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Abstract

Head and neck squamous cell carcinoma (HNSCC) is a common malignancy that develops in
or around the throat, larynx, nose, sinuses and mouth, and is mostly treated with a
combination of chemo- and radiotherapy (RT). The main goal of RT is to kill enough of
the cancer cell population, whilst preserving the surrounding normal and healthy tissue.
The mechanisms by which conventional photon RT achieves this have been extensively stud-
ied over several decades, but little is known about the cell death pathways that are activated in
response to RT of increasing linear energy transfer (LET), including proton beam therapy and
heavy ions. Here, we provide an up-to-date review on the observed radiobiological effects of
low- versus high-LET RT in HNSCC cell models, particularly in the context of specific cell
death mechanisms, including apoptosis, necrosis, autophagy, senescence and mitotic death.
We also detail some of the current therapeutic strategies targeting cell death pathways that
have been investigated to enhance the radiosensitivity of HNSCC cells in response to RT,
including those that may present with clinical opportunities for eventual patient benefit.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the eighth most common cancer in the
UK, with more than 12 000 new cases every year and a one-year survival rate as low as 20% in
the hypopharyngeal cancer subtype (Ref. 1). The common risk factors associated with HNSCC
are tobacco and alcohol consumption and infection by high-risk (type-16/18) human papillo-
maviruses (HPV). Interestingly, patients with HPV-positive HNSCC are known to have a bet-
ter prognosis and improved survival rates due to their improved response to radiotherapy (RT)
and chemotherapy as compared with HPV-negative HNSCC (Refs 2, 3). Several in vitro studies
conducted using HNSCC cell lines have investigated the different molecular mechanisms and
biological characteristics responsible for the increased radiosensitivity of HPV-positive cells,
and have identified an association with defects in the efficiency of DNA double-strand
break repair (reviewed in (Ref. 4)). Treatments include surgery, chemotherapy and RT
(ionising radiation; IR), where mostly conventional photon (X-ray) radiation is used.
However in recent years, use of proton beam therapy (PBT) has increased and has shown sig-
nificant improvement in HNSCC treatment (Ref. 5). This is due to the fact that PBT reduces
the degree of healthy tissue injury compared to photon irradiation, due to the characteristic
low entrance dose and high in-depth energy deposition at a narrow and well-defined range
called the Bragg peak (Fig. 1a). Moreover, X-rays are a low linear energy transfer (LET)
radiation treatment which yields a reduced energy deposition along the path of the beam
and a lower ionisation density resulting in spatially separated damage to vital macromolecules,
particularly DNA (Fig. 1b). In comparison, PBT displays increases in LET at the Bragg peak
and beyond the distal edge, which creates ionisation events and damage that is in closer prox-
imity, such as the induction of complex DNA damage (CDD) containing multiple DNA
lesions (Ref. 6). This increase in CDD represents a challenge to the cellular DNA repair
machinery and therefore can contribute to the therapeutic effect of PBT, and more so of
heavy ions (such as carbon) that are of significantly higher LET.

Nevertheless, and independently from the source and type of IR used, the main goal of RT
is to cause sufficient damage to macromolecules particularly DNA, but also to lipids, proteins
and many metabolites and therefore to promote cancer cell death while preserving the sur-
rounding healthy tissue. The latter is where targeted dose delivery and energy deposition by
PBT have a significant advantage over conventional photon irradiation. Despite this, there
are several mechanisms of cell death that may account for IR-induced cell killing, namely
apoptosis (Refs 7, 8), necrosis (Ref. 8), mitotic catastrophe (Ref. 9), senescence (Ref. 9) and
autophagy (Ref. 10) (Fig. 2). The mechanisms by which photon (X-ray) irradiation kills cancer
cells have been studied in depth (Refs 11–13), but little is known in relation to PBT and other
high-LET particles, including carbon ions. In this review, we will provide details on the differ-
ent cell death mechanisms and the key proteins driving these responses, but then focus on
exploring the cellular pathways reportedly involved in IR-induced cell killing particularly in
HNSCC cells, highlighting any reported differences between low- and high-LET radiation.
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Finally, we will present the therapeutic strategies available within
these cell death mechanisms that are currently considered to
enhance cancer cell radiosensitivity, and which have the potential
to move forward into the clinic to improve HNSCC treatment.

Initiating and executive mechanisms of cell death

Cell death is a natural consequence of the life cycle progression,
although it can also occur if a cell becomes redundant, damaged
beyond repair or harmful for the organism (Ref. 14). The mech-
anism chosen by the cell to die is dependent on the type and the
extent of damage, but any cellular death pathway shows specific
morphological alterations. For example, apoptosis shows

cytoplasmic shrinkage, chromatin condensation and nuclear frag-
mentation resulting finally with the formation of small vesicles or
apoptotic bodies released from the cells which are phagocytosed
by the surrounding cells. Autophagy includes cytoplasmic vacuo-
lisation and similarly culminates in phagocytic uptake, while nec-
rotic cells exhibit loss of cytoplasm and damaged nuclear
membranes (Ref. 15). Intracellular vacuolisation, cellular/nuclear
enlargement and altered chromatin structure are usually observed
in senescent cells, while nuclear changes due to chromosomal
mis-segregation and/or persistence of acentric chromosomes,
such as multinucleation, are commonly seen in cells undergoing
mitotic catastrophe (Ref. 16). Apoptosis, necrosis and autophagy
can be considered as executive mechanisms of cell death, while

Fig. 1. Depth-dose distribution of x-rays (photons) versus protons and relationship to LET leading to DNA damage. (a) Comparison of the dose delivered related to
depth in tissue of photons versus protons. Proton irradiation, unlike photons, leads to targeted delivery of the radiation dose to the tumour thus minimising
associated normal tissue irradiation, but which leads to associated increases in LET at and around the Bragg peak. (b) Tracks of IR of different LET and their inter-
action with DNA. Ionisation events (red dots) can occur indirectly (predominant with low-LET radiation) or directly (particularly with high-LET radiation) leading to
DNA damage in the form of strand breaks and base damage (orange and green stars, respectively). The low-LET radiation tracks generate largely isolated DNA
damage, whereas the densely ionising tracks of high-LET radiation lead to significant levels and formation of CDD.

Fig. 2. Cell death pathways responsive to IR. Depending on the level of DNA damage and cell type, one of the pathways including apoptosis, necrosis, autophagy,
senescence and mitotic death will be initiated. The key steps and proteins involved in coordinating these pathways are shown. If the cell undergoes an initiation cell
death pathway (senescence and mitotic catastrophe), then an executive pathway (apoptosis, necrosis and autophagy) will follow eventually.
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senescence and mitotic catastrophe should be categorised as initi-
ating as these processes do not cause cell death themselves but
only act as a trigger of another cell death pathway. Several other
cell death mechanisms have been observed, including necroptosis
and ferroptosis (Refs 17–20), but for the purpose of this review we
will focus on those listed above.

Apoptosis

Apoptosis is a form of programmed cell death characterised by
specific morphological changes (Ref. 21), which consists of two
major subtypes, namely the extrinsic and intrinsic apoptotic path-
ways (Fig. 3). Extrinsic apoptosis is mediated by membrane recep-
tors, especially by death receptors (e.g. Fas cell surface death
receptor and tumour necrosis factor (TNF) receptor superfamily
member), and is driven mostly by the initiator caspases 8 and
10 (Ref. 22). Initiator caspase 9 can also trigger extrinsic apoptosis
together with unc-5 netrin receptor B and DCC netrin 1 receptor
(Ref. 23), although this is mostly involved in the activation of the
intrinsic apoptotic pathway. Intrinsic apoptosis starts with
mitochondrial outer membrane permeabilisation which is con-
trolled via a fine balance of BCL2 family pro- and anti-apoptotic
members, including BCL2-associated X, apoptosis regulator
(BAX), BCL2 antagonist/killer 1 (BAK1) and BCL2 and
BCL2-like 1 (BCL2L1) (Refs 24, 25). When the pro-apoptotic sig-
nal overcomes the anti-apoptotic one, mitochondrial proteins are
released into the cytoplasm (e.g. cytochrome C and diablo
IAP-binding mitochondrial protein) and this triggers initiator
caspase 9 activation (Ref. 26). Both the intrinsic and extrinsic
pathways of apoptosis proceed with the activation of effector cas-
pases (caspases 3, 6 and 7), which in turn catalyse the specific
cleavage of many key cellular proteins. Other members of the
cysteine-dependent aspartate-specific protease family are caspase
2 (initiator caspase), caspases 1, 4, 5, 11 and 12 (inflammatory
caspases) and caspase 14 (keratinisation-relevant caspase). In

terms of morphological features, apoptotic cells show chromatin
condensation which progresses into nuclear fragmentation as
the apoptotic process proceeds, and this ends with the formation
of apoptotic bodies and phagocytosis by the surrounding cells
(Ref. 21).

Necrosis

Necrosis is usually induced by several physical or chemical stress
factors, including ischemia and hypoxia. The main event in
necrosis is mitochondrial inner membrane depolarisation and
outer mitochondrial membrane rupture, due mostly as a conse-
quence of an increase in Ca2+ ions, ATP depletion and reactive
oxygen species production (Ref. 27). However, other metabolic
changes have been observed in cells undergoing necrotic death
(Ref. 28). Necrotic cell death can also be induced when ligands
bind to specific receptors, such as TNF receptor 1, Fas and
TRAIL receptor, although these activation pathways are equally
shared within apoptosis (Refs 29, 30). Necrosis is also induced
by biological stress triggers such as external pathogens, which
are recognised by pathogen recognition receptor family members,
including the membrane-associated Toll-like receptors, the cytosolic
NOD-like receptors and RIG-I-like receptors (Refs 31–33). At a
macroscopic level, necrosis stimulates the cell membrane to
become permeable early in the process, followed by leakage of
the cellular contents. In the case of autophagic-like necrosis,
numerous vacuoles are observed in the cytoplasm, while dilation
of organelles and empty spaces is detectable if the cell undergoes
non-lysosomal-type necrosis (Ref. 34).

Autophagy

Autophagy is a highly regulated mechanism by which the cell removes
unnecessary or dysfunctional components by self-degradation and
recycling within the cell. Autophagy can be categorised into three

Fig. 3. The extrinsic and intrinsic pathways of apoptosis. The extrinsic death receptor pathway is activated by death receptor ligands, including FasL, TNF-α or
TRAIL, which in turn activates caspase 8 and downstream executing caspases. The intrinsic death receptor pathway is initiated by several intracellular stresses,
leading to activation of Bax and Bak on the mitochondrial membrane and which result in the release of cytochrome c from the mitochondria. Cytoplasmic cyto-
chrome c activates caspase 9 and downstream executing caspases.
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forms: macroautophagy (or simply autophagy), microautophagy and
chaperone-mediated autophagy (Fig. 4). Macroautophagy requires
an intermediate single-membrane vesicle called a phagophore that
engulfs the cytoplasm containing the components to be degraded,
and rounds up becoming a double-membrane autophagosome. This
will then fuse with an endosome or lysosome and releases its contents
into the lytic organelle for degradation. Microautophagy, on the other
hand, does not have any intermediates and the cellular content to be
removed is directly engulfed by an endosome or lysosome (Ref. 35).
Chaperone-mediated autophagy requires firstly the recognition of a
specific motif in the protein to be degraded by heat shock cognate
71 kDa protein (hsc70), which will then bind the cytosolic tail of
lysosome-associated membrane protein type 2A on the lysosomal
membrane and transport the substrate into the lysosomal lumen
where it will be rapidly degraded (Ref. 36). The proteins involved in
vesicle formation can be grouped together as the autophagy-related
(ATG) proteins, which collectively provide a very dedicated and fine
machinery (Ref. 37). Autophagic responses are usually triggered by
nutrient deprivation, but also by organelle damage or by intracellular
pathogens (Ref. 38). Since autophagy may act as a tumour suppressor,
an impaired mechanism could lead to the accumulation of toxic
proteins and organelles, such as dysfunctional mitochondria, thus
promoting oxidative stress, accumulation of DNA lesions and genomic
instability, ultimately leading to promotion of cancer transformation
(Ref. 39). Recently, it has been suggested that basic autophagy can
actually maintain the survival of cancer cells in their unique environ-
ment (Ref. 40).

Senescence

The term ‘replicative cellular senescence’ indicates a process in
which cells are alive but are unable to undergo further cell div-
ision and therefore are in a permanent state of growth arrest

(Ref. 41). Senescence can be triggered by a variety of factors
and is usually associated with increased levels of p53, p21WAF–1

and/or p16INK4A, but telomere-associated DNA damage foci are
also often present (Ref. 42). The molecular mechanisms involved
in senescence pathway activation and execution have been exten-
sively studied and reviewed (Refs 41, 43). Assessment of senescent
cells can be easily performed with histochemical staining of
β-galactosidase (Refs 44, 45), although other markers of senes-
cence that have been identified include Cathepsin D and Dec-1
(Refs 46, 47). Morphological changes in senescent cells include
increased granularity and cytoplasmic vacuolar content, followed
by cell flattening. Senescence has always been considered an irre-
versible process, due to the major metabolic modifications the cell
undergoes together with genetic and structural alterations,
although several studies have highlighted the possibility of cells
escaping senescence. In fact, in the case of senescence induced
by chemotherapy or RT, several studies have reported that cells
were able to re-enter the cell cycle due to overexpression of the
cyclin-dependent kinase, Cdc2/Cdk1 or its downstream target
survivin (Refs 48–50). Considering that most tumours have
inactive p53 and/or p16INK4A/Rb signalling pathways, escaping
senescence should be considered as a possibility.

Mitotic catastrophe

The term ‘mitotic catastrophe’, or the more appropriate phrase
‘mitotic death’, indicates cell death induced by aberrant mitosis
(Ref. 17). Cells undergoing mitotic catastrophe show unique mor-
phologically defined features, such as multinucleation and micro-
nucleation, mainly due to the chromosomal mis-segregation
characteristic of this process (Ref. 16). Mitotic death can be trig-
gered by either exogenous or endogenous sources, which ultimately
cause several cell dysfunctions, such as altered DNA replication and

Fig. 4. The mechanisms of autophagy. Schematic representation of the three main autophagy pathways: macro-, micro- and chaperone-mediated autophagy.
Macroautophagy sequesters cytosolic cargo inside a phagophore formed by specific ATG proteins and lipids. The membrane then seals into an autophagosome
and fuses with lysosomes causing the degradation of the trapped cargo. Microautophagy entraps cytosolic cargo in small vesicles formed by invagination of the
lysosomal membrane. Chaperone-mediated autophagy involves the selective degradation of KFRQ-like motif-bearing proteins delivered to the lysosomes via chap-
erone HSC70 and their internalisation in lysosomes via the receptor lysosome-associated membrane protein type 2A (LAMP2A).
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chromosome segregation, and interference with microtubular
dynamics (Refs 51–53). The molecular mechanisms involved in
mitotic catastrophe are still under investigation, although p53
seems to play a role in the trigger signal (Ref. 16) and to activate
the transduction cascade via caspase 2, which in turn initiates a
variant of intrinsic apoptosis regulated by members of the BCL2
protein family (Refs 54, 55). However, many cancer cell types
lack functional p53 and in those cases it appears that cells showing
massive chromosomal aberration are driven preferentially into
necrosis (Ref. 56). It is interesting to note that cell death is not
the only possible fate aberrant mitotic cells can face, as it has
been observed that cells escaping the mitotic block can instead
enter p53-mediated or hippo-mediated cellular senescence
(Refs 57–60), or survive as polyploid and aneuploid cells and initi-
ate neoplastic transformation and progression (Ref. 16). However, a
recent study suggests that cells escaping mitotic catastrophe stimu-
late the immunological response which in turn will trigger cell deg-
radation (Ref. 61), providing an efficient mechanism for the control
of tissue homeostasis.

Radiation-induced cell death mechanisms

Generally, the therapeutic effect of RT is achieved through suffi-
cient cell injury, particularly in terms of macromolecule and
DNA damage, to overcome the cancer cells ability to repair the
damage and therefore forcing the cell into initiating a cell

death-activated pathway. The form of cell death induced by a par-
ticular anti-cancer agent such as IR depends on several factors,
including cell type, the type of DNA damage to which the cell
is exposed and the dose of the agent used (Refs 56, 62). For
example, γ-radiation exposure can cause a massive apoptotic
response in T and B cells but not in monocyte-derived macro-
phages and immature dendritic cells ex vivo (Ref. 63).
Furthermore, it is known that X-rays and PBT cause a different
spectrum of DNA damage in cancer cells due to changes in
energy/LET (Refs 6, 64), which is likely to trigger a different
cell death response. Therefore, whilst low-LET X-rays generally
induce a high proportion of DNA base damage and single
DNA strand breaks (SSB) relative to DNA double-strand breaks
(DSB), higher LET radiation exposure including PBT but more
so heavy ions can induce increased amounts and complexity of
CDD. CDD is defined as multiple DNA damage types within
close proximity (1–2 helical turns of the DNA), and can be clas-
sified as either DSB-associated or non-DSB-associated (Ref. 65).
This though suggests that depending on the spectrum of DNA
damage induced, different radiation sources can cause different
cell death mechanisms to be activated that should be considered.
Furthermore in addition to the type of damage, the dose of IR
leading to a specific level of DNA damage may also have a
major influence on the selection of cell death mechanism trig-
gered, as well as the switching between these events given that
many cell death mechanisms share several initiating factors.

Table 1. Biological effects of low-LET radiation on head and neck cancer cells

Cancer cell Dosea Response compared to control Reference

Thyroid cancer cells 3 Gy No apoptotic response (Ref. 70)

20 Gy Modest apoptotic response (Ref. 71)

Laryngeal carcinoma cells Fractionated 10 Gy 20% increase in apoptotic cells (Ref. 72)

UM-SCC1 (oral cavity),
UM-SCC6 (oropharynx)
UPCI-SCC-154 (oral cavity)

2 and 4 Gy No caspase 3 activation (Refs 73, 74)

Nasopharyngeal carcinoma cells 8 Gy No apoptotic response (Ref. 75)

Nasopharyngeal carcinoma cells 4 Gy 20% increase in apoptotic cells (Ref. 76)

SqCC/Y1 (oral cavity) 4 Gy Higher necrotic response (Ref. 77)

HN5 (oral cavity) 4 Gy No increase in necrotic cells (Ref. 77)

UPCI-SCC-154 (oral cavity) 4 Gy No increase in necrotic cells (Ref. 77)

UM-SCC6 (oropharynx) 4 Gy No increase in necrotic cells (Ref. 77)

Nasopharyngeal carcinoma cells 4 Gy Increase in the ratio of LC3II/LC3I (Ref. 78)

SQ20B (larynx) 4 Gy No increase in several autophagy-related proteins (Ref. 79)

Cal-33 (oral cavity) 6 Gy 2 to 5-fold increase in several autophagy-related proteins (Ref. 80)

SCC61 (oral cavity) 10 Gy γ-rays 76% of senescence-induced cells (Ref. 81)

SQ20B (larynx) 10 Gy γ-rays 18% of senescence-induced cells (Ref. 81)

SqCC/Y1 (oral cavity) 4 Gy Increased percentage of senescent cells (Ref. 77)

HN5 (oral cavity) 4 Gy Increased percentage of senescent cells (Ref. 77)

UPCI-SCC-154 (oral cavity) 4 Gy Increased percentage of senescent cells (Ref. 77)

UM-SCC6 (oropharynx) 4 Gy Increased percentage of senescent cells (Ref. 77)

Detroit 562 (pharynx) 2 Gy No increase in senescent cells (Ref. 82)

Nasopharyngeal carcinoma cells 6–10 Gy 56 and 79% IR-induced cellular senescence (Ref. 83)

FaDu (hypopharynx) 6 Gy 20% cells undergo mitotic catastrophe (Ref. 84)

Oesophageal carcinoma cells 6 Gy Modest increase in mitotic catastrophe (Ref. 85)

Nasopharyngeal carcinoma cells 20 Gy 50% of cells undergo mitotic catastrophe (Ref. 86)

aX-ray radiation treatment unless differently stated.
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Finally, the long held concept that cells either repair their damage
or undergo apoptosis after IR treatment is outdated, and the role
of apoptosis in the tumour response to radiation has been mini-
mised considering that most tumours actually lose the ability to
initiate the apoptotic pathway (Ref. 66). A more important role
in the anti-tumour effect of radiation is played by mitotic catastro-
phe or senescence, although as already stated previously, both
these mechanisms cannot be considered strictly cell death and
therefore rely on other pathways (e.g. apoptosis or autophagy)
that trigger this phenotype.

Cell death mechanisms after low LET exposure

As mentioned above, tumour cells post-IR can undergo apoptosis,
although recent studies have implicated a reduced contribution of
this particular pathway to the total amount of cell death to a rela-
tively low level (Refs 67, 68). Apoptosis detection in several tumour
cell lines, including breast cancer, non-small-cell lung cancer and
colorectal cancer, has been reported to never exceed 30% of the
total even at significantly high doses of radiation (Ref. 69).
HNSCC cell lines appear to show no difference in the levels of
IR-induced apoptosis, with the vast majority of the studies agreeing
that low-LET radiation (e.g. X-rays and γ-rays) does not cause sig-
nificant apoptosis activation (summarised in Table 1). In fact, thy-
roid cancer cells show no apoptotic response after a relatively low
dose of 3 Gy (Ref. 70), and only a modest increase after 20 Gy treat-
ment (Ref. 71), whilst laryngeal squamous carcinoma cells appear to
reach an increase in 20% of apoptotic cells after a fractionated 10 Gy
dose (Ref. 72). The HNSCC cell lines UM-SCC1, UM-SCC6 (both
HPV-negative) and UPCI-SCC-154 (HPV-positive) showed no dif-
ference in caspase 3 activation and Annexin V detection at 2 and 4
Gy X-ray exposure (Refs 73, 74). Similarly in nasopharyngeal carcin-
oma cell lines, no difference in apoptosis was observed after 8 Gy
(Ref. 75), although in contrast another study showed a 10-fold
increase in the apoptotic response after 10 Gy (Ref. 76).

Necrosis pathway activation has mostly been considered more
as a side-effect of RT in surrounding healthy tissue, rather than a
cell death mechanism for cancer cells. Patients undergoing RT for
HNSCC can experience significant side-effects, including osteor-
adionecrosis and oral cavity necrosis, which may require surgical
intervention (Ref. 87). The mechanism underlying this specific
necrotic transformation is not fully understood, although fibrosis
may play a major role. This is due to the fact that RT increases the
levels of reactive oxygen species-mediated cytokines, such as
TNF-α, transforming growth factor-β1 and connective tissue
growth factor, resulting in unregulated fibroblastic activation
(Ref. 88). Human and mouse leukaemia cells have been shown
to undergo necrosis after 300 and 9 Gy X-ray exposure, respect-
ively (Refs 89, 90), suggesting the radiosensitive nature of the
murine cells. HNSCC cells appear to undergo necrosis after

X-ray radiation exposure at different degrees depending on cell
type and HPV status (summarised in Table 1). In fact 48 h after
irradiation, HPV-negative SqCC/Y1 cells showed a significantly
higher percentage of necrotic cells compared to the unirradiated
controls, but this was not observed in another HPV-negative
cell line (HN5) or in two HPV-positive cell lines
(UPCI-SCC-154 and UMSCC-47) tested (Ref. 77). One explan-
ation, at least in the HPV-positive HNSCC cell lines, could be
provided by the fact that the HPV oncoprotein E7 inhibits necro-
sis activation, thus making these cell lines less prone to this mech-
anism of cell death (Ref. 91).

Since autophagy is mostly associated with tumour suppression,
increases in ATG proteins are to be expected following RT, and
have been observed in HNSCC (summarised in Table 1). The
ratio of LC3II/LC3I (an autophagic marker) has been shown to
increase significantly in nasopharyngeal carcinoma cells after
exposure to 4 Gy X-rays (Ref. 78), and protein level analysis
showed that autophagic signalling proteins including Beclin1,
Atg5, Atg7 and LC3B were upregulated in a time- and dose-
dependent manner post-irradiation (Ref. 92). However, the
same treatment did not appear to trigger any LC3B activation
in SQ20B carcinoma cells (Ref. 79), suggesting a role for a differ-
ential gene expression profile in contributing to autophagy spe-
cific for each cell line. Exposure to 6 Gy of low-LET X-rays
radiation caused a 2–5-fold increase in several ATG proteins in
Cal-33 carcinoma cells, including LC3B, p62, Atg4A and Atg4B
(Ref. 80). However, although autophagy directly contributes to
death in stressed cells (Ref. 93), several studies have actually sug-
gested a protective role for autophagy, which actually helps cancer
cells to survive by reducing cell damage (Ref. 94). Autophagy is
frequently activated in radioresistant cancer cells (Ref. 95) and
the pathway shares upstream mediators with apoptosis, indicating
a clear cross-talk between the two mechanisms and a fine balance
between cell death and cell survival in response to IR. It has been
proposed, in fact, that low-energy X-rays trigger the NF-κB path-
way and induce Beclin1 gene expression, which consequently acti-
vates autophagy and confers radioresistance in HNSCC cancer
cells (Ref. 96). Moreover, apoptosis can be inhibited by autophagy
proteins, such as Beclin1, which can degrade caspase 8 and inter-
fere with the activation of Bid (Ref. 97), reducing cell death levels
after irradiation (Ref. 96).

Senescent cells induced by RT usually trigger inflammation,
which in turn leads to the targeted removal of cancer cells
(Ref. 98), making senescence an outcome at the initial treatment
stages. In contrast, some studies suggest the possibility of senes-
cence being a protective mechanism for cancer cells, causing
increased aggressiveness and metastasis (Refs 99, 100).
Relatively radiosensitive SCC61 HNSCC cells were demonstrated
to accumulate 76% of senescent cells, while radioresistant
SQ20B cells only displayed 18% of cells positive for senescence

Table 2. Biological effects of high-LET radiation on head and neck cancer cells

Cancer cell Dose Response compared to control Reference

SQ20B (larynx) 4 Gy high-LET carbon ion (LET = 184 keV/μm) 9% of cells surviving (Ref. 112)

UMSCC74A (oropharynx) 4 Gy high-LET proton treatment (LET = 12 keV/μm) or
low-LET proton exposure (LET = 1 keV/μm)

Reduction in cell survival from 55%
(low-LET) to 15% (high-LET)

(Refs 64,
113)

UMSCC6 (oropharynx) 4 Gy high-LET proton treatment (LET = 12 keV/μm) or
low-LET proton exposure (LET = 1 keV/μm)

Reduction in cell survival from 35%
(low-LET) to 20% (high-LET)

(Ref. 64)

Human tongue carcinoma cells 5 Gy high-LET carbon ion exposure (LET = 70 keV/μm) 5% increase in apoptotic marker (Ref. 114)

Human tongue carcinoma cells 1 Gy high-LET carbon ion exposure (LET = 70 keV/μm) No apoptotic response (Ref. 115)

Human oesophageal
carcinoma cells

1–3 Gy high-LET oxygen ion exposure (LET = 154 keV/μm) Increased apoptotic response (Ref. 116)
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markers after 10 Gy γ-ray exposure (Ref. 81) (summarised in
Table 1). X-ray (4 Gy) treatment significantly increased the
percentages of senescent cells at 4 and 6 days post-IR in two
HPV-negative HNSCC cell lines (SqCC/Y1 and HN5) and two
HPV-positive cell lines (UPCI-SCC-154 and UMSCC-47),
although the absolute percentage only ranged from 5 to 18%
(Ref. 77). In contrast, Detroit562 HNSCC cells (HPV-negative)
showed no increase in the levels of senescence markers, such as
p21 and β-galactosidase, after 2 Gy X-rays (Ref. 82). The poten-
tially higher level of senescent cells present following irradiation
of HPV-positive cells can be partially explained by the ability of
the E2 oncoprotein to induce overexpression of p21 and downre-
gulation of E7, resulting in increased levels of hypophosphorylated
pRb protein and ultimately to G1 cell cycle arrest (Ref. 101). The
nasopharyngeal carcinoma cell line CNE2 showed around 56 and
79% IR-induced cellular senescence 72 h after 6 and 10 Gy X-ray
exposure, respectively (Ref. 83). Since CNE2 cells are p16-deficient,
only p53 and p21 protein levels were elevated together with the
anti-apoptotic protein Bcl-xL, suggesting senescence was preferred
over apoptosis as the cell death mechanism. Conversely, it has been
shown that only 5% of p53-deficient HNSCC cancer cells undergo
senescence after 4 Gy X-rays radiation treatment, whilst p53-wild
type containing cells reach up to 60% senescence-associated
β-galactosidase-positive cells (Ref. 102). This confirms the promin-
ent role of p53 in driving senescence compared to p16. This con-
firmed previous observations in 38 different HNSCC cell lines
where p53 mutation significantly decreased IR-induced senescence
and conferred radioresistance (Ref. 103). Furthermore, the import-
ance of the p53–p21 interaction for the initiation of the senescence
pathway has been highlighted (Refs 102, 103).

HNSCC cells exposed to 1 Gy γ-radiation have been shown not
to display any significant induction of mitotic catastrophe
(Ref. 104), whilst a higher dose (6 Gy) of X-rays caused 20% of
FaDu cells to undergo this process (Ref. 84) (summarised in
Table 1). The increase in mitotic catastrophe induction appears
to be p53-independent, in line with previously reported evidence
for HCT116 colorectal cancer cell lines after 4 Gy X-ray treatment
(Ref. 105). Oesophageal squamous cell carcinoma cell lines have
demonstrated a modest increase in mitotic catastrophe markers
after 6 Gy X-ray irradiation (Ref. 85), while nasopharyngeal car-
cinoma cells displayed around 50% of cells undergoing mitotic
catastrophe after 20 Gy of X-ray treatment (Ref. 86). Whilst the
dose used is different, this could suggest that triggering of mitotic
catastrophe as a cell death mechanism could be tumour cell-
dependent. Mitotic catastrophe was observed to be the dominant
mechanism of cell death in HPV-positive and HPV-negative
HNSCC cell lines after a single 4 Gy X-ray radiation exposure,
with no major difference between 4 and 72 h timepoint
(Ref. 77). Moreover, both types of cell lines tested responded in
a similar manner, suggesting that HPV infection has no dramatic
impact on the degree of mitotic catastrophe induction.

In summary, evidence suggests that low-LET radiation expos-
ure may trigger different types of HNSCC cell death mechanism,
and that the cells undergo a specific pathway depending on the
radiation dose but also the cellular genetic profile.

Cell death mechanisms after high LET exposure

Mechanistic modelling has suggested that high-LET radiation,
such as α-particles and heavy ions, can cause up to 90% of
CDD within the total amount of DNA lesions induced, compared
to ∼30% in the case of low-LET radiation exposure (Refs 106,
107). CDD has been clearly demonstrated to be a challenge to
the DNA repair machinery and can persist in cells and tissues
several (6–24) hours after IR, while simple SSBs and
DSBs resolve in less than 30min and 2 h, respectively (Refs 64,

108–111). High-LET radiation can therefore kill cancer cells
more efficiently compared to low LET treatments. For example,
and as reported for SQ20B laryngeal squamous cells, exposure
to 4 Gy low-LET X-rays produced 56% cell survival whereas
high-LET carbon ion (LET = 184 keV/μm) at the same dose
yielded only 9% of cells surviving (Ref. 112) (Table 2). A reduc-
tion in cell survival from 55 to 15% was also observed in
UMSCC74A after 4 Gy high-LET proton treatment (LET = 12
keV/μm) compared to 4 Gy low-LET proton exposure (LET = 1
keV/μm), while UMSCC6 cells displayed a less marked difference
(35% cell survival for low-LET versus 20% for high-LET) (Refs 64,
113). This demonstrates the differences in inherent radioresistance
of the different HNSCC cells to both low and high-LET radiation.
Nevertheless, CDD formation is likely the major contributor to
this observed reduced survival in response to high-LET radiation
thereby triggering apoptosis or mitotic catastrophe, although
other mechanisms in cell death pathway activation are likely to
be involved once the cell fails to resolve the damage. For example,
effects on centrosome biology in HNSCC cell lines have recently
been shown in response to high-LET protons (Ref. 113).

Interestingly, the mechanisms of cell death in response to
high-LET radiation in HNSCC cells have not been studied exten-
sively. Human tongue carcinoma cells have been shown to display
less than a 5% increase in apoptotic marker activation after 5 Gy
high-LET carbon ion exposure (LET = 70 keV/μm) compared to
X-ray radiation (Ref. 114), although this was not apparent when
the dose was reduced to 1 Gy (Ref. 115) (Table 2). Apoptosis acti-
vation has also been reported in a study on radiosensitive human
oesophageal carcinoma cells, where caspase 3 activation was
1.8-fold higher after heavy ion irradiation versus X-rays, while
only marginal differences were observed in their radioresistant
cell counterparts (Ref. 116). This suggests that the cell-killing
effect is cell line and radiation quality-dependent, and that per-
haps other types of cell death may play a more prominent role.
This confirms previous observations in radiosensitive laryngeal
squamous cancer cells and their appropriate radioresistant cell
lines (Ref. 117). Considering the significant increased therapeutic
use of PBT, but also heavy ion radiotherapy, further and more
extensive studies are needed to fully elucidate the cell death
mechanisms activated in specific HNSCC cell types in response
to high-LET radiation exposure.

Therapeutic strategies

Targeting key proteins involved in cell death mechanisms is a
feasible approach in increasing HNSCC radiosensitivity, which
can lead to more effective treatment of the tumour. Some targets
involved in cell death pathway activation and/or execution have
been already identified and explored in vitro. In most cases,
tumour cells highly express anti-apoptotic proteins, therefore
their inhibition could potentially increase cellular radiosensitivity.
Survivin is a protein inhibitor of the terminal effector caspases
and is highly expressed in several types of cancer, including
head and neck malignancies (Refs 118, 119). Efficient downregu-
lation of survivin has been extensively studied with promising
results in terms of enhancing tumour sensitivity to various thera-
peutic interventions (reviewed in (Ref. 120)). Livin, another mem-
ber of the apoptosis inhibitor protein family, has been found to be
associated with tumour progression and poor prognosis in vari-
ous human cancers. Its inhibition has been shown to suppress
tumour cell invasion and enhance cell apoptosis, with elevated
expression levels of cleaved caspases 3 and 7 and cleaved PARP
in anaplastic thyroid cancer (Ref. 71) and in laryngohypopharyn-
geal cancer models (Ref. 121). Other anti-apoptotic proteins,
including Bcl-2 and vitronectin, have been investigated in several
HNSCC subtypes, with their inhibition significantly increasing
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apoptosis in response to X-rays (Refs 122–124) or γ-radiation
(Ref. 125). A phase I/II clinical trial initiated to investigate
mitochondria-derived activator of caspases as a mimetic therapy
in patients with previously untreated stage III/IV HNSCC in
combination with cisplatin and radiation is currently ongoing
(ClinicalTrials.gov identifier NCT02022098).

Post-radiotherapy, necrosis usually occurs in the oral cavity,
maxilla, mandible and salivary glands more than the tumour
itself, and the aim therefore is to prevent this to improve patient
quality of life. Although several therapies have been reported,
there is not a universally accepted approach to tackle necrosis
and the treatment options are variable. Surgical treatments are
still of preference, but recently some pharmacological options
have been investigated, including treatments with antioxidants
or biological molecules, such as basic fibroblast growth factor or
bone morphogenetic protein-1 (reviewed in (Refs 126, 127)).
Nevertheless, inducing necrosis in HNSCC cells is a possibility
that has been partially explored. The monoclonal anti-IGF-1R
antibody A12 in combination with γ-rays has been shown to
dramatically induce necrotic death in FaDu-derived xenografts
compared to unirradiated controls (Ref. 128), while the second
mitochondria-derived activator of caspase mimetic birinapant
has proven effective both in caspase-8-deficient and FADD-
overexpressing HNSCC cells, inducing programmed necrosis
and increasing cell radiosensitivity after X-ray treatment
(Refs 129, 130).

Although ATG proteins are often upregulated in tumour cells,
the activation of this specific pathway could lead to massive cell
death after radiotherapy. The phosphoinositide 3-kinase (PI3K)/
protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway is a critical regulator of autophagy, and target-
ing this could be an important therapeutic strategy enhancing the
sensitivity of tumour cells to IR. Several pharmacological inhibi-
tors have been tested on various cancer cell types, including
HNSCC cells, both in vitro and in xenograft models with prom-
ising results (reviewed in (Ref. 131)). A phase I clinical trial is cur-
rently ongoing in high-risk patients with locally advanced
squamous cell carcinoma to test a potent and highly specific
oral pan-class I PI3K inhibitor, BKM120 (ClinicalTrials.gov
Identifier NCT02113878). Other ATG targets have been investi-
gated, including Kelch-like ECH-associated protein 1 (Ref. 80)
and p62, whose overexpression has been reported to induce
autophagy in HNSCC cells (Ref. 132).

The induction of senescence can be clinically beneficial, but
currently there are no specific senescence-inducing agents avail-
able. The ability of cells to enter radiation-induced senescence is
almost strictly linked to p53. In fact, it has been reported that
HNSCC cells with wild-type or non-disruptive mutations of p53
undergo senescence after radiotherapy, while p53 mutant cells
are more radioresistant and show higher levels of senescence mar-
kers after treatment with metformin (anti-diabetic agent that has
been shown to induce reactive oxygen species) (Ref. 103).
Reactivation of p53 restored senescence and increased radiosensi-
tivity in p53 mutant HNSCC cells, although interestingly the study
reported that the mechanism is only partially p53-dependent
(Ref. 133). Treatment with rapamycin or the mTOR inhibitor
PP242 in parotid carcinoma cells in vitro increased heterochroma-
tin formation, and induced irreversible growth arrest and prema-
ture senescence. Whilst in tumour xenografts, PP242 delayed
tumour regrowth after X-ray irradiation and increased
senescence-associated β-galactosidase staining (Ref. 134).

Inhibition of proteins involved in DNA replication and mitosis
could be a valid therapeutic solution to force the cells into mis-
segregation of chromosomes and promote aberrant mitotic div-
ision. As mitotic catastrophe is a relatively new cellular endpoint,
the current literature is scarce and only a few candidates have

been investigated as chemotherapeutic targets. Polo-like kinase 1
(PLK1) is a serine/threonine kinase which functions as a pleiotropic
master regulator of mitosis and regulates DNA replication after
stress (Ref. 135). PLK1 depletion has been reported to induce
mitotic cell cycle arrest and inhibit the separation of sister chroma-
tids in oesophageal cancer cells, causing failure of cytokinesis fol-
lowed by massive apoptotic cell death (Ref. 136). These results
have been confirmed in human nasopharyngeal cancer cells,
where PDK1 inhibition was found to greatly reduce cell survival,
alone or in combination with radiation, due to G2/M cell cycle
arrest and aberrant spindle formation, which in turn caused mitotic
catastrophe (Ref. 137). Furthermore, co-treatment with PLK1
inhibitor and inhibitors targeting Aurora A and Aurora B enhanced
metaphase arrest and mitotic slippage in nasopharyngeal cancer
cells, ultimately inducing mitotic catastrophe (Ref. 138). The
Aurora A and B protein kinases are key players in mitotic control
and therefore another set of potential targets to increase cancer
radiosensitivity. Aurora B inhibition in fact has been demonstrated
to lead to G2/M accumulation, polyploidy and subsequent cell
death by mitotic catastrophe in anaplastic thyroid carcinoma in
vitro and reduced growth of ATC tumour xenogratfs (Ref. 139).
Aurora A depletion appears to have a limited effect on
HPV-negative HNSCC cells when administered alone, although
still causing spindle defects and cytostasis, while co-treatment
with a WEE1 cell cycle checkpoint kinase inhibitor triggered
mitotic catastrophe in vitro and reduced tumour growth in FaDu
and Detroit 562-derived xenografts (Ref. 140). Other potential cel-
lular targets for inhibitors that have yielded promising results as
chemotherapeutic agents against HNSCC cells include WEE1
(Refs 141–143), CHK1/2 (Refs 141, 143) and PP2A (Ref. 86),
although further studies are needed in order to determine their spe-
cific potential as radiosensitisers.

Conclusions

Conventional photon (X-ray) radiotherapy has been used for sev-
eral decades in the treatment of HNSCC, while particle beam
therapy including protons and carbon ions have only recently
gained increasing utility but which benefit from their high energy
localised deposition coupled with the preservation of the sur-
rounding healthy tissue. Nevertheless, current knowledge regard-
ing the molecular mechanisms involved in cancer cell death in
response to high-LET radiation compared to conventional
low-LET photon therapy is still quite limited, and requires further
investigation. Elucidating the different cell death mechanisms
activated by tumour cells after high-LET radiotherapy would
allow a more targeted therapeutic strategy, with the use of inhibi-
tors specifically designed for proteins involved in enhancing the
determined cell death pathway. This will ultimately lead to a
more personalised and effective approach during radiotherapy,
whilst also enabling a reduction in the dose of radiation needed
to obtain a full tumour eradication and therefore limiting the pos-
sibility of acute and long-term adverse side-effects associated with
irradiation of the associated normal tissues.
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