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Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy with a

prevalence of about 1 in 4,000, affecting approximately 1.5 million people worldwide.

Patients with RP experience progressive visual field loss as the retina degenerates,

destroying light-sensitive photoreceptor cells (rods and cones), with rods affected earlier

andmore severely than cones. Spatio-temporal patterns of retinal degeneration in human

RP have been well characterised; however, themechanism(s) giving rise to these patterns

have not been conclusively determined. One such mechanism, which has received

a wealth of experimental support, is described by the trophic factor hypothesis. This

hypothesis suggests that rods produce a trophic factor necessary for cone survival;

the loss of rods depletes this factor, leading to cone degeneration. In this article,

we formulate a partial differential equation mathematical model of RP in one spatial

dimension, spanning the region between the retinal centre (fovea) and the retinal edge

(ora serrata). Using this model we derive and solve an inverse problem, revealing for the

first time experimentally testable conditions under which the trophic factor mechanism

will qualitatively recapitulate the spatio-temporal patterns of retinal regeneration observed

in human RP.

Keywords: partial differential equations, asymptotic analysis, retina, photoreceptors, rod-derived cone viability

factor

1. INTRODUCTION

The group of inherited retinal diseases known as retinitis pigmentosa (RP) causes the progressive
loss of visual function (Hamel, 2006; Hartong et al., 2006). The patterns of visual field loss associated
with the human version of this condition have been well characterised (Grover et al., 1998);
however, the mechanisms underpinning these patterns have yet to be conclusively determined
(Newton and Megaw, 2020). In this article, we use mathematical models to predict the conditions
under which a trophic factor mechanism could explain these patterns.

The retina is a tissue layer lining the back of the eye containing light-sensitive cells known
as photoreceptors, which come in two varieties: rods and cones (Figure 1A). Rods confer
monochromatic vision under low-light (scotopic) conditions, while cones confer colour vision
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under well-lit (photopic) conditions (Oyster, 1999). In RP, rod
function and health are typically affected earlier and more
severely than those of cones, with cone loss following rod loss.
Rods are lost since either they or the neighbouring retinal
pigment epithelium express a mutant version of one or both
alleles (depending on inheritance mode) of a gene associated
with RP (over 80 genes have been identified to date, see Gene
Vision and Ge et al., 2015; Haer-Wigman et al., 2017; Birtel et al.,
2018; Coussa et al., 2019). It is hypothesised that cones are lost
following rods since they depend upon rods either directly or
indirectly for their survival (Hamel, 2006; Hartong et al., 2006;
Daiger et al., 2007).

A number of mechanisms have been hypothesised to explain
secondary cone loss, including trophic factor (TF) depletion
(Léveillard et al., 2004; Aït-Ali et al., 2015; Mei et al., 2016),
oxygen toxicity (Travis et al., 1991; Valter et al., 1998; Stone
et al., 1999), metabolic dysregulation (Punzo et al., 2009, 2012),
toxic substances (Ripps, 2002), and microglia (Gupta et al.,
2003). While not typically related to spatio-temporal patterns
of retinal degeneration in the literature, it is reasonable to infer
that these mechanisms play an important role in determining
spatio-temporal patterns of retinal degeneration.

Grover et al. (1998) have classified the spatio-temporal
patterns of visual field loss in RP patients into three patterns
and six sub-patterns (see Figure 2). Pattern 1A consists in a
restriction of the peripheral visual field, while Pattern 1B also
includes a para-/peri-foveal ring scotoma (blind spot); Pattern 2
(A, B and C) involves an initial loss of the superior visual field,
winding nasally or temporally into the inferior visual field; lastly,
Pattern 3 starts with loss of the mid-peripheral visual field, before
spreading into the superior or inferior visual field and winding
around the far-periphery. In all cases central vision is the best
preserved, though it too is eventually lost (Hamel, 2006; Hartong
et al., 2006). Patterns of visual field loss and photoreceptor
degeneration (cell loss) are directly related (Escher et al., 2012),
loss of the superior visual field corresponding to degeneration
of photoreceptors in the inferior retina and vice versa, and loss
of the temporal visual field corresponding to degeneration of
photoreceptors in the nasal retina and vice versa.

In this article, we explore the conditions under which the
TF mechanism, in isolation, can replicate the patterns of cone
degeneration observed in vivo. Isolating a mechanism in this
way enables us to identify the effects for which it is sufficient
to account, avoiding confusion with other mechanistic causes.
Understanding the mechanisms of secondary cone degeneration
is important since it is the cones that provide high-acuity color
vision, and hence their loss, rather than the preceding rod loss,
which is the most debilitating. Therefore, by elucidating these
mechanisms, we can develop targeted therapies to prevent or
delay cone loss, preserving visual function. The TF mechanism
has been studied in detail. Rod photoreceptors have been shown
to produce a TF called rod-derived cone viability factor (RdCVF),
which is necessary for cone survival (Mohand-Saïd et al., 1997,
1998, 2000; Fintz et al., 2003; Léveillard et al., 2004; Yang
et al., 2009). RdCVF increases cone glucose uptake, and hence
aerobic glycolysis, by binding to the cone transmembrane protein
Basigin-1, which consequently binds to the glucose transporter

GLUT1 (Aït-Ali et al., 2015). Cones do not produce RdCVF,
thus, when rods are lost, RdCVF concentration drops and cone
degeneration follows (though it has been suggested that it may
ultimately be oxygen toxicity which kills cones; Léveillard and
Sahel, 2017).

Thus far, two groups have developed mathematical models
operating under the TF hypothesis. Camacho et al. have
developed a series of (non-spatial) dynamical systems ordinary
differential equation models to describe the role of RdCVF in
health and RP (Colón Vélez et al., 2003; Camacho et al., 2010,
2014, 2016a,b,c, 2019, 2020, 2021; Camacho and Wirkus, 2013;
Wifvat et al., 2021). In Roberts (2022), we developed the first
partial differential equation (PDE) models of the TF mechanism
in RP, predicting the spatial spread of retinal degeneration. It
was found that, assuming all cones are equally susceptible to
RdCVF deprivation and that rods degenerate exponentially with
a fixed decay rate, the mechanism is unable to replicate in vivo
patterns of retinal degeneration. Previous modeling studies have
also considered the oxygen toxicity (Roberts et al., 2017, 2018
and related Roberts et al., 2016b) and toxic substance (Burns
et al., 2002) mechanisms, predicting the spatio-temporal patterns
of retinal degeneration they would generate. For a review of
these and other mathematical models of the retina in health,
development and disease see (Roberts et al., 2016a).

In this study, we extend our work in Roberts (2022) by
formulating and solving an inverse problem to determine the
spatially heterogeneous cone susceptibility to RdCVF deprivation
and rod exponential decay rate profiles that are required to
qualitatively recapitulate observed patterns of spatio-temporal
degeneration in human RP.

2. MATERIALS AND METHODS

2.1. Model Formulation
We begin by formulating a reaction-diffusion PDE mathematical
model (a simplified version of the model presented in Roberts,
2022). Reaction-diffusion PDE models describe the way in which
the spatial distribution of cells and chemicals change over time as
a result of processes such as movement (diffusion), production,
consumption, death, and decay. We pose the model on a
spherical geometry to replicate that of the human retina. This
geometry is most naturally represented using a spherical polar
coordinate system, (r,θ ,φ), centred in the middle of the vitreous
body, where r ≥ 0 (m) is the distance from the origin, 0 ≤

θ ≤ π (rad) is the polar angle and 0 ≤ φ < 2π (rad) is
the azimuthal angle. To create a more mathematically tractable
model, we simplify the geometry by assuming symmetry about
the z-axis (directed outward from the origin through the foveal
centre), eliminating variation in the azimuthal direction, and
effectively depth-average through the retina, assuming that it
lies at a single fixed distance, R > 0 (m), from the origin at
all eccentricities, θ , leveraging the fact that the retinal width is
two orders of magnitude smaller than the eye’s radius (Oyster,
1999). Thus, we have reduced the coordinate system to (R,θ),
where R is a positive constant parameter and 0 ≤ θ ≤ 2

is an independent variable, which we bound to range between
the fovea (at θ = 0 rad) and the ora serrata (at θ = 2 =
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FIGURE 1 | Diagrams of the human eye and retinal photoreceptor distribution (reproduced, with permission, from Roberts et al., 2017). (A) Diagram of the (right)

human eye, viewed in the transverse plane, illustrating the mathematical model geometry. The model is posed on a domain spanning the region between the foveal

centre, at θ = 0, and the ora serrata, at θ = 2, along the temporal horizontal meridian, where θ measures the eccentricity. Figure originally reproduced, with

modifications, from http://www.nei.nih.gov/health/coloboma/coloboma.asp, courtesy: National Eye Institute, National Institutes of Health (NEI/NIH). (B) Measured and

fitted photoreceptor profiles, along the temporal horizontal meridian, in the human retina. Cone profile: p̃c(θ ) = B1e
−b1θ + B2e

−b2θ , and rod profile: p̃r (θ ) = B3θe
−b3θ

(see Table 2 for dimensionless parameter values). The photoreceptor profile is the sum of the rod and cone profiles (p̃r (θ )+ p̃c(θ )). Experimental data provided by

Curcio and published in Curcio et al. (1990).

FIGURE 2 | Characteristic patterns of visual field loss in human RP (reproduced, with permission, from Roberts et al., 2018). Visual field loss patterns can be classified

into three cases and six subcases (classification system described in Grover et al., 1998). Large gray arrows indicate transitions between stages of visual field loss and

small red arrows indicate the direction of scotoma (blind spot) propagation. See text for details.

1.33 rad; see Figure 1A). We further simplify the model by
non-dimensionalising; scaling the dependent and independent
variables so that they and the resultant model parameters are

dimensionless and hence unitless. This reduces the number of
parameters (including eliminating R) and allows us to identify
the dominant terms of the governing equations in the ensuing
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asymptotic analysis. For this reason, there are no units to be
stated in Figures 3–10. For the full dimensional model and
non-dimensionalisation see Roberts (2022).

We proceed directly to the dimensionless model, which
consists of a system of PDEs in terms of the dependent variables:
TF concentration, f (θ , t), rod photoreceptor density, pr(θ , t),
and cone photoreceptor density, pc(θ , t); as functions of the
independent variables: polar angle, scaled to lie in the range
0 ≤ θ ≤ 1, and time, t > 0 (see Table 1).

The TF equation is as follows

∂f

∂t
=

Df

sin(2θ)

∂

∂θ

(

sin(2θ)
∂f

∂θ

)

︸ ︷︷ ︸

diffusion

+ αpr
︸︷︷︸

production

− βfpc
︸︷︷︸

consumption

− ηf
︸︷︷︸

decay

,

(1)
where ∂f /∂t is the rate of change in TF concentration over
time and the parameters, Df , the TF diffusivity, α, the rate
of TF production by rods, β , the rate of TF consumption by
cones, and η, the rate of TF decay, are positive constants.
Trophic factor is free to diffuse across the retina through the
interphotoreceptor matrix (Aït-Ali et al., 2015). We assume, in
the absence of experimental evidence to the contrary, that all
rods produce TF at an equal and constant rate, independent of
the local TF concentration, such that the rate of TF production
is directly proportional to the local rod density. Similarly, in
the absence of further experimental evidence, we assume that all
cones consume TF at an equal and constant rate for a given local
TF concentration. Applying the physiological version of the Law
of Mass Action, which states that the rate of a reaction is directly
proportional to the product of the concentrations/densities of the
reactants (Murray, 2002, in this case TF and cones), we assume
that TF is consumed by cones at a rate directly proportional to the
product of the local TF concentration and the local cone density.
Lastly, we assume that TF decays exponentially, decreasing at a
rate directly proportional to its local concentration, as has been
shown to occur for a range of other proteins in living human cells
(Eden et al., 2011).

The rod equation takes the following form

∂pr

∂t
= − φr(θ)pr

︸ ︷︷ ︸

cell degeneration
(mutation-induced)

, (2)

where ∂pr/∂t is the rate of change in rod density over time
and we allow the variable φr(θ), the rate of mutation-induced
rod degeneration, to vary spatially (functional forms defined
in the Results section), or take a constant positive value, φr .
Rods degenerate due to their expression of a mutant gene
(Hamel, 2006; Hartong et al., 2006) and are assumed to do so
exponentially, at a rate directly proportional to their local density,
consistent with measurements of photoreceptor degeneration
kinetics in mouse, rat and canine models of RP (Clarke et al.,
2000). Unlike with cones, RdCVF does not serve a protective
function for rods (Aït-Ali et al., 2015); therefore, their rate

FIGURE 3 | Initial conditions, ratio of rods to cones and RdCVF reaction rates.

(A) initial conditions used in all simulations, consisting of healthy rod and cone

profiles and the corresponding RdCVF profiles under Scalings 1 and 2 (the

legend applies to (A) only). (B) variation in the healthy rod:cone ratio,

p̃r (θ )/p̃c(θ ), with eccentricity. (C) RdCVF production, consumption and decay

rates under Scalings 1 and 2 (Equation (1), the legend applies to (C) only). To

obtain finit (θ ) in (A,C), Equations (1) and (4) were solved at steady-state using

the finite difference method, with 4001 mesh points, where pr (θ ) = prinit (θ ) and

pc(θ ) = pcinit (θ ). Under Scaling 1, α = 7.01× 104 and β = 1.79× 106, while

under Scaling 2, α = 7.01× 102 and β = 1.79× 104. Remaining parameter

values as in Table 2.
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FIGURE 4 | Cone degeneration profiles. Graphs show the time, tdegen(θ ), at which cones degenerate due to RdCVF deprivation, with constant rate of

mutation-induced rod degeneration, φr = 7.33× 10−2, and constant TF threshold concentrations: fcrit = 3× 10−5 (A) and fcrit = 0.3 (B). The solid black and dashed

green curves correspond to Scaling 1 (α = 7.01× 104 and β = 1.79× 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01× 102 and

β = 1.79× 104). The black and blue solid curves are analytical approximations, obtained by plotting Equations (6) and (9), respectively, while the green and red

dashed curves are pc(θ , t)/p̃c(θ ) = 0.99 contours, obtained by solving Equations (1–5) using the method of lines with 401 mesh points. (A) Simulation spans ∼17.7

years in dimensional variables; (B) simulation spans ∼2.8 years in dimensional variables. Insets show magnified portions of each graph. Cone degeneration initiates at

the fovea (θ = 0) in (A) and at θ = 0.13 in (B), spreading peripherally (rightwards) in both cases. Degeneration occurs earlier in (B) than in (A) and for Scaling 2 than for

Scaling 1 (except near the fovea in (A)). Remaining parameter values as in Table 2.

of degeneration is independent of the TF concentration. We
note that Equation (2) can be solved to yield pr(θ , t) =

prinit (θ)e
−φr(θ)t (where prinit (θ), the initial value of pr(θ , t),

is defined below), provided there is no delay in onset or
interruption of degeneration.

The cone equation is as follows

∂pc

∂t
= − pcλ2(f )

︸ ︷︷ ︸

cell degeneration
(TF starvation)

, (3)

where ∂pc/∂t is the rate of change in cone density over time. We
define the Heaviside step function, H(·), such that

H(x) : =

{

0 if x < 0,
1 if x ≥ 0,

the function λ2(f ) is given by

λ2(f ) = 1−H(f − fcrit(θ)),

where we allow the variable fcrit(θ), the TF threshold
concentration, to vary spatially (functional forms defined
in the Results section), or take a constant positive value,
fcrit. Cone density is assumed to remain constant provided
the local TF concentration, f (θ , t), remains in the healthy
range at or above the critical threshold, fcrit, while cones are
assumed to decay exponentially (due to TF starvation) at a
rate directly proportional to their local density if f (θ , t) drops
below this threshold, again consistent with Clarke et al. (2000)’s
measurements of photoreceptor degeneration kinetics.

Having defined the governing [Equations (1–3)], we close the
system by imposing boundary and initial conditions. We apply
zero-flux boundary conditions at both ends of the domain,

∂f

∂θ
(0, t) = 0 =

∂f

∂θ
(1, t), (4)

where ∂f /∂θ is the TF concentration gradient in the polar
direction, such that there is no net flow of TF into or out of the
domain. This is justified by symmetry at θ = 0, while we assume
that TF cannot escape from the retina where it terminates at the
ora serrata (θ = 1). The healthy rod and cone distributions are
given by the following functions

p̃r(θ) = B3θe
−b3θ ,

p̃c(θ) = B1e
−b1θ + B2e

−b2θ ,

where the values of the positive constants B1, B2, B3, b1, b2,
and b3 are found by fitting to the mean of Curcio et al. (1990)’s
measurements of healthy human rod and cone distributions
along the temporal horizontal meridian using the Trust-Region
Reflective algorithm in Matlab’s curve fitting toolbox (see
Figure 1B). Lastly, we impose the initial conditions

f (θ , 0) = finit(θ), pr(θ , 0) = prinit (θ) = p̃r(θ),

pc(θ , 0) = pcinit (θ) = p̃c(θ), (5)

where finit(θ) is the steady-state solution to Equations (1) and
(4) with pr = prinit (θ) and pc = pcinit (θ) (see Figure 3A).
Thus, the retina starts in the healthy state in all simulations.
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FIGURE 5 | Target cone degeneration profiles. Panels (left) show cone

degeneration profiles, tdegen(θ ), qualitatively replicating typical spatio-temporal

patterns of visual field loss in RP: (A) Uniform, (B) Pattern 1A, (C) Pattern 1B

and (D) Pattern 3. Visual field loss patterns directly correspond to cone

degeneration patterns in these radially symmetric cases. We seek to replicate

these patterns by finding appropriate φrinv (θ ) and fcritinv (θ ) profiles in

Figures 6–9. Diagrams on the right show the corresponding 2D patterns of

visual field loss — white regions: preserved vision, black regions: scotomas

(blind spots), and red arrows: direction of scotoma propagation. Parameters:

t0 = 100 (∼ 11.0 years), t1 = 150 (∼ 16.6 years), t2 = 200 ∼ 22.1 years,

θd1 = 0.1 (∼ 7.6 degrees), θd2 = 0.55 (∼ 41.9 degrees), θd3 = 0.3 (∼ 22.9

degrees), θd4 = 0.4 (∼ 30.5 degrees) and θd5 = 0.6 (∼ 45.7 degrees). Cone

degeneration profile formulas and parameters are given in Table 3. Remaining

parameter values as in Table 2.

See Table 2 for the dimensionless parameter values [see Roberts
(2022) for dimensional values and justification of parameter
values]. The model presented here simplifies that in Roberts
(2022) in the following ways: it does not include treatment, cone
outer segment regeneration, or initial patches of rod or cone

loss, while mutation-induced rod loss is active for all simulations
in this study. The present model also adds two new features to
the previous model: allowing the rate of mutation-induced rod
degeneration, φr(θ), and the TF threshold concentration, fcrit(θ),
to vary spatially, where before they were constant (or piecewise
constant in the high fcrit subcase).

2.2. Numerical Solutions
Numerical (computational) solutions to Equations (1–5) were
obtained using the method of lines (as in Roberts, 2022),
discretising in space and then integrating in time. The time
integration was performed using the Matlab routine ode15s, a
variable-step, variable-order solver, designed to solve problems
involvingmultiple timescales such as this (Matlab version R2020a
was used here and throughout the paper). We used a relative
error tolerance of 10−6 and an absolute error tolerance of 10−10,
with the remaining settings at their default values. The number of
spatial mesh points employed varies between simulations, taking
values of 26, 51, 101, 401, or 4,001. The upper bound of 4,001
mesh points was chosen such that the distance between mesh
points corresponds to the average width of a photoreceptor. In
each case the maximum computationally feasible mesh density
was employed, all mesh densities being sufficient to achieve
accurate results. The initial TF profile, f (θ , 0) = finit(θ), was
calculated by discretising Equations (1) and (4) at steady-state,
using a finite difference scheme, and solving the consequent
system of nonlinear algebraic equations using the Matlab routine
fsolve (which employs a Trust–Region–Dogleg algorithm) with
pr = prinit (θ) and pc = pcinit (θ).

2.3. Inverse Problem
Our previous modeling study of the TF hypothesis predicted
patterns of cone degeneration which failed to match any known
patterns in human RP (Roberts, 2022). In that study, we
made the simplifying assumption that model parameters are
spatially uniform, such that they do not vary with retinal
eccentricity. While this is a reasonable assumption in most
cases, we have reason to believe that two of the parameters—
the rate of mutation-induced rod loss, φr , and the TF threshold
concentration, fcrit—may vary spatially (see below), which could
help account for in vivo patterns of retinal degeneration.

Rates of rod degeneration in human RP have not been studied
in great detail. Thus far, histopathological examination of human
RP retinas has revealed that rod degeneration is most severe in
the mid-peripheral retina, with relative sparing of rods in the
macula and far-periphery until later in the disease (Milam et al.,
1998). It may be that this pattern varies depending upon the
mutation involved and between individuals (cf. Huang et al., 2012
for which different spatial patterns of rod function loss occur
in patients, all of whom have a mutation in the RPGR gene).
The rate of decay of rod photoreceptors has also been shown
to vary with retinal eccentricity in mouse and pig models of
RP (Carter-Dawson et al., 1978; Li et al., 1998). Further, under
healthy conditions, the RdCVF concentration at the centre of
the retina (near θ = 0) is much lower (f (θ , t) ∼ O(10−5))
than in the remainder of the retina (where f (θ , t) ∼ O(0.1)
to O(1), see Figure 3A). Therefore, it is reasonable to assume
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FIGURE 6 | Inverse mutation-induced rod degeneration rate and TF threshold concentration—Uniform target cone degeneration profile. (A) inverse mutation-induced

rod degeneration rate, φrinv (θ ) (fcrit = 3× 10−5); (B) inverse TF threshold concentration, fcritinv (θ ) (φr = 7.33× 10−2). The solid black and dashed green curves

correspond to Scaling 1 (α = 7.01× 104 and β = 1.79× 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01× 102 and

β = 1.79× 104). The black and blue solid curves are analytical approximations to the inverses, obtained by plotting Equations (7) and (10), respectively (A), and

Equations (8) and (11) respectively (B). The green and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A) and

patternsearch (B) to calculate the φr and fcrit profiles for which the contour described by pc(θ , t)/p̃c(θ ) = 0.99 matches the target cone degeneration profile, tdegen(θ ).

Equations (1–5) were solved at each iteration using the method of lines, with 101 mesh points. Insets show magnified portions of each graph. Numerical inverses are

calculated and plotted only at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ ) profile matching the target profile. Inverses are

monotone increasing for Scaling 1, and increase initially for Scaling 2 before reaching a maximum and decreasing toward the ora serrata (θ = 1). Numerical solutions

reveal lower values of the inverses near the fovea (θ = 0) than the analytical approximations suggest. Cone degeneration profile formulas and parameters are given in

Table 3. Remaining parameter values as in Table 2.

that central retinal cones are able to cope with lower RdCVF
concentrations than those toward the periphery, and hence
that fcrit is also heterogeneous. To determine whether these
heterogeneities could account for cone degeneration patterns
in human RP, we formulate and solve something known as an
inverse problem.

In an inverse problem we seek to determine the model input
required to attain a known/desired output. In this case, the
known output is the target cone degeneration profile, tdegen(θ),
while the input is either the rate of mutation-induced rod loss
profile, φr(θ), or the TF threshold concentration profile, fcrit(θ),
with corresponding inverses denoted as φr(θ) = φrinv (θ) and
fcrit(θ) = fcritinv (θ), respectively. When searching for φrinv (θ), we
hold the TF threshold concentration constant at fcrit(θ) = fcrit =
3× 10−5, while, when searching for fcritinv (θ), we hold the rate of
mutation-induced rod loss constant at φr(θ) = φr = 7.33×10−2.
The constant value of fcrit is chosen to lie just below theminimum
steady-state value of f (θ), such that, in the absence of rod loss,
cones remain healthy, while the constant value of φr is chosen to
be one hundred times higher than the value that can be inferred
from measurements in the healthy human retina (Curcio et al.,
1993), placing the timescale of the resultant cone loss on the
order of decades, in agreement with in vivo RP progression rates
(Hamel, 2006; Hartong et al., 2006).

We consider a range of target cone degeneration profiles,
summarized in Figure 5 and Table 3, which qualitatively
replicate visual field loss Patterns 1A, 1B, and 3 seen in vivo
(and hence the corresponding in vivo cone degeneration patterns;
taking the degeneration of the far-peripheral retina to occur in
a radially symmetric manner in Pattern 3—see Figure 2 and

Grover et al., 1998). We do not consider patterns of type 2 (to
be explored in a future study) as these cannot be replicated by
a 1D model (since the radial symmetry, assumed by the 1D
model, is broken by variation in the azimuthal/circumferential
direction). For each degeneration pattern, we consider a set
of sub-patterns to examine how this affects the shape of the
inverses, allowing us to confirm that a modest change in the
degeneration pattern results in a modest change in the inverses,
while exploring both linear/piecewise linear profiles and more
biologically realistic nonlinear (quadratic/cubic/exponential)
patterns. We also consider a uniform target cone degeneration
profile for comparison.

For each pattern, we consider the effect of two (biologically
realistic) scalings for the rate of TF production by rods, α, and the
rate of TF consumption by cones, β , upon the inverse profiles: (i)
Scaling 1—for which α = 7.01 × 104 and β = 1.79 × 106 as in
Roberts (2022); and (ii) Scaling 2—for which α = 7.01× 102 and
β = 1.79 × 104. Under Scaling 1, production and consumption
of TF dominate over decay (with rate constant η), such that
decay has a negligible effect upon the TF profile and model
behavior. Under Scaling 2, TF production and consumption
occur at a similar rate to decay, such that they balance each
other, resulting in a different TF profile and model behavior
(see Figures 3A,C). As discussed in Roberts (2022), none of α,
β , or η have been measured. The decay rate, η, was chosen
to match the measured decay rate of proteins in living human
cells (Eden et al., 2011). Under Scaling 1, the consumption rate,
β , is chosen such that it dominates over the decay rate (being
a factor ǫ−1 = O(102) larger), while the production rate, α,
is chosen to balance consumption (see the Analytical Inverse
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FIGURE 7 | Inverse mutation-induced rod degeneration rate and TF threshold concentration—Pattern 1A target cone degeneration profiles. (A,C,E) inverse

mutation-induced rod degeneration rate, φrinv (θ ) (fcrit = 3× 10−5); (B,D,F) inverse TF threshold concentration, fcritinv (θ ) (φr = 7.33× 10−2). (A,B) linear target cone

degeneration profile, tdegen(θ ); (C,D) concave up quadratic tdegen(θ ) profile; (E,F) concave down quadratic tdegen(θ ) profile. The solid black and dashed green curves

correspond to Scaling 1 (α = 7.01× 104 and β = 1.79× 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01× 102 and

β = 1.79× 104). The black and blue solid curves are analytical approximations to the inverses, obtained by plotting Equations (7) and (10), respectively, (A,C,E) and

Equations (8) and (11), respectively, (B,D,F). The green and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A,C,E), and

patternsearch (B,D,F) to calculate the φr and fcrit profiles for which the contour described by pc(θ , t)/p̃c(θ ) = 0.99 matches the target cone degeneration profile,

tdegen(θ ). Equations (1–5) were solved at each iteration using the method of lines, with 26, 51, or 101 mesh points. Insets show magnified portions of each graph.

Numerical inverses are calculated and plotted only at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ ) profile matching the target

profile. Inverses are monotone increasing functions for both scalings in (A, B, E, F), and for Scaling 1 in (C,D) while the inverses increase initially for Scaling 2 before

reaching a maximum and decreasing toward the ora serrata (θ = 1) in (C,D). Numerical solutions reveal lower values of the inverses near the fovea (θ = 0) than the

analytical approximations suggest. Cone degeneration profile formulas and parameters are given in Table 3. Remaining parameter values as in Table 2.

Section). This is a sensible scaling as it is likely that cones
consume RdCVF at a much faster rate than that at which it
decays. It is possible, however, that cones consume RdCVF at a
similar rate to its decay rate, which is the scenario we consider
in Scaling 2; reducing α and β by a factor of 100 (∼ ǫ−1) to
bring consumption and production into balance with decay (see
the Analytical Inverse Section).

We solve the inverse problem both analytically and
numerically (computationally), as described in the Analytical
Inverse and Numerical Inverse sections below. Analytical
approximations are computationally inexpensive and provide

deeper insight into model behavior, while numerical solutions,
though computationally intensive, are more accurate.

2.3.1. Analytical Inverse

Less mathematically inclined readers may wish to skip over
the following derivation and proceed to the resulting Equations
(6–11) and surrounding explanatory text. To derive analytical
(algebraic) approximations for the inverses, φrinv (θ) and fcritinv (θ),
we perform an asymptotic analysis, seeking the leading order
behavior of Equations (1–5). In other words, we are simplifying
our equations, making it possible to solve them algebraically (by

Frontiers in Aging Neuroscience | www.frontiersin.org 8 May 2022 | Volume 14 | Article 765966

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Roberts Mathematical Models of Retinitis Pigmentosa

FIGURE 8 | Inverse mutation-induced rod degeneration rate and TF threshold concentration—Pattern 1B target cone degeneration profiles. (A,C,E) inverse

mutation-induced rod degeneration rate, φrinv (θ ) (fcrit = 3× 10−5); (B,D,F) inverse TF threshold concentration, fcritinv (θ ) (φr = 7.33× 10−2). (A,B) linear target cone

degeneration profile, tdegen(θ ); (C,D) quadratic tdegen(θ ) profile; (E,F) exponential tdegen(θ ) profile. The solid black and dashed green curves correspond to Scaling 1

(α = 7.01× 104 and β = 1.79× 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01× 102 and β = 1.79× 104). The black and blue

solid curves are analytical approximations to the inverses, obtained by plotting Equations (7) and (10), respectively, (A,C,E), and Equations (8) and (11), respectively,

(B,D,F). The green and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A,C,E), and patternsearch (B,D,F) to calculate

the φr and fcrit profiles for which the contour described by pc(θ , t)/p̃c(θ ) = 0.99 matches the target cone degeneration profile, tdegen(θ ). Equations (1–5) were solved at

each iteration using the method of lines, with 51 or 101 mesh points. Insets show magnified portions of each graph. Numerical inverses are calculated and plotted only

at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ ) profile matching the target profile. Inverses resemble vertically flipped versions

of the tdegen(θ ) profiles. Numerical solutions reveal lower values of the inverses near the fovea (θ = 0) than the analytical approximations suggest and higher values in

some regions away from the fovea in (A–D). Cone degeneration profile formulas and parameters are given in Table 3. Remaining parameter values as in Table 2.

hand), by only including those terms (corresponding to specific
biological processes, e.g., TF production) which dominate the
behavior of the solution, where themethod known as “asymptotic
analysis” enables us to rationally identify these dominant terms.
Proceeding as in Roberts (2022) (where we considered a steady-
state problem), we choose ǫ = O(10−2) and scale the parameters
η = ǫ−1η′ and b1 = ǫ−1b′1, introducing the new scaling φr(θ) =
ǫφ′

r(θ), as we study the time-dependent problem here (where
dashes ′ denote scaled variables and parameters). We consider
two possible (biologically realistic) scalings on α and β : (i) Scaling

1—for which α = ǫ−2α′ and β = ǫ−3β ′ as in Roberts (2022)
(corresponding to α = 7.01 × 104 and β = 1.79 × 106);
and (ii) Scaling 2—for which α = ǫ−1α′ and β = ǫ−2β ′

(corresponding to α = 7.01 × 102 and β = 1.79 × 104). All
remaining parameters are assumed to be O(1). We also scale the
dependent variable pc(θ , t) = ǫp′c(θ , t), and assume f (θ , t) =

O(1) and pr(θ , t) = O(1).
Applying the above scalings and dropping the dashes

(working with the scaled versions of the variables and parameters,
but omitting the dashes ′ for notational convenience), Equation
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FIGURE 9 | Inverse mutation-induced rod degeneration rate and TF threshold concentration—Pattern 3 target cone degeneration profiles. (A,C,E,G) inverse

mutation-induced rod degeneration rate, φrinv (θ ) (fcrit = 3× 10−5); (B,D,F,H) inverse TF threshold concentration, fcritinv (θ ) (φr = 7.33× 10−2). (A,B) linear 1 target cone

degeneration profile, tdegen(θ ); (C,D) linear 2 tdegen(θ ) profile; (E,F) quadratic tdegen(θ ) profile; (G,H) cubic tdegen(θ ) profile. The solid black and dashed green curves

correspond to Scaling 1 (α = 7.01× 104 and β = 1.79× 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01× 102 and

β = 1.79× 104). The black and blue solid curves are analytical approximations to the inverses, obtained by plotting Equations (7) and (10) respectively (A,C,E,G), and

Equations (8) and (11), respectively, (B,D,F,H). The green and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A,C,E,G),

and patternsearch (B,D,F,H) to calculate the φr and fcrit profiles for which the contour described by pc(θ , t)/p̃c(θ ) = 0.99 matches the target cone degeneration profile,

tdegen(θ ). Equations (1–5) were solved at each iteration using the method of lines, with 26, 51 or 101 mesh points. Insets show magnified portions of each graph.

Numerical inverses are calculated and plotted only at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ ) profile matching the target

profile. Inverses resemble vertically flipped versions of the tdegen(θ ) profiles. Numerical solutions reveal lower values of the inverses near the fovea (θ = 0) than the

analytical approximations suggest and higher values in some regions away from the fovea in (C–F,H). Cone degeneration profile formulas and parameters are given in

Table 3. Remaining parameter values as in Table 2.

(2) becomes

∂pr

∂t
= −ǫφr(θ)pr .

Thus, on this (fast) timescale, the rod density is constant. Since
we are interested in the timescale uponwhich rods degenerate, we

scale time as t′ = ǫt such that the decay term enters the dominant
balance. Thus, on this slow timescale, after dropping the dashes,
we have that

∂pr

∂t
= −φr(θ)pr ,
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FIGURE 10 | Simulations of proportional cone loss for a range of inverse mutation-induced rod degeneration rates and TF threshold concentrations. Plots show the

proportion of cones remaining compared to local healthy values, pc(θ , t)/p̃c(θ ), across space and over time. (A,E,I,M) analytical inverse mutation-induced rod

degeneration rate, φrinv (θ ) (fcrit = 3× 10−5); (B,F,J,N) numerical φrinv (θ ) (fcrit = 3× 10−5); (C,G,K,O) analytical inverse TF threshold concentration, fcritinv (θ )

(φr = 7.33× 10−2); (D,H,L,P) numerical fcritinv (θ ) (φr = 7.33× 10−2). (A–D) Uniform target cone degeneration profile, tdegen(θ ), with Scaling 1 (α = 7.01× 104 and

β = 1.79× 106); (E–H) Pattern 1A quadratic concave up tdegen(θ ) profile with Scaling 1; (I–L) Pattern 1B linear tdegen(θ ) profile with Scaling 2 (α = 7.01× 102 and

β = 1.79× 104); (M–P) Pattern 3 quadratic tdegen(θ ) profile with Scaling 2. Equations (1–5) were solved using the method of lines, with 26, 51 or 101 mesh points.

Analytical and numerical φrinv (θ ) and fcritinv (θ ) are as plotted in Figures 5–8. Solid red curves denote the contours along which pc(θ , t)/p̃c(θ ) = 0.99, while dashed green

curves show the target tdegen(θ ) profiles. Cone degeneration profiles generally show good agreement with the target tdegen(θ ) profiles. There is some divergence from

tdegen(θ ) for the analytical inverses near the fovea (θ = 0) and at discontinuous or nonsmooth portions of tdegen(θ ); this is mostly corrected by the numerical inverses.

Cone degeneration profile formulas and parameters are given in Table 3. Remaining parameter values as in Table 2.

such that, at leading order, pr0 (θ , t) = prinit0 (θ)e
−φr(θ)t =

B3θe
−b3θ eφr(θ)t .

We are interested here in the regime in which cones have not
yet degenerated, thus, we assume the leading order cone density
remains constant at pc0 (θ) = pcinit0 (θ) = B2e

−b2θ .

Applying Scaling 1 and the slow timescale to Equation (1),
we obtain

ǫ
∂f

∂t
= Df

∂2f

∂θ2
+Df2 cot(2θ)

∂f

∂θ
+ ǫ−2αpr − ǫ−2βpcf − ǫ−1ηf .
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Since the TF dynamics occur on a faster timescale thanmutation-
induced rod loss, we make a quasi-steady-state approximation
(QSSA), assuming that the TF concentration instantaneously
takes its steady-state profile, for any given rod density profile, as
the rods degenerate (ǫ∂tf ∼ 0). Thus, at leading order, we obtain

f0QSSA (θ) =
αpr0 (θ , t)

βpc0 (θ)
.

Rearranging this expression and assuming that cone
degeneration initiates when f0QSSA (θ) = fcrit(θ), we obtain
the cone degeneration time profile,

tdegen(θ) =
1

φr(θ)

(

log

(
αB3

βB2fcrit(θ)
θ

)

− (b3 − b2)θ

)

, (6)

the inverse mutation-induced rod degeneration rate profile,

φrinv (θ) =
1

tdegen(θ)

(

log

(
αB3

βB2fcrit
θ

)

− (b3 − b2)θ

)

, (7)

and the inverse TF threshold concentration profile,

fcritinv (θ) =
αB3

βB2
θe−((b3−b2)θ+φrtdegen(θ)). (8)

Alternatively, if we apply Scaling 2 and the slow timescale to
Equation (1) we obtain

ǫ
∂f

∂t
= Df

∂2f

∂θ2
+Df2 cot(2θ)

∂f

∂θ
+ ǫ−1αpr − ǫ−1βpcf − ǫ−1ηf ,

with the TF decay term, ηf , now entering the dominant balance.
Applying the QSSA and proceeding as above we find

f0QSSA (θ) =
αpr0 (θ , t)

βpc0 (θ)+ η
,

with cone degeneration time profile,

tdegen(θ) =
1

φr(θ)

(

log

(
αB3

(βB2 + ηeb2θ )fcrit(θ)
θ

)

− (b3 − b2)θ

)

,

(9)
inverse mutation-induced rod degeneration rate profile,

φrinv (θ) =
1

tdegen(θ)

(

log

(
αB3

(βB2 + ηeb2θ )fcrit
θ

)

− (b3 − b2)θ

)

,

(10)
and inverse TF threshold concentration profile,

fcritinv (θ) =
αB3

(βB2 + ηeb2θ )
θe−((b3−b2)θ+φrtdegen(θ)). (11)

These equations reveal how the inverses, φrinv (θ) and fcritinv (θ),
are influenced by our choices for fixed values of fcrit and φr ,
respectively. As can be seen from Equations (7) and (10), φrinv (θ)
is inversely and monotonically related to fcrit, such that as
fcrit increases, φrinv (θ) decreases. Similarly, fcritinv (θ) and φr are

inversely and monotonically related in Equations (8) and (11),
such that as φr increases, fcritinv (θ) decreases. Lastly, as would be
expected intuitively, tdegen(θ), φrinv (θ) and fcritinv (θ) all increase
monotonically with increasing TF production, α, and decrease
monotonically with increasing TF consumption, β , and TF decay
η [Equations (6–8) and (9–11)].

2.3.2. Numerical Inverse

The numerical inverse is calculated by repeatedly solving the
forward problem [Equations (1–5)] for different values of the
input (φr(θ) or fcrit(θ)), with the aim of converging upon the
inverse (φrinv (θ) or fcritinv (θ)). To find φrinv (θ), we use the Matlab
routine fminsearch (which uses a simplex search method), while
to obtain fcritinv (θ) theMatlab routine patternsearch (which uses
an adaptive mesh technique) was found to be more effective. In
both cases, the objective function (the quantity we are seeking
to minimise) was taken as the sum of squares of the difference
between the target cone degeneration profile, tdegen(θ), and
the contour described by pc(θ , t)/p̃c(θ) = 0.99 (along which
cone degeneration is deemed to have initiated). Equations (1–
5) were solved at each iteration as described in the Numerical
Solutions section. Numerical inverses were calculated only at
those locations (eccentricities) where the analytical inverse failed
to generate a tdegen(θ) profile matching the target profile, the
analytical inverse being assumed to hold at all other eccentricities.

3. RESULTS

We begin by calculating the cone degeneration profiles, tdegen(θ),
in the case where both the rate of mutation induced rod
degeneration, φr , and the TF threshold concentration, fcrit, are
spatially uniform (or piecewise constant). We set the standard
value for φr = 7.33 × 10−2 and consider the subcases (i) fcrit =
3 × 10−5 for 0 ≤ θ ≤ 1 (Figure 4A), and (ii) fcrit = 0.3 for
θ > 0.13 while fcrit = 3× 10−5 for θ ≤ 0.13 (Figure 4B), as were
explored in Roberts (2022). These subcases correspond to the
situation in which the TF threshold concentration lies beneath
the minimum healthy TF value at all retinal locations (i), and
the situation in which foveal cones are afforded special protection
compared to the rest of the retina, such that they can withstand
lower TF concentrations (ii). For notational simplicity, we shall
refer to subcase (ii) simply as fcrit = 0.3 in what follows. As
with Figures 6–9, we consider both Scaling 1 and Scaling 2 (see
Inverse Problem) on the rate of TF production by rods, α, and the
rate of TF consumption by cones, β , calculating both analytical
and numerical solutions.

Cone degeneration initiates at the fovea (θ = 0) in
Figure 4A and at θ = 0.13 in Figure 4B, spreading peripherally
(rightwards) in both cases, while degeneration also initiates
at the ora serrata (θ = 1) under Scaling 2 in both
Figures 4A,B, spreading centrally. Degeneration occurs earlier
in Figure 4B than in Figure 4A and earlier for Scaling 2 than
for Scaling 1 (except near the fovea in Figure 4A). Numerical
and analytical solutions agree well, only diverging close to
the fovea in Figure 4A, where the analytical solution breaks
down. None of these patterns of degeneration match those seen
in vivo (see Figure 2).
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In Figures 6–9, we calculate the φr(θ) = φrinv (θ) and fcrit(θ) =
fcritinv (θ) profiles required to qualitatively replicate the cone
degeneration profiles, tdegen(θ), observed in vivo (Figure 5), by
solving the associated inverse problems (see Inverse Problem).
As noted in the Inverse Problem section, when searching for
φrinv (θ), we hold the TF threshold concentration constant at
fcrit(θ) = fcrit = 3×10−5, while, when searching for fcritinv (θ), we
hold the rate of mutation-induced rod loss constant at φr(θ) =

φr = 7.33 × 10−2. Analytical inverses are plotted across the
domain (0 ≤ θ ≤ 1), while numerical inverses are calculated
and plotted only at those locations (eccentricities) where the
analytical inverse fails to generate a tdegen(θ) profile matching the
target profile (as determined by visual inspection, the tdegen(θ)
and target profiles being visually indistinguishable outside of
these regions).

In Figure 6, we calculate inverses for a Uniform degeneration
profile. While this pattern is not typically observed in humans,
we consider this case as a point of comparison with the non-
uniform patterns explored in Figures 7–9. Both inverses, φrinv (θ)
and fcritinv (θ), are monotone increasing for Scaling 1, and increase
initially for Scaling 2 before reaching a maximum and decreasing
toward the ora serrata (at θ = 1). Consequently, Scaling 1
and 2 inverses, while close near the fovea (θ = 0), diverge
toward the ora serrata, this effect being more prominent for
fcritinv (θ). The inverse profiles have a similar shape to the tdegen(θ)
profiles in Figure 4 (see Discussion). Numerical solutions reveal
lower values of the inverses near the fovea, where the analytical
approximations break down.

Inverses for linear (Figures 7A,B), concave up (quadratic)
(Figures 7C,D) and concave down (quadratic) (Figures 7E,F)
Pattern 1A degeneration profiles are shown in Figure 7.
Inverses are monotone increasing functions for both Scalings
1 and 2 in Figures 7A–F and for Scaling 1 in Figures 7C,D,
while the inverses increase initially for Scaling 2 before
reaching a maximum and decreasing toward the ora serrata in
Figures 7C,D. Numerical solutions reveal lower values of the
inverses near the fovea, where the analytical approximations
break down.

Figure 8 shows inverses for linear (Figures 8A,B), quadratic
(Figures 8C,D) and exponential (Figures 8E,F) Pattern 1B
degeneration profiles. Inverses resemble vertically flipped
versions of the tdegen(θ) profiles in Figure 5C (see Discussion).
Numerical solutions reveal lower values of the inverses
near the fovea, where the analytical approximations break
down, and higher values in some regions away from the
fovea in Figures 8A–D. The discontinuities in the linear
and quadratic cases are biologically unrealistic, though
consistent with the idealised qualitative target cone degeneration
patterns in Figure 5C.

In Figure 9, we calculate inverses for linear 1 (Figures 9A,B),
linear 2 (Figures 9C,D), quadratic (Figures 9E,F), and cubic
(Figures 9G,H) Pattern 3 degeneration profiles. Inverses
resemble vertically flipped versions of the tdegen(θ) profiles in
Figure 5D (see Discussion). Numerical solutions reveal lower
values of the inverses near the fovea, where the analytical
approximations break down, and higher values in some regions
away from the fovea in Figures 9C–F,H. Similarly to Figure 8,

TABLE 1 | Variables employed in the non-dimensional mathematical model

[Equations (1–5)].

Variable Description

θ Eccentricity

t Time

f (θ , t) Trophic factor concentration

pr (θ , t) Rod density

pc(θ , t) Cone density

TABLE 2 | Parameters employed in the non-dimensional mathematical model

[Equations (1–5)]. Values are given to three significant figures (radians are

dimensionless).

Parameter Description Value

2 Eccentricity of the ora serrata 1.33 rad

Df Trophic factor diffusivity 0.237

α Rate of trophic factor production by rods 7.01 × 102 or 7.01 × 104

β Rate of trophic factor consumption by

cones

1.79 × 104 or 1.79 × 106

η Rate of trophic factor decay 1.79 × 102

φr Rate of mutation-induced rod degeneration 7.33 × 10−2

fcrit Trophic factor threshold concentration 3× 10−5 or 0.3

B1 Cone profile parameter 1.56

B2 Cone profile parameter 0.158

B3 Rod profile parameter 10.6

b1 Cone profile parameter 71.8

b2 Cone profile parameter 2.67

b3 Rod profile parameter 3.06

the discontinuities in the linear 2 and quadratic cases are
biologically unrealistic, though consistent with the idealised
qualitative target cone degeneration patterns in Figure 5D.

Lastly, in Figure 10, we show simulation results of
proportional cone loss for analytical and numerical φrinv (θ)
and fcritinv (θ), for Uniform (Scaling 1, Figures 10A–D), concave
up Pattern 1A (Scaling 1, Figures 10E–H), linear Pattern 1B
(Scaling 2, Figures 10I–L) and quadratic Pattern 3 (Scaling 2,
Figures 10M–P) target degeneration profiles. Cone degeneration
profiles generally show good agreement with the target tdegen(θ)
profiles. There is some divergence from tdegen(θ) for the
analytical inverses near the fovea and at discontinuous or
nonsmooth portions of tdegen(θ); this is mostly corrected by
the numerical inverses. This correction is not perfect near the
centre of the fovea, where cones still degenerate earlier than
the target profiles. This occurs because it is necessary to replace
the Heaviside step function in λ2(f ) [see Equation (3)] with a
hyperbolic tanh function to satisfy the smoothness requirements
for the numerical solver, with the result that the initiation of
cone degeneration is sensitive to the low TF concentrations
(f (θ , t) < 10−4) in that region.

4. DISCUSSION

The spatio-temporal patterns of retinal degeneration observed in
human retinitis pigmentosa (RP) are well characterised; however,
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the mechanistic explanation for these patterns has yet to be
conclusively determined. In this paper, we have formulated a one-
dimensional (1D) reaction-diffusion partial differential equation
(PDE) model (modified from Roberts, 2022) to predict RP
progression under the trophic factor (TF) hypothesis. Using
this model, we solved inverse problems to determine the rate
of mutation-induced rod loss profiles, φr(θ) = φrinv (θ), and
TF threshold concentration profiles, fcrit(θ) = fcritinv (θ), that
would be required to generate spatio-temporal patterns of cone
degeneration qualitatively resembling those observed in vivo,
were the TF mechanism solely responsible for RP progression.
In reality, multiple mechanisms (including oxidative damage
and metabolic dysregulation, Travis et al., 1991; Valter et al.,
1998; Stone et al., 1999; Punzo et al., 2009, 2012) likely operate
in tandem to drive the initiation and propagation of retinal
degeneration in RP. By using mathematics to isolate the TF
mechanism, in a way that would be impossible to achieve
experimentally, we are able to determine the conditions under
which the TF mechanism alone would recapitulate known
phenotypes. Having identified these conditions, this paves the
way for future biomedical and experimental studies to test
our predictions.

Other mechanisms may give rise to spatio-temporal patterns
of retinal degeneration different from those predicted for the
TF mechanism and may do so using fewer assumptions.
For example, our previous work on oxygen toxicity in RP
demonstrated that this mechanism can replicate visual field loss
Pattern 1 (especially 1B) and the late far-peripheral degeneration
stage of Pattern 3, without imposing heterogeneities on the rod
decay rate or photoreceptor susceptibility to oxygen toxicity
(Roberts et al., 2017, 2018). Further, we hypothesise that the toxic
substance hypothesis (in which dying rods release a chemical
which kills neighbouring photoreceptors) is best able to explain
the early mid-peripheral loss of photoreceptors in Patterns 2 and
3, given the high density of rods in this region. In future work, we
will explore the toxic substance and other hypotheses, ultimately
combining them together in a more comprehensive modeling
framework, aimed at explaining and predicting all patterns of
retinal degeneration in RP.

Spatially uniform φr(θ) and fcrit(θ) profiles fail to replicate
any of the in vivo patterns of degeneration (Figure 4), showing
that heterogenous profiles are required, all else being equal.
Throughout this article, we have considered two scalings on
the rate of TF production by rods, α, and the rate of TF
consumption by cones, β (denoted as Scalings 1 and 2, see
the Inverse Problem section for details). Under Scaling 1, the
rod:cone ratio (Figure 3B) dominates the model behavior [see
Equation (6)], leading to a monotone, central to peripheral
pattern of degeneration, while under Scaling 2, the trophic
factor decay term, ηf , enters the dominant balance [see Equation
(9)], such that degeneration initiates at both the fovea and
(later) at the ora serrata, the degenerative fronts meeting in the
mid-/far-periphery (Figure 4).

As discussed in the Inverse Problem section, the rate of
mutation-induced rod loss, φr(θ), is known to be spatially
heterogeneous in humans with RP (Milam et al., 1998). The
φr(θ) profile predicted for Pattern 3 is consistent with the

TABLE 3 | Target cone degeneration profiles, tdegen(θ ).

Degeneration

pattern

Sub-pattern Cone degeneration time (tdegen(θ ))

Uniform — t1

Pattern 1A Linear t2 − (t2 − t0)θ

Quadratic (concave

up)

(t2 − t0)(θ − 1)2 + t0

Quadratic (concave

down)

t2 − (t2 − t0)θ
2

Pattern 1B Linear t2 −
(t2−t1 )

θd1
θ if θ ≤ θd1

t0 +
(t1−t0 )

(θd2−θd1
) (θ − θd1 ) if θd1 < θ ≤ θd2

t1 +
(t1−t0 )
(1−θd2

) (θd2 − θ ) if θ ≥ θd2

Quadratic (t2−t1 )

θ2
d1

(θ − θd1 )
2 + t1 if θ ≤ θd1

t1 −
(t1−t0 )

(θd2−1)2
(θ − θd2 )

2 if θ > θd1

Exponential A1e
−a1θ + A2θe

−a2θ + A3

Pattern 3 Linear 1 t2 −
(t2−t0 )

θd4
θ if θ ≤ θd4

t0 +
(t1−t0 )
(1−θd4

) (θ − θd4 ) if θ ≥ θd4

Linear 2 t2 −
(t2−t1 )

θd3
θ if θ ≤ θd3

t0 if θd3 < θ ≤ θd5

t0 +
(t1−t0 )
(1−θd5

) (θ − θd5 ) if θ ≥ θd5

Quadratic (t2−t1 )

θ2
d3

(θ − θd3 )
2 + t1 if θ ≤ θd3

(t1−t0 )

(1−θd4
)2
(θ − θd4 )

2 + t0 if θ > θd3

Cubic C3θ
3 + C2θ

2 + C1θ + C0

Parameter values*

t0 = 100 t1 = 150 t2 = 200 θd1 = 0.1 θd2 = 0.55

θd3 = 0.3 θd4 = 0.4 θd5 = 0.6 A1 = 125 A2 = 600

A3 = 75 a1 = 71.8 a2 = 3.06

C0 = t2 = 200

C1 =
−2(t2−t0 )+3(t2−t0 )θd4−(t2−t1 )θ

3
d4

θd4
(1−θd4

)2
= −5.78× 102

C2 =
(t2−t0 )−3(t2−t0 )θ

2
d4

+2(t2−t1 )θ
3
d4

θ2
d4

(1−θd4
)2

= 1.01× 103

C3 =
−(t2−t0 )+2(t2−t0 )θd4−(t2−t1 )θ

2
d4

θ2
d4

(1−θd4
)2

= −4.86× 102

*We choose θd1 and θd2 such that θd2 = (θd1 + 1)/2, so that θd2 lies halfway between

θ = θd1 and θ = 1.

preferential loss of rods in the mid-peripheral retina noted
by Milam et al. (1998) for human RP. A more extensive
biomedical investigation is required to characterise quantitatively
the diversity of φr(θ) profiles across individuals and for different
mutations. This would make it possible to determine if the
φr(θ) profiles predicted by our model for cone degeneration
Patterns 1A and 1B are realised in human RP patients with
those cone degeneration patterns. To the best of our knowledge,
we are the first to suggest that the intrinsic susceptibility of
cones to RdCVF deprivation, characterised in our models by the
TF threshold concentration, fcrit(θ), may vary across the retina.
Assuming it does vary, whatmight account for this phenomenon?
There is a precedent for special protection being provided to
localised parts of the retina. For example, experiments in mice
have found that production of basic fibroblast growth factor
(bFGF) and glial fibrillary acidic protein (GFAP) is permanently
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upregulated along the retinal edges, at the ora serrata and
optic disc, to protect against elevated stress in these regions
(Mervin and Stone, 2002; Stone et al., 2005). Similarly, in the
human retina, rods (though not cones) contain bFGF, with a
concentration gradient increasing toward the periphery (Li et al.,
1997, potentially explaining the relative sparing of rods often
observed at the far-periphery). By analogy, we speculate that, in
the human retina, cone protective factors may be upregulated at
the fovea to compensate for the low RdCVF concentrations in
that region, lowering the local value of fcrit(θ). This hypothesis
awaits experimental confirmation.

We solved the inverse functions, φrinv (θ) and fcritinv (θ), both
analytically (algebraically) and numerically (computationally).
Analytical solutions are approximations; however, they have
the advantage of being easier to compute (increasing their
utility for biomedical researchers) and provide a more intuitive
understanding of model behavior, while numerical solutions are
more accurate, though computationally expensive. We calculated
the inverses for a range of target cone degeneration profiles,
consisting of a Uniform profile and profiles which qualitatively
replicate those found in vivo: Pattern 1A, Pattern 1B and
Pattern 3 (Pattern 2 being inaccessible to a 1D model; see
Figure 5 and Table 3).

The shapes of the inverse functions are determined partly
by the rod and cone distributions, p̃r(θ) and p̃c(θ), and partly
by the target cone degeneration profile, tdegen(θ) [see Equations
(7,8,10,11)]. As such, in the Uniform case (Figure 6), the Scaling
1 inverse profiles take a similar shape to the rod:cone ratio
(Figure 3B), the inverses being lower toward the fovea to
compensate for the smaller rod:cone ratio and hence lower
supply of TF to each cone. The Scaling 2 inverse profiles follow
a similar trend but decrease toward the ora serrata after peaking
in the mid-/far-periphery due to the greater influence of the
trophic factor decay term under this scaling. Interestingly, the
shapes of these inverse profiles bear a striking resemblance to
the cone degeneration profiles for spatially uniform φr(θ) and
fcrit(θ) (Figure 4). This is because lower values of the inverses
are required to delay degeneration, in those regions where
cones would otherwise degenerate earlier, to achieve a uniform
degeneration profile. The inverse functions resemble vertically
flipped versions of the target cone degeneration profiles for
Patterns 1A, 1B and 3 (Figures 7, 8), this being more apparent
for Patterns 1B and 3 due to their more distinctive shapes. This
makes sense since lower inverse values are required for later
degeneration times. Scaling 2 inverses typically lie below Scaling
1 inverses, compensating for the fact that degeneration generally
occurs earlier under Scaling 2 than under Scaling 1 for any given
φr(θ) and fcrit(θ).

Analytical inverses give rise to cone degeneration profiles that
accurately match the target cone degeneration profiles, except
near the fovea (centred at θ = 0, where the validity of the
analytical approximation breaks down) and where the target
tdegen(θ) profile is nonsmooth or discontinuous (i.e. linear and
quadratic Pattern 1B, and linear 1, linear 2 and quadratic Pattern
3; see Figure 10 for examples). Numerical inverses improve
accuracy in these regions, consistently taking lower values near
the fovea, delaying degeneration where it occurs prematurely
under the analytical approximation.

We have assumed throughout this study that at least one of
φr(θ) and fcrit(θ) is spatially uniform. It is possible, however, that
both vary spatially. In this case there are no unique inverses;
however, if the profile for one of these functions could be
measured experimentally, then the inverse problem for the
remaining function could be solved as in this paper.

This work could be extended both experimentally and
theoretically. Experimental and biomedical studies could
measure how the rate of mutation-induced rod loss and TF
threshold concentration vary with location in the retina, noting
the spatio-temporal pattern of cone degeneration and comparing
with the inverse φrinv (θ) and fcritinv (θ) profiles predicted by our
models. Curcio et al. (1993) have previously measured variation
in the rate of rod loss in normal (non-RP) human retinas (where
rods degenerated most rapidly in the central retina); a similar
approach could be taken to quantify the rate of rod loss in human
RP retinas. The parameter fcrit is less straightforward to measure.
Léveillard et al. (2004) incubated cone-enriched primary cultures
from chicken embryos with glutathione S-transferase-RdCVF
(GST-RdCVF) fusion proteins, doubling the number of living
cells per plate compared with GST alone. If experiments of
this type could be repeated for a range of controlled RdCVF
concentrations, then the value of fcrit could be identified.
Determining the spatial variation of fcrit(θ) in a foveated
human-like retina may not be possible presently; however, the
recent development of retinal organoids provides promising
steps in this direction (O’Hara-Wright and Gonzalez-Cordero,
2020; Fathi et al., 2021). If organoids could be developed with a
specialised macular region, mirroring that found in vivo, then
the minimum RdCVF concentration required to maintain cones
in health could theoretically be tested at a variety of locations.
Further, the distribution of RdCVF, predicted in our models,
could theoretically be measured in post-mortem human eyes
using fluorescent immunohistochemistry, as was done for the
protein neuroglobin by Ostojić et al. (2008) and Rajendram and
Rao (2007), and perhaps also fluorescent immunocytochemistry
as was done for bFGF by Li et al. (1997). In particular, it would
be interesting to see if RdCVF concentration varies with retinal
eccentricity as starkly as our model predicts, with extremely low
levels in the fovea.

In future work, we will extend our mathematical model
to two spatial dimensions, accounting for variation in the
azimuthal/circumferential dimension (allowing us to capture
radially asymmetric aspects of visual field loss Patterns 2 and
3, and to account for azimuthal variation in the rod and cone
distributions), and use quantitative target cone degeneration
patterns derived from SD-OCT imaging of RP patients (e.g.,
as in Escher et al., 2012). We will also adapt the model to
consider animal retinas for which the photoreceptor distribution
has been well characterised (e.g., rats, mice and pigs, Chandler
et al., 1999; Gaillard et al., 2009; Ortín-Martínez et al.,
2014).

In conclusion, we have formulated and solved a mathematical
inverse problem to determine the rate of mutation-induced
rod loss and TF threshold concentration profiles required to
explain the spatio-temporal patterns of retinal degeneration
observed in human RP. Inverse profiles were calculated for a
set of qualitatively distinct degeneration patterns, achieving a
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close match with the target cone degeneration profiles. Predicted
inverse profiles await future experimental verification.
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