Let v = (ay, ..., #,)g,, in v1od giving the spectral curve X, with singular divisor D € X,

and let R C D be a subdivisor. We have seen that X , has n irreducible components X; = ¢;(X) and recall that we have set
D;; = X; n X;. For each ordering J = (a;,, ..., a;, ) of the set {a;, ..., @,,}, define the divisors

BJ,i = Z Djiji’ NR. (55)

i">i+1
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Set also

by; =Byl

Proposition 5.7. Let & be defined as in Equation (5.1) and let v € V"° with spectral curve X, and divisor of singularities
D. Chose R C D and consider the associated desingularization X of X .. Then, for any n-tuple of integers d = (d,, ..., d,,), we
have the following identifications inside h=(v),

3J = (ocjl, s ocjn) ordering of {ay, ..., @}
such that, forall1 <i < n, we have:

a)d; =8 —by; and ’
b)Llx, = Z ® O(By,).

Uni(%) n <JacE()?R)> =1 e nacd(Xy) (5.6)

when Rg = @ and d satisfies b) for some ordering J, and
Uni(%) N g (Jacd()?R)> =,
in contrary case.

Proof. Recall the notation of Proposition 3.2. Take (E, p) € h~!(v) where v € V"% is given by (ay, ..., ®,)e,- Note that
(E,9) € Uni(&Z) if and only there exists an ordering J = («;,, ..., a;, ) and a filtration

0= (EO’ §00) - (Ela §01) ¢ < (En’ gon) = (E, §0)

such that
(Ei, )/ (Eioy, i) 2 (Z @K' a;).

The statement then follows from Proposition 3.12, noting that

V;;(Ki_n ® @(_Bj,i)) = ®< Z X]l ﬂle_,>. D

i">i+1

6 | DUALITY

In this section, we discuss about the duality under mirror symmetry of the (BBB)-brane Car(&), and a (BAA)-brane
supported on Uni(Z). Ideally, we would like to transform them under a Fourier-Mukai transform between coarse com-
pactified Jacobians of reducible curves. Since such a tool is unavailable, we will make use of the integral functor ® between
the corresponding moduli stacks. Since the Cartan locus Car and the Jacobian Jac®(X) are both fine moduli spaces, we
will restrict the Poincaré sheaf ®3 to Car on one side and J ac’(X) on the other, obtaining an integral functor ®“* between
their derived categories of sheaves. As we will see in this section, ®**" sends our (BBB)-brane Car(%) to the trivial sheaf
supported on Uni(Z) what provides evidence of a duality statement between them. A note of warning should be added
here: ongoing work by Arinkin and Pantev [53] shows that the integral functor ® on the stack of Higgs bundles over totally
reducible spectral curves need not preserve semistability [53]. We do not see this phenomenon occurring here, as we pick
the target of ®“' to be the Jacobian, although this should be taken into account when studying the transform of Car(%)
under the whole integral functor ®.

Recall that in our case, the normalization X, is the disjoint union LI, X; of copies of the base curve X, which is smooth.
Then, the direct product of Jacobians [, J ac’(X, ;) is the moduli space classifying line bundles of multidegree 0, which is
a fine moduli space with universal line bundle . The restriction of each X ; is a line bundle over an irreducible smooth
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curve, hence simple. It then follows that the associated moduli stack is

— _ n _
Fa’(®y) = |12’ )/ | = T [rac’cxo/er],
i=1
where each C* acts trivially. Recall also that the restriction of the Cartan locus Car to the Hitchin fiber associated with X,
isv <J aco(f v)). Note that this is a fine moduli space with universal sheaf
U 2= (v x ), 5 — X, X ﬁ(Jaca()?U)).

We consider the substack ¥ <3ac0(fv)> of Fac 5()_( »)- By all of the above, we have that

ﬁ(g«%@) > [7) (Jaca()?v)> /(C*)X”],

and the restriction of the universal sheaf l[l)_( pulls-back to % under the obvious projection

XV (Jaca(fu)>
ﬁ(Jaca()?U)) — [v (Jac‘_’()?u)) /(c*)xn]. 6.1)

It follows from a result of Mumford (see, for instance, [12, Theorem 2, Section 8.2]) that the Jacobian of degree § line
bundles over a reduced curve X, is a fine moduli space J acS(X ») with universal line bundle %#° — X, x J aca(X )- Since
line bundles are simple, one has that the corresponding moduli stack is the quotient stack

8= - ,
Fac’(X,) = [fac’X,)/C7],
for the trivial action of C*. One trivially has that % is the pull-back of U° under the projection
Jac’(X,) — [Jac5 X,) /C*]. (6.2)

With %° and %% we already have all the ingredients for the following definition, analogous to Equation (2.12), of a
Poincaré bundle over v <J aco(f v)) X J aca()_( o)

* ar * -1 * * ar
P = D, (f12%C ® f136u0) ® Dy, (f13%0) Q Dy, (flzcuc )’ (6.3)

where the f;; are the corresponding projections from X, XV <Jac0()?v)) xJaca()_(U) to the product of the ith and
jth factors.

We can see that %" is obtained from the restriction of the Poincaré sheaf % to the Cartan locus and the Jacobian of
X,.

Proposition 6.1. The sheaf P is the pull-back of B under the product of morphisms (6.1)

ﬁ(SacE()?v)>x.‘}ac5(X)
and (6.2).

95U8017 SUOLLLLIOD aAIER.D) 9|cedl(dde 8y Aq peusenob afe sapiLe YO ‘8sn Jo Se|nl 10} Aelq1 8UIUO A3|IM UO (SUOTIPUOI-PUR-SWLB)/LL0D A8 1M AeJg 1 pUI|UO//:Schiy) SUONIPUOD pue SWIB 1 8U) 885 *[£202/20/22] Uo Arlqiauljuo AB[IM ‘89 L Ag 292000202 eUeW/Z00T 0T/I0p/wod" As|im Atelq 1 puluo//sdny wolj pepeojumod ‘0 ‘9T922ZST



28 %:ggglhéﬁ'%lgﬁHE FRANCO AND PEON-NIETO
[NACHRICHTEN |

— —0 —
Proof. Since P extends P — JFac (X,) X Fac 5(X ), we have from Equation (2.12) that

~

|15 (3«6@)) xGalX) smv (s«%@) xGacd (X)

=Dpy fikzul?( xﬁ(.‘}aca()? )

* * -1
) ®f13u0 ® @fzs (flsuo)

-1

D U =
® fa f12 |)_(Ux1)<,‘}aco()?u)>

Then, the result follows from the observation that % “® is the pull-back of ¥ <Sac0(f U)> under Equation (6.1), and %° is
the pull-back of U° under Equation (6.2). O

Let us consider the integral functor associated with 4T,

oCar . Db<7)(Jaca()?U))> — Db<Jac‘5()_(U)) (6.4)
. — Ry, (71€" @ PO, '
where 7; and 7, to be, respectively, the projection from ¥ <J aca(f U)) xJ acé()_( v) to the first and second factors.

Recall that our (BBB)-brane Car(Z) is given by the hyperholomorphic bundle L supported on Car. By Proposition 4.4,
over the dense open subset 1V7°¢ of the Cartan locus of the Hitchin base V = h(Car) C H, the hyperholomorphic sheaf L

— 5 — y 3 =
restricted to a certain Hitchin fiber Jac (X)) is ¥, 2¥", supported on ﬁ(]aca(Xv)). The main result of this section is the
study of the behavior of 7)*3@" under gocar, but first we need some technical results.
Fix X, and take the line bundle 6(x,)"~ Y&~ Denote

2 Jac’(X) — Jac’(X)

the isomorphism given, on each of the components, by tensorization by the previous line bundle. We can define a Poincaré

bundle & — Jac6()?v) x Jac’(X,,).
Consider the projections to the first and second factors

Jac®(X,) x Jac®(X,)

Ty )
Jac®(X,) Jac®(X,),
and, using §>, one can construct another Fourier-Mukai integral functor

$: DUal(X,) —  Db(Jac’(X,))
& — R, (T16" @ P).

Note that ® is governed by the usual Fourier-Mukai transform on each of the J ac’(X ;). We need the following lemma in
order to describe the interplay between ®“* and ®.

95U8017 SUOLLLLIOD aAIER.D) 9|cedl(dde 8y Aq peusenob afe sapiLe YO ‘8sn Jo Se|nl 10} Aelq1 8UIUO A3|IM UO (SUOTIPUOI-PUR-SWLB)/LL0D A8 1M AeJg 1 pUI|UO//:Schiy) SUONIPUOD pue SWIB 1 8U) 885 *[£202/20/22] Uo Arlqiauljuo AB[IM ‘89 L Ag 292000202 eUeW/Z00T 0T/I0p/wod" As|im Atelq 1 puluo//sdny wolj pepeojumod ‘0 ‘9T922ZST



FRANCO AND PEON-NIETO MATHEMATISCHE 29
NACHRICHTEN

Lemma 6.2. One has that
(VX 1jae) " P = (152, X 9)*P.

Proof. Note that (¥ X 1;,.)" 22 is a family of line bundles over J aco()? ) parameterized by J aca()_( v)-Since P -1 aco()? 0) X
J aco()? ») is a universal family for these objects, there exists a map

t:Jac’(X,) — Jaca(fv),
such that
(VX 150) " P = (15 X ) P.
Recall the description of %; given in Equation (2.13) for each J € Jaca()_( o). Recall as well the projections f; : X, x
S — — 5 _ —5 _
Jac (X,) » X, and f, : X, xJac (X,) — Jac (X,), and consider the following commuting Cartesian diagram

1)7)(\7 —_ —_—

— = ~ 5 —
X, xJac’(X,) ——— X, xJac (X,)

] ]

o5 v =8
Jac’(X,) Jac (X )

We know from [22, Proposition 44 (1)] that the determinant of cohomology commutes with base change, that is,

PPy, =Dy (I X V). (6.5)

Consider the obvious projection f; : X, x Jac’(X,) — Jac’(X,). Since the following diagram commutes,

~ = ~ vx1— — = ~
X, xJac%(X,) —=— X xJac’(X,)
"
f _
JacO(XU),

the definition of the determinant of cohomology ensures that
@fé(v X lJawc)* = QZJ?Z. (6.6)

One also has that the following diagrams commute:

—_ 0 1xv —_ 5 —
X, xJac’(X,) ——— X, xJac (X,)
> Lfl
T
X, (6.7)

and
X, xJac"(X,)

/ l(VXIEC)\

X, - X, xJac’(X,)
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As a consequence, one has that f1((f})"'(U)) = v fi l(fz_l(U)) for every open subset U C Jaca()?v). It then follows from

the definition of pull-back and push-forward that, for any J € J aca(Y o)
(FDIWU) = lim — J(W)
2 W2F(F)-1(V))

= lim J(W)
WS ()W)

=(f). (o f) I,
50 (fD).(f1)* = (f2).(vof1)* and therefore,
D (f))* = D7, frv".
Recalling the definition of %" as (v x %), %, we observe that
A X U = (v x 17).U.
Using the projection formula and Equations (6.5)-(6.9), we have that, for any J € Jaca()_( 0)s
Py 2VFPLT
=5 (D, (U @ £77) @Dy, (/1) @ Dy, (UCH) )
=Dy, (U ® f;‘])_1 Q VD, (fi) @ VD s, (U)
=D (A x ) (U @ f1V) )_1 Dy (A x9)*(f1) ® Dy (A x P)y*UC)
2D, (A X WY U @ (F1)T) " @Dy ((F)'D) ® Dy (A X Y U
2D (X 17 A (FDT) ® Dy ((F)D) @Dy (v X 157). %)
2D (X 15 (A ® Tv'1)) " ® Dy (F)) @Dy (v X 15), %)
=22: (U fiv' N @ D7, (F1v')) D7, (W)
=P g
=Py
This implies that ¢t = 9, thus completing the proof.
We can now study the image of v, (£%m) under Equation (6.4).
Proposition 6.3. One has the isomorphism
(v, (PH)) = p*H(FH"),

and furthermore, v*®(ZX") is a complex supported on degree g given by 19*6(9&”).

(6.8)

(6.9)
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Proof. Let us also consider the following maps:

J aca()? o) X acﬁ(yl,)

! ’
1 ™

J 306()? ) J ac‘s(yv),
and observe that

= 0¥ X 15¢),

L] 71';
I _ = _ N
o ) =To(lg X D),

* m0(¥ X 1j,) = o}, and

* To(ljg X D) = Do),

Recalling Lemma 6.2, that ¥ is an injection and that ¥ is flat by Lemma 3.8, one has the following,

OO (5,(FEM) =R, (7] 7,(FE) @ PO

=R, . (RO X 140, (1) (2B @ € )

SR RO X Lgo), (7)) (B @ (5 X 1450)" € )

Jac

SR, RO X Lgo), (7)) (B @ (17 % 9)' P )

ER71"2,>k <(7T1)*(EZ’®”) ® (1= X 79)*93)

Jac

>Ry (L X ) LI ® (17 X 9)' P)

Tac Jac
>R7, (17 X D) (FH(ZE) @ P)
20" R, (FH(LE) @ P)
xp*P(PEN),

Finally, recalling that the usual Fourier—-Mukai transform on J acO(X )xJ ac®/ "(X) sends the line bundle & to the (complex

supported on degree g given by) sky-scraper sheaf O, , we have that oCar(y, 81 is (the complex supported on degree g
given by)

P*O(LE) = 96 gm0,
and the proof is complete. Cl

Recalling Proposition 5.7, we arrive to the main result of the section, which shows that our (BBB)-brane Car(¥) and
our (BAA)-brane Uni(%) are related under the Fourier-Mukai integral functor ®©".

Corollary 6.4. For every v € V"4, the support of the image under ®° of the (BBB)-brane Car(Z) restricted to a Hitchin
fiber h=1(v), is the support of our (BAA)-brane Uni(%) restricted to the open subset of the (dual) Hitchin fiber given by the
locus of invertible sheaves,

supp (@< (¥,(ZE"))) = Uni(£) n Jac®(X,).
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Remark 6.5. Corollary 6.4 points at a duality between Car(Z) and Uni(Z). The piece of work [24] has provided evidence
for this fact via a Fourier-Mukai transform. Indeed, when X is an unramified cover of a smooth curve Y, there exist
submanifolds of Car(%) and (unions of) Uni(%) covering two Fourier-Mukai dual branes on the moduli space of Higgs
bundleson Y.

7 | PARABOLIC SUBGROUPS AND BRANES ON THE SINGULAR LOCUS

Cartan branes are the simplest example of branes supported on the singular locus M,Sling of the moduli space of Higgs

bundles. In this section, we first study the other hyperholomorphic subvarieties covering the singular locus, and, in second
place, we construct Lagrangian subvarieties paired to them.

7.1 | Levisubgroups and the singular locus

Consider the n-tuple of positive integers

o m m
r=(r, ey, e rs T T)

where 0 < r; < --- <rgandset |r| = 2221 mery and my = Z;zl m,. Any maximal rank reductive subgroup of GL(n, C)
is conjugate to

L7 := GL(ry, C)x ™ xXGL(ry,C) X --- X GL(rg, C)x s XGL(ry, C),

where |r| = n. Denote by My C M,, the image of the moduli space M _ of Lz-Higgs bundles. Note that M7 is the image of
the injective morphism,

¢y @ Sym™(M,,) X ...--- X Sym"™ (M, ) — M,,.

.....

The same arguments as in the case of Cartan subgroups show that this is a complex subscheme in all three complex
structures of M,,.

Proposition 7.2. Fix r with |r| = n, and consider Mz C M,,. This subvariety is complex in all three complex structures
I', Ty, I3, and therefore hyperholomorphic.

The union of these subvarieties covers the singular locus of the moduli space of Higgs bundles.

Proposition 7.3 [60], Section 11. The singular locus is the locus of strictly polystable bundles,

M= | My

[r|=n
Denote

Hy :=Sym™(H, )X --- x Sym™(H, )
and, relating the invariant polynomials of L with those of GL(n, C), construct an injective morphism
H; e Hn-

Note that the image h(Mj5) under the Hitchin map of M5 coincides with the image of Hy under this morphism. Write H;™
for the locus of smooth spectral curves in the Hitchin base and set

Vi = Symml(Hfin) X oo X Symm‘(Hﬁ_fn).
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Every point B € V5 is of the form g = (8',..., ), being B¢ € Sym™ (H,,) given by B’ = (bf,...,b},, )e with bf =
(bf,,...,b’ )and bf} € H(X,K).
Denote by A, the big diagonal of Sym'(H,) and set

VI L= (Sym " \ Ay, ) X o x (Sym™ (I \ A, )

Proceeding as in Lemmas 3.1 and 3.5, one can prove that, forevery g € V;ed, the corresponding spectral curve X g isreduced

with m; irreducible components X pls - X pL 5 eme X (AP ,Xps , which are in turn spectral curves for bf € H,,. Observe
1 my

that the corresponding r;-to-1 spectral covers ﬂf : X ¢ — X coincide with the restriction of 7 : X g — X to each of the
irreducible components, so that

— A—
XM% Xﬂ
l,,

=
X

commutes. We consider the nodal locus V;‘Od C V7, consisting of spectral curves with smooth irreducible components
intersecting only in nodal points. Note that V;"d is dense within V7 and the latter is dense in Hy.

’ J— J—
Lemma 7.4. Let 3 € V;. Then Dflff =X,¢ N X, ¢ is a divisor linearly equivalent to K'i"?, thus of length 2r;ry (g — 1).
’ i il

Moreover, if g€ V?Od, then the divisor of singularities of X g has simple points, and is given by the union D =

et T = - — —
U6,<f,’i<i,Di,i, , and the normalization is vg : Xp =Xp U LIXbrlnl L WX ps Lo U Xy — X

Proof. To see the first statement, deform the plane curve X p; to A" = 0. Then, the intersection with X b, is the vanishing
locus of a section of 7*K"# along X with multiplicity r;. The second and third statements are obvious. O

The following proposition is proved as Proposition 4.4.

Proposition 7.5. Let € V;‘Od, and let §; = (ri2 —71;)(g —1). Then
1 B) N M; = ﬁ(]aca()?ﬁ)),

where & = (8;,™,6,,...,8,,™,8,).

7.2 | Parabolic subgroups and complex Lagrangian subvarieties

Let Py be the parabolic subgroup whose Levi subgroup is Ly. Recall that the corresponding unipotent radical is Uy =
[P, P7], and one has the identification Pz = Ly X U;. In this section, we construct Lagrangian subvarieties associated
with the choice of the parabolic subgroup of the form P;.

Denote the locus of those Higgs bundles reducing its structure group to P; by

Par; = {(E,go) eM,

3o € HY(X,E/P;),
¢ € H'X,E,(p) ® K). |

Proceeding as in Proposition 3.2, one can prove that Par; coincides with the preimage of Hy under the Hitchin map.
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Proposition 7.6. One has the following,
Mn Xy H; = Par;.

For ¥ = (r,™,rq, ..., /s, 15, 75) fixed, we say that J is an ordering of 7 if it is an ordering of the positive integers
{ri, "y, ., g, 5,1} Let us denote by Ord; the set of orderings of 7. Given 8 € Vi one can consider an ordering

Jpg = ()_( Los X m> of the irreducible components of X > where the jth element is the irreducible component indexed

t; — —
by bl.j’. Accordingly with J; denote by 7; the restriction to the irreducible component X ; of the projection 7 : Xz — X

— rj:l
and abbreviate by r; := re, the degree of the covering of X associated with X ; 5 X. We say that the ordering J respects

J if we obtain J out of Jz by setting at the jth position, the rank r; of the corresponding irreducible component X j-
In order to state the equivalent to Proposition 3.7 some extra care is needed, as the fact that the integers r; are different,
breaks the symmetry we have in the case of Borel groups, so that orderings of the indices need to be taken into account.

Proposition 7.7. Let § €V; be associated with a spectral curve X g has m =m;z irreducible components
)_(b},...,)_(bl ,...,)_(bi,...,)_(bs . Let (E,p) be a Higgs bundle, whose spectral data consist of a line bundle L over )_(5.
my ms

For any ordering of r, J € Ordy, and any ordering Jz of the irreducible components of X p respecting J, one can choose
canonically a filtration

(Efﬁ)- : O g (El’ @1) g cee 700 g (Em7 ¢m) = (Er ¢)1
such that

—R/
Ej, )/ (Ej_1,9j-1) = (”j,*Ll)_(j ®K V,9i/pj-1)

where R§ =y ksja1 TkTj depends only onJ and ¢;/¢;_, is determined by X j as explained in Equation (2.7). Note that in the

expression of R; ri may be equal to ;.
Given a line bundle of zero degree & € . ac’(X) and a point x,, we define for every r,
=L Q O(xy) VD),

Recall from Equation (2.9) the description of the Hitchin section of i : M, — H, associated with a line bundle of degree
(r —1)(g — 1) over X. Observe that one has

Iy tHy > M,.
Foragiven & € J ac’(X), we define the subvariety of Par;
Jo € H'(X,E/P;), andJ € Ord; :
Uni~(%) :=4(E, ) € Par; | ¢ € H'X, E;(pp) ® K); ) (7.1)

J

R _
Ee.9)/Ur =2y (B)@K M H- Mg (B)®Kn.
Using Proposition 7.7, we can study the spectral data of the Higgs bundles contained in Uniz(<Z).
Proposition 7.8. One has the following,

1. The restriction of Uniz(<Z) to V;Od is surjective.
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2. LetB e V;‘Od, we have that

A~ A~

Unip(£)nh1(B) nJac(Xp) = 9N, , ", Ly s L0, 10, 2.

N

We are now in a position to prove that Uni;(&) is Lagrangian, hence a suitable choice for the support of a (BAA)-brane.
Theorem 7.9. The subscheme Uni+(Z) is Lagrangian.

Proof. It is enough to prove that the open subset Uniz(£)"° given by the restriction of Uniz(Z¥) to V?Od, is Lagrangian.

Fixg € V;"d. By Proposition 7.8 (2) the intersection of Unix(£) N h~'(8) with Jac(X ) is non-empty, so there are Higgs
bundles (E, ¢) which have a line bundle as spectral data. Those (E, ¢) are stable hence are smooth points in Uniz(Z).
With all this, we prove isotropicity as we did in Proposition 5.3.

By Lemmas 7.4 and Lemma 3.8, there is an exact sequence

0 — (C)F 5+ — Jac(X}) N Jac(X,) — 0
where 6z = ), <i<j<s 2r;rj(g — 1). It then follows by Proposition 7.8 (2) that
dim Unix(2) n h™'(8) = dimJac(X) = 67 — s + 1.
By Proposition 7.8 (1), one has that
v;wd C h(Unix(2)),

and recall that V;‘Od is dense in Hy, so they both have the same dimension. Since there are smooth points in Uniz(&), it
follows that the dimension is

dimUni’ (%) = 6 — s+ 1+dimH; = 6; = s+ 1+ 3. (rX(g = 1) +1)
i

=n*(g-1D+1,
which is half of the dimension of M,,. |

Remark 7.10. Propositions 7.5 and 7.8 indicate that a suitable choice of a hyperholomorphic bundle on M5 and a flat
bundle on Uni;(&£) would produce a pair of dual (BBB) and (BAA) branes. This would happen similarly to the case of
Borel subgroups (i.e.,7 = (1, ..., 1)) in Section 6. The construction involves downward flows to very stable points of higher
components of the nilpotent cone [30]. We hope to get back to this in future work.

Now, it is also possible to construct more general unitary Lagragian submanifolds, even in the absence of Hitchin sec-
tions. The key is to use very stable bundles to produce Lagrangian multisections of the Hitchin map. Given a vector bundle
E we say, after Drinfeld [21, 44], that E is very stable if it has no non-zero nilpotent Higgs fields. This implies that E is sta-
ble [44, Proposition 3.5] (provided g > 2). Furthermore, very stable bundles are dense within the moduli space of vector
bundles [44, Proposition 3.5]. Gathering the results of Pauly and the second author (see [54, Theorem 1.1 and Corollary
1.2]) with the remark [24, Corollary 7.3], one gets

Theorem 7.11. Let E be a stable bundle. Then, E isvery stable if and only if the Lagrangian subvariety given by the embedding

H(X,End(E)®@ K) — M,
¢ —  (E,¢),
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provides a Lagrangian multisection of the Hitchin fibration (i.e., the restriction of the Hitchin fibration to H°(X, End(E) ®
K) & M, is finite and surjective).

Set m = ms. Given an ordering J € Ord; consider an m-tuple of very stable vector bundles over X, E = (Ey, ..., E,,),
whose ith element has rk E; = r; given by the ith position of J. Denote deg E; = e¢; and

fl=e+@7—r)g-1)+2R/(g—1),

where Rl.] = Zlm. +11jiTj, are defined as in Proposition 7.7. From now on, we shall assume that the choice of J and Eis
done under the following numerical condition on the degrees e;.

Assumption 7.12. Let e = (e, ..., e,,) be an m-tuple of integers and pick J € Ord;. Suppose that, for all subset I C
{1, ..., m}, there are inequalities

DI G R (2 (72)
iel

where r; = Y and when I = {1, ..., m} one has the equality

ier Vi
Y fl=m*-n)g-1.
i=1

Given an m-tuple of very stable bundles E whose degrees e satisfy Assumption 7.12, we define the following subvariety
of Pary,

3o € H(X,E/P;) :
Unix(E) :=3(E,9) | ¢ € H'(X,E,(p7) ® K); +. (7.3)
E,/Ur :=E;_= @, E,.

In what follows, we prove that UniF(E) is a Lagrangian submanifold. As in the case of Uni (&), this is proven through
the study the associated spectral data.
Consider restriction of the Hitchin map h to Uniz(E). After Proposition 7.6, one has that the image is contained in Hy,

h : Uniz(E) — Hj.
Before we can give the analogous to Proposition 5.7, we need an intermediate result.

Proposition 7.13. Let § € V™. Assume that E satisfies Assumption 7.12 and denote by S; p the finite set of Higgs bundles

over 3 admitting E; as underlying vector bundle. Let §; g the associated set of spectral data over X p associated with each of
the Higgs bundles in S; g. For each J € Ordy, pick

52)%[3 = (£, @K, .., %, @ mLKRm), (7.4)

where &; € S; g. Let us denote by Sé the set of all tuples of the form (7.4).
Assume that E satisfies Assumption 7.12 i). Let b € H?Od, and let Ord, denote the set of orderings of {1, ..., s}. For each

J € Ord, let %’ beas in Equation (7.4). Then, Uni;(E) Nnh='(b)n Jacg(fﬁ) is either empty or

uniz® n k)l X = ) 9L )

pJ J
EZEﬁ es 5
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where we identify Jac? (X ) with an open subset of h~'(b) and define
9 @ Jac’ (X)) — Jacd(X),)
to be the pullback map.

Proof. After checking that Equation (7.2) ensures the stability of the points of Uniz(E) n h='(b), the proof follows as in
Proposition 5.7. O

Continuing the parallelism with Uni(%), we next prove Lagrangianity of the submanifold Uni(E).
Theorem 7.14. Under Assumption 7.12, the subscheme Uni=(E) is Lagrangian.
Proof. The proof is analogous to that of Theorem 7.9. O

Remark 7.15. For the sake of clarity, we have chosen to work with the moduli space of degree 0 Higgs bundles. Note

however that the subvarieties M and Uni’ make sense in a larger context. Indeed, consider the moduli space of rank n,
degree d Higgs bundles My (n, d) with (n,d) # 1. Then, M (n, d)*"& # J, and so there will exist partitions  of n for which
M; # §J. Note that in that case the (semi)stability condition for torsion-free sheaves should then be modified accordingly.
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