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Abstract
Isogeny‐based cryptography is a promising approach for post‐quantum cryptography.
The best‐known protocol following that approach is the supersingular isogeny Diffie–
Hellman protocol (SIDH); this protocol was turned into the CCA‐secure key encapsu-
lation mechanism SIKE, which was submitted to and remains in the third round of
NIST's post‐quantum standardisation process as an ‘alternate’ candidate. Isogeny‐based
cryptography generally relies on the conjectured hardness of computing an isogeny be-
tween two isogenous elliptic curves, and most cryptanalytic work referenced on SIKE's
webpage exclusively focusses on that problem. Interestingly, the hardness of this problem
is sufficient for neither SIDH nor SIKE. In particular, these protocols reveal additional
information on the secret isogeny, in the form of images of specific torsion points
through the isogeny. This paper surveys existing cryptanalysis approaches exploiting this
often called ‘torsion point information’, summarises their current impact on SIKE and
related algorithms, and suggests some research directions that might lead to further
impact.

1 | INTRODUCTION

Isogeny‐based cryptography is a promising candidate for
post‐quantum cryptography. It originates from Couveignes's
seminal work [1] where he introduced the notion of hard ho-
mogeneous spaces and instantiatied it with ordinary elliptic
curves (this schemewas independently discovered byRostovtsev
and Stolbunov [2], and thus it is referred to as the CRS scheme),
and Charles, Goren and Lauter's hash function [3] (CGL) based
on isogenies of supersingular elliptic curves. Jao and de Feo
introduced SIDH [4] in 2011, and the field has blossomed in
recent years, for example, with the introduction of CSIDH [5]
(the only post‐quantum scheme which provides non‐interactive
key exchange), SQISign and many more isogeny‐based
schemes. SIKE [6], which is a key encapsulation mechanism
derived fromSIDH, is currently a third round alternate candidate
in NIST's post‐quantum standardisation project.

Most isogeny‐based protocols today are based on the
hardness of computing isogenies between supersingular elliptic

curves. However, only CGL hash function [3] and the GPS
signature scheme [7] rely solely on this ‘pure’ isogeny problem.
In SIDH protocol, parties send over torsion point images,
which motivate the study of the following problem:

Problem 1.1 (Supersingular Isogeny with Torsion (SSI‐T)) For
a prime p and smooth coprime integers A and B, given two
supersingular elliptic curves E0=Fp2 and E=Fp2 connected by an
unknown degree‐A isogeny ϕ: E0 → E and given the restriction
of ϕ to the B‐torsion of E0, compute ϕ.

A more specific version of the SSI‐T problem is called the
CSSI problem in Ref. [4]. Computing isogenies between
supersingular elliptic curves is a natural algorithmic question,
which has been studied for a long time, but the SSI‐T problem
is specific to SIDH and its variants. It is natural to wonder how
the SSI‐T problem relates to the pure isogeny problem. The
aim of this survey paper is to give a summary of results, which
exploit the extra information in various ways. Our goal is to
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explain these techniques, assess their impact and warn de-
signers of future protocols to take these results into account.
The current state of the art is that SIKE is not affected by
these attacks.

The structure of the paper is as follows. In Section 2, we
recall basic mathematical results on supersingular elliptic
curves, quaternion algebras and the SIDH protocol. In
Section 3, we discuss active attacks on SIDH, namely the
GPST attack [8] and its extensions. In Section 4, we describe
how the endomorphism ring computation problem relates to
the security of SIDH and the SSI‐T problem in general. In
Section 5, we discuss passive torsion‐point attacks originating
from Ref. [9] and significantly improved in Ref. [10]. In
Section 6, we discuss the quantum hidden‐shift attack from
Ref. [11]. Finally, in Section 7, we discuss open problems which
could shape the future of torsion‐point attacks and their
impact on the field of isogeny‐based cryptography.

2 | SUPERSINGULAR ISOGENY
DIFFIE–HELLMAN AND ITS VARIANTS

We refer toRef. [12, 13] for general background on elliptic curves
and isogeny‐based cryptography. The following high‐level
description of SIDH [4] and some of its variants relevant to
Problem 1.1 are taken nearly verbatim from [10, Section 2.1].

Recall that E [N] denotes the N‐torsion subgroup of an
elliptic curve E and [m] denotes scalar multiplication by m.
The public parameters of the system are two smooth coprime
numbers A and B, a prime p of the form p = ABf − 1, where f
is a small cofactor, and a supersingular elliptic curve E0 defined
over p2 together with points PA, QA, PB, QB ∈ E0 such that E0

[A] = 〈PA, QA〉 and E0 [B] = 〈PB, QB〉.
The protocol then proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0 [A] as
GA = 〈PA + [xA]QA〉 and Bob chooses a random cyclic
subgroup of E0 [B] as GB = 〈PB + [xB]QB〉.

2. Alice computes the isogeny ϕA : E0 → E0/〈GA〉 =: EA and
Bob computes the isogeny ϕB : E0 → E0/〈GB〉 =: EB.

3. Alice sends the curve EA and the two points ϕA (PB), ϕA
(QB) to Bob. Similarly, Bob sends ðEB;ϕBðPAÞ;ϕBðQAÞÞ to
Alice.

4. Alice and Bob use the given torsion points to obtain the
shared secret curve E0/〈GA, GB〉. To do so, Alice computes
ϕB (GA) = ϕB(PA) + [xA]ϕB (QA) and uses the fact that
E0/〈GA, GB〉 ≅ EB/〈ϕB (GA)〉. Bob proceeds analogously.

The SIKE proposal [6] suggests various choices of (p, A,
B) depending on the targeted security level: All parameter sets
use powers of two and three for A and B, respectively, with
A ≈ B and f = 1. For example, the smallest parameter set
suggested in Ref. [6] uses p = 2216 ⋅ 3137 − 1. Other con-
structions belonging to the SIDH ‘family tree’ of protocols use
different types of parameters [14–16].

We may assume knowledge of End (E0): The only known
way to construct supersingular elliptic curves is by reduction

of elliptic curves with complex multiplication by a small
discriminant (which implies small‐degree endomorphisms: see
Ref. [17, 18]), or by isogeny walks starting from such curves
(where knowledge of the path reveals the endomorphism
ring, thus requiring trusted setup). A common choice when
p ≡ 3 (mod 4) is j (E0) = 1728 or a small‐degree isogeny
neighbour of that curve [6]. Several variants of SIDH exist in
the literature.

In Ref. [14], the authors propose an n‐party key agreement.
The idea is to use primes of the form p¼ f ∏n

i¼1 ℓei
i − 1

where ℓi is the ith prime number, the ith party's secret isogeny
has degree ℓei

i , the ith participant provides the images of a
basis of the ∏n

j¼1 ℓej
j =ℓei

i torsion, and f is a small cofactor.
They choose the starting curve to be of j invariant 1728, and ei
in such a way that all the ℓei

i are of roughly the same size. This
is an example of an ‘SIDH‐like’ protocol; for this protocol to
be secure, Problem 1.1 must be hard when A¼ ℓe1

1 and
B¼ f ∏n

i¼2 ℓei
i .

Another example of an SIDH‐like scheme is B‐SIDH [15].
Here, the prime has the property that p2 − 1 is smooth (as
opposed to just p − 1 being smooth) and A ≈ B ≈ p. It would
seem that choosing parameters this way one has to work over
Fp4 but in fact the scheme simultaneously works with the curve
and its quadratic twist (i.e. a curve which is not isomorphic to
the original curve over Fp2 but has the same j invariant) and
avoids the use of extension fields. The main advantage of
B‐SIDH is that the base‐field primes used can be considerably
smaller than the primes used in SIDH.

3 | ACTIVE ATTACKS

3.1 | GPST and variants

Since SIDH is a key exchange analogous to classical Diffie–
Hellman, it is a natural question whether parties could use
static keys. In 2016 Galbraith, Petit, Shani and Ti [8] proposed
an active attack on SIDH if one party has a static key. The main
idea of the attack is to send over maliciously generated torsion
points and check whether the key exchange was successful or
not. After every key exchange the adversary will learn one
more bit from the secret key.

In order to describe the attack we define the following
oracle, which abstracts the method described above.

Definition 3.1 Let α be a secret integer. Let
�
E;E1;E01; P;Q

�

be a tuple such that E;E1;E01 are supersingular elliptic curves
defined over Fp2 and P, Q generate E1[A]. Then the oracle
returns ‘true’ if E01 ≅ E1=〈P þ αQ〉 and returns ‘false’
otherwise.

The motivation for this oracle comes from the way the
SIDH key exchange is computed. Alice receives ϕB(PA) and ϕB
(QA) and computes the curve

EB=〈ϕBðPAÞ þ αϕBðQAÞ〉:

2 - KUTAS AND PETIT
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The key exchange is successful if both parties compute the
same curve (up to isomorphism). For simplicity, we suppose
that A = 2n but the attack generalises to arbitrary smooth
degree isogeny.

Remark 3.2 There is a pretty simple attack if one is allowed to
send points of order smaller than A. Namely we do a honest
key exchange where we send over ϕB(PA), ϕB(QA), then in the
kth step we send over ϕB(2

k−1PA), ϕB(2
k−1QA). This will

essentially reveal the isogeny path from EB to EAB, from which
the secret is easily deduced. However, such an attack is easily
detectable as the order of points can be checked by using
pairings.

More generally, the Weil pairing of the two malicious
points sent in place of ϕB(PA) and ϕB (QA) must have the same
value as the Weil pairing of ϕB(PA) and ϕB (QA) themselves,
because this value can be determined from deg ϕB and the
pairing of PA and QA only. Unfortunately, there is no way to
distinguish the malicious points sent by the attacker from the
actual images of PA and QA under ϕB, as long as they have the
right order and pairing value.

Let PA þ αQA be the secret kernel generator of Alice. The
first step of the attack is a genuine key exchange: Bob chooses
an isogeny ϕB : E → EB with kernel PB þ βQB, sends over
ϕB(PA), ϕB (QA) and computes the common curve
E/〈PA þ αQA, PB þ βQB〉. Let R = ϕB(PA) and S = ϕB (QA).
Our first goal is to determine the least significant bit of α. The
trick is to send over EB and points R, S þ 2n−1R. Then, Alice
computes EB/〈R þ α(S þ 2n−1R)〉, which is isomorphic to

– EB/〈R þ αS〉 if and only if α is even.
– EB/〈R þ αS þ 2n−1R〉 if and only if α is odd.

LetEAB = EB/〈Rþ αS〉. Now sending (E, EB,R, Sþ 2n−1R,
EAB) to the oracle determines the least significant bit of α: if the
oracle returns true, then α is even, otherwise α is odd.

In order to compute the remaining bits of α, we write α in
the form

Pn−1
i¼0 αi2i. Let sk denote the partial sum

sk ¼
Pk−1

i¼0 αi2i. Suppose now that we have already computed
sk and our goal is to compute αk. Then we send over the
following points:

�
1 − sk2n−k−1

�
R; S þ 2n−k−1R:

Then Alice computes EB/〈(1 − 2n−k−1)R + αS + 2n−k−1R〉,
which is isomorphic to EAB if αk is even and isomorphic to
EB/〈R + αS + 2n−1R〉 if α is odd. This implies that we can
compute αk from sk using one oracle call. It is clear that after n
calls to the oracle we retrieve the static secret key α.

3.1.1 | Countermeasures

There are various countermeasures against the GPST attack.
The most efficient and standard way is to use the Fujisaki–

Okamoto transform. This is how the IND‐CCA2‐secure
scheme SIKE [6] is obtained. However, for some applica-
tions this is not desirable, namely when both parties' keys
should be static.

In 2017, Azarderaksh et al. [19] introduced a variant of
SIDH called k‐SIDH. The main idea is the following: Alice and
Bob choose k different secret isogenies and they compute k2

SIDH key‐exchanges (as each pair of secrets corresponds to
one key exchange). Finally, they hash the k2 different j‐in-
variants to obtain a shared secret. The efficiency of k‐SIDH is
determined by k. Public key sizes grow linearly in k and the
number of SIDH key exchanges is a quadratic function of k. In
the original paper in Ref. [19] the authors gave a brief security
analysis and suggested to use k = 60. Such a large k makes the
scheme very impractical, so it is important to have a clearer
security analysis of k‐SIDH. In particular, is 2‐SIDH secure? In
Ref. [20], Dobson et al. demonstrated an attack against 2‐
SIDH, which generalises to larger k. The complexity of the
attack is exponential in k, but it breaks the scheme in poly-
nomial time for small k. They suggest that k = 46 is already
potentially a secure choice. Their attack in the k = 2 case is far
from trivial as the GPST attack does not generalise in a
straightforward manner (it gives an exponential complexity
even in the k = 2 case). Their key idea is to compute additional
information at each step. In GPST, one only has to keep track
of the computed bits of α. In the 2‐SIDH attack on the other
hand, one has to compute each step in the isogeny graph plus
preimages of certain points. The bottleneck of the algorithm is
the computation of these various preimages as they require a
lot of oracle calls.

Since k‐SIDH is quite impractical, it is natural to attempt
to speed it up. Jao and Urbanik [21] proposed a way of
lowering the number of key exchanges by using automor-
phisms of the starting curves. In this way, each secret cor-
responds to three curves, which lowers the size of the public
keys and the communication cost. However, the attack from
Ref. [20] can be extended to the Jao–Urbanik scheme [22] in
a way that actually exploits the relationship between the
three isomorphic curves. If you compare state‐of‐the‐art
attacks on both schemes, then the analysis in Ref. [22]
suggests that k‐SIDH is actually more efficient (this may
change in the future if an improved attack on k‐SIDH
cannot be adapted to the Jao–Urbanik scheme), but the Jao–
Urbanik scheme has smaller keysizes. Jao and Urbanik also
suggest to switch from 2‐isogenies to 11 or 13‐isogenies as
it increases the attack complexity more than it increases
computational costs.

It is still an open problem whether there exists some
variant of k‐SIDH, which is efficient and avoids these known
attacks.

3.2 | Another adaptive attack

Another adaptive attack against SIDH (different in nature from
the GPST attack) is given in Ref. [23]. The attack works in two
steps.

KUTAS AND PETIT - 3
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The second step of the attack is non adaptive; the attacker
simply applies (a small modification of) the shifted endomor-
phism attacks of Section 5. These attacks require large torsion
point information, which is not normally available in an SIDH
instance; the first step of the attack will collect this information
through adaptive queries. One can also note that the shifted
endomorphism attacks of Section 5 typically assume knowl-
edge of the exact images of points through the secret isogeny,
but Ref. [24] showed that knowing these images up to a
common scalar multiple is enough.

In this first step, the attacker starts with torsion point in-
formation available in a normal execution of the SIDH pro-
tocol, and they proceed to harvest additional information. To
achieve this, they (adaptively) use isogenies of degrees larger
than prescribed by the protocol and observe (using the same
‘oracle’ as in GPST attack) how the shared key computed by
the other party is affected by the changes.

As an example, to increase the order of torsion point infor-
mation available by a smallmultipleℓ, the attacker first computes
a public key as in a normal execution of the SIDH protocol.
Instead of sending that public key (made of a curve and torsion
point information) to the other (static) party, the attacker then
sends a neighbour of the curve and correspondingly adapted
points to the other party. By observing how the shared key is
affected by these changes, the attacker deduces the image of a
cyclic subgroup of order Bℓ through the static secret isogeny.
Repeating this for three distinct subgroups gives the images of all
points of order Bℓ through the secret isogeny up to a common
scalar multiple. The same procedure can then be repeated with
another (possibly equal) small prime ℓ0, until enough torsion
point information is available to run the second stepof the attack.

3.3 | Fault attacks

In GPST attack and its variants, one party purposely produces
erroneous torsion points and recovers information on the se-
cret key from (changes in) the shared curve EAB. When fault
attacks are feasible, an alternative approach is to force the other
party to make faulty computations.

In SIDH protocol, isogenies are computed in a sequential
way, as the composition of several low degree isogenies. In Ref.
[25], a loop‐abort fault attack is described where one party can
force the other one to stop that computation after an arbitrary
number of steps and return the current curve rather than the
final one. This provides an oracle similar to the one used in the
GPST attack, and the key can be recovered similarly.

In Ref. [26], another fault model is considered where some
register value is replaced by a random value during computa-
tion. If this happens to a register containing part of the x‐
coordinate of PB, then the resulting x coordinate is still a point
on the curve with a probability roughly 1/2 but is likely to have
an order that is not coprime with deg ϕA. As a result its image
will reveal part of the isogeny; more precisely, multiplying the
image by the cofactor (its order divided by the gcd between its
order and deg ϕA) produces a point in the kernel of its dual.
We refer to Ref. [26] for details.

Recently, there have been further advances in side‐channel
attacks (and protection) against implementations of SIDH. The
reader is referred to Ref. [27–30] for more information.

4 | REDUCTION TO THE
ENDOMORPHISM RING COMPUTATION
PROBLEM

Computing the endomorphism ring of a supersingular elliptic
curve is a classical problem in computational number theory.
Given an elliptic curve E defined over a finite field of char-
acteristic p, the problem is to find End(E). The first algorithm
to solve this is described in Kohel's thesis [31] and was later
improved by Delfs–Galbraith [32] to a running time of
~O
�
p1=2
�
. The most recent algorithm [33] is a slight variation

with essentially the same complexity O (log(p)2p1/2). The best
known quantum algorithm is due to Biasse, Jao and Sankar [34]
and has a running time of ~O

�
p1=4
�
.

It is natural to ask how finding isogenies between super-
singular elliptic curves relates to computing endomorphism
rings. The KLPT algorithm [35] implies that if one knows the
endomorphism rings of both curves, then one can compute an
isogeny between them. For cryptographic applications, a much
more natural question is the following. Let ϕ be a secret iso-
geny of degree d between E1 and E2. Find ϕ if the endo-
morphism rings of E1 and E2 are known.

Let us first recall some facts about isogenies between
supersingular elliptic curves. Let E1, E2 be supersingular elliptic
curves defined over Fp2 . Then, the set Hom (E1, E2) of iso-
genies between E1 and E2 has a very specific structure. First,
Hom (E1, E2) is a Z‐lattice as the integer linear combination of
isogenies from E1 to E2 is again an isogeny from E1 to E2.
Furthermore, let σ1 ∈ End (E1), σ2 ∈ End (E2) and ϕ ∈ Hom
(E1, E2). Then, ϕ ◦ σ1 ∈ Hom (E1, E2) and σ2 ◦ ϕ ∈ Hom
(E1, E2). In other words, Hom (E1, E2) is a left End (E2) and a
right End (E1)‐module. In particular, the next lemma shows
that Hom (E1, E2) is isomorphic to a left ideal of End (E2):

Lemma 4.1 [36, 42.2.7] Let Hom(E2, E1) denote the set of
isogenies from E2 to E1 and let O1 and O2 denote the endo-
morphism rings of E1 and E2, respectively. Let I be a con-
necting ideal of O1 and O2 and let ϕI denote the
corresponding isogeny. Then the map ϕ∗

I : HomðE1;E2Þ→ I ,
ψ ↦ ψ ◦ ϕI is an isomorphism of left O1‐modules.

One can also show that the rank of Hom (E1, E2) as a Z‐
lattice is 4. The KLPT algorithm also implies that if the
endomorphism rings of E1 and E2 are known, then one can
compute a Z‐basis of Hom (E1, E2), as it is isomorphic to a
connecting left ideal. Note that such a basis is given as ele-
ments of the quaternion algebra and not as rational maps as
their degree can be large and not smooth (thus writing down
the coefficients of the rational functions would take expo-
nential time in log p).

The first algorithm relating endomorphism ring computa-
tion and computing isogenies of a specific degree is from Ref.

4 - KUTAS AND PETIT
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[8]. The main observation is that in SIDH the secret isogeny
has degree approximately

ffiffiffipp . Heuristically, such an isogeny
should be, in general, the shortest isogeny between two
randomly selected curves, which gives the following attack.
LEt O1 and O2 be the endomorphism rings of E1 and E2,
respectively. Compute a connecting ideal I between O1 and O2

(this can be accomplished with an algorithm of Kirschmer and
Voight [37]). Then find the shortest element in I using the LLL
algorithm and then translate it to an isogeny between E1 and E2

(every step is done on the quaternion side except this last one).
Heuristically, this should be the secret isogeny one is looking
for. The authors demonstrate this with experiments in
MAGMA.

The algorithm implies that in SIDH if the endomorphism
ring of E and EA is known, then one can recover the secret
isogeny ϕA in polynomial time. However, in B‐SIDH, the
respective curves are no longer close (the secret isogeny has
degree roughly p); thus, the algorithm from Ref. [8] fails. It is a
natural ask whether one can extend the algorithm from Ref. [8]
to be applicable to B‐SIDH as well. In the context of B‐SIDH,
this question is also more important in the following sense.
Since the curves in SIDH are rather close, computing the se-
cret isogeny between them using a meet‐in‐the‐middle
approach is more efficient, then computing the endomor-
phism rings of both curves and applying the previous attack. In
other words, in the context of SIDH, this is purely a reduction
between algorithmic problems. For B‐SIDH, the situation is
different. Computing the endomorphism ring of the curves
involved is less expensive and then running a meet‐in‐the‐
middle attack (the gap is even larger on the quantum side, as
the cost of a meet‐in‐the‐middle quantum attack is O (p1/2) as
endomorphism ring computation runs in time O (p1/4)). Thus,
if one can find a polynomial‐time attack on B‐SIDH if both
curves' endomorphism ring is known; then one has an attack
on B‐SIDH that performs much faster than a meet‐in‐the‐
middle routine.

The main idea of Ref. [38] is that one can exploit the
torsion information provided to generalise the attack from Ref.
[8] to a wide variety of parameters. Note that the algorithm in
Ref. [8] did not use the torsion information at all; it solely relied
on the curves being close. We sketch the attack from Ref. [38].
Similar to Ref. [8], one computes an LLL‐reduced basis of a
connecting ideal I (in this setting, it is also advisable to
compute a smooth norm connecting ideal with KLPT as it
used later on), let these be ω1, ω2, ω3, ω4. Let the corre-
sponding isogenies be ϕ1, ϕ2, ϕ3, ϕ4. Then the secret isogeny
ϕ can be written as ϕ¼

P4
i¼1 xiϕi where the xi are integers.

Using the torsion information provided, one can determine xi
modulo B by solving a system of linear equations (we omit
several technical difficulties here for which the reader is
referred to Ref. [38]). Why is this information useful? The
reason is that an LLL‐reduced basis has the property that one
can bound the xi‐s using the smallest degree element in
Hom (E1, E2) and the degree of the secret isogeny. This way if
|xi| < B/2, then a modulo B solution can be uniquely lifted to
an integer solution. This way one can retrieve the secret iso-
geny whenever A=B < 16

ffiffiffipp . When looking at SIDH or

B‐SIDH as a key exchange, one can assume that B > A, so this
should apply to any reasonable instantiation of SIDH.

Interestingly, Wesolowski [39] has recently shown that one
can compute the secret isogeny in CSIDH in polynomial time
if the endomorphism ring of both curves is known. Previously,
only a subexponential reduction was given in Ref. [40].

It is still an open problem whether one can recover a secret
isogeny of degree d between curves with known endomor-
phism rings in general. Indeed, all previously described algo-
rithms use some extra information, namely closeness of the
curves, torsion‐point information or the curves are defined
over Fp.

5 | SHIFTED ENDOMORPHISM
ATTACKS

In this section, we discuss algorithms for the SSI‐T problem.
The central questions are the following:

– For which parameters A, B, p can one solve SSI‐T in
polynomial time?

– For which parameters A, B, p can we do better than generic
meet‐in‐the‐middle algorithms?

The first work in this area is Petit's algorithm [9], which
was first improved in Ref. [41] and then further improved in
Ref. [10].

5.1 | Petit's attack

The starting point is the following. Let ϕ: E1 → E2 be an
isogeny of degree A, and suppose we know the action of
ϕ on the B‐torsion. Let θ ∈ End (E1) (given by some
efficient representation). Then one knows how ϕ ◦ θ ◦ ϕ̂
acts on E2 [B]. Furthermore, this is also true for any τ of
the form ϕ ◦ θ ◦ ϕ̂þ ½d� for any integer d. Why is this
useful? The key idea of Ref. [9] is to choose θ in a way
that degðϕ ◦ θ ◦ ϕ̂þ ½d�Þ ¼ Be for some small e. Let
τ ¼ ϕ ◦ θ ◦ ϕ̂ þ ½d�. Then one can decompose τ as ψ ◦ η
where deg(ψ) = B and deg(η) = e. One knows ψ as the
action of τ is known on E2 [B], and η can be computed by
exhaustive search (or a meet‐in‐the‐middle algorithm if e is
composite). Finally, one can obtain kerðϕ̂Þ as the inter-
section ker (τ − [d]) ∩ E2 [A].

The key part of the attack is the appropriate choice of θ,
which requires knowledge of (at least part of) the endomor-
phism ring of E1. However, in many applications, E1 is the
special curve defined by the equation y2 = x3 + x for which the
structure of the endomorphism is known. Finding a suitable
endomorphism θ ∈ End (E1) is then equivalent to finding an
integer solution (a, b, c, d, e) with small e to the following
equation:

A2
�

pa2 þ pb2 þ c2
�
þ d2

¼ Be: ð1Þ

KUTAS AND PETIT - 5
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There is a natural strategy for solving this equation. First,
one solves it modulo A2 by choosing d and e appropriately.
Then, one checks whether Be − d2 is a square modulo p. If not,
then one chooses a different d and e. If it is, then one finds c
such that c2 ≡ Be − d2

A2 ðmod pÞ. Finally, one checks whether
Be − d2

A2 − c2

p is the sum of two squares. If yes, then one finds a, b
using Cornacchia's algorithm. If not, then one starts over with
a new d and e. It can be shown that heuristically, one does not
need to iterate too many times. This is a simple algorithm but it
fails for many parameter sets. The reason for this is that c2 is
usually of size O (p2) meaning that for many parameters even
though one does not get local obstructions, the number
Be − d2

A2 − c2

p is negative, hence never a sum of two squares. In Ref.
[9], it is shown that this does not happen when A > p and
B > A4 in which case one can solve SSI‐T in polynomial time.

5.2 | The dual isogeny and the Frobenius
attack

Follow‐up papers improve on Petit's original algorithm by
relaxing the condition on θ and relating the algorithm to
different equations. In Ref. [41], the authors use triangular
decompositions and certain endomorphisms with many ei-
genvalues to derive the following equation:

A2
�

pa2 þ pb2 þ c2
�
þ d2

¼ B2e: ð2Þ

In Ref. [10], the authors derive two new improvements: the
dual isogeny method and the Frobenius method. The dual
isogeny method also reduces to Equation (2) but uses a more
direct approach. Namely, if one can find θ such that

deg
�

ϕ ◦ θ ◦ ϕ̂þ ½d�
�
¼ B2e, then τ ¼ ϕ ◦ θ ◦ ϕ̂þ ½d� can be

decomposed as τ = ψ ◦ η ◦ ψ 0 where deg(ψ) = deg(ψ 0) = B and
deg(η) = e. The isogenies ψ and η can be computed in a similar
fashion as before. The isogeny ψ 0 can be computed by
essentially looking at τ(E2 [B]). Another way to understand this
approach is the following. Even though τ is not known a priori,
its action on E2 [B] is known. Thus, one can look at τ as a
2 � 2 matrix with entries from Z=BZ. One can derive ψ by
looking at the kernel of this matrix and one can compute ψ 0 by
looking at the image of this matrix.

One can solve Equation (2) with the same method as the
one presented for solving Equation (1). This provides a
polynomial‐time method whenever B > pA. However, heu-
ristics show that a solution should exist for a much wider
variety of parameters for example, when p ≈ AB and B > A4,
but finding such a solution is still an important open problem.
Why would an algorithm to compute these solutions be
interesting? In variations and applications of SIDH, one often
uses special primes in order to be able to carry out computa-
tions over small extension fields. In particular, there are two
classes of primes which are used: SIDH primes of the form
p = ABf − 1 where f is a small cofactor and B‐SIDH primes

where p2 − 1 = AB and A, B are smooth. For SIDH primes,
the previous approaches fail as in both approaches B > p. For
B‐SIDH primes, the dual isogeny approach already has some
impact: namely, when B > A2, then one can solve the SSI‐T
problem in polynomial time. This has no impact on the
actual scheme proposed in B‐SIDH [15] because there the
parameters are balanced.

The main idea of the Frobenius approach outlined in Ref.
[10] is the following. In the dual approach, η needed to have small
degree, as it was computed by a generic meet‐in‐the‐middle al-
gorithm. However, when the degree of η is a small multiple of p,
then it can also be computed by applying the Frobenius for the p
component and using exhaustive search (or meet‐in‐the‐middle)
for the rest. This results in an alternative equation:

A2
�

pa2 þ pb2 þ c2
�
þ d2

¼ B2pe: ð3Þ

One can solve this equation by first setting c = 0 and d = pd’
and dividing by p, leading to

A2
�

a2 þ b2
�
þ pd02 ¼ B2e: ð4Þ

Now the solving strategy is similar as before but one does not
have to solve modulo p this time, just modulo A2 and then
hope that B2e − pd02

A2 is a sum of two squares. If not, then one can
again iterate until a solution is found. This algorithm is
implemented and can be found at https://github.com/torsion‐
attacks‐SIDH/6party.

The main appeal of the Frobenius method is that it runs in
polynomial time whenever B > ffiffiffipp A2. In particular, this ap-
plies when p ≈ AB and B > A5. Note that it still does not apply
to SIKE as there A ≈ B. However, the choice of choosing
balanced parameters in SIKE is essentially only motivated by
having the same security level for Alice and Bob. In many
SIDH applications, the parameters are not balanced [42, 43]
and future protocols may arise using unbalanced parameters.

5.3 | Exponential‐time attacks

All the previously described attacks run in polynomial time.
However, it alsomakes sense to look at exponential‐time attacks,
which outperform generic meet‐in‐the‐middle algorithms. A
general framework for these types of attacks is the following.
One first guesses part of the secret isogeny and then one runs a
torsion‐point attack, possibly with a larger e. If the torsion‐point
attack fails, then one guesses a different starting isogeny. This
way one can obtain improvements for parameter sets, which are
less unbalanced. The state‐of‐the‐art in this regard is summar-
ised in Figure 1. Even though Figure 1 is quite comprehensive
we highlight the state of the art on SIDH‐like parameters:

– Assuming the starting curve has j‐invariant 1728, torsion‐
point attacks outperform classical meet‐in‐the‐middle at-
tacks whenever B > Að3þ ϵÞ for any ϵ > 0.

6 - KUTAS AND PETIT
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– Assuming the starting curve has j‐invariant 1728, torsion‐
point attacks outperform quantum meet‐in‐the‐middle at-
tacks whenever B > Að1þ ϵÞ for any ϵ > 0.

5.4 | Backdoor attacks

All these attacks assume that the starting curve is a special
curve, namely the curve with j‐invariant 1728 (the attack
extends naturally to starting curves close to this curve).
Starting from a random curve with unknown endomorphism
ring thwarts all these attacks. However, in certain scenarios, it
is not easy to detect that the starting curve was honestly
generated (e.g. by taking a random walk starting from the
curve y2 = x3 + x). Thus, a natural question is the following:
given A, B, p, can one maliciously construct a starting curve
for SIDH from which one can retrieve the secret key in
polynomial time? When B > A2, then the answer is yes. The
main idea is looking at Equation (2) from a different
perspective. In previous approaches, one was looking for a
specific θ on a specific starting curve. Instead, one can try to
look for the curve and the endomorphism together. This way,
one can look for θ in the entire quaternion algebra Bp,∞
instead of restricting to one maximal order. This way, we get
Equation (2), but a, b, c do not need to be integers, only
pa2 + pb2 + c2 has to be an integer as it is the norm of an
endomorphism (only integral elements of Bp,∞ arise as en-
domorphisms). We can solve the equation modulo A2, and
then one is left with the equation:

pa2 þ pb2 þ c2 ¼
B2e − d2

A2

Since we are now looking for rational solutions, we find a non‐
trivial zero of the homogeneous equation
pa2 þ pb2 þ c2 − B2e − d2

A2 z2. This has a zero if and only if
B2e − d2 is a quadratic residue modulo p, so again we have to
iterate a couple of times for this to occur. Then one can find a
solution using Simon's algorithm [44]. One has now found θ
but not the curve. The curves can be obtained by finding a
maximal order containing θ and translating it to a supersingular
elliptic curve whose endomorphism ring is isomorphic to that
order. In Ref. [10], the curves containing such a θ are called
(A, B)‐backdoor curves. The number of these curves is
exponential in log p.

The condition for the existence of such a curve is B > A2,
so in particular it is independent of p. The above polynomial
time attack still requires unbalanced SIDH parameters, but
non‐polynomial time generalisations can be faster than meet‐
in‐the‐middle algorithms for balanced SIDH parameters [10].
An application of this idea can be found in Ref. [24] where they
analyse the security of a recently proposed oblivious pseudo-
random function [42]. They show that in order to avoid
backdoor attacks (or failures of the security proof), it is
advisable to use a trusted party to generate a random starting
curve. Interestingly, there is also a constructive application of
backdoor curves as they can be used as a trapdoor mechanism.
In Ref. [45], the authors propose Séta, an isogeny‐based PKE,
which relies on the hardness of finding a certain quadratic
order (corresponding to the previous backdoor) in the endo-
morphism ring of the starting curve.

This seems to suggest that against all intuition it is prob-
ably safer to instantiate SIDH starting from y2 = x3 + x, than
from a random curve if there is no guarantee that the curve
was honestly generated. Note that for SIDH, one can actually
derive a random starting curve by multiparty computation
techniques but in many applications such an approach might
not be feasible.

Finally, all these methods are ineffective if one could hash
onto the supersingular isogeny graph, that is, generate a
random supersingular curve whose endomorphism ring is
unknown to everyone. The techniques of this section again
highlight the importance of the hashing problem.

6 | QUANTUM HIDDEN SHIFT ATTACK

In this section, we present a quantum subexponential algo-
rithm for the SSI‐T problem for certain parameter sets. One of
the main fundamental differences between SIDH and CSIDH
is that CSIDH is clearly based on a group action, namely the
class group of Z½

ffiffiffiffiffiffi−pp
� acts freely and transitively on super-

singular elliptic curves defined over Fp. It is well understood
how to compute the action of an ideal class of smooth norm
on a given curve E. Furthermore, since the class group is
commutative, the action provides a commutative group action,
which realises the Hard Homogeneous Space concept of
Couveignes [1]. In the SIDH setting, one does not have a
similar natural group action due to the non‐commutative

F I GURE 1 Performance of attacks from Ref. [10]. Here A ≈ pα and
B ≈ pβ. Parameters (α, β) above the red, orange and yellow curves are
parameters admitting a polynomial‐time attack, an improvement over the
best classical attacks, and an improvement over the best quantum attacks,
respectively. Parameters below the upper dashed line are those allowing
AB∣(p2 − 1) as in Ref. [15]. Parameters below the lower dashed line are
those allowing AB∣(p − 1) as in Ref. [6, 43]
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nature of the full endomorphism ring (quaternion maximal
orders have class groups, but they are non‐commutative). The
implications of this are twofold: on the one hand, this makes
SIDH less flexible (i.e. it is harder to derive further schemes
from the core idea); on the other hand, it possibly makes it
immune to Kuperberg's algorithm.

There is however a different framework that applies to
general supersingular elliptic curves as well. Let f : I → O be an
injective one‐way function and let G be a finite abelian group
acting freely and transitively on I. Furthermore, suppose that if
f(i) is known (but i is not necessarily known), then one can
compute f (g * i). We call such an oracle a malleability oracle.
In Ref. [11], it is shown that if one has access to a malleability
oracle, then one can invert f in quantum subexponential time.
It is also shown that this framework applies to CSIDH and is
essentially the same attack as the one proposed by Childs, Jao
and Soukharev [46]. However, surprisingly one can apply this
framework to the SSI‐T problem as well.

Let E be a supersingular elliptic curve. Let I be the set of
cyclic subgroups of order A, and let O be the set of super-
singular elliptic curves at distance A from E. Then f : I → O is
defined by the mapping f (〈K〉) = E/〈K〉. Let θ be an endo-
morphism of E and let E/〈X〉 be a curve of distance A from E.
Then if the degree of θ is coprime to A, then E/〈θ(X )〉 is also
a curve of distance A from E. Let O = End(E). Then this idea
defines an action of (O/AO)* on the curves of distance A
from E. It can be shown that ðO=AOÞ∗ ≅ GL2ðZ=AZÞ. Since
θ and λθ where λ ∈ Z define the same action, it is actually more
natural to consider the action of PGL2ðZ=AZÞ on the set of
curves of distance A from E. There are several questions at this
point:

1. Is f injective?
2. Since PGL2ðZ=AZÞ is non‐commutative, how to choose

the acting group G?
3. How do you compute E/〈θ(X )〉 without knowing X?

The first two questions are technical problems that have an
easy solution. One can split I in a way so that for each subset f
is injective. In addition, one can restrict to an abelian subgroup
of PGL2ðZ=AZÞ to make the action free and transitive on
each of these subsets.

The answer to question 3 is more involved and this is the
only part where the attack uses torsion point images. Let
EX = E/〈X〉 and let ϕ : E → EX be a secret isogeny of degree
A. Suppose we know the action of ϕ on E [B]. Our goal is to
compute E/〈θ(X )〉 for an endomorphism θ. One has a
commutative diagram described in Figure 2. Instead of
focussing on the isogeny from E to E/〈θ(X )〉 we can go the
other way on the diagram. Namely, from E to EX and then
from EX to E/〈θ(X )〉. The second step can be computed if the
degree of θ divides B as we know the action of ϕ on the
B‐torsion. However, in general θ will not satisfy this property.
The way to go around this issue is the following. Since we are
working on O/AO we can choose a different representative of
the coset containing θ. This means that we can switch from θ
to any θ 0 which has the exact same action on the A‐torsion.

Now the goal is to find a θ 0 ∈ End(E ) such that θ 0 = θ + Aθ 00
where θ 00 ∈ End(E ) and the degree of θ 0 divides B. This can be
achieved for special θ‐s. A particular choice for which this is
feasible is to use θ‐s from Z½i� and the starting curve E with
j‐invariant 1728. Further improvements are also possible by
using the Frobenius isogeny in a similar fashion to shifted
endomorphism ring attacks. The conclusion is that the attack
runs in subexponential time whenever B > pA4.

Even though this is a worse attack complexity than the
ones achieved with shifted endomorphisms, this attack high-
lights the fact that for certain parameter sets an efficient group
action on the SIDH keyspace is possible. This further high-
lights how the SSI‐T problem is different from the pure iso-
geny problem.

7 | OPEN PROBLEMS

There are various open problems that remain. Probably the
more interesting questions are whether shifted endomorphism
attacks and hidden shift attacks can be combined in some
fashion. So far these attacks exploit torsion information in a
different fashion, so a common approach could be beneficial.

Furthermore, there is plenty of room for improvement in
both approaches separately. In the dual isogeny approach,
finding better solutions to Equation (2) is a clear path for
improvement. Furthermore, in Ref. [10], there is an outline of a
uniform approach, which encompasses both the dual and the
Frobenius approach. Possibly a more general viewpoint could
also lead to improvements.

In the quantum attack, the current approach only utilises a
small fraction of PGL2ðZ=AZÞ in order to fit the framework
needed for Kuperberg's algorithm. A natural way of extending
this result could be to use a larger acting group and relating the
issue of finding the secret isogeny to a hidden subgroup
problem as opposed to a hidden shift problem.

Finally, all these approaches apply to elliptic curves. It is
natural to study higher genus analogues of the SSI‐T problem
and whether the approaches generalise to higher genera.

8 | CONCLUSION

SIKE's security relies on the ‘pure’ isogeny problem (given two
curves, find an isogeny between), but also on a variant which,
among other specificities, provides the attacker with the images
of some torsion points through the isogeny.

F I GURE 2 Supersingular isogeny Diffie–Hellman (SIDH) key
exchange instance with isogenies φ and the endomorphism θ

8 - KUTAS AND PETIT
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Several attacks have exploited similar information, starting
from the GPST active attacks [8], continuing with torsion point
passive attacks [9, 10] and most recently an attack contradicting
the folklore intuition that hidden shift attacks cannot be
applied to SIDH‐like protocols because of their non‐
commutative nature [11]. These attacks have improved over
time: while Ref. [9] only worked for very unbalanced param-
eters, the latest improvements from Ref. [10] lead to a quantum
attack with complexity similar (up to polylogarithmic factors)
to previously known (non‐torsion point) attacks for SIKE
parameters and a polynomial attack on a group key exchange
from Ref. [14] for any number of parties greater than 6. The
future will tell whether these and other ideas will eventually
affect the security of SIKE.
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