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Spared performance but increased uncertainty in schizophrenia: Evidence 
from a probabilistic decision-making task 
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A B S T R A C T   

Aberrant attribution of salience to in fact little informative events might explain the emergence of positive 
symptoms in schizophrenia and has been linked to belief uncertainty. Uncertainty is thought to be encoded by 
neuromodulators, including norepinephrine. However, norepinephrinergic encoding of uncertainty, measured as 
task-related pupil dilation, has rarely been explored in schizophrenia. Here, we addressed this question by 
comparing individuals with a disorder from the schizophrenia spectrum to a non-psychiatric control group on 
behavioral and pupillometric measures in a probabilistic prediction task, where different levels of uncertainty 
were introduced. Behaviorally, patients performed similar to controls, but their belief uncertainty was higher, 
particularly when instability of the task environment was high, suggesting an increased sensitivity to this 
instability. Furthermore, while pupil dilation scaled positively with uncertainty, this was less the case for pa-
tients, suggesting aberrant neuromodulatory regulation of neural gain, which may hinder the reduction of un-
certainty in the long run. Together, the findings point to abnormal uncertainty processing and 
norepinephrinergic signaling in schizophrenia, potentially informing future development of both psychopha-
rmacological therapies and psychotherapeutic approaches that deal with the processing of uncertain information.   

1. Introduction 

Aberrant salience attribution to insignificant events has been sug-
gested to explain various symptoms in schizophrenia, including positive 
symptoms such as delusions (Kapur, 2003) and cognitive biases such as 
‘jumping-to-conclusions’, where patients typically make or alter de-
cisions based on little evidence (Speechley et al., 2010). Recent theories 
propose that salience is affected by uncertainty (Adams et al., 2013; 
Broyd et al., 2017; Fletcher and Frith, 2009). Here, increased attribution 
of salience (‘hypersalience’) to external information may result from 
increased uncertainty surrounding cognitive representations in the 
mind's belief hierarchy. Consequentially, perception and belief updating 
are biased towards external information and sensory events as opposed 
to prior beliefs, explaining the experience of ‘strange percepts’ in a state 
of delusional mood (Adams et al., 2013). Delusions may then manifest as 
an attempt to give meaning to these ‘strange percepts’ (Fletcher and 
Frith, 2009). Increased belief uncertainty might further explain why 
patients with schizophrenia often exhibit maladaptive switching 

behavior in probabilistic reversal learning tasks (Culbreth et al., 2016a; 
Kaplan et al., 2016; Li et al., 2014; Murray et al., 2008; Schlagenhauf 
et al., 2014; Waltz et al., 2013). In these tasks, participants have to learn 
which choice option is more likely to result in a positive outcome and 
have to adapt their choices once the choice-outcome probability re-
verses. A positive outcome should encourage staying with the previous 
choice, whereas a negative outcome might either reflect the current 
choice-outcome probability (i.e. the system's intrinsic noise), in which 
case it should be disregarded, or indicate a change in probabilities, 
hence encouraging a choice switch. Increased choice switching observed 
in schizophrenia often occurs in response to both positive and negative 
outcomes (Culbreth et al., 2016a; Deserno et al., 2020; Waltz et al., 
2013), though some have reported a decreased sensitivity particularly to 
positive feedback (Li et al., 2014; Schlagenhauf et al., 2014). Patients' 
impaired performance in these tasks may indicate either deficient 
learning about choice-outcome probabilities (henceforth noise; Murray 
et al., 2008; Reddy et al., 2016; Weickert et al., 2010), or an over-
estimation of the likelihood for those probabilities to change (volatility) 
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(Cole et al., 2020; Deserno et al., 2020; Schlagenhauf et al., 2014), and 
possibly both (Waltz et al., 2013). A misrepresentation of these different 
types of uncertainties (noise and volatility) may hence cause patients 
with schizophrenia to attribute too much salience to a given outcome, 
resulting in increased switching between the different choice options 
even when it is not beneficial. Clearly, increased salience attribution to 
new events may alternatively or additionally manifest in higher uncer-
tainty and instability of beliefs. 

Mechanistically, hypersalience in schizophrenia has been linked to 
dysfunctional dopaminergic signaling (Heinz and Schlagenhauf, 2010), 
but the role of norepinephrine is less explored, despite its suggested 
association with uncertainty processing (Yu and Dayan, 2005). Nor-
epinephrinergic activity in the locus coeruleus is reflected in pupil size 
(Joshi et al., 2016; Rajkowski et al., 1994; Samuels and Szabadi, 2008) 
and indeed, task-related pupil dilation responds to both outcome sur-
prise and environmental volatility (Browning et al., 2015; Lawson et al., 
2017; Nassar et al., 2012; Preuschoff et al., 2011), scales with the extent 
to which an outcome should evoke belief updating (Hämmerer et al., 
2019), and signals fluctuations in neural gain and learning (Eldar et al., 
2013). Early studies showed that pupil size scales less with the proba-
bilities of presented stimuli in individuals with schizophrenia (Stein-
hauer and Zubin, 1982; Steinhauer et al., 1979), indicating a reduced 
adaptation of neural gain to uncertainty. However, it is unclear how this 
diminished pupil response would be affected by volatility and uncer-
tainty as experienced by the individual. Furthermore, group differences 
in choice switching and the extent to which they are affected by vola-
tility, may depend on the particular noise conditions of the task. While 
the most commonly chosen choice-outcome probabilities are 0.20 and 
0.80 (Culbreth et al., 2016a; Deserno et al., 2020; Waltz and Gold, 2007; 
Waltz et al., 2013), the differential effects of other noise conditions and 
their interaction with volatility remain to be explored. 

To address the above questions, we compared individuals with a 
disorder from the schizophrenia spectrum to a non-psychiatric control 
group in a probabilistic prediction task where noise and volatility were 
manipulated independently. Using cognitive-computational models, we 
estimated uncertainty related parameters and latent variables behind 
the observed behavior, and investigated their relationship with clinical 
symptoms, and pupil dilation. Here, we expected to observe increased 
choice switching and an overestimation of volatility in patients, whereas 
pupil responses in this group were presumed to scale less with uncer-
tainty and the extent to which a new outcome signals belief updating, 
indicative of a maladaptive adjustment of neural gain to the degree with 
which new events are salient and should lead to internal model updates. 

2. Methods and materials 

Participants had to meet the following inclusion criteria: (1) 18 to 65 
years old, (2) capacity for informed consent, (3) very good command of 
German, (4) IQ above 80, (5) normal or corrected-to-normal eyesight, 
(6) no history of neurological disorders, (7) no substance dependence, 
(8) no recreational drug consumption within one week prior to the 
assessment (excluding alcohol, nicotine, and caffeine), (9) a primary 
diagnosis of schizophrenia or schizoaffective disorder (SZ group; DSM- 
V; American Psychiatric Association, 2013) or no psychiatric diagnosis 
at all (HC group), verified with the Mini-International Neuropsychiatric 
Interview (MINI; Sheehan et al., 1998). The SZ group included in– and 
outpatients from the Department of Psychiatry and Psychotherapy of the 
University Medical Center Hamburg-Eppendorf (UKE), Germany, who 
were contacted directly or replied to announcements made on site. 
Control participants were recruited via student job websites and 
advertising leaflets. In total, 62 participants (SZ: n = 32, HC: n = 30) 
were recruited whereof one was excluded from all analyses because they 
failed to meet the inclusion criteria. The study was approved by the local 
ethics committee of psychologists at the UKE. All participants gave 
written informed consent prior to the study. 

2.1. Measures 

2.1.1. Probabilistic prediction task 
To measure decision-making and belief updating under different 

noise and volatility conditions, a newly developed probabilistic pre-
diction task was administered (Kreis et al., 2020b, preprint). On each 
trial, participants had to predict whether an upcoming Gabor patch 
would be tilted to the left or the right from the center (left-alt key for 
‘left-tilted’, right-ctrl key for ‘right-tilted’; orientation ± 45◦; see 
Fig. 1A). The probability for the left- or the right-tilted patch was un-
known to the participants and alternated between 85:15 (indicating 
outcome schedule, namely, 85% left-tilted and 15% right tilted) and 
60:40 and the reverse (15:85, 40:60) after 20 (±4) trials, constituting 
conditions of high (60:40/40:60) and low noise (85:15/15:85; Fig. 1B). 
Participants were instructed to track the probabilities and the changes as 
good as possible and to minimize the amount of prediction errors. In a 
first, volatile block of the task, probability changes were hidden, and in a 
second, cued block, changes were announced, constituting conditions of 
high (volatile) and low (cued) volatility, each spanning 160 trials (+12 
and 18 practice trials, respectively). For the cued block, participants 
were advised to ‘reset’ their beliefs about the distribution of stimuli at 
every announced change point, and relearn the new underlying distri-
bution through choice-outcome observations. While the order of the 
noise conditions was the same for both blocks and across participants to 
ensure the same reward structure across blocks, the identity of the 
majority Gabor patch was inverted (Fig. 1B). Since time points of 
changes were identical in both blocks but explicitly announced in the 
cued block, block order was not counterbalanced to prevent facilitation 
of the detection of hidden changes in the volatile block. Importantly, and 
in line with previous studies on volatility overestimation in psychotic 
disorders (Cole et al., 2020; Deserno et al., 2020), the term ‘volatility’ as 
used here describes the subjectively perceived volatility (instability) of 
the environment. It should be noted, however, that some authors 
differentiate between the volatility of the environment and the subjec-
tive unexpected uncertainty that this volatility induces (e.g. Soltani and 
Izquierdo, 2019). 

Behavioral task performance was measured as accuracy (proportion 
of times where the current majority stimulus was predicted, calculated 
separately for the two noise conditions per block) and proportion of 
choice switches (proportion of times where prediction on trial t + 1 was 
different from prediction on trial t, calculated separately for the two 
noise conditions per block; see Fig. 1C). 

2.1.2. Working memory task: visual digit span task 
To control for inter-individual differences in working memory ca-

pacity, a visual, computerized version of the digit span subtest of the 
Wechsler adult intelligence scale (WAIS-IV; Wechsler, 2008) was 
administered (for details see Kreis et al., 2020a). Working memory ca-
pacity was measured as the maximum amount of digits recalled in the 
correct order. 

2.1.3. Clinical assessments and demographics 
Demographic and clinical variables (see Table 1) were recorded 

during an interview. The MINI (Sheehan et al., 1998) was applied to 
confirm the self-reported information about the presence (SZ group) or 
absence (HC group) of clinical diagnoses. Within the SZ group, positive 
and negative symptoms were assessed with the Positive and Negative 
Symptoms Scale (PANSS; Kay et al., 1987). Negative symptom scores 
were calculated as suggested by van der Gaag et al. (2006; subsequently 
PANSS-NvdGaag). To estimate premorbid intelligence, the German mul-
tiple choice vocabulary test (WST; Lehrl et al., 1995) was administered. 

2.1.4. Pupil size 
Pupil diameter was recorded from the left (in seven cases from the 

right) eye at a sampling rate of 500 Hz with an infrared video-based eye 
tracker (Eyelink 1000, SR Research) during the prediction task. 
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2.2. Procedure 

First, demographic and clinical variables were recorded. Next, the 
volatile block of the prediction task was administered, followed by the 
working memory task, a brief decision-making task (not reported here) 
and the WST. Then, the cued block of the prediction task was completed. 
Administration of the measures between the two blocks of the prediction 
task was supposed to reduce any potential strain associated with the eye 
tracking set up and to help participants start the cued block with a new 
mindset, reducing potential priming effects of the experiences within the 
volatile block. At the end of the session, the clinical assessment was 
conducted with the MINI and the PANSS. 

2.3. Analysis 

To test for the relevance of potential covariates, SZ and HC group 
were compared regarding age, education, premorbid verbal intelligence 
and working memory capacity, using non-parametric methods when 
variables were not normally distributed. To investigate the relationships 
between task conditions, group membership, behavioral performance, 
pupil dilation, and latent variables as extracted from cognitive- 

computational models, linear mixed-effects models were implemented. 
Their residuals were tested for normality and dependent variables were 
cube root, square root or square transformed if normality was violated. 
Group-level parameters from the winning cognitive-computational 
model (estimated using the hierarchical Bayesian approach) were 
compared between groups and task conditions by contrasting their 
posterior sampling distributions (Zhang et al., 2020). Associations be-
tween symptoms and cognitive-computational parameters were tested 
with Spearman correlations (ρ) under conditions of non-normality. 
Testing was conducted with a significance level of 0.05 using R (R 
version 3.5.1; R Core Team, 2018). 

2.3.1. Cognitive-computational modelling of behavior 
To quantify latent cognitive processes, various cognitive- 

computational models were fitted to participants' predictions (i.e. ‘left’ 
or ‘right’) and observed outcomes (i.e. correct or incorrect) for the 
volatile and the cued block, respectively, and separately for the SZ and 
the HC group. This approach has the benefit that both group level and 
individual level are simultaneously accounted for. Importantly, the 
same priors were used in the SZ and the HC models, respectively, so that 
any group differences that may emerge in model parameters after fitting 

Fig. 1. Probabilistic prediction task. A) Trial structure: Example trials 1, 2 and 21 are displayed. Each trial started with the presentation of a vertically striped Gabor 
patch. Participants then had to predict via a button press whether the upcoming patch was going to be either left- or right-tilted from the center. After a fixed two- 
second delay, the outcome was presented and remained on screen for another 2 s. Then the vertical patch reappeared, prompting the next trial/prediction. Within the 
cued task block, changes in noise conditions were announced in the beginning of the respective trial (see B) through a ‘change’ message that appeared on screen. No 
further information was provided about the nature of the upcoming noise condition. Participants had to press ‘enter’ in response to that change message before they 
could continue with the task in order to guarantee that they perceived it. B) Task structure: the probabilities for the left- (p(left)) and the right-tilted (1-p(left)) Gabor 
patch changed at fixed time points after 20 ± 4 trials. In the volatile block (solid, red line), these changes were hidden, and in the cued block (dashed, black line) they 
were announced (see A). Whereas the timing of change points and the order of the different noise conditions were identical across blocks (lines are only jittered for 
display), the identity of the respective majority stimulus within a block was inversed. C) Proportion of accurate predictions (prediction of current majority stimulus; 
left panels) and proportion of choice switches (prediction on trial t + 1 is different from prediction on trial t; right panels) for each group on trials of high and low 
noise within the volatile and the cued block of the task. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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must be due to underlying group differences. The models included a 
win-stay-loose-shift model (Worthy and Todd Maddox, 2014), four 
different Reinforcement Learning models (den Ouden et al., 2013; 
Gläscher et al., 2008; Pearce and Hall, 1980; Rescorla and Wagner, 
1972), and two variants of a Hidden Markov Model (HMM; Schla-
genhauf et al., 2014) – all chosen to allow for the fact that participants 
might employ different strategies when solving the task (see Supple-
mentary material for details). For the cued block, additional variants of 
all models were specified that incorporated belief resets whenever a 
change in probabilities was announced. 

Models were estimated using a Markov chain Monte Carlo (MCMC) 
within the hierarchical Bayesian framework (Ahn et al., 2017; Gelman 
et al., 2013). We further conducted a model recovery analysis and all 
candidate models could be properly identified and recovered (Wilson 
and Collins, 2019; Crawley et al., 2020; see Supplementary material). 
For both groups and both blocks, respectively, a variant of the HMM 
provided the best fit (see Supplementary material for model compari-
son). The HMM, a Bayesian inference model, assumes a higher-order 
representation of the task structure that accounts for the instability of 
the task environment. Here, participants are expected to choose ‘left’ or 
‘right’ depending on whether they believe to be in a left- (‘majority 
stimulus is left’) or right-tilted hidden state (‘majority stimulus is right’). 
State beliefs are inferred and updated on each trial, depending on the 
history of choice-outcome pairs as well as the estimated transition 
probability γ, which quantifies how the two hidden states are expected 
to change. Thus, γ indicates a participant's perceived volatility of the 
task environment. In the winning model (HMMRP), positive (correct 
prediction) and negative (incorrect prediction) feedback sensitivity 
were allowed to differ since positive and negative feedback may affect 
participants' belief updating differently. For the cued block, the winning 
model included belief resets. Here, γ was expected to be lower than in 
the volatile block due to the absence of sudden, hidden changes. How-
ever, γ would still capture the randomness of the outcomes as driven by 
noise and might further reflect participants' uncertainty about the noise 
conditions overall. 

As a measure of trial-wise uncertainty regarding the hidden states, 
belief entropy, H(St), was estimated based on the posterior for the 

different probabilities of the prediction to be correct. On a given trial, 
entropy reflects a participant's uncertainty about the current task state: 

H(St) = −
∑2

i=1
P(St = i)logP(St = i) (1) 

Hence, entropy is highest when the probabilities associated with the 
different task states are assumed to be uniform (Hämmerer et al., 2019). 
Since uncertainty slows down reaction times in decision-making para-
digms (e.g. Volz et al., 2005), higher entropy values may lead to pro-
longed reaction times on subsequent trials. 

To obtain a measure that indicates to which extent a state belief 
should be updated on a given trial, Bayesian surprise was estimated as 
the Kullblack-Leibler divergence of the trial-wise state beliefs before (P 
(Stpre)), and after an outcome observation (P(Stpost)), extracted from the 
HMMRP: 

DKL
(
P
(
Stpost

)⃦
⃦P
(
Stpre

) )
=
∑2

i=1
P
(
Stpre = i

)
log

(
P
(
Stpost = i

)

P
(
Stpre = i

)

)

(2)  

2.3.2. Pupil signal preprocessing 
The pupil signal was corrected for eye blinks and other artefacts 

based on the signal's velocity and subsequent cubic-spline interpolation 
(Mathôt et al., 2018). Missing data of more than 1000 consecutive 
milliseconds were not interpolated but treated as missing in later ana-
lyses. The corrected signal was smoothed with a 3 Hz low pass Butter-
worth filter and z-scored per task block and participant. The z-scored 
signal was baseline-corrected per trial through subtraction of the 
average signal of the 500 ms preceding outcome onset. Trials where 
more than 50% of the signal were missing or interpolated were treated 
as missing in subsequent analyses. 

2.3.3. Data exclusion 
For one participant, all data of the cued block were treated as missing 

as they aborted before completion. Another participant was excluded 
from the computational model of the volatile block, as prior modelling 
attempts resulted in an inappropriate fit. All pupil data of a participant 

Table 1 
Sample demographics per group (total sample size = 61).a   

SZ (n = 31) HC (n = 30) 

p n M (SD) Md (IQR) n M (SD) Md (IQR) 

Gender (m/f) 16/15   13/17    0.696 
Education (“1”/“2”/“3”) 1/2/28   1/5/24    0.454 
Age  47.13 (11.43) 48 (15)  45.80 (11.64) 47 (16.75)  0.740 
WST  33.55 (3.43) 34 (3)  32.37 (4.55) 34 (6.25)  0.436 
WMC 29b 6.10 (1.47) 6 (2) 30 6.77 (1.36) 7 (1)  0.071 
PANSS        

Positive Scale  11.77 (4.18) 11 (6)     
Negative Scalec  12.71 (4.43) 12 (4.5)     

Total score  49.29 (14.13) 45 (15.50)     
Time since onset  19.39 (11.73) 19 (11.50)     
No. of episodesd  8.92 (11.83) 4 (4)     
Inpatients/outpatients 6/25       
Antipsychotic medication 26       

First generation 1       
Second generation 21       
Both 4       

Other psychotropic drugs 13       

Notes: Sample sizes (n), counts, means (M; with standard deviations SD) and medians (Md; with inter-quartile ranges IQR) are displayed. Education was recorded in 
German school system categories corresponding to completion of 1 = secondary school I (up to age 15), 2 = secondary school II (up to age 16), 3 = 6th form college (up 
to age 19); WST = German vocabulary test; WMC = working memory capacity; time since onset = self-reported years passed since the first psychosis diagnosis; no. of 
episodes = self-reported total amount of stationary admissions due to a psychotic episode; p-values for group comparisons are provided for gender and education (Chi- 
squared tests), age, WMC and the WST scores (Mann–Whitney U tests). 

a A subgroup of this sample (n = 59) was previously described in Kreis et al. (2020a). 
b WMC results are only available for 29 patients as technical errors caused incorrect scores for two of the patients. 
c PANSS-NvdGaag: Negative symptom scores calculated as suggested by van der Gaag et al. (2006). 
d No data for one participant. 
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within a task block were treated as missing if more than 50% of trials 
were missing within that block (no. of exclusions in volatile block: nHC 
= 1, nSZ = 5; cued block: nHC = 1, nSZ = 5, three consistent with volatile 
block). 

3. Results 

No significant group differences emerged in any of the demographic 
variables or working memory capacity (Table 1). 

3.1. Behavioral performance: accuracy and choice switches 

Accuracy (square transformed) was higher when volatility was low 
(i.e. in the cued task block; b = 0.10, t = 4.25, p < .001; Fig. 1C) and 
within the low-noise condition (b = − 0.23, t = − 9.51, p < .001; Fig. 1C). 
The interaction between volatility and noise was not significant (b =
− 0.04, t = − 1.05, p = .297). When including group as a predictor, 
neither group membership (b = − 0.05, t = − 1.03, p = .308), nor any of 
the interactions between volatility and group (b = 0.08, t = 1.61, p =
.113), noise and group (b = 0.02, t = 0.41, p = .680), or volatility, noise 
and group (b = − 0.02, t = − 0.29, p = .773) showed a significant effect. 

Proportion of choice switches was lower in the low volatility con-
dition (b = − 0.06, t = − 3.14, p = .003) and higher on high-noise trials (b 
= 0.11, t = 8.80, p < .001). The interaction between volatility and noise 
was not significant (b = 0.00, t = 0.06, p = .950). Including group as a 
predictor revealed no significant effect for group (b = 0.04, t = 1.25, p =
.217), or a noise by group interaction (b = 0.00, t = 0.17, p = .862). The 
interaction between volatility and group indicated that patients 
decreased the amount of choice switches more when moving from the 
volatile to the cued block (see Fig. 1C). However, this effect was not 
significant (b = − 0.06, t = − 1.86, p = .068), and neither was the three- 
way interaction of volatility, noise and group (b = − 0.03, t = − 0.90, p =
.372). Exploratory analyses regarding the effect of feedback on choice 
switches revealed a negative effect for positive as opposed to negative 
feedback (correct vs. incorrect prediction: b = − 0.36, t = − 9.33, p <
.001), which was not moderated by group (see Supplementary material). 

3.2. Cognitive-computational parameters 

The HMMRP (see Section 2.3.1) entailed three parameters: sensitivity 
to positive feedback (c), sensitivity to negative feedback (d), and par-
ticipants' beliefs about the transition probability (γ). The corresponding 
group parameters per block are presented in Table 2. 

To test for effects of volatility condition, group and their interaction 
on these group parameters, posterior distribution comparisons were 
conducted and the 89% highest density intervals (HDI; see McElreath, 
2020) of the differences between block, group and their respective dif-
ference were investigated. For γ, the comparison revealed credibly 
higher values (Table 2) in the volatile than in the cued task block, 
without indication of a main group effect or an interaction (Fig. 2). For c, 
all HDIs included zero and for d, there was again only a credible effect of 
task block (Fig. 2). 

We further explored how individual model parameters were related 
to positive or negative symptoms within the SZ group (Table 3). Here, 
severity of positive symptoms was associated with a decreased sensi-
tivity to positive feedback c under low volatility (ρ = − 0.40, p = .030), 
but this effect did not survive Bonferroni correction for multiple com-
parisons (αadj = 0.004). Exploratory analyses regarding the relationship 
between symptoms and task behavior pointed towards a positive asso-
ciation between negative symptoms and accuracy in the cued block, but 
again the effect did not survive Bonferroni correction (see Supplemen-
tary material). 

3.3. Entropy and Bayesian surprise by task conditions and group 

The effects of volatility, noise, group, and their interactions on trial- 
wise belief entropy (uncertainty) and Bayesian surprise, both cube root 
transformed, were assessed with linear mixed-effects models. 

Uncertainty was higher on high-noise trials (Table 4) and within the 
SZ group (b = 0.11, t = 2.97, p = .004), though this seemed to be most 
pronounced during high volatility (b = − 0.11, t = − 3.09, p = .003). To 
elucidate the relationship between uncertainty and behavior, an addi-
tional analysis on reaction times was conducted. This revealed pro-
longed reaction times following trials of higher uncertainty (b = 0.02, t 
= 4.15, p < .001; see Supplementary material). 

Bayesian surprise was significantly higher on high-noise trials but 
did not differ by volatility or between groups (Table 5). 

3.4. Pupil response to entropy and Bayesian surprise 

To assess the extent to which pupil dilation scaled with entropy 
(uncertainty) and Bayesian surprise, two separate linear mixed-effects 
models were constructed, where trial-wise maximum pupil dilation 
during outcome presentation (square root transformed to normalize 
model residuals) functioned as the dependent variable, respectively. To 
control for any prior differences in pupil size variation, average varia-
tion in baseline pupil size (standard deviations) was compared between 
groups, yielding no significant difference within the volatile (U = 451, p 
= .211; MdHC = 0.14, MdSZ = 0.12; n = 55) or the cued task block (U =
392, p = .618; MdHC = 0.15, MdSZ = 0.14; n = 54). To control for po-
tential effects of the anticholinergic load induced by daily dosage of the 
prescribed antipsychotics in the SZ group (Minzenberg et al., 2004; 
Naicker et al., 2016), benztropine mesylate equivalents, where available 
(n = 27), were calculated and correlated with averaged baseline varia-
tion as well as averaged maximum pupil dilation. This revealed no sig-
nificant relationships in the volatile (baseline variation: ρ = 0.23, p =
.304; pupil dilation: ρ = 0.20, p = .368) or the cued block (baseline 
variation: ρ = 0.27, p = .236; pupil dilation: ρ = 0.17, p = .456). 

Overall, pupil dilation was larger on trials of increased uncertainty 
and Bayesian surprise, respectively (both z-scored per task block and 
participant; see Table 6). However, the positive relationship between 
pupil dilation and entropy was smaller in the SZ group (b = − 0.01, t =
− 2.53, p = .011), indicating that patients adapted their pupil size less in 
response to uncertainty (Fig. 3). Including block and associated in-
teractions into the model did not reveal any significant block related 
effects (see Supplementary material). 

4. Discussion 

Here, we investigated decision-making under uncertainty in a 
probabilistic prediction task where noise and volatility were indepen-
dently manipulated to assess their effect on behavior in individuals with 
a diagnosis from the schizophrenia spectrum (SZ group) and non- 
psychiatric controls (HC group). 

While task manipulation had the expected effects, with lower accu-
racy and more switches when noise or volatility was high, groups did not 
differ. This contrasts previous findings of impaired probabilistic learning 
and increased switching behavior in patients with schizophrenia and 

Table 2 
Group parameters of the HMMrp per group and block.   

Volatile block Cued block 

HC SZ HC SZ 

μ SD μ SD μ SD μ SD 

Gamma (γ)  0.11  1.00  0.12  0.85  0.09  1.15  0.05  0.70 
Sensitivity to 

positive 
feedback (c)  

0.96  1.71  0.84  1.88  0.92  1.20  0.91  1.19 

Sensitivity to 
negative 
feedback (d)  

0.87  1.58  0.86  1.28  0.80  1.67  0.67  1.98  
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first-episode psychosis (Culbreth et al., 2016a; Deserno et al., 2020; 
Murray et al., 2008; Waltz et al., 2013) and may in part reflect task 
paradigm differences. In studies where a monetary reward is imple-
mented, group differences may emerge due to differences in valuation 
processes (Chang et al., 2019; Culbreth et al., 2016b). Importantly, 
average accuracy was above chance level for all task conditions, indi-
cating successful learning and effort investment even in the absence of 
an external reward. Another difference concerns the selected noise 
conditions: in most reversal learning tasks, only one noise condition is 
employed (Culbreth et al., 2016a; Deserno et al., 2020; Waltz et al., 
2013). Here, noise conditions varied to test whether this moderates 
group differences. The low-noise condition (85:15) may have been 
easier to track, even for patients, whereas the high-noise condition 

(60:40) may have been so demanding that even the HC group experi-
enced difficulties - both contributing to smaller group differences. 

This study, however, is not the first to report intact probabilistic 
learning in schizophrenia. Reddy et al. (2016) found preserved initial 
and reversal learning in a substantial subgroup of patients. Meanwhile, 
deficits in an impaired subgroup were linked to decreased feedback 
sensitivity and diminished neurocognitive performance, e.g. lower 
working memory capacity. Similar to their sample, our sample con-
tained a large proportion of outpatients. Furthermore, working memory 
capacity did not differ significantly between SZ and HC group and 
groups were matched on relevant demographic variables and premorbid 
verbal intelligence. The general neurocognitive ‘fitness’, the rather sta-
ble psychopathology, and the comparable demographics of our sample 

Fig. 2. Density plots displaying the posterior distribution of the HMMRP parameters fitted separately per group and per block. Dashed vertical lines indicate the 
posterior mean. Right column displays the 89% highest density intervals (HDIs) of the posterior distribution differences between block, group and their respective 
difference (group * block interaction). 

Table 3 
Spearman correlations between individual HMMRP parameters and symptoms.   

Volatile block Cued block 

PANSS-P PANSS-NvdGaag PANSS-P PANSS-NvdGaag 

ρ p ρ p ρ p ρ p 

Gamma (γ)  0.17  0.374  − 0.11  0.575  − 0.03  0.858  − 0.21  0.262 
Sensitivity to positive feedback (c)  0.16  0.394  0.16  0.386  − 0.40  0.030  0.17  0.375 
Sensitivity to negative feedback (d)  − 0.12  0.530  0.04  0.831  − 0.20  0.300  − 0.01  0.948  
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may thus explain the absence of behavioral differences. This highlights 
the importance of considering the heterogeneity of schizophrenia pop-
ulations when drawing conclusions from and comparing results across 
single studies in this field (see also Moritz et al., 2020). 

Similar to the behavioral results, the lack of group differences on the 
main parameters of the cognitive-computational model were at odds 
with previous findings of increased subjective volatility in patients with 
schizophrenia (Schlagenhauf et al., 2014) or at high risk for psychosis 
(Cole et al., 2020). However, a negative correlation between positive 
symptoms and positive feedback sensitivity within the SZ group was 
observed, which seemed to be in line with previous reports of decreased 
sensitivity to positive feedback in schizophrenia, particularly under high 
positive symptom load (Reddy et al., 2016; Schlagenhauf et al., 2014). 
Interestingly, this was only true when volatility was minimal, suggesting 
that despite announced environmental changes, participants with a 
higher current severity of delusions and hallucinations seemed not to 
perceive a positive feedback (i.e. a correct prediction) as a reliable in-
dicator for their choice to be correct. In the volatile condition, this 
correlation might have been overshadowed as hidden changes increased 
feedback unreliability overall. Nevertheless, while the effect size was 
moderate to large, the significance test did not survive the Bonferroni 
correction for multiple comparisons. In contrast, uncertainty was 
significantly higher in the SZ group across the task, and even more so 
during high volatility. This suggests some increased sensitivity to the 
environment's volatility in patients, even though this did not translate 
into a significantly increased model-based volatility estimate. Moreover, 
patients showed a decreased adaption of pupil size to uncertainty. When 
uncertainty is high, especially in volatile environments, a given outcome 
should be highly salient as it serves as a teaching signal that could help 
to decrease prior uncertainty. Accordingly, pupil dilation should be 
larger if interpreted as an index of neural gain (Eldar et al., 2013). 
Therefore, the results point to a reduced ability to differentiate between 
high and low salient, or informative, outcomes in the SZ group, in line 
with the aberrant salience account. 

In light of these results it may seem surprising that despite higher 
uncertainty, patients showed comparable behavioral performance. 
Notably, entropy was estimated in a fine grained manner, based on 
continuous updates of state beliefs across the task, influenced by overall 
parameters such as transition probability γ. In contrast, accuracy and 
choice switches were summarized more coarsely and may not be directly 
related to uncertainty on a given trial. However, entropy led to pro-
longed reaction times, a classic effect of uncertainty (see e.g. Volz et al., 
2005). 

One question that may arise with respect to the modelling is how 
well participants actually managed to reset their beliefs at every 
announced change point during the cued block of the task. Here, a post- 
assessment questionnaire may have provided further insights into par-
ticipants' subjective experiences. Nevertheless, given that the reset 
model provided the best fit to the data of the block and the fact that the 
transition probability in this block was lower than in the volatile con-
dition, it is very likely that participants indeed engaged in belief resets as 
instructed. Another question is to what extent the blending of proba-
bility changes (noise condition changes but majority stimulus stays the 
same) and true reversals (majority stimulus changes) in this paradigm 
may have affected modelling. Notably, the fitted models were blind to 
the true probabilities and together with the superior fit of the reset 
model and the difference in transition probabilities this renders a large 
effect of this potential confounder on the derived results unlikely. 

Taken together, our study demonstrates that under certain condi-
tions, individuals with a diagnosis from the schizophrenia spectrum 
exhibit probabilistic decision-making similar to that of non-psychiatric 
controls, even though they are more uncertain, particularly when the 
task environment is volatile. The failure to reliably adapt pupil re-
sponses to the degree of uncertainty indicates a failure to differentiate 
between more and less informative outcomes. This might explain why 
uncertainty remains generally higher in the patient group and is not 
reduced through learning. The findings thus corroborate hypotheses of 
aberrant norepinephrinergic signaling in schizophrenia (Fitzgerald, 
2014; Mäki-Marttunen et al., 2020) and call for further investigation of 
the different implicated neuromodulatory systems and their 

Table 4 
Linear mixed-effects model results for entropy (uncertainty).  

IV b t p R2
M R2

C     

0.06 0.44 
Block  0.03  1.38  0.172   
Noise  0.09  6.51  <0.001   
Group  0.11  2.97  0.004   
Block * noise  0.02  1.07  0.285   
Block * group  − 0.11  − 3.09  0.003   
Noise * group  − 0.02  − 0.78  0.436   
Block * noise * group  0.00  0.17  0.865   

Notes: Entropy = cube root transformed choice uncertainty (HMMRP); IV = in-
dependent variable; block = contrast of the second, cued task block to the first, 
volatile task block; noise = contrast of the high- to the low-noise condition; 
group = contrast of the SZ (schizophrenia) to the HC (controls) group; R2m =
marginal R2, i.e. proportion of variance explained by the fixed effects alone; R2c 
= conditional R2, i.e. proportion of variance explained by both the fixed and 
random effects (R2m and R2c based on Nakagawa and Schielzeth, 2013). 

Table 5 
Linear mixed-effects model results for Bayesian surprise.  

IV b t p R2
M R2

C     

0.05 0.35 
Block  − 0.06  − 1.78  0.080   
Noise  0.08  5.22  <0.001   
Group  − 0.01  − 0.16  0.872   
Block * noise  − 0.01  − 0.24  0.811   
Block * group  − 0.06  − 1.35  0.181   
Noise * group  − 0.01  − 0.38  0.706   
Block * noise * group  0.00  0.12  0.904   

Notes: Bayesian surprise = cube root transformed belief updating (HMMRP); IV 
= independent variable; block = contrast of the second, cued task block to the 
first, volatile task block; noise = contrast of the high- to the low-noise condition; 
group = contrast of the SZ (schizophrenia) to the HC (controls) group; R2m =
marginal R2, i.e. proportion of variance explained by the fixed effects alone; R2c 
= conditional R2, i.e. proportion of variance explained by both the fixed and 
random effects (R2m and R2c based on Nakagawa and Schielzeth, 2013). 

Table 6 
Linear mixed-effects model results for pupil dilation.  

Latent variable 
(HMMRP) 

IV b t p R2
M R2

C 

Entropy      0.01  0.17 
Group  − 0.05  − 1.33  0.190   
Entropy  0.02  6.28  <0.001   
Group * entropy  − 0.01  − 2.53  0.011   

Bayesian 
surprise      

0.01  0.17 
Group  − 0.05  − 1.33  0.189   
Bayesian 
surprise  

0.01  2.28  0.023   

Group * 
Bayesian 
surprise  

0.00  − 0.57  0.569   

Notes: Models were fitted separately for entropy and Bayesian surprise as the 
predictive latent HMMRP variable, both were z-scored per task block and 
participant; pupil dilation = square root transformed maximum baseline- 
corrected pupil dilation during outcome presentation (based on the z-scored 
pupil trace per participant and block); IV = independent variable; Group =
contrast of the SZ (schizophrenia) to the HC (controls) group; random intercepts 
were specified for each participant; R2m = marginal R2, i.e. proportion of 
variance explained by the fixed effects alone; R2c = conditional R2, i.e. pro-
portion of variance explained by both the fixed and random effects (R2m and R2c 
based on Nakagawa and Schielzeth, 2013). 
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interactions. Accumulated evidence from this field could inspire the 
development of psychopharmacological treatments where adding 
norepinephrine transmission modulating agents might show beneficial 
effects in subgroups of patients (Fitzgerald, 2014). Furthermore, the 
study highlights the role of uncertainty processing in schizophrenia, a 
concept that is already addressed in metacognitive training in-
terventions (Moritz and Woodward, 2007). The future development of 
therapeutic interventions of this kind may profit from further insights 
into the distinct effects of different kinds of uncertainty, such as noise 
and volatility, on belief formation and updating in schizophrenia. In this 
context it will also be important to investigate to what the extent the 
findings reported here may be moderated by neurocognitive functioning 
or linked to subsyndromal psychotic symptoms. 
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Gläscher, J., Hampton, A.N., O’Doherty, J.P., 2008. Determining a role for ventromedial 
prefrontal cortex in encoding action-based value signals during reward-related 
decision making. Cereb. Cortex 19 (2), 483–495. 

Hämmerer, D., Schwartenbeck, P., Gallagher, M., FitzGerald, T.H.B., Düzel, E., Dolan, R. 
J., 2019. Older adults fail to form stable task representations during model-based 
reversal inference. Neurobiol. Aging 74, 90–100. 

Heinz, A., Schlagenhauf, F., 2010. Dopaminergic dysfunction in schizophrenia: salience 
attribution revisited. Schizophr. Bull. 36 (3), 472–485. 

Joshi, S., Li, Y., Kalwani, R.M., Gold, J.I., 2016. Relationships between pupil diameter 
and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 
89 (1), 221–234. 

Kaplan, C.M., Saha, D., Molina, J.L., Hockeimer, W.D., Postell, E.M., Apud, J.A., 
Weinberger, D.R., Tan, H.Y., 2016. Estimating changing contexts in schizophrenia. 
Brain 139 (7), 2082–2095. 

Kapur, S., 2003. Psychosis as a state of aberrant salience: a framework linking biology, 
phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160 (1), 
13–23. 

Kay, S.R., Fiszbein, A., Opler, L.A., 1987. The positive and negative syndrome scale 
(PANSS) for schizophrenia. Schizophr. Bull. 13 (2), 261–276. 

Kreis, I., Moritz, S., Pfuhl, G., 2020a. Objective versus subjective effort in schizophrenia. 
Front. Psychol. 11 (1469). 

Kreis, I., Zhang, L., Mittner, M., Syla, L., Lamm, C., Pfuhl, G., 2020b. Aberrant 
uncertainty processing is linked to psychotic-like experiences, autistic traits and 
reflected in pupil dilation. OSF Preprint. https://doi.org/10.31219/osf.io/nc2rx 
(July 24).  

Lawson, R.P., Mathys, C., Rees, G., 2017. Adults with autism overestimate the volatility 
of the sensory environment. Nat. Neurosci. 20 (9), 1293–1299. 

Lehrl, S., Triebig, G., Fischer, B., 1995. Multiple choice vocabulary test MWT as a valid 
and short test to estimate premorbid intelligence. Acta Neurol. Scand. 91 (5), 
335–345. 

Li, C.T., Lai, W.S., Liu, C.M., Hsu, Y.F., 2014. Inferring reward prediction errors in 
patients with schizophrenia: a dynamic reward task for reinforcement learning. 
Front. Psychol. 5, 1282. 
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