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1 | INTRODUCTION

Path and cycle decomposition problems have a long history. For example, the Walecki construc-
tion [17], which goes back to the 19th century, gives a decomposition of the complete graph of
odd order into Hamilton cycles (see also [2]). A version of this for (regular) directed tournaments
was conjectured by Kelly in 1968 and proved for large tournaments by Kiithn and Osthus [12].
Beautiful open problems in the area include the Erdés-Gallai conjecture which asks for a decom-
position of any graph into linearly many cycles and edges. The best bounds for this are due to
Conlon, Fox, and Sudakov [6]. Another famous example is the linear arboricity conjecture, which
asks for a decomposition of a d-regular graph into [d—;l] linear forests. The latter was resolved
asymptotically by Alon [1] and the best current bounds are due to Lang and Postle [15].

© 2022 The Authors. Proceedings of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1.1 | Background

The problem of decomposing digraphs into paths was first explored by Alspach and Pullman
[4], who provided bounds for the minimum number of paths needed in path decompositions of
digraphs. (Throughout this paper, in a digraph, for any two vertices u # v, we allow a directed
edge uv from u to v as well as a directed edge vu from v to u, whereas in an oriented graph we allow
at most one directed edge between any two distinct vertices.) Given a digraph D, define the path
number of D, denoted by pn(D), as the minimum integer k such that D can be decomposed into k
paths. Alspach and Pullman [4] proved that, for any oriented graph D on n vertices, pn(D) < "72,
with equality holding for transitive tournaments. O’Brien [18] showed that the same bound holds
for digraphs on at least 4 vertices.

The path number of digraphs can be bounded below by the following quantity. Let D be
a digraph and v € V(D). Define the excess at v as exp(v) :=dj(v) —d;(v). Let ex}(v) :=
max{0, exp(v)} and ex; (v) := max{0, —exp(v)} be the positive excess and negative excess at v,
respectively. Then, as observed in [4], if d;(v) > d(v), a path decomposition of D contains at
most d;(v) paths which have v as an internal vertex, and thus at least d;(v) —dy(v) = exg(v)
paths starting at v. Similarly, a path decomposition will contain at least ex;(v) paths ending at v.
Thus, the excess of D, defined as

ex(D) := Z ex; (V) = Z exB(v)z% Z | exp(V)], (1.1)

veVv(D) veV(D) veV(D)

provides a natural lower bound for the path number of D, that is, any digraph D satisfies
pn(D) > ex(D). 1.2)

It was shown in [4] that equality is satisfied for acyclic digraphs. A digraph satisfying equality
in (1.2) is called consistent. Clearly, not all digraphs are consistent (for example, regular digraphs
have excess 0). However, Alspach, Mason, and Pullman [3] conjectured in 1976 that tournaments
of even order are consistent.

Conjecture 1.1 (Alspach, Mason, and Pullman [3]). Let n € N be even. Then, any tournament T
on n vertices satisfies pn(T) = ex(T).

This conjecture is discussed also, for example, in the Handbook of Combinatorics [5].

Note that the results of Alspach and Pullman [4] mentioned above imply that Conjecture 1.1
holds for tournaments of excess %2. Moreover, as observed by Lo, Patel, Skokan, and Talbot [16],
Conjecture 1.1 for tournaments of excess % is equivalent to Kelly’s conjecture on Hamilton decom-
positions of regular tournaments. Recently, Conjecture 1.1 was verified in [16] for sufficiently large
tournaments of sufficiently large excess. Moreover, they extended this result to tournaments of

1
. 2——
odd order n whose excess is at least n°~ 18,

Theorem 1.2 [16]. The following hold.

(a) Thereexists C € N such that, for any tournament T of even order n, ifex(T) > Cn, then pn(T) =
ex(T).
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(b) Thereexistsn, € Nsuchthat, foranyn > ny, if T is a tournament on n vertices satisfying ex(T) >
1
n*" T, then pn(T) = ex(T).

1.2 | Newresults
Building on the results and methods of [12, 16], we prove Conjecture 1.1 for large tournaments.

Theorem 1.3. There exists n, € N such that, for any even n > n,, any tournament T on n vertices
satisfies pn(T) = ex(T).

In fact, our methods are more general and allow us to determine the path number of most
tournaments of odd order, whose behaviour turns out to be more complex. As mentioned above,
not every digraph is consistent.

Let D be a digraph. Let A°(D) denote the largest semidegree of D, that is A°(D) :=
max{d*(v),d=(v) | v € V(D)}. Note that A°(D) is a natural lower bound for pn(D) as every ver-
tex v € V(D) must be in at least max{d*(v), d~(v)} paths. This leads to the notion of the modified
excess of a digraph D, which is defined as

éx(D) := max{ex(D), A°(D)}.

This provides a natural lower bound for the path number of any digraph D.
Fact 1.4. Any digraph D satisfies pn(D) > éx(D).

(Note that one can easily verify that any tournament T of even order satisfies €x(T) = ex(T)

(see, for example, Proposition 6.1), so Fact 1.4 is consistent with Conjecture 1.1.)
1

Observe that, by Theorem 1.2(b), equality holds for large tournaments of excess at least n’7is,
However, note that equality does not hold for regular digraphs. (Here a digraph is r-regular if for
every vertex, both its in- and outdegree equal r.) Indeed, by considering the number of edges, one
can show that any path decomposition of an r-regular digraph will contain at least r + 1 paths.
Thus, any r-regular digraph satisfies

pnD)=>r+1=¢€x(D)+ 1. (1.3)
Alspach, Mason, and Pullman [3] conjectured that equality holds in (1.3) whenever D is a regular

tournament. We verify this conjecture for sufficiently large tournaments.

Theorem 1.5. There exists n, € N such that any regular tournament T on n > n, vertices satisfies

pn(T) = "TH =éx(T)+ 1.

In fact, our argument also applies to regular oriented graphs of large enough degree.

Theorem 1.6. Foranye > 0, there exists n, € Nsuch that, if D is an r-regular oriented graph on n >
n, vertices satisfying r > (% +¢e)n, thenpn(D) =r + 1 = éx(D) + 1.

More generally, we will see that Theorem 1.6 can be extended to regular digraphs of linear
degree which are ‘robust outexpanders’ (see Theorem 5.2).
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4 | GIRAO ET AL.

There also exist non-regular tournaments for which equality does not hold in Fact 1.4. Indeed,
let T,pex be the set of tournaments T on n > 5 vertices for which there exists a partition
V(T)=VyU{v,}U{v_} such that T[V,] is a regular tournament on n — 2 vertices (and so n
is odd), N7 (v,) =V = N (v2), Ny (vy) = {v_}, and N (v_) = {v, }. The tournaments in 7,
are called apex tournaments. We show that any sufficiently large tournament T € 7, satisfies
pn(T) = €x(T) + 1 (see Theorem 5.1). Denote by 7, the class of regular tournaments and let
7. '= Tapex U Treg- The tournaments in 7., are called exceptional. We conjecture that the

excep apex
tournaments in 7T are the only ones which do not satisfy equality in Fact 1.4.

excep

Conjecture 1.7. There exists n, € N such that any tournament T & T,
satisfies pn(T) = éx(T).

xcep ON N > Ny vertices

We prove an approximate version of this conjecture (see Corollary 1.9). Moreover, in Theo-
rem 1.8, we prove Conjecture 1.7 exactly unless n is odd and T is extremely close to being a regular
tournament.

Theorem 1.8. Forall B > 0, there exists n, € N such that the following holds. If T is a tournament
onn > n vertices such that T & Teycep and

(a) &x(T) > g + Bn; or
(b) N*(T),N(T) = fn, where NT(T):=|{ve V()| ex}r(v) > 0} + &x(T) —ex(T) and
N~(T) :=|{veV(T)| ex;(v) > 0} + éx(T) — ex(T);

then pn(T) = éx(T).

In Section 6, we will derive Theorem 1.3 (that is, the exact solution when 7 is even) from Theo-
rem 1.8. This will make use of the fact that €x(T) = ex(T) for n even (see Proposition 6.1). We will
also derive an approximate version of Conjecture 1.7 from Theorem 1.8.

Corollary 1.9. Forall B > 0, there exists n, € N such that, for any tournament T on n > n vertices,
pn(T) < €x(T) + Sn.

Note that Theorem 1.8(b) corresponds to the case where linearly many different vertices can
be used as endpoints of paths in a path decomposition of size é€x(T). Indeed, let T be a tourna-
ment and P be a path decomposition of T. Then, as mentioned above, each v € V(T) must be the
starting point of at least ex;t(v) paths in P. Thus, for any tournament T, N*(T) is the maximum
number of distinct vertices which can be a starting point of a path in a path decomposition of T
of size €x(T") and similarly for N~(T) and the ending points of paths.

One can show that almost all large tournaments satisfy ex(T) = n%+°(l). Indeed, consider a
tournament T on n vertices, where the orientation of each edge is chosen uniformly at random,
independently of all other orientations. For the upper bound on ex(7T'), one can simply apply a
Chernoff bound to show that for a given vertex v and € > 0, we have eXJTf(v) < n%H with proba-
bility 1 — o(%). The result follows by a union bound over all vertices. For the lower bound, let X
denote the number of vertices v with d (v) € [g — 2\/ﬁ, g — \/ﬁ]. Then it is easy to see that, for

large enough n, we have E[X] > 1—:;4, say. Moreover, Chebyshev’s inequality can be used to show
that, with probability 1 — o(1), we have X >

implies the following.

—2.;104, again with room to spare. Thus, Theorem 1.8
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Corollary 1.10. Asn — oo, the proportion of tournaments T on n vertices satisfying pn(T) = €x(T)
tends to 1.

Note that the case when n is even already follows from Theorem 1.2(a). Corollary 1.10 is an
analogue of a result of Kiihn and Osthus [13], which states that almost all sufficiently large tourna-
ments T contain §%(T) := min{d}r (v),d(v) | v € V(T)} edge-disjoint Hamilton cycles and which
proved a conjecture of Erdds (see [20]).

Rather than random tournaments, it is also natural to consider the following related question:
for which densities p is the random binomial digraph D, , likely to be consistent? Very recently,
significant partial results towards this question were obtained by Espuny Diaz, Patel, and Stroh
[7].

Finally, we will see in Section 14 that our methods give a short proof of (a stronger version of)
a result of Osthus and Staden [19], which guarantees an approximate decomposition of regular
‘robust outexpanders’ of linear degree into Hamilton cycles and which was used as a tool in the
proof of Kelly’s conjecture [12].

1.3 | Organisation of the paper

This paper is organised as follows. In Section 2, we give a proof overview of Theorem 1.8. Notation
will be introduced in Section 3, while tools and preliminary results will be collected in Section 4.
We consider exceptional tournaments in Section 5 and derive Theorem 1.3 and Corollary 1.9 from
Theorem 1.8 in Section 6. Then, Sections 7-13 are devoted to proving Theorem 1.8. In particular,
the approximate decomposition step is carried out in Section 7 and Theorem 1.8 is derived in
Section 10. Finally, in Section 14, we discuss Hamilton decompositions of robust outexpanders
and conclude with a remark about Conjecture 1.7.

2 | PROOF OVERVIEW
2.1 | Robust outexpanders

Our proof of Theorem 1.8 will be based on the concept of robust outexpanders. Roughly speaking, a
digraph D is called a robust outexpander if, for any set S C V(D) which is neither too small nor too
large, there exist significantly more than |S| vertices with many inneighbours in S. (Robust out-
expanders will be defined formally in Section 4.1.) Any (almost) regular tournament is a robust
outexpander and we will use that this property is inherited by random subdigraphs. The main
result of [12] states that any regular robust outexpander of linear degree has a Hamilton decom-
position (see Theorem 4.9). We can apply this to obtain an optimal path decomposition in the
following setting. Let D be a digraph on n vertices, 0 < 7 < 1, and suppose that X* U X~ U X is
a partition of V(D) such that [ X*| = |X~| = nn and the following hold.

Each v € X° satisfies d}(v) = nn = d;(v).
Each v € X7 satisfies dg(v) =nnandd;(v) =nn—1. @)

Eachv € X~ satisfies d\(v) = nn — 1 and d;;(v) = nn.
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6 | GIRAO ET AL.

Then, the digraph D’ obtained from D by adding a new vertex v with Ng,(v) =X"andN_,(v) =
X~ isnn-regular. Thus, if D is a robust outexpander, then so is D’ and there exists a decomposition
of D’ into Hamilton cycles. This induces a decomposition 7 of D into nn Hamilton paths, where
each vertex in X is the starting point of exactly one path in P and each vertex in X~ is the ending
point of exactly one path in P. This is formalised in Corollary 4.10. (A similar observation was
already made and used in [16].) Our main strategy will be to reduce our tournament to a digraph
of the above form. This will be achieved as follows.

2.2 | Simplified approach for well-behaved tournaments

Let 8 > 0 and fix additional constants such that 0 < ni K e <Ky KN <K f.LetT be atournament
0

on n > n, vertices. Note that by Theorem 1.2, we may assume that éx(T) < €2n?. Moreover, for
simplicity, we first also assume that each v € V(T) satisfies | ex;(v)| < en (that is, T is almost
regular), éx(T) = ex(T), and both |[{v € V(T) | ex;(v) > 0}, [{v € V(T) | ex;.(v) > 0}| = nn. In
Section 2.3, we will briefly explain how the argument can be generalised if any of these condi-
tions is not satisfied. (An in-depth discussion of these modifications can be found in Sections 8
and 9.)

Since T is almost regular, it is a robust outexpander. Let I" be obtained by including each edge
of T with probability y. Using Chernoff bounds, we may assume that I' is a robust outexpander of
density almost y and D := T \ T is almost regular. The digraph I" will serve two purposes. Firstly,
its robust outexpansion properties will be used to construct an approximate path decomposition
of T. Secondly, provided few edges of I are used throughout this approximate decomposition, it
will guarantee that the leftover (consisting of all of those edges of T not covered by the approximate
path decomposition) is still a robust outexpander, as required to complete our decomposition of T
in the way described in Section 2.1.

Fix X* C{v e V(T)|ex7(v) > 0} and X~ C {v € V(T) | ex;.(v) > 0}, both of size nn and
denote X° := V(T) \ (X* UX"™). Our goal is then to find an approximate path decomposition P
of T such that |P| = éx(T) — nn and such that the leftover T \ E(P) satisfies the degree conditions
in (). Thus, it suffices to show that P satisfies the following.

(1) Eachv € X is the starting point of exactly ex; (v) — 1 paths in P, while each v € V(T) \ X*
is the starting point of exactly ex;(v) pathsin P. Similarly, each v € X~ is the ending point of
exactly ex;.(v) — 1 paths in P, while each v € V(T) \ X~ is the ending point of exactly ex.(v)
paths in P.

(i) Each v € V(T) \ (Xt UX™) is the internal vertex of exactly

(n=D—|exr(v)]|

2

(D-lew @l paths in P,

while each v € X* U X~ is the internal vertex of exactly —nn + 1 pathsin P.

Indeed, (i) ensures that |P| = ex(T) — nn and each vertex has the desired excess in T \ E(P),
namely exp\ gp) (V) = +1if v € X*, exp\gp)(v) = =1 if v € X~, and exp\g(p)(v) = 0 otherwise.
In addition, (ii) ensures that the degrees in T \ E(P) satisfy ().

Recall that, by assumption, T is almost regular. Thus, in a nutshell, (i) and (ii) state that we
need to construct edge-disjoint paths with specific endpoints and such that each vertex is covered
by about (% — n)n paths. To ensure the latter, we will in fact approximately decompose T into

about (% — n)n spanning sets of internally vertex-disjoint paths. To ensure the former, we will
start by constructing (% — n)n auxiliary digraphs on V(T') such that, for each v € V(T), the total
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number of edges starting (and ending) at v is the number of paths that we want to start (and end,
respectively) at v. These auxiliary digraphs will be called layouts. These layouts are constructed in
Section 13. Then, it will be enough to construct, for each layout L, a spanning set 7; of paths, called
a spanning configuration of shape L, such that each path P € P, corresponds to some edge e €
E(L) and such that the starting and ending points of P equal those of e. Roughly speaking, a
spanning configuration P; is a set of internally vertex-disjoint paths and L indicates the starting
and ending points of these paths. (See Section 7 for further motivation of layouts.)

These spanning configurations will be constructed one by one as follows. (See also Figure 1.) At
each stage, given a layout L, fixan edge yz € E(L). Then, using the robust outexpansion properties
of (the remainder of) T, find short internally vertex-disjoint paths with endpoints corresponding
to the endpoints of the edges in L \ {yz}. Denote by Pi the set containing these paths. Then, it
only remains to construct a path from y to z spanning V(T \ V(PL). We achieve this as follows.

Let D" and I be obtained from (the remainders of) D — V(P;) and T — V(P ) by merging the
vertices y and z into a new vertex v,, whose outneighbourhood is the outneighbourhood of y
and whose inneighbourhood is the inneighbourhood of z. Then, observe that a Hamilton cycle
of D’ UT’ corresponds to a path from y to z of T which spans V(T) \ V(P,). To construct such a
Hamilton cycle of D’ UT”, one can simply use the fact that I is a robust outexpander to find a

v Uu v U v

- ---->0 [ { ] [ { ]
T w T

- ---->0 @ { ]

Y z

- ---->0

(a) (b)

Uu v Uu v

° ° ° °

w T w T

[ { ] [ { ]

FIGURE 1 Constructing a spanning set of vertex-disjoint paths in D U T with prescribed endpoints and few
edges of I'. Dashed edges represent auxiliary edges, full black edges represent edges of D, and grey edges
represent edges of I'. Wavy black edges represent paths in D and wavy grey edges represent pathsin I'.
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8 | GIRAO ET AL.

Hamilton cycle. However, if we proceed in this way, then the robust outexpansion property of I
might be destroyed before constructing all the desired spanning configurations.

So instead we construct a Hamilton cycle of D’ U I with only few edges in T’ as follows. As a
preparatory step in advance of choosing the spanning configurations, we consider a random par-
tition of V(T into A,, ..., A, each of size g We choose one A; for the current layout. We restrict
ourselves to use I inside A; only. Note that T'[A;] is a robust outexpander and D’ — A, is a dense
almost regular digraph. The latter means that we can find a spanning linear forest F in D’ — A;
which has few components. Since F has few components, we can then greedily extend the compo-
nents of F to obtain a linear forest F/ C D’ which covers all the vertices in V(D') \ A; and whose
endpoints are all in A;. Finally, we use the robust outexpansion properties of I'[A;] to close F’
in to a Hamilton cycle of D’ UT’. None of the A; will be used too often when constructing the
spanning configurations, which will mean that I'[A;] is always a robust outexpander. When the
desired spanning configuration is a Hamilton cycle, this approach of finding many edge-disjoint
spanning configurations by first finding a suitable linear forest F, and then tying F together via
some small set A; (with varying A; in order to avoid over-using a particular set of vertices) has been
used successfully in several earlier papers (for example, [8, 12]). This construction of spanning
configurations is carried out in Section 7.

We illustrate this argument with the following example. Suppose that L is a layout consisting of
three edges uv, wx, and yz (Figure 1(a)). We want to construct a spanning configuration of shape
L, that is, a set of paths which consists of a path from u to v, a path from w to x, and a path from y
to z such that these three paths are vertex-disjoint and altogether cover all the vertices of T'. First,
we use robust outexpansion to construct a short path P, from u to v and a short path P, from w to
x in T (Figure 1(b)). Denote V' := V(T) \ (V(P;) U V(P,) U {y, z}). The goal is now to construct a
path from y to z which covers all the vertices in V’. To do so, we replace y and z by an auxiliary
vertex v,, whose outneighbourhood is N*(v,,) := N (») NV’ and whose inneighbourhood is
N~ (v,,) :=Np(z)n V' (Figure 1(b)) and we consider a small preselected random set of vertices
A; C V'.1tis then enough to find a cycle on V’ U {v,,,} which uses T inside A; only. Denote V"’ :=
(V' U{vy,}) \ A;. Firstly, we use almost regularity of D to find a spanning linear forest on V"’
which consists of few components (Figure 1(c)). Secondly, we use the large degree of D to extend
the endpoints of the linear forest to A; (Figure 1(d)). Finally, we use the robust outexpansion of I
to close the linear forest into a cycle which covers all the vertices in A; (Figure 1(e)). This gives a
cycle on V' u {v,.}. Replacing the auxiliary vertex v, by the original vertices y and z, we obtain
a path from y to z which covers all the vertices in V’, as desired (Figure 1(f)).

2.3 | General tournaments

For a general tournament T, we adapt the above argument as follows. Let W be the set of ver-
ticesv € V(T) such that | exp(v)| > en. If W # §, then T is no longer almost regular and we cannot
proceed as above. However, since ex(T) < €2n?, |W| is small. Thus, we can start with a cleaning
procedure which efficiently decreases the excess and degree at W by taking out a few edge-disjoint
paths. The corresponding proof is deferred until Section 12, as it is quite involved and carrying out
the other steps first helps to give a better picture of the overall argument. Then, we apply the above
argument to (the remainder of) T — W. We incorporate all remaining edges at W in the approx-
imate decomposition by generalising the concept of a layout introduced above. This is discussed
in more detail in Section 9.
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PATH DECOMPOSITIONS OF TOURNAMENTS | 9

If v e V(T) | ex;(v) > 0}| < nn but éx(T) = ex(T), say, then we cannot choose X C {v €
V(T) | ex;t (v) > 0} of size nn. We circumvent this problem as follows. Select a small set of ver-
tices W4 such that ZUGWA ex;.(v) > nn and let A be a set of nn edges such that the following
hold. Each edge in A starts in W, and ends in V(T) \ W 4. Moreover, each v € W, is the starting
point of at most ex.(v) edges in A and each v € V(T) \ W, is the ending point of at most one
edge in A. We will call A an absorbing set of starting edges. Let V , be the set of ending points of
the edges in A. Then, V4, C V(T) \ W 4. Observe that any path which starts in V4 and is disjoint
from W, can be extended to a path starting in W, using an edge from A. Thus, we can let the
ending points of the edges in A play the role of X and add the vertices in W, to W so that, at
the end of the approximate decomposition, the only remaining edges at W, are the edges in A.
Thus, in the final decomposition step, we can use the edges in A to extend the paths starting at X+
into paths starting in W 4. (See Section 8.2 for details.) If |{v € V(T) | ex}:(v) > 0}| < nn, then we
proceed analogously.

If &x(T) > ex(T), then not all paths will ‘correspond’ to some excess. To be able to adopt a uni-
fied approach, we will choose which additional endpoints to use at the beginning and artificially
add excess to those vertices. This then enables us to proceed as if ex(T)) = €x(T). More precisely, we
will choose aset U* C {v € V(T) | ex(v) = 0} of size €x(T) — ex(T') and we will treat the vertices
in U* in the same way as we treat those with ex; (v) = 1and ex;(v) = 1. Note that selecting addi-
tional endpoints in this way maximises the number of distinct endpoints, which will enable us
to choose Xt C {v € V(T) | ex;(v) > 0}uU* and/or X~ C {v € V(T) | ex;.(v) > 0 U U* when
NT(T) = |{ve V()| ex;(v) > 0} + €x(T) — ex(T) > nnand/or N~(T) = [{v € V(T) | ex;(v) >
0}| + €x(T) — ex(T) > nn, and use absorbing edges otherwise, that is, if condition (b) fails in
Theorem 1.8. More details of this approach are given in Section 8.2.

3 | NOTATION

In this section, we collect the notation that will be used throughout this paper. The non-standard
pieces of notation will be recalled to the reader when first needed.

3.1 | Hierarchies

We denote by N the set of natural numbers (including 0). Let a,b,c € R. We write a=b +¢
ifb — ¢ < a < b + c. For simplicity, we use hierarchies instead of explicitly calculating the values of
constants for which our statements hold. More precisely, if we write 0 < a < b < ¢ < 1in a state-
ment, we mean that there exist non-decreasing functions f : (0,1] — (0,1] and ¢ : (0,1] —
(0,1] such that the statement holds for all 0 < a, b, ¢ < 1 satistying b < f(c) and a < g(b). Hierar-
chies with more constants are defined in a similar way. We assume large numbers to be integers
and omit floors and ceilings, provided this does not affect the argument.

3.2 | +-notation

In general, a statement C* will mean that both statements C* and C~ hold simultaneously. If used
in the form that C* is the statement ‘A* implies 3%’, the convention means that ‘A% implies B+’
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10 | GIRAO ET AL.

and ‘A~ implies B~ Similarly, the statement ‘4* implies 37’ means that ‘A" implies B~ and
‘A~ implies B*.

3.3 | Graphs and digraphs

A digraph D is a directed graph without loops which contains, for any distinct vertices u and v
of D, at most two edges between u and v, at most one in each direction. A digraph D is called an
oriented graph if it contains, for any distinct vertices u and v of D, at most one edge between u
and v; that is, D can be obtained by orienting the edges of an undirected graph.

Let G be a (di)graph. We denote by V(G) and E(G) the vertex and edge sets of G, respectively.
We say G is non-empty if E(G) # @. Letu, v € V(G) be distinct. If G is undirected, then we write uv
for an edge between u and v. If G is directed, then we write uv for an edge directed from u to v,
where u and v are called the starting and ending points of the edge uv, respectively. Let A, B C
V(G) be disjoint. Denote E ,(G) := {e € E(G) | V(e) N A # (J}. Moreover, we write G[A, B] for the
undirected graph with vertex set A U B and edge set {ab € E(G) | a € A,b € B} and e(A,B) :=
|E(G[A, B])I.

Given S C V(G), we write G[S] for the sub(di)graph of G induced on S and G — S for the
(di)graph obtained from G by deleting all vertices in S. Given E C E(G), we write G \ E for the
(di)graph obtained from G by deleting all edges in E. Similarly, given a sub(di)graph H C G, we
write G\ H := G \ E(H). If F is a set of non-edges of G, then we write G U F for the (di)graph
obtained by adding all edges in F. Given a (di)graph H, if G and H are edge-disjoint, then we
write G U H for the (di)graph with vertex set V(G) U V(H) and edge set E(G) U E(H).

3.4 | Degrees and neighbourhood

Assume G is an undirected graph. For any v € V(G), we write N (v) for the neighbourhood of v
in G and d(v) for the degree of v in G. Given S C V(G), we denote N(S) := |J, g Ng(v).

Let D be a digraph and v € V(D). We write Ng(v) and N, (v) for the outneighbourhood and
inneighbourhood of v in D, respectively, and define the neighbourhood of v in D as Np(v) :=
N (v) U N, (v). We denote by d; (v) and d;(v) the outdegree and indegree of v in D, respectively,
and define the degree of v in D as d(v) := d}(v) + dj;(v). Denote d‘gi“(v) := min{d} (v), d};(v)}
and d}**(v) := max{d;(v), d;(V)}. If d} (v) # dj,(v), then define

) N+ if dmin — d+ , N+ if dmax — d+ ,
Ngow = § N AT =00y gy 2 N0 =0
Np(v) ifdy™ =dj(v), Np(v) ifdy™ =d(v).

The minimum semidegree of D is defined as &°(D) := min{dg‘m(v) | v € V(D)} and, simi-
larly, A°(D) := max{d}**(v) | v € V(D)} is called the maximum semidegree of D. Define the
minimum degree and maximum degree of D by (D) := min{d,(v) | v € V(D)} and A(D) :=
max{d,(v) | v € V(D)}, respectively. Given S C V(D), we denote NZ)—'(S) = Upes NZ—;(U) and
Np(S) = Upes Np ().

Let D be a digraph on n vertices. We say D is r-regular if, for any v € V(D), d;(v) =dy(v)=r.
We say D is regular if it is r-regular for some r € N. Let ¢,8 > 0. We say D is (6, €)-almost regular
if, for each v € V(D), both dg(v) =@ xenandd,(v) = (§+e)n.
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3.5 | Multidigraphs

Let A and B be multisets. The support of A is the set S(A) :={a | a € A}. For each a € S(A), we
denote by u4(a) the multiplicity of a in A. For any a & S(A), we define u,(a) := 0. We write A U
B for the multiset with support S(A U B) := S(A) U S(B) and such that, for each a € S(A U B),
Maup(a) := py(a) + ug(b). Wedenote by A \ B the multiset with support S(A \ B) :={a € S(A) |
t4(a) > up(a)}t and such that, for each a € S(A \ B), /,LA\B(a) = puya) — ug(a). Wesay A is a
submultiset of B, denoted A C B, if S(A) C S(B) and, for each a € S(A), us(a) < ug(a).

By a multidigraph, we mean a directed graph where we allow multiple edges but no loops.
All the notation and definitions introduced thus far extend naturally to multidigraphs, with
unions/differences of edge sets now interpreted as multiset unions/differences. In a multidigraph,
two instances of an edge are considered to be distinct. In particular, given a multidigraph D, we
say D,, D, C D are edge-disjoint submultidigraphs of D if, for any e € E(D), ,uE(Dl)(e) + uE(DZ)(e) <
ME(D)-

3.6 | Paths

In this paper, all paths and cycles are directed, with edges consistently oriented. The length of a
path P, denoted by e(P), is the number of edges it contains. A path on one vertex, that is, a path
of length 0 is called trivial. Let P = v, v, ... v, be a path. We say v, is the starting point of P and v,
is the ending point of P. We say v is an endpoint of a path P if v is the starting or ending point of P.
We say v,,...,U,_, are internal vertices of P. We write V*(P) = {v;}, V=(P) = {v,}, and V°(P) =
{vy, ..., Uy_1 }. We say that a path P is a (u, v)-path if V¥(P) = {u} and V~(P) = {v}. Given 1 < i <
J < ¢, wedenote v;Pv; 1= v,V ... V). Alinear forest is a set of pairwise vertex-disjoint paths.

Similarly, given a (multi)set P of paths, we write V*(P) for the set of vertices which are the
starting point of a path in P. Similarly, we write V—(P) for the set of vertices which are the ending
point of a path in 7 and V°(P) for the set of vertices which are an internal vertex of a path in P.
(Note that V=(P) and VO(P) are sets and not multisets.)

Given a directed edge xy and a path P, we say P has shape xy if P is an (x, y)-path. Similarly,
let E be a (multi)set of (auxiliary) directed edges and P be a (multi)set of paths. We say P has
shape E if there exists a bijection ¢ : E — P such that, for each xy € E, ¢(xy) is an (x, y)-path.

For convenience, a (multi)set P of paths will sometimes be viewed as the (multi)digraph con-
sisting of their union. In particular, given a (multi)set P of paths, we write V(P) for the set of
vertices of P and E(P) for the (multi)set of edges of P, that is, V(P) is the set | Jpp V(P) and E(P)
is the (multi)set | Jpcp E(P). (Note that V(P) is a set and not a multiset.) For any v € V(P), we
write d;—*)(v) and ex%(v) for the in/outdegree and positive/negative excess of v in P when viewed
as a multidigraph, thatis, d;(v) := di »(v)and ex,(v) := exi (V). We define dp(v) and exp(v)
similarly. For any digraph D, we denote D \ P := D \ E(P).

3.7 | Subdivisions and contractions
Let D and D’ be digraphs and uv € E(D). We say D’ is obtained from D by subdividing uv, if

V(D") = V(D) u{w}, for some w & V(D), and E(D") = (E(D) \ {uv}) U {uw, wv}. We say D’ is a
subdivision of D if D’ is obtained by successively subdividing some edges of D. Let P be a (u, v)-path
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satisfying VO(P) n V(D) = @. We say D’ is obtained from D by subdividing uv into P, if V(D') =
V(D)uVO(P) and E(D’) = (E(D) \ {uv}) U E(P). Similarly, given an induced (u, v)-path P C D,
we say D' is obtained from D by contracting the path P into an edge uv if V(D') = V(D) \ V°(P)
and E(D’) = (E(D) \ E(P)) U {uv}.

3.8 | Decompositions

Let D be a digraph. A decomposition of D is set D of non-empty edge-disjoint subdigraphs of D
such that every edge of D is in one of these subdigraphs. A (Hamilton) path decomposition
of D is a decomposition P of D such that each subdigraph P € P is a (Hamilton) path of D.
Similarly, a (Hamilton) cycle decomposition of D is a decomposition C of D such that each sub-
digraph C € C is a (Hamilton) cycle of D. By a Hamilton decomposition of D, we mean a Hamilton
cycle decomposition of D.

4 | PRELIMINARIES

In this section, we introduce some tools which will be used throughout the rest of the paper.

4.1 | Robust outexpanders

Let D be a digraph on n vertices. Given S C V(D), the v-robust outneighbourhood of S is the set
RN:,D(S) :={v e V(D) | IN,()NS|>vn}. We say that D is a robust (v, 7)-outexpander if, for
any S C V(D) satisfying tn < |S| < (1 — 7)n, |RN;L’D(S)| > |S| +vn.

In this section, we state some useful properties of robust outexpanders. First, observe that the
next fact follows immediately from the definition.

Fact4.1. Let D be a robust (v, 7)-outexpander. Then, foranyv' < vandt’ > 7, Disarobust (v',7')-
outexpander.

The following lemma states that robust outexpansion is preserved when few edges are removed
and/or few vertices are removed and/or added. This follows immediately from the definition and
so we omit details. (Note that a similar result was already observed, for example, in [11, Lemma
48]

Lemma 4.2. Let0 < e <v <7 < 1. Let D be a robust (v, T)-outexpander on n vertices.

(a) IfD’ is obtained from D by removing at most n inedges and at most en outedges at each vertex,
then D’ is a robust (v — €, T)-outexpander.

(b) Suppose that t > (1 + 27)e. If D' is obtained from D by adding or removing at most en vertices,
then D’ is a robust (v — €, 27)-outexpander.

One can easily show that the 7-parameter of robust outexpansion can be decreased when the
minimum semidegree is large. This will enable us to state some results of [11, 12] with slightly
adjusted parameters.

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



PATH DECOMPOSITIONS OF TOURNAMENTS 13

Lemma 4.3. Let 0 < % KVKTL % < 1. Assume D is a robust (v, g)—outexpander on n vertices
satisfying 8°(D) > n. Then, D is a robust (v, T)-outexpander.

Proof. LetS C V(D) satisfytn < |S| < (1 —t)nand denote T := RN:’D(S). We need to show that
IT| > |S| +vn. If 57” NN é)n then we are done by assumption. If |S| > (1 — g)n, then
each v € V(D) satisfies |Ni(v) NnS|> 5n —|V(D)\S| > = >vnandsoT = V(D).

We may therefore assume that |S]| < 2% Note that the number of edges of D which start in S is
dves D(v) By definition of T, we have

59(D)6n
[S]on < Z di ) < ITIIS| + (n = |Tvn < |T|S| + vn?.
vES
o2 )
Therefore, |T| > 'SWI% > 6n — % > 57" +vn > |S| + vn, as desired. O

The next result states that oriented graphs of sufficiently large minimum semidegree are robust
outexpanders.

Lemma 4.4 [12, Lemma 13.1]. Let 0 < % <« v <1 <¢< 1 Let D be an oriented graph on n vertices
with 8°(D) > (g + g)n. Then, D is a robust (v, T)-outexpander.

The next lemma follows easily from the definition of robust outexpansion and states that robust
outexpanders of linear minimum semidegree have small diameter.

Lemma4.5[11, Lemma 6.6]. Let 0 < % KVP<KTL g < 1. Let D be a robust (v, T)-outexpander on n
vertices with 5°(D) > Sn. Then, forany x,y € V(D), D contains an (x, y)-path of length at most v".

One can iteratively apply Lemma 4.5 to obtain a small set of short internally vertex-disjoint
paths with prescribed endpoints. After each application of Lemma 4.5, one can check that the
remaining digraph is still a robust outexpander by applying Lemma 4.2(b).

Corollary 4.6. Let 0 < - L ekt 2 < 1. Let D be a robust (v,t)-outexpander on n
vertices. Suppose that 50(D) >6n and let S C V(D) be such that |S| <en. Let k <v3n and
xl,...,xk,xg,...,xl’{ be (not necessarily distinct) vertices of D. Let X := {xl,...,xk,xi,...,xl’{}.
Then, there exist internally vertex-disjoint paths Py, ...,P, C D such that, for each i € [k], P; is
an (x;, x{)—path of length at most 2v=' and VO(P;,) C V(D) \ (X US).

We will use the fact that robust outexpanders of linear minimum degree contain Hamilton paths
from any fixed vertex x to any vertex y # x. This immediately follows by identifying x and y to a
single vertex z whose outneighbourhood is that of x and whose inneighbourhood is that of y. The
resulting digraph is a robust outexpander which contains a Hamilton cycle. The Hamiltonicity of
such digraphs was first proven in [10, 14].

Lemma 4.7 [11, Corollary 6.9]. Let 0 < = << VLT 2 < 1. Let D be a robust (v, T)-outexpander
on nverticeswith §°(D) > n. Then, for any distinct x,y € V(D), D contains a Hamilton (x, y)-path.
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Using similar arguments as in Corollary 4.6, we can iteratively apply Lemma 4.5 to tie together
asmall set of paths into a short path (Corollary 4.8(a)). By replacing the last iteration of Lemma 4.5
with an application of Lemma 4.7, we can tie together a small set of paths into a Hamilton path
(Corollary 4.8(b)). Similarly, we can tie together a small set of paths into a Hamilton cycle (Corol-
lary 4.8(c)) by first using Lemma 4.5 to tie these paths into a short path P and then tie together the
endpoints of P using Lemma 4.7.

Corollary 4.8. Let0 < = << v <7< 2 <1andk <v®n. Let D be a digraph and P,,...,P, CD
be vertex-disjoint paths. For each i € [k] denote by vl.+ and v; the starting and ending points
of P;, respectively. Let V' := V(D) \ U V(P;) and S C V. Suppose that D' := D[V’ \ S] is a
robust (v, 7)-outexpander on n vertices satisfying 5°(D') > Sn. Assume that for each i € [k — 1],
INS) N (V' \ S)| > 2k and [N, (vf )N (V' \ S)| > 2k. Then, the following hold.

i+1

(a) There exists a (vl ;U )-path Q € D — S of length at most vk + Zie[k] e(P;) such that Q
contains (i Pi-

(b) There exists a (v;, v, )-Hamilton path Q" of D — S which contains | J;c( P;

(c) There exists a Hamilton cycle C of D — S which contains Uie[k] p

Proof. By assumption, there exist distinct wf, - w;, Wi, W, € V'’ \ S such that, for each i €

[k], w} € N;(vF)and w;™ € Nj(v;). In particular, observe that w) v P;vywy, ... ,w;v;ka;wlz

are Vertex dlSJOlnt paths of D -S. Apply Corollary 4.6 with (x;, x’) = (w;, w; +1) foreachi € [k —

1] to obtain vertex-disjoint paths P/, ..., P, | such that for eachi € [k — 1] Plisa(w;,w}, )-path

of length at most 2v~!. Note that (a) holds by setting

i+1

Q := v Pyvywy Piwy v Py wy .wi P | Wi v Py
For (b),letD” := D' — Uielk—2] V(P!). By Lemma 4.2(b) and Lemma 4.7, D" contains a Hamilton
(w,_,wy)-path P . Let

PH PkU

/ /
Q :=v Plv1 wlle2 U2P202 w; ... P P,_ 1vk 1 k 1P k

Wy 2P, k 1 k 1
To prove (c), a similar argument shows that there exists a Hamilton (w;, wf)—path Pl’( in D/ —
Uierk-1 V(P)). Let C := =wv ka w, Pl’c T O
The main result of [12] states that regular robust outexpanders of linear degree can be decom-
posed into Hamilton cycles. Note that this implies Kelly’s conjecture on Hamilton decompositions
of regular tournaments. Indeed, any regular tournament T on n vertices satisfies §°(T) = "T_l
Thus, Lemma 4.4 implies that any regular tournament is in fact a robust outexpander (of linear
degree).

Theorem 4.9 [12, Theorem 1.2]. Let 0 < = Lwrv<rg 2 < landr > dn. Suppose D is an r-regular
robust (v, T)-outexpander on n vertices. Then D hasa Hamllton decomposition.

The following result is a consequence of Theorem 4.9 and will be used to complete our path
decompositions (as described in the proof overview). In particular, this implies that any digraph D
satisfying (1) from Section 2.1 is consistent, that is, pn(D) = ex(D). Note that Corollary 4.10 is
slightly more general than the argument described in Section 2.1. Indeed, since Theorem 4.9 holds
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for digraphs (rather than just oriented graphs), we can allow X and X~ from Section 2.1 to ‘inter-
sect’: we may have some vertices with one less inedge and one less outedge and then join these
vertices to the auxiliary vertex by an inedge and an outedge. The set X* in Corollary 4.10 consists
of these vertices.

Corollary 4.10. Let0 < % KV <KT<L g < landr > dn. Suppose D is a robust (v, T)-outexpander
on n vertices with a vertex partition V(D) = X* UX~ UX* UX? such that [ XTUX*|=|X"U
X*| =rand, forallv € V(D), the following hold.

1 ifoext 2r—1 ifveX?,
+1 ifveX®, .
exp(v) = 7 and dp(v)=12r-2 ifveXx”, (4.0)
0 otherwise, 5 Therwi
r otherwise.

Then, pn(D) = r. Moreover, D has a path decomposition which consists of precisely r Hamilton paths
with distinct starting points in X+ U X* and distinct ending points in X~ U X*.

The proof is very similar to [16, Theorem 4.7], but we include it here for completeness.

Proof. By Fact 4.1 and Lemma 4.3, we may assume that t <« &.

Note that pn(D) > r. Indeed, if X* = V(D), then D is (r — 1)-regular and so (1.3) implies that
pn(D) > r. Otherwise, A°(D) = r and so, by Fact 1.4, pn(D) > éx(D) > r. Thus, it is enough to
decompose D into r Hamilton paths with distinct starting points in X* U X* and distinct ending
pointsin X~ U X*.

Let D’ be obtained from D by adding a new vertex v with N;;",(v) ;= X* UX*. Then, by
Lemma 4.2(b), D’ is an r-regular robust (%, 21)-outexpander. Applying Theorem 4.9 with D’, g, %,
and 27 playing the roles of D, 8, v, and 7 yields a Hamilton decomposition of D’ into r Hamilton
cycles. Removing v, we obtain a path decomposition of D which consists of precisely » Hamil-
ton paths with distinct starting points in X* U X* and distinct ending points in X~ U X*, as
desired. O

4.2 | Probabilistic estimates

In this section, we introduce a Chernoff-type bound and derive several easy probabilistic lemmas
which will be used in the approximate decomposition step.

Let X be a random variable. We write X ~ Bin(n, p) if X follows a binomial distribution with
parameters n and p. Let N, n, m € Nbe such thatmax{n, m} < N.Let'beasetofsize N andI” C T
be of size m. Recall that X has a hypergeometric distribution with parameters N,n, and m if X =
IT, NT’|, where T, is a random subset of T with |T',,| = n (that is, T, is obtained by drawing n
elements of ' without replacement). We will denote this by X ~ Hyp(N, n, m).

‘We will use the following Chernoff-type bound.

Lemma 4.11 (see, for example, [9, Theorems 2.1 and 2.10]). Assume that X ~ Bin(n, p) or X ~
Hyp(N, n, m). Then, for any 0 < ¢ < 1, the following hold.

1—¢)E[X]
1+ ¢)E[X]

exp(~ S ELX]).

(a) PIX <
> exp(—SE[X]).

( |
(b) PIX >( |

NN
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Using Lemma 4.11, it is easy to see that robust outexpansion is preserved with high probability
when taking random edge-slices.

Lemma 4.12 [13, Lemma 3.2(ii)]. Let 0 < % <« v <1,y <1 Let D be a robust (v, 7)-outexpander
on n vertices. Suppose T is obtained from D by taking each edge independently with probability y.
Then, with probability at least 1 — exp(—v3n?), I'is a robust (£, 7)-outexpander.

The bound on the probability is not part of the statement in [13] but follows immediately from
the proof. (The latter considers each S C V(D) of size 7n < |S| < (1 — 7)n and uses Lemma 4.11 to
show that for allv € RN ;r (), the probability that [N (v) N S| is small is exponentially small in
n.)

Similarly, using Lemma 4.11, it is easy to see that the property of being almost regular is
preserved when a random edge-slice is taken.

Lemma4.13. Let0 < % <,y < <1 LetDbea (8, €)-almost regular digraph on n vertices. Let T
be obtained from D by taking each edge independently with probability g. Then, with probability at

least1 — %, T is (y, €)-almost regular and D \ T is (& — y, €)-almost regular.

Let D be a digraph on n vertices. We say D is an (g, p)-robust (v, 7)-outexpander if D is a
robust (v, 7)-outexpander and, for any integer k > en, if S C V(D) is a random subset of size k,
then D[S] is a robust (v, 7)-outexpander with probability at least 1 — p. Note that the following
analogue of Fact 4.1 holds for this new notion of robust outexpansion.

/

Fact 4.14. Let D be an (g, p)-robust (v, 7)-outexpander. Then, for any ¢’ > ¢, p’ > p, v/ <v, and

' 21, Disan (¢, p')-robust (v',t’)-outexpander.
Moreover, by Lemma 4.2(a), the following holds.

Lemma4.15. Let0 < ¢ < v < 7 < 1. Let D be an (g, p)-robust (v, T)-outexpander on n vertices. If D’
is obtained from D by removing at most cn inedges and at most en outedges at each vertex, then D’
isa (\/E, p)-robust (v — \/E T)-outexpander.

Proof. Let S C V(D) satisfy |S]| > \/En and suppose that D[S] is a robust (v, 7)-outexpander. By
assumption, D’[S] is obtained from D[S] by removing at most en < \/E |S| inedges and at most
\/ElS | outedges at each vertex. Thus, Lemma 4.2(a) implies that D’[S] is a robust (v — \/E, 7)-
outexpander. O

We will see in the concluding remarks that any robust outexpander is in fact (g, p)-robust (for
some suitable parameters). However, our method for showing this requires the regularity lemma
and so, for brevity, we will not prove this result. In this paper, we work with almost regular tourna-
ments. Thus, it will be enough to use the next lemma, which shows that (g, p)-robustness is easily
inherited from almost regular robust outexpanders of sufficiently large minimum semidegree.

Lemma 4.16. Let0 < % eI TKY K % < 8 < 1. Let D be a (8, €)-almost regular oriented
graph on n vertices. Then, there exists a (y, €)-almost regular spanning subdigraph T of D which is
an (¢, n=3)-robust (v, 7)-outexpander and such that D \ T is (§ — y, €)-almost regular.
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Proof. Let T' be obtained from D by taking each edge independently with probability %.
By Lemma 4.13, with probability at least 1 — %, T is (y,¢)-almost regular and D\ T is (6§ —
¥, €)-almost regular.

By Lemma 4.4, D is a robust (2y~'v,7)-outexpander. Therefore, by Lemma 4.12, T is a
robust (v, 7)-outexpander with probability at least 1 — exp(—8y ~3v3n?).

Assume that S C V(D) is such that |S| > en and D[S] is a robust (2v~'y, )-outexpander.
Then, Lemma 4.12 implies that T'[S] is a robust (v, 7)-outexpander with probability at least
1 — exp(—8y—3v3e?n?). Therefore, the probability that I'[S] is a robust (v, 7)-outexpander for each
such S is at least 1 — 2" exp(—8y —3v3¢?n?).

Thus, by a union bound, there exists a (¥, €)-almost regular I' C D which is a robust (v, 7)-
outexpander and such that D \ T'is (§ — y, €)-almost regular and, for each S C V(D) with |S| > en
if D[S] is a robust (2y ~'v, 7)-outexpander, then I'[S] is also a robust (v, 7)-outexpander.

It now suffices to check that for any integer k > en, if S C V(D) is chosen uniformly at random
among the subsets of V(D) of size k, then D[S] is a robust (2y ~!v, 7)-outexpander with probability
at least 1 — n=3. Fix an integer k > en and let S C V(D) satisfy |S| = k. Then, for any v € V(D),
[E[d;f[s](v)] = (6 +¢)|S| and, by Lemma 4.11,

[ D[Sl(v)<( +y)|SI] [ D[s](”)< El D[S](U)]] exp (—&’n).

Therefore, by Lemma 4.4, D[S] is a robust (2y~!v, 7)-outexpander with probability at least 1 —
nexp(—e?n) > 1 — n3. This completes the proof. n

The following result is an easy and well-known consequence of Lemma 4.11.
Lemma 4.17. Let 0 < % < %, €,0 < 1. Let D be a (8, €)-almost regular digraph on n vertices. Let
ny,...,ng € N be such that 3, n; = n and, for each i € [k], n; = % + 1. Assume V4,...,Vi isa

random partition of V(D) such that, for each i € [k], |V;| = n;. Then, with probability at least 1 —
n~1, the following holds. For each i € [k] and v € V(D), IN;() N V;| = (8 + 28)%.

4.3 | Some tools for finding matchings

In this subsection, we record two easy consequences of Hall’s theorem which will enable us to
construct matchings.

Proposition 4.18. LetG be a bipartite graph on vertex classes A and B with |A| < |B|. Suppose that,
foreacha € A, d;(a) = and foreach b € B, dg(b) > |A| — %. Then, G contains a matching
covering A.

Proposition 4.19. Let 0 < = L «e<8<1. LetGbea bipartite graph on vertex classes A and B

such that |A|,|B| = (1 £ e)n. Suppose that, for each v € V(G), d;(v) = (8 £ e)n. Then, G contains
a matching of size at least (1 — E)n.

4.4 | Some properties of the excess function

We will need the following inequalities, which hold by definition of the excess function.
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Fact 4.20. Let D be a digraph and v € V(D).

() (D) > A°(D) » 22 » D).
(b) dgin(v) = min{dg(v), dy(0)} = M.
(¢) dp*(v) = max{d} (v),d;(v)} = w.
(@ (D) > A%(D) > dJ™ () = dF"(v) + | exp(o)].

Given a digraph D and S C V(D), define exzf')(S) = Des exzf')(v). The next fact follows
immediately from (1.1).

Fact 4.21. Let D be a digraph and S C V. Then, ex(D) = ex};,(V(D)) = ex5(S) + ex;,(V(D) \ S).

Fact 4.22. Any tournament T on n vertices which is not regular satisfies €x(T) > A°(T) > [%].

5 | EXCEPTIONAL TOURNAMENTS

Recall the definition of the class Teycep = Treg U Tapex Of €xceptional tournaments from Section 1.
The main purpose of this section is to prove Theorem 1.6 as well as the following result.

Theorem 5.1. There exists n, €N such that any tournament T € Ty, On 1 2> Ny vertices
satisfies pn(T) = éx(T) + 1.

By Lemma 4.4, Theorem 1.6 (and thus also Theorem 5.1 in the case when T € 7,.,) is an
immediate corollary of the following result.

Theorem 5.2. Let0 < % KVKLTK g < landr > dn. Let D be an r-regular digraph on n vertices.
Assume D is a robust (v, T)-outexpander. Then, pn(D) = é&x(D)+1=r+ 1.

Proof. By (1.3), we have éx(D) =r and pn(D) > r + 1. Let P := v, ...v,,; be a path of D. Then,
by Lemma 4.2(a), D \ P is a robust (%,r)—outexpander. Let Xt :={v,,1}, X~ :={y}, X* :=
{vy,...,0,},and X° := V(D) \ (X* UX~ UX*). Applying Corollary 4.10 with D \ P and % playing
the roles of D and v completes the proof. O

Denote U*(D) := {v € V(D) | ex55(v) > 0} and U°(D) := {v € V(D) | exp(v) = 0}. In order to

prove Theorem 5.1 for T € T, we need the following result.

Proposition 5.3. Any T € T,,., on n vertices satisfies ex(T) =n —3 and pn(T) > €x(T) + 1 =
n—1

Proof. Denote by v, € V(T) the unique vertices such that v, € U*(T) and V, :=V(T)\
{v,,v_} = U%T). Thus, v-v* € E(T).

Claim1. ex(T)=n—-3and ex(T) =n — 2.

Proof of Claim. By definition of 7, we have dy(v,)=n—-2=d (v_) and d;(v,)=1=

apex:»
dF(v_). Moreover, each v € V|, satisfies d;(v) = "—;1 = d;(v). Therefore, A°%(T) =n—2 and
ex(T) = 3 Xpev(r ldf (V) — dy (V)] = n - 3. O
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It remains to show that pn(T) > n — 1. Let P C T be a path containing the edge v_v,, . It suffices
to show that pn(T \ P) > n — 2.

Let v be the starting point of P. Observe that, since v_v, € E(P), we have v #v,. If v =
v_, then ex(D \ P) > exB\P(v_) = n — 2; otherwise, v € U°(T) and so ex(D \ P) > D\P(v )+
exl‘)\P(v) = (n—3)+ 1 = n — 2. Thus, we have shown that ex(T \ P) > n — 2. By (1.2), T \ P can-
not be decomposed into fewer than éx(T \ P) > n — 2 paths. Therefore, pn(T) > 1+ (n —2) =
ex(T) + 1. O

Proof of Theorem 5.1. By Lemma 4.4 and Theorem 5.2, we may assume that T € T Fix addi-

apex:
tional constants such that 0 <oYK TL 1.LetT € TapeX be a tournament on n > n, vertices.
By Proposition 5.3, pn(T) > ex(T) + 1 = n — 1. Thus, it suffices to find a path decomposition of T
of size n — 1.

Let v, € V(T) denote the unique vertices such that v, € U*(T). Let V' := U%T). Let
Uy, -5 U,_, be an enumeration of V' and r := "7_3 Since T[V’] is a regular tournament on n — 2
vertices, Lemma 4.4 implies that T[V'] is a robust (v, 7)-outexpander. Thus, by Lemma 4.7, we
may assume without loss of generality that v; ... v, is a path in T[V'].

Define a set of ¥ + 2 paths in T by

P i={0_0y,0,0] ..U, qU_, U 04U, ..., U 0, _5U_}

We now decompose T \ P into (n — 1) — (r + 2) = r paths. Note that df\p(vi) = dT\p(vi) =r.

Thus, each path must startat v, andend atv_. Let A* :={v,v; |2<i<r+1}and A~ :={vu_ |
i € [r]}. Denote D ;=T\ (AT UA~ UP). Then, d(v,) =0 = d;(v_). Moreover, each i € [r]
satisfies d (v;) = —2=r—1andeach j € [n - 2]\ [r] satisfies d}}(v;) = "T_l —1=r.Sim-

ilarly, each i € {2, ...,r + 1} satisfies dg(vi) = ”Tl —2=r—1andeachje[n-2]\{2,..,r+1}
satisfies dg(vj) = "7_1 —1=r.Let X" :={v, 1}, X~ ={v;}, X* :={v,,...,0,}, and X° :={y; |
i€[n—2]\[r+1]} Then, [ X* UX*| =r = |X~ UX"*| and (4.1) holds with D — {v,,v_} playing
the role of D. By Corollary 4.10, there exists a path decomposition 7’ = {P,,...,P,}of D — {v_,v_}.
For each i € [r], let wl.Jr and w; denote the starting and ending points of P;. By the ‘moreover
part’ of Corollary 4.10, we may assume that w;r, ...,w are distinct and {wi+ lie[r}=XTuX*.
We may also assume that wy,..,w, are distinct and {w;” | i € [r]} = X~ UX". Thus, P =
{v+wi+Pl-wi_v_ | i € [r]}is a path decomposition of DU At U A~ =T \ P. Therefore, P U P" is
a path decomposition of T of size 2r + 2 = n — 1. That is, pn(T) < n — 1, as desired. O

In Section 8.2, we will introduce the concept of ‘absorbing edges’ which plays a similar role as
the edge sets AT and A~ above.

We will need the following observation about tournaments in 7., for later.
Proposition 5.4. A tournament T satisfies |[UT(T)| = |U(T)| =1, e(U(T), Ut (T)) =1 and
€x(T) —ex(T) < 2ifand only if T € T, apex-

Proof. Suppose that T € T, By definition and Proposition 5.3, [U*(T)| = |[U(T)| =1,
e(U-(T),UT(T))=1,x(T) =n—2,and ex(T) = n — 3.

Suppose |[UT(T)| = |U(T)| =1 and e(U~(T),U*(T)) =1 and éx(T) —ex(T) < 2. Let v, €
U*(T). By (1.1), we have ex; (v, ) = ex;:(v_) and so, as T is a tournament, d (v, ) = d; (v_). Since
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e(U—(T),Ut(T)) =1, d;_’(vi) > 1. On the other hand,

2> &(T) — ex(T) > AAT) — ex(T) > d(v,) — exi(v,) = dF(v,).

Therefore, N¥(v, ) = {v;}and N*(v,) = U%(T). In particular, T — {v_,v_} = T[U%(T)] is regular.
Hence, T € T, as required. O
6 | DERIVING THEOREM 1.3 AND COROLLARY 1.9 FROM
THEOREM 1.8

In this section, we assume that Theorem 1.8 holds and derive Theorem 1.3 and Corollary 1.9. For
Theorem 1.3, we first observe that if z is even, then éx(T) = ex(T).

Proposition 6.1. Let T be a tournament of even order n. Then, éx(T) = ex(T) and U%(T) =

Proof. Tt is easy to see that each v € V(T) satisfies ex;(v) # 0 and so U%(T) = §. Let v € V(T) be
such that d**(v) = A%(T). Thus,

1+
(M) =1 Y Jex(u)] > LI ON RO gy _ o,
2 2
ueV(T)
50 éx(T) = ex(T), as desired. O

Proof of Theorem 1.3. Let 0 < i < B« 1.Letn > ny be even and T be a tournament on n ver-
tices. It is easy to see that T & 7¢yc.,- We show that one of Theorem 1.8(a) and (b) holds. Suppose
that Theorem 1.8(b) does not hold. Without loss of generality, we may assume that N*(T) < fn.
Thus, [UT(T)| < Bn. Since n is even, each v € V(T) satisfies ex;(v) # 0. Thus, €x(T) > ex(T) >
U (M| =n—-|UNT)|>2n—-PFn> g + fBn and so Theorem 1.8(a) holds. Therefore, by Theorem
1.8 and Proposition 6.1, pn(T) = €éx(T) = ex(T). O

Finally, we derive Corollary 1.9 from Theorem 1.8. The idea is that if none of Theorems 1.3, 1.8,
and 5.1 apply to T, then we can transform T into a tournament T’ which satisfies the conditions of
Theorem 1.8 by flipping a small number of edges, and so that pn(T) ~ pn(T”) and €x(T) ~ éx(T").

Proof of Corollary 1.9. We may assume without loss of generality that § < 1. Let 0 < i < fx1.
Let T be a tournamentonn > no Vertlces By Theorems 1.3 and 5.1, we may assume that T & Texcep
and that n is odd. If A%(T) > 5 ?, then, by Theorem 1.8 applied with § playing the role of 3,
pn(T) = éx(T) and we are done. We may therefore assume that A°(T) < % + 5?" Let v € V(T).
Since T is not regular, we may assume without loss of generality that v € U*(T). Then, note that
dy(v) > ”+1 . Let S C N, (v) satisfy |S| = [ + ﬁ"] — df(v) (this is possible since d; (v) = (n —
1)-— d;(u)). Note that || < [% + £ - "T“ < %

Let T’ be obtained from T by ﬂipplng the direction of all edges between v and S. Then, observe
that €x(T") > A%T") > d, d;,(v) = [" +E ] and, in particular, T" & Ty.,- Moreover, we claim that

ex(T") < &x(T) + 2|S|. Slnce AO(T’) AO(T) + |5, it suffices to show that ex(T') < ex(T) + 2|S]|.
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Note that, by Fact 4.20(c), ex“TL,(U) —ex;(v) = 2(d;,(v) —d}(v)) = 2|S|. For each o € {+,—,0},
denote S° := S U U®(T). Then, by Fact 4.20(c), for each u € ST, ex;,(u) —ex; (u) = —2 and, for
eachue S~ uUS°, ex;,(u) = 0 = ex;.(v). Thus, ex(T") — ex(T) = 2|S| — 2|S*| < 2|S], as desired.
By Theorem 1.8, pn(T’) = €x(T") < €x(T) + 2|S| and thus, since |S| < %", it suffices to show that
pn(T) < pn(T”) + 2|S|. Let P’ be a path decomposition of " of size pn(T”). Let P| consist of all the
paths P € P’ such that E(P) C E(T). Let P, := P’ \ P,. Let P, be set of paths obtained from 7}
by deleting all the edges in E(T”) \ E(T). Then, P := P U P, U (E(T) \ E(T")) is a path decompo-
sition of T. Moreover, by construction, all the edges in E(T”) \ E(T) are incident to v. Thus, each
path in P contains exactly one edge of E(T”) \ E(T)andso [P, U (E(T) \ E(T"))| < 3|P;| = |P}| +
2|E(T") \ E(T)| = |P,| + 2|S|. Therefore, pn(T) < |P| < |P]| + |P;| + 2|S| = pn(T’) + 2|S|. This
completes the proof. O

7 | APPROXIMATE DECOMPOSITION OF ROBUST OUTEXPANDERS

The rest of the paper is devoted to the proof of Theorem 1.8. We start by discussing and proving
the approximate decomposition step, which is achieved via Lemma 7.3.

As mentioned in the proof overview, in order to reduce the excess and the vertex degrees at the
correct rate, we will approximately decompose our digraphs into sets of paths. To do so, we will
start by constructing auxiliary multidigraphs called layouts which will prescribe the ‘shape’ of the
structures in our approximate decomposition.

Suppose that we would like to find a Hamilton (v, v_)-path which contains a fixed edge f =
u, u_. We can view this as the task of finding two paths of shapes v, u, and u_v_, respectively, that
are vertex-disjoint and cover all remaining vertices. (Recall from Section 3 that, given an (auxil-
iary) edge uv, we say that a (u, v)-path has shape uv.) We now generalise this approach to layouts,
which will tell us the shapes of paths required, the set F of fixed edges to be included, and the ver-
tices to be avoided by these paths. The ‘spanning’ extension of a layout will be called a spanning
configuration. To ensure that the spanning configuration has a suitable path decomposition, we
will define a layout to consist of a (multi)set of paths rather than a multiset of edges. The concepts
of layout and spanning configuration are also illustrated in Figure 2.

v1

——>0—P0----po----
Ve €5 U7 € Vg €7 Vg eg V1o
(a) A layout (L, F) = ({v1e1v2€2v3, v1€302€4010, V1, Us, Vs€5V7€6U8€7V9€Es V10 }» {€4, €7, €5}) on V.
P, P
v V2 2 V3 V4 Vs
ONA\NNNN>0 ] )
S~ P,
P, .o _] el -
ONNANNANSOANNNAN DO - - - - - - = S LLEELEE. o
Ve ]3{25 v7 ])H , Vs ])(37 V9 R‘«s V10

(b) A spanning configuration H of shape (L, F)) on V. The wavy edges represent internally vertex-disjoint
paths on V' which altogether cover all the vertices in V' \ V(L).

FIGURE 2 Alayout (L, F) and a spanning configuration of shape (L, F). Dashed edges represent fixed edges
(that is, the edges of F).
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We will be working with multidigraphs. Let V' be a vertex set. We say (L, F) is a layout if the
following hold.

(L1) L isa multiset consisting of paths on V and isolated vertices.
(L2) F C E(L).
(L3) E(QL)\ F # 0.

Conditions (L1)~(L3) can be motivated as follows. Suppose that (L, F) is a layout on V. As
described above, our goal is to construct a spanning set of paths whose shapes correspond to those
of the paths in L and which contain the edges in F. This will be achieved by replacing the edges
in E(L) \ F by internally vertex-disjoint paths which cover all the vertices in V' \ V(L). This moti-
vates (L3): if E(L) \ F was empty, then there would be no edge to replace by a path and so we
would not be able cover the vertices in V' \ V(L), that is, our set of paths would not be spanning.
Moreover, as we will be constructing the paths according to the shapes of the paths in L, we need
to make sure that the fixed edge set F is covered by L. This explains (L2). Finally, since we will
have already covered some edges before the approximate decomposition (recall from the proof
overview that we will need a cleaning step) and since not all vertices have the same excess, we
do not actually want our structures to be completely spanning, but want them to avoid a suitable
small set of vertices. This is why we allow paths of length 0 in (L1).

Let (L, F) be a layout on V. A multidigraph H on V is a spanning configuration of shape (L, F)
if H can be decomposed into internally vertex-disjoint paths {P, | e € E(L)} such that each P, has
shape e; P, = f for all f € F; and U,ep ) Vo(P,) = V \ V(L) (recall that given a path P, V°(P)
denotes the set of internal vertices of P). (Note that the last equality implies that the isolated
vertices of L remain isolated in #.) See Figure 2(b) for an example of a spanning configuration.

Let (L, F) be alayout on V and H be a spanning configuration of shape (L, F) on V. There is a
natural bijection between a path Q in L and the path P, := [J{P, | e € E(Q)}in H. (For example,
in the example presented in Figure 2, the path v, e,v,e,0; in L corresponds to the path v, P, v,P, v3
in H.) Note that this bijection is not necessarily unique since if e has multiplicity more than 1in L,
then there are different ways to define P,. (For example, in the example presented in Figure 2,
we could have exchanged P, and P,_.) A path decomposition P of H consisting of all such P,
for all the paths Q € L is said to be induced by (L, F). (For example, in the example presented
in Figure 2, {v, P, 0P, U3, 0P, U;P, V19, V6P V7P, UsP, UgP, U1o} is a path decomposition of H
induced by (L, F).) Note that if P is a path decomposition H induced by (L, F), then the paths in
P are non-trivial and have the same endpoints as their corresponding path in L.

Fact 7.1. Let (L, F) be a layout on V and H be a spanning configuration of shape (L, F)on V. Let L’
denote the set of (non-trivial) paths contained in L (that is, L' is obtained by deleting all the isolated
vertices in L). For any path Q in L, the corresponding path P, := |J{P, | e € E(Q)} in M satisfies
VE(P) = VEQ) and VO(Q) C VO(Py) CVOU(Q) U (V \ V(L)). Thus, if P is a path decomposition
of H which is induced by (L, F), then VX(P) = V(L") and VO(P) = VO(L) u (V \ V(L)).

Let V be a vertex set. Let (L, F) be a layout on V and H be a spanning configuration of shape
(L,F)onV.By Fact 7.1, the degree of each v € V in H is entirely determined by the degree of v in
L. Thus, the following holds.

Fact 7.2. Let D be a digraph on a vertexsetV and (L, F;), ...,(L,, F,) be layoutson V. Foreach i €
[£], let H; be a spanning configuration of shape (L;, F;). Suppose that H,, ..., H, are pairwise edge-
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disjoint. Then, forallv € V,

dj(v)= ), di (v) = 2 (A7 (0) + Tygy) = di (@) + Hi € [£] v € VA VI

i€[?] €[]

Roughly speaking, the approximate decomposition lemma says that given a dense almost reg-
ular digraph D and a sparse almost regular robust outexpander I', we can transform a suitable
set of small layouts into edge-disjoint spanning configurations of corresponding shape in D UT.
Moreover, the number of layouts that we are allowed to prescribe is close to 59(D), in which case
the configurations form an approximate decomposition of D U T.

Lemma 7.3 (Approximate decomposition lemma for robust outexpanders). Let0 < % ek r K
T <y <1,8 <1 Suppose £ € N satisfies £ < (5 —n)n. If £ < €2n, then let p < n~'; otherwise,
let p < n~2. Let D and T be edge-disjoint digraphs on a common vertex set V of size n. Suppose that D
is (8, €)-almost regular and T is (y, €)-almost regular. Suppose further that T is an (g, p)-robust (v, 7)-
outexpander. Let F be a multiset of directed edges on V. Any edge in F is considered to be distinct
from the edges of D UT, even if the starting and ending points are the same (recall Section 3). Let
Fi,...,F, be a partition of F. Assume that (L,,F,), ..., (L;, F,) are layouts such that V(L;) C V for
each i € [¢] and the following hold, where L := Uie[fj L,

(a) Foreachi € [¢], |V(L,)| < €?n and IE(L )| <
(b) Moreover, for eachv € V, d; (v) < €3n and there exist at most e2n indices i € [¢] such thatv €
V(L)

Then, there exist edge-disjoint submultidigraphs H,,..., H, C DUT UF such that, for each i €
[£], H; is a spanning configuration of shape (L;, F;) and the following hold, where H := J;c(,) H;
D' :=D\ M, andI’ :=T\ H.

(i) If¢ < €%n, thenT' is obtained from T by removing at most 3¢>v~*n edges incident to each vertex,
that is, AT \ T") < 3e3v~n.
(ii) If¢ < v°n, then D" is (6 — é, 2¢)-almost regular and T is (y, 2¢)-almost regular. Moreover, T’

isa (\/E, p)-robust (v — \/E, T)-outexpander.
(iii) D’ UT" is a robust (g, 7)-outexpander.

The approximate decomposition guaranteed by Lemma 7.3 is constructed in stages. The core
of the approximate decomposition occurs in Lemma 7.3(i), where a small set of layouts is
converted into spanning configurations one by one (see Section 2.2). Repeated applications of
Lemma 7.3(i) will then enable us to transform larger sets of layouts into spanning configurations
(Lemma 7.3(ii)). Then, one can obtain the final approximate decomposition (Lemma 7.3(iii)) by
repeatedly applying Lemma 7.3(ii), adjusting the parameters in each iteration. This can be seen as
asemirandom ‘nibble’ process, where the applications of Lemma 7.3(i) are the ‘nibbles’ (which are
chosen via a probabilistic argument) and the applications of Lemma 7.3(ii) correspond to ‘bites’
consisting of several ‘nibbles’. We prove (ii), (iii), and (i) in this order.

Proof of Lemma 7.3(ii). Let #’ := |&?n| and k := [ -1. Note that k < 2v°¢~2. We now group
(Ly,Fy),...,(Ly, F,) into k batches, each of size at most ¢'. For each m € [k], the mth batch will
consist of (Ll, F;) with (m — 1)’ < i < min{m¢”, £}. We aim to apply Lemma 7.3(i) to each batch
in turn.

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



24 | GIRAO ET AL.

Assume that we have done m batches for some 0 < m < k. This means that we have constructed
edge-disjoint M, ..., Hyingmer .4 © D UT U F such that, for each i € [min{m¢”, £}], H, is a span-
ning configuration of shape (L;, F;) satistying E(H;) n E(F) = E(F;) and the following holds. Let
Ty =T\ Uicimingmer o1y Hi- Then, foreachv € V,

INpr, ()] < m - 25630 < 50evn < %" (7.1)

Let Dy, := D\ Uigmingme’ o) Hi- Observe that, by Fact 7.2 and (b), Uiciminmer oy Hi \ Fi 18

(%M, g2 + ¢3)-almost regular. Together with (7.1), this implies that D,,, is (§ — %M, 2¢)-

almost regular and I',,, is (y, 2¢)-almost regular.

Moreover, by Lemma 4.15, T, is a (\/E, p)-robust (v — \/E, 7)-outexpander. Thus, if m = k, we
are done.

Suppose m < k. We show that T,, is a (2¢,n~!)-robust (v — ¢, 7)-outexpander. If m =0,
then I',, =T and we are done. We may therefore assume that m > 1. Then, note that k > 2 so
¢ > ¢' = |&?n| and, thus, p < n=2. Fix an integer k' > 2en. Suppose S C V is a random subset of
size k’. We show that ', [S] is a robust (v — ¢, 7)-robust outexpander with probability at least 1 —
n~'. Letv € V.If [Np\p, ()] < €n, then |[Npyr (0) N S| < e?n < ek’. Suppose [Ny, (V)] > €2n.

Then, by (7.1), [E[|Nr\rm(v) nS|] = %lNr\Fm )] < % Thus, Lemma 4.11 implies that

3
P[INr\r, @) NS> k'] <P[INnyr,, () 0S| > 26Ny, )0 81| < exp <_2£3n>.

2e3n

Therefore, by a union bound, with probability at least 1 — nexp(—T), the digraph T,,[S] is
obtained from I'[S] by removing at most ek’ edges incident to each vertex. Our assumption on I'
implies that I'[S] is a robust (v, 7)-outexpander with probability at least 1 — p > 1 — n~2. There-
fore, by Lemma 4.2(a), we conclude that T',, [S] is a robust (v — €, T)-outexpander with probability
atleastl1—p—n exp(—% >1—n"!'. Thus,T,, is a (2¢,n~!)-robust (v — ¢, 7)-outexpander.
Let " = min{£ —m¢', ¢’y and F' = ;¢ on| Finer4i- Apply Lemma 7.3(i) with D,,,, Ty, F7,
nl, 86— mTﬂ, v—g, 26 &", Lyyriqses Lygpropn, and Fopr iy, .., Fppr, on playing the roles of
D, T,F p,6,v,¢ ¢, L,..,Ly, and Fy,..,F, to obtain edge-disjoint H,,;,1,..., Hpprppon C
D,,UT,,UF’ such that, for each i€ [¢"], H,,,; is a spanning configuration of shape
(Lingr4is Fmer4) and, for each veV, |Np \r ()< 3(2¢)3(v — €)~*n < 25¢3v~*n, where
Tpi1 =T \ Uieper) Himer+i- In particular, (7.1) holds. This completes the proof. O

Proof of Lemma 7.3(iii). Let#’ := |v°n| and k := [g].Note thatk < v=>.Foreachi € N, denote

oL
g; :=2'¢2*. Assume inductively that, for some 0 < m <k, we have constructed edge-disjoint
Hysooos Hiningmer 2y © D UT U F such that:

- for each i € [min{m¢’, £}], H; is a spanning configuration of shape (L;, F;) satisfying E(H;) N
E(F) = E(Fy);

— foreachi € [m], D; := D\ Ujeimingie, oy Hjis (6 — %M,ei)-almost regular; and

- foreachi € [m], T; := T\ Ujeimingis oy Hj is 2 (v, &)-almost regular (g;, p)-robust (v — ¢;, 7)-
outexpander.
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If m =k, then, since k < v~ and ¢ < v, I',, is a robust (g,r)—outexpander and so is D,, U
Ty, as desired. Assume m <k. Let ¢ := min{¢ —m¢’,¢'} and ' := ;g on| Finer4i- Then,

apply Lemma 7.3(ii) with D,,,T,,,F’,8 — mTf,,v — €5 €m> € Lipgr 15 o s Lypgr ppmrs and Fopr 1,
<., Fypr . on playing the roles of D,I', F,6,v,¢,¢,L,,...,L,, and Fy, ..., F, to obtain edge-disjoint
H st 15 s Hypgr on € D, UT,, U F’ such that the following hold. For each i € [¢”], H,,,1,; is
a spanning configuration of shape (L, i, Fynzr+i)- Moreover, D, .1 :=D,, \ U icfer] Hme'+i 18

(5 — minlm+D)4} o Y-almost regular and T,,,; := T, \ Uierery Himer+i 18 @ (7, €04.1)-almost

n
regular (g,,,,, p)-robust (v — ¢, ;, 7)-outexpander , as desired. O

As discussed in Section 2, the key idea in the proof of Lemma 7.3(i) is how to use the robust out-
expander I' efficiently, that is, to find the required number of spanning configurations H; without
using too many edges of I. We achieve this by considering a random partition A, ..., A, of V. To
build H;, we find an almost cover of V' in D with few long paths (which exists since D is almost
regular) and tie them together into a single spanning path using only I'[4;] for a suitable j € [a].
The remainder of H; is comparatively small and its construction does not affect I significantly.
(See also Figure 1.)

Proof of Lemma 7.3(i). Let a := [¢~'v*]. By Lemma 4.17 (successively applied to D and T') and
since T is an (g, p)-robust (v, 7)-outexpander, we can fix a partition A,, ..., A, of V such that, for
each i € [a], the following hold.

(@) |4 = Z +1=¢c¢(v ™+ Dn.

(B) T[A;]is arobust (v, 7)-outexpander.

(y) Foreachv €V, NI (v)NA;| = (y = 25)3.

(8) Foreachv eV, IN;(L)NA;| =(6 28)%.

Foreachi € [£/],let j € [a] besuchthati = j mod a and define A; =A \ V(L,). Using (a) and
Lemma 4.2(b), it is easy to check that, for each i € [¢], the following hold.

() Al = ev=* +2)n.
(B") T[A]]and T — A/ are both robust (%, 27)-outexpanders.
o F[A; ]land T — Alf are both (y, 3¢)-almost regular.

(6") D — Alis (3, 3¢)-almost regular.

(¢') Foreachv € V\ A/, IN;(v) N Al| > n

24
For eachi € [7], fix e; € E(L;) \ F; (this is possible by (L3)). Assume inductively that for some
0 < m < ¢ we have constructed, for each i € [m], a set of paths P, = {Pé |le€e E(L)\F;}inDUT
such that Py, ..., P,, are edge-disjoint and the following hold.

(A) Let i € [m]. For each e € E(L;) \ F}, Pé is a path of shape e. Moreover, the paths in P;
are internally vertex-disjoint and VO(P,) = V \ V(L;). In particular, P; U F; is a spanning
configuration of shape (L;, F;).

(B) For each i € [m] and e € E(L;) \ (F; U{e;}), P, CT — A/ and e(P.) < 8v~'. Moreover, for
each v € V, there exist at most °n indices i € [m] such that v € VO(P; \ {P;i D).

(C) Foreachi € [m], E(P;i) NE() C E(T[A]]).

Denote Dy, := D\ Uic[p E(P) and T, :=T'\ U, E(P). For each i € [m], define H; :=
P; UF;. Denote H™ := J;(,,; H;- Then, note that, for each v € V, since d;(v) < &3n, there are

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



26 GIRAO ET AL.

at most °n indices i € [m] such that v € V*(P; \ {PL hu V= (P; \ {P. }) and, by (B), there are
at most °n indices i € [m] such that v € VO(P; \ {P! }). Moreover, by (C) and construction of

the A; , there are, for each v € V, at most [g] indices i € [m] such that v € V(E(Pé) N E(D)).
Hence, each v € V satisfies

2en

£ _
INymar(0)| < €1 + 2% + 2 [a] <3en+ i t2< <3e3v™n (7.2)

Assume m = ¢. Then, by (A), H; is a spanning configuration of shape (L;, F;) for each i € [#].
Moreover, (i) holds by (7.2) and we are done.

Assume m < ¢. Using (a’)-(¢’), (7.2), (b), and Lemma 4.2(a), it is easy to check that the
following hold.

!’ v
@) T,,[A m 4landT,, — A} . arerobust (Z,Zr)—outexpanders.

ar [ - +1] and T, Ain . are both (7, 4¢)-almost regular.
() D, — A, is(6—— 45) almost regular.

|N+ (U)ﬂA edn

m+1I Y

(IV) Foreachv e V'\ A

m+1’

We first construct P7**! for each e € E(L,,41) \ (Fpq1 U{e,,41}) in the following way. Let S be
the set of vertices v € V' for which there exist |e°n| indices i € [m] such that v € VO(P; \ {P. }).

Observe that, by (a) and (B), |S| < Sv_tlf'f” e|lv \ Am+1| Denote E(Ly,41) \ (Fpy1 Ufeiid) =t
{xlx{ . xkxk} Apply Corollary 4.6 with T',,, m+1’ 4, 21,y —4¢,and SUV(L,,,;) playing the

roles of D,v,7,d, and S to obtain internally vertex-disjoint paths Pm+,1, ,P’”*} cr,—-4

x1X] XXy, m+1
such that, for each i € [k], Perl is an (x;, x/)-path of length at most 8»~! with VO(P)’ZI,l) cV\
(A L USUV(L,q). Let P! = {P;’lf;{l |ie[k]}.

Let z € V be a new vertex. Let H be the digraph on vertex set V(H) :=V \ (V(L,,;.1) U

V(P’ 1)) U {z} defined as follows. Denote vtv™ :=e, ., and recall that, by construction, v* ¢
A:n+1 Then let Nt 5(2) = N (v+) NV(H), H[A erl] = Fm[Am+1] and, for each v € V(H) \
(Al L Yizh, N * {Z}(u) =Nj; oy (v) N V(H). Note that, by (I)-(IV), the following hold.

I H [ ] is a robust (2 7 , 27)-outexpander.
) H [ ] is (y,4s) almost regular.
Ir'y H - A’ L is (6 — Ss) almost regular.

(IV') For each veE V(H) \A L INF()nA &n

m+1’ m+1I Z 3

Indeed, to check (III'), note that, by (a),H— A] _, is obtained from D,,, — A] | by adding z and
deleting [V (L)) UV(P, . )l < e2n+¢e*n - 8v™! < 2¢%n vertices.
Our aim is to find a Hamilton cycle of H which contains few edges of F[A’ 1] First, we

cover V(H)\ A] , with a small number of paths as follows. Let k' := [%J Apply

Lemma 4.17 with H Al LIVH)\ A, 1,6 — =, and 5¢ playing the roles ofD n,8, and ¢ to
obtain a partition Vy,...,Viy of V(H)\ A] such that, for each i € [K'], |V;| = (1 £ 2¢)en and,
for each i € [K'] and v €V, IN;(0)NV; ;| = (6 - % +10e)en if i > 1 and [N/, (V)N V4| =
- % +10¢)en ifi < k'.

Then, for each i € [k’ — 1], apply Proposition 4.19 with H[V, Vi, Vi, Vg, en, 6 — %, and
10¢ playing the roles of G, A, B, n, 8, and ¢ to obtain a matching M; of H[V;, V] of size at least
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a- 31E)an For each i € [k’ —1], denote by M the directed matchlng obtained from M; by

directing all edges from V; to V;,,. Note that, by construction, M, ; € H. Define F C H by let-
ting V(F) :=V(H)\ A} 4 and E(F) := Uie[k’ 1] 1\7 ;. Observe that F is a linear forest which
spans V(H) \ A:n 4 and has f < 3?” components. Indeed, one can count the number of paths
in F by counting the number of ending points as follows. (An isolated vertex is considered as the
ending point of a trivial path of length 0.) Note that, foreach i € [k’ — 1], v € V; is the ending point
ofapathin F ifand onlyifv ¢ V(M;), while everyv € V}, is the ending point of a path in F. More-
over, for each i € [k’ — 1], we have |V; \ V(M,)| < |V;| — |M;| < en +2e’n — (1 — & en < 3en,

5
Thus, since k' —1 < ¢! — 1, we have f < 3222”(8‘1 D+ Vil < 335" , as desired.

Denote the components of F by Py, ...,P;. We now join Py, ... Pf into a Hamilton cycle as
follows. Note that, by (a), f < (% )3|Am 4|- Foreachie [f], denote by vl.+ and v, the starting
and ending points of P;. By (IV’), for eachi € [f], we have [N/ (v) N A! . | > 2f. Apply Corol-
lary 4.8(c) with H, A:n+1’ g, f, %, 27,and y — v playing the roles of D, V', S, k, v, 7, and § to obtain a
Hamilton cycle C of H such that F C C. Denote by u* the (unique) vertices such that u* € Ng (2),
respectively. Let Pg"‘ni :=(C —{z}) u{vtut,u" v~} By construction, Pg';ni isapath ofshapee,, .,
such that P’"+1 c (D, uT,) -V, .,) and VO(Pani) =V\(V (P ) UV(L,1)). Moreover,
LAl 1c r and Pyl \Pm+1[A’ 1 €Dy Let Pyyyy =Py, ULPIHLL Thus, (A)-(C)

m+1 m+1
hold. This completes the 1nduct10n step O

8 | GOOD PARTIAL PATH DECOMPOSITIONS AND ABSORBING
EDGES

Lemma 7.3 only covers most of the edges. Moreover, we will see that we also need an extra clean-
ing step before being able to apply Lemma 7.3. This means that our path decomposition will be
constructed in several stages.

Suppose that we have already constructed an intermediate set of paths 77 and that we want to
extend P to a path decomposition of T. Then, éx(T \ P) must not be too large (for otherwise we
will not have any hope of extending P to a path decomposition of the desired size €x(T')). This is
encapsulated in the concept of a good partial path decomposition, which is defined and discussed
in Section 8.1.

Moreover, we will need to make sure that, in the last stage, the remaining digraph D has a
nice structure (for otherwise we may not know how to decompose D). In Corollary 4.10, we saw
an example of a digraph that we can decompose efficiently. Unfortunately, it will not always be
possible to get a leftover of that form, so, in Section 8.2, we will generalise Corollary 4.10 using the
concept of absorbing edges.

8.1 | Partial path decompositions
Recall that U£(D) :={v € V(D) | ex;—g(v) > 0}and U°(D) :={v € V(D) | exp(v) = O}

Proposition 8.1. Any oriented graph D satisfies |U(D)| > éx(D) — ex(D).
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Proof. Assume for a contradiction that there exists an oriented graph D such that |[U°(D)| <
éx(D) — ex(D). Then, note that éx(D) = A%D) and let v € V be such that di*(v) = A%(D).
Assume without loss of generality that v € U™ (D). Then, d;(v) = éx(D) > ex(D). By Fact 4.21,
ex(D) > ex} (v) + |UT(D)| — 1 and so |[U*(D)| < ex(D) — ex}(v) + 1. Moreover, by assumption,
we have |U°(D)| < d;(v) — ex(D). Therefore, by Facts 4.20(b) and 4.20(c), we have

ex(D) > [UT(D)] = n— [U*(D)| = [U°(D)| > n — (ex(D) — ex,(v) + 1) = (d}y(v) — ex(D))

=n—1-d;v) > dj(v),
a contradiction. O

Let D be an oriented graph. Recall that in a path decomposition P of D of size éx(D), each
v € V(D) will be the starting point of at least exg(v) paths in P and the ending point of at least
ex,,(v) paths in P. When €x(D) > ex(D), there are €x(D) — ex(D) starting (and ending) points
unaccounted for. By Proposition 8.1, we can choose these endpoints (to be distinct vertices) in
U°(D). Thus, our path decomposition 7 will also maximise the number of distinct vertices that
are an endpoint of some path in P. This motivates the following definition.

Definition 8.2 (Partial path decomposition). Let D be a digraph. A set P of edge-disjoint paths
of D is called a partial path decomposition of D if the following hold.

(P1) Any vertex v € V(D) \ U%(D) is the starting point of at most exg(v) paths in P and the
ending point of at most ex (v) paths in P.

(P2) Any vertex v € U%(D) is the starting point of at most one path in P and the ending point of
at most one path in P.

(P3) There are at most €x(D) — ex(D) vertices v € U°(D) such that v is an endpoint of a path in P,
that is, |[U°(D) N (VH(P) U V—(P))| < éx(D) — ex(D).

By (P3), we will need to construct sets of edge-disjoint paths which do not contain too many
paths which start and/or end at vertices of zero excess. It will turn out to be convenient to fix
in advance which zero-excess vertices will be used as endpoints. This motivates the following
definition. Let D be a digraph and suppose that U* C U°(D) satisfies |U*| < éx(D) — ex(D). We
say that P is a U*-partial path decomposition of D if P is a partial path decomposition where
(VTP)uV—(P))nU°D) C U*, that is, no path in P has an endpoint in U%(D) \ U*.

Let D be a digraph. Recall that in Theorem 1.8, we defined

N*(D) = |U*(D)| + éx(D) — ex(D). (8.1)

Note that (P1) and (P3) imply that if P is a partial path decomposition of D, then there are at
most Nt (D) distinct vertices which are the starting point of a path in P ((P1) implies that the
vertices in U~ (D) cannot be used as starting points and (P3) implies that at most €x(D) — ex(D)
vertices in U°(D) may be used as starting points). Similarly, there are at most N—(D) distinct
vertices which are the ending point of a path in P.

Proposition 8.3. Let D be a digraph and P be a partial path decomposition of D. Then, ex(D \ P) =
ex(D) — |P| + [U(D) n (VH(P) UV~ (P))| < &(D) — |P|.

Proof. By (P3), |[U(D) N (VF(P)uV—(P))| < éx(D) — ex(D) and so it is enough to show that
ex(D \ P) = ex(D) — |P| + |[U(D) n (V*(P) UV~ (P))|. For each v € V(D), denote by n;;(v) and
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n,(v) the number of paths on P which start and end at v, respectively. Let v € V(D) and note that
eXp\p(0) = dfy (V) = dpy (V) = (A} ) — dp V) = (d5(0) — dy(0)
= exp(v) — ny, (V) + ny(v). (8.2)

Let n* be the number of paths in 7 which start in U* (D). Since P is a partial path decomposition,
we have

x\P)'E Y exi @ TE Y ext )+ [UD) 0P\ VP
veVv(D) veU*(D)

@ ( Y exi) - n+> +UAD) N (V- (P)UVH(P))| — [UAD) nV*(P)|

veU+(D)
(k2 0 - +
= ex(D) — |P| + [U'(D)n (V= (P)uVT(P)),
as desired. O

Let D be a digraph and P be a partial path decomposition of D. The next proposition expands
on Proposition 8.3 to give further bounds on ex(D \ P) and éx(D \ P).

Proposition 8.4. Let D be a digraph and P be a partial path decomposition of D. Then, the following
hold.

(2) IfA°(D \ P) < &x(D) — |P|, then éx(D \ P) = &x(D) — |P|.
(b) Iféx(D) = ex(D), then ex(D \ P) = ex(D) — |P|.

Proof. Note that it is enough to show that the following inequalities hold.
ex(D) — [P| < ex(D\ P) < &x(D) — |P| < €x(D\ P). (83)

Indeed, if é€x(D) = ex(D), then the first two inequalities of (8.3) are equalities implying (b). If
A%D \ P) < éx(D) — |P|, then together with the last two inequalities of (8.3), we deduce that

ex(D\ P),A%D \ P) < &(D) — |P| < &(D \ P) = max{A’(D \ P),ex(D \ P)}.
Thus, we must have equalities, which implies (a).
First, consider the case where éx(D) = ex(D). By (P3), no path in P has an endpoint in U°(D).
Thus, Proposition 8.3 implies that
&(D) — |P| = ex(D) — |P| = ex(D \ P) < &(D \ P)

and so (8.3) holds. We may therefore assume that éx(D) = A°(D) # ex(D). Clearly,

&x(D) — |P| = A°(D) — |P| < A%(D \ P) < &(D \ P). (8.4)
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By Proposition 8.3, we have
ex(D) — |P| < ex(D\ P) < &(D) — |P]. (8.5
Therefore, (8.3) follows from (8.4) and (8.5). O

Let D be a digraph. We say that a partial path decomposition P of D is good if éx(D \ P) =
€x(D) — | P|. We say that a path decomposition P of D is perfect if | P| = éx(D).

Fact 8.5. Let k € N and D be a digraph. Denote D, := D. Suppose that, for each i € [k — 1], P; is
a good partial path decomposition of D;_; and D; := D;_; \ P;. Suppose that P, is a perfect path
decomposition of Dy,_;. Then, P := Uie[k] P; is a perfect path decomposition of D.

Let D be an oriented graph on n vertices. The next proposition shows that if there is a vertex
v € V(D) with dg(v) > ex(D) — en, then €x(D) < (1 + ¢)n (Proposition 8.6(a.i)) and most of the
positive excess of D is concentrated at v (Proposition 8.6(a.ii)). Proposition 8.6(b) gives a sufficient
condition for a small partial path decomposition to be good.

Proposition 8.6. Let 0 < % <« 1 < 1. Let D be an oriented graph on n vertices satisfying ex(D) >
(A -2Inn. LetV* :={v e V(D) | dg(v) > €X(D) — 22nn}. Then, the following hold.

(a) IfV*® # @ for some o € {+, —}, then the following hold.
(i) &(D) < (1 + 22n)n < ex(D) + 4379n.
(i) exp(v) = (1 —86m)n > ex(D) — 108nn forallv € V°.

(b) Let P be a partial path decomposition of D of size |P| < 22nn. Suppose that both V* C V*(P) U
VO(P) for each P € P. Then, P is good.

Proof. For (a), we may assume that there exists v € V't (similar arguments hold if V'~ # @). Since
ex(D) > (1 — 21n)n, we have

€x(D) < df (v) +22nn < (1 + 22n)n < ex(D) + 43nn.

Thus, (a.i) holds. By assumption, d;(v) > €x(D) — 22nn > ex(D) — 22nn > g and so d(v) <
d}(v). Thus, ex},(v) = exp(v) and so

ext(0) 2" 24 (0) — dpy(v) > 2(EK(D) — 229m) —

a.i

(a)
> (1—-86n)n > éx(D)—108nn > ex(D) — 108nn.

Thus, (a.ii) holds.

For (b), let P be a partial path decomposition of D of size |P| < 22nn. Suppose that both
V+ C VE(P)U VO(P) for each P € P. We need to show that P is good, that is, that éx(D \
P) = max{ex(D \ P),A%(D \ P)} = é&x(D) — |P|. By Proposition 8.4(a), it is enough to show that
A°(D \ P) < é&x(D) — |P|.Letv € V(D). We need to show that both dg\p(v) < €x(D) — |P|.Ifboth
d;(v) < €x(D) — |P|, then we are done. We may therefore assume without loss of generality that
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d}(v) > &(D) — |P| > éx(D) — 22nn. Then, v € V* and so, by assumption, d; (v) = 1 for each
P € P. Thus,

df\ p () = dj() — d7 () = dj(v) - [P < A%(D) — |P| < (D) — |P|.

Moreover,
dp p(©) < dp (V) = dp(v) = djs(v) < n = (EX(D) — 221n)
< (1 +22n)n — ex(D) < 43nn < €&x(D) — |P|,
as desired. O
8.2 | Completing path decompositions via absorbing edges

As discussed in the proof overview, the goal is to complete our path decomposition by applying
Corollary 4.10. However, this requires linearly many vertices to serve as endpoints, which may not
always be possible. The concept of absorbing edges provides an approach to overcome this issue.
We motivate this concept via the following example. Let D be a digraph and w € V(D) with exg(w)
large. Suppose that v € N;(w) N U%D). Note that in D \ {wv}, the excess of v is now 1 instead of
0. Moreover, UT(D \ {wv}) = Ut(D) U {v} and so the number of possible distinct starting points
increases by one. A perfect path decomposition of D \ {wv} must have a path P starting at v. If P
does not contain w, then we can extend it to start at w by adding the edge wv and so we obtain a
perfect decomposition of D. We can view the edge wv as an absorbing starting edge which absorbs
the path P. This motivates the following definition.

Definition 8.7 (Absorbing sets of edges). Let D be a digraph. Let W, V'’ C V(D) be disjoint.

- An absorbing set of (W, V')-starting edges (for D) is a set A C E(D) of edges with starting point
in W and ending point in V’ such that, for each w € W, at most exg(w) edges in A start at w,
and, for each v € V’, at most one edge in A ends at v.

- An absorbing set of (V', W)-ending edges (for D) is a set A C E(D) of edges with starting point
in V’ and ending point in W such that, for each w € W, at most exB(w) edges in A end at w,
and, for each v € V’, at most one edge in A starts at v.

- A (W, V")-absorbing set (for D) is the union of an absorbing set of (W, V’')-starting edges and
an absorbing set of (V/, W)-ending edges.

Let D be a digraph. Let W, V' C V(D) be disjoint. Recall that an absorbing (W, V')-starting
edge wv can only absorb a path starting at v that does not contain w. Thus, we will find a path
decomposition in D[V’]. We will find this decomposition via Corollary 4.10. For this, we need
to adapt the degree conditions to account for the absorbing paths a vertex is involved in. This is
formalised in the following corollary.

Corollary 8.8. Let0 < + < v < T < 2 < landr > én. Suppose that D is a digraph with a vertex
partition V(D) = W U V’ such that D[V’ ] is a robust (v, T)-outexpander on n vertices. Suppose that
A*t, A~ C E(D) are absorbing sets of (W, V')-starting and (V',W)-ending edges such that |A*| <
r. Denote A := AY U A™. Suppose furthermore that there exists a partition V' = Xt UX~ UX* U
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X0 such that | X* UX*| + |A*| =1, V(AT) N V' C XFT U XY, and, for each v € V(D), the following
hold.

d,(v) ifvew,
2r—1 ifveXt,
2r -2 ifveX’,
2r ifv e Xx°.

ex,(v) ifvew,
exp(v) =41 ifv e X*, and dp(v) =
0 ifv e X*uXxO,

Then, pn(D) = r.

Proof. By Corollary 4.10, we may assume that A # @J. Hence, pn(D) > A°(D) = r. Thus, it suffices
to find a path decomposition of D of size r.
Let

YE = (XEu V@A) NV))\ XFUV(AT)) = (XEU(AF)nX"))\ V(4F),
Y  :=X*u(VAHNVA)DUEXT NVA)UEX NnV(AY)), and
YO =X\ (v @A) uv)).

Then, observe that Y*,Y~,Y*, and Y° are all pairwise disjoint and form a partition of V’.
Moreover, |[Y* U Y*| = [ X* UX* U (V(A*) N V’)| = r and, for each v € V’, the following hold.

. 2r—1 ifveY?,
o) +1 ifveY?, d d © or—a if v
ex V) = an V) =142r — ifveY®,
biv’] 0 otherwise, biv’] )
2r otherwise.

Thus, we can apply Corollary 4.10 with D[V’],Y*,Y*, and Y° playing the roles of D, X*, X*,
and X° to obtain a path decomposition P = {P,, ..., P,} of D[V’] of size r. For each i € [r], let
ul.+ and v denote the starting and ending points of P;. By the ‘moreover part’ of Corollary 4.10,
we may assume that vf, ..., Uf are distinct and {vi+ |i € [r]} =Yt UY* Wemay also assume that
vy, Uy aredistinctand {v; i € [r}=Y UY™

We use A* to absorb the paths starting at V(A1) n V’ asfollows. Foreachi € [r], if vl.+ gV,
then let P := P;; otherwise, denote by wv:" the unique edge in A* which is incident to v;" and
let P* := w v P;v;. Then, absorb the paths ending in V(A™) NV’ similarly. For each i € [r],
if v7 & V(A7), then let P; := PL.+; otherwise, denote by v w;” the unique edge in A~ which is
incidenttov; andlet P, be obtained by concatenating PL.Jr andv; w;.Sincedp(v) = d4(v) foreach
v € W, it follows that P’ := {P; | i € [r]}is a path decomposition of D of size r, as desired.  []

Although the absorbing set is chosen at the beginning, we do not remove this set as it may affect
our calculation of éx(D). Thus, we require all our partial path decompositions to avoid the edges
in the absorbing set. Moreover, their endpoints should not ‘overuse’ the vertices in V(A).

Definition 8.9 (Consistent partial path decomposition). Let D be a digraph, let W, V'’ C V(D) be
disjoint, and A C E(D). Note that W and V' do not necessarily partition V(D). Suppose that A is a
(W, V")-absorbing set. Then, a partial path decomposition P of D is consistent with Aif P C D \ A

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



PATH DECOMPOSITIONS OF TOURNAMENTS | 33

and each v € W is the starting point of at most exg(v) - dZ(v) paths in P and the ending point
of at most ex;(v) — d’, (v) paths in P.

Definition 8.10 ((U*, W, A)-partial path decomposition). Let D be a digraph, let W,V’ C V(D)
be disjoint,and A C E(D). Suppose that A isa (W, V')-absorbing set. Given U* C U°(D) satisfying
|U*| < éx(D) — ex(D), we say that P isa (U*, W, A)-partial path decomposition if P is a U*-partial
path decomposition which is consistent with A.

Let P be a partial path decomposition of D which is consistent with A. By definition, A is still
a (W, V’)-absorbing set for D \ P.

Fact 8.11. Let D be a digraph and W, V' C V(D) be disjoint. Suppose that A is a (W, V')-absorbing
set. Suppose P is a partial path decomposition of D which is consistent with A. Denote D' := D \ P.
Then, A is a (W, V')-absorbing set for D'.

9 | CONSTRUCTING LAYOUTS IN GENERAL TOURNAMENTS

In this section, we discuss how to construct layouts in general tournaments. Recall that Lemma 7.3
(which constructs an approximate decomposition which respects a given set of layouts) only
applies to almost regular robust outexpanders. In general, our tournament T will not be almost
regular nor a robust outexpander. In Section 9.1, we discuss how to circumvent this problem. As
discussed in Section 8.1, we will need the set of paths obtained with Lemma 7.3 to form a good
partial path decomposition. In Section 9.2, we explain how we can ensure this. In Section 9.3, we
discuss the cleaning step. In Section 9.4, we state the lemma which guarantees the existence of
suitable layouts.

9.1 | W-exceptional layouts

Let T be a tournament on n vertices with ex(T) < en? for some small constant ¢. Then, there
exists a partition of V(T) into W and V' such that W is small and T[V'] is almost regular. Our
aim is to apply Lemma 7.3 to T[V']. To do so, we will construct layouts (L,, F;), ..., (Ls, F,) so
that Ey (T) C ;e[ Fi- (Recall from Section 3 that Ey, (T) denotes the set of edges of T which are
incident to W.) This will ensure that all the edges in Ey;,(T) will be contained in the partial path
decomposition obtained from the spanning configurations of shapes (L, F; ), ..., (L, F ;).

Let V be a vertex set and W C V. We say that a layout (L, F) is W-exceptional if E;,(L) C F. Let
(L, F) be a W-exceptional layout. A multidigraph H on V is a W-exceptional spanning configura-
tion of shape (L, F) if H can be decomposed into internally vertex-disjoint paths {P, | e € E(L)}
such that each P, has shape e; P, = fforall f € F;and UeeE(L) VO(P,) =V \ (V(L) U W).(Note
that the last equality implies that the vertices in W \ V(L) are isolated in H.) Thus, roughly speak-
ing, a W-exceptional spanning configuration of shape (L, F) is one such that all ‘additional’ edges
(that is, those edges of H that are not in F) are disjoint from W. A path decomposition of H is
induced by (L, F) if it consists of all the paths P, := {P, | e € E(Q)} where Q is a path in L. The
analogue of Fact 7.1 holds for W-exceptional spanning configurations.
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Fact 9.1. Let V be a vertex set and W C V. Let (L, F) be a W-exceptional layout on V and H be
a W-exceptional spanning configuration of shape (L,F) on V. Let L’ denote the set of (non-trivial)
paths contained in L. Suppose that P is a path decomposition of H which is induced by (L, F). Then,
VEP) =VEL)and VO(P) = VOL)u (V \ (WU V(L))).

‘We now show that there is a natural transformation of a W-exceptional layout (L, F) into an aux-
iliary layout (L', F'W) on V \ W. Roughly speaking, the auxiliary layout (L', F'W) is obtained
from (L, F) by contracting all the edges in Ey, (L) so that Ey,(L'") =@ = E;,,(F'") and then
remove W.

Definition 9.2 (Auxiliary layout). Let V' be a vertex set and W C V. Suppose (L,F) is a W-
exceptional layout on V. We denote by (L', FIW) the layout on V \ W obtained from (L, F)
as follows.

Let P be the multiset of maximal paths P such that P C P’ for some P’ € L, VO/(P) C W,
and V(P) N W # @ (in particular, each isolated vertex v € V(L) N W is a path in P but no iso-
lated vertex v € V(L) \ W is a path in P). Note that, since (L, F) is W-exceptional, each P € P
satisfies E(P) C F. Let Py, ..., P, be an enumeration of P and, for each i € [k], let x; and y; denote
the starting and ending points of P;, respectively. Then, let L'V be obtained from L as follows. For
eachi € [k],

- if both x;,y; € V'\ W, then contract the subpath P; into an edge x;y;;
- otherwise, delete E(P;) aswell as V(P,) N W.

Note that V(L'")=V(L)\ W CV \W. Define F'W :={x;y; |i € [k],x;,y; €V \W}U(F\
Ey(F) ={xy; | i € [k],x;,y; € V\W}U(F\ Ey (L))

Note that since (L, F) is W-exceptional, each e € E(L) \ F satisfies V(e) CV \ W andso E(L) \
F=EL")\FV,

The following proposition states that a spanning configuration of shape (L', F'") in D[V \
W] can easily be transformed into a W-exceptional spanning configuration of shape (L, F) in D.
In other words, it allows us to reverse the process described in Definition 9.2.

Proposition 9.3. Let D be a digraph on a vertex set V. Let W CV and denote V' :=V \ W.
Let (L,F) be a W-exceptional layout on V. Let (L' ,F'W) be as in Definition 9.2. Suppose
H'W C D[V'TUF'"W is a spanning configuration of shape (L'Y,F'W). Let H be the multidi-
graph with V(H) :=V and E(H) := (E(H'"W)\ F'W)UF. Then, E(H) C E(D[V'])UF and H is
a W-exceptional spanning configuration of shape (L, F).

Proof. Note that H'" can be decomposed into internally vertex-disjoint paths {P, | e € E(L'")}
such that P, has shape e for each e € E(L'V); P; = f foreach f € F!"; and J,cp vy VO(P,) =
V' \ V(L). Since E(L)\ F = E(L'")\ F'W, H can be decomposed into {P, | e € E(L) \ F}UF.
The proposition follows by setting Py := f forall f € F. [l

This has the advantage that it suffices to find spanning configurations in an almost regular
robust outexpander, which corresponds to the setting of Lemma 7.3. More precisely, ifwe let V/ ;=
V' \ W be the set of ‘non-exceptional vertices’ described in Section 2.3 and let D’ be the remainder
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of the tournament T[V'] after the cleaning step, then D’ is almost complete and almost regular,
and hence a robust outexpander. Then, we can split D’ into D and T as required for Lemma 7.3.

9.2 | Path consistent layouts

Let D be a digraph on V. When we refer to a spanning configuration of shape (L, F) in D, we mean
that this configuration is contained in the multidigraph D U F (as F may not be in D). Let F be
a multiset of edges on V and (L,, F;), ..., (L,, F,) be layouts, where F; C F for each i € [¢]. We
would like the union of their spanning configurations to form a good partial path decomposition
of D U F. For this, these layouts will need to satisfy the following properties. Let U* C U°(D U F)
be such that |U*| < é&x(D U F) — ex(D U F) and define the multiset L by L := Uie[f] L;. We say
(Ly,Fy),...,(Ly, F,) are U*-path consistent with respect to (D, F), if Uie[ nFi€F (counting with
multiplicity) and the following hold.

(P1") Foranyv € V \ U%(D U F), v is the starting point of at most exguf,(v) non-trivial pathsin L
and the ending point of at most ex) ..(v) non-trivial paths in L.

(P2) For any v € U*, L contains at most one non-trivial path starting at v and at most one non-
trivial path ending at v.

(P3') Ifv € U°(D U F) \ U*, then v is not an endpoint of any non-trivial path in L.

If D and F are clear from the context, then we omit ‘with respect to (D, F)’

The following proposition simply states that the union of spanning configurations of U*-path
consistent layouts indeed forms a U*-partial path decomposition (as defined in Section 8.1). We
also track the degrees for later uses.

Proposition 9.4. Let D be a digraph on a vertex set V. Let V.= W UV’ be a partition of V. Let
U* C U%D) satisfy |U*| < éx(D) — ex(D) and F C E(D). Let (L, F,) ...(L;, F,) be W-exceptional
layouts. Foreachi € [¢], let H; be a W -exceptional spanning configuration of shape (L;, F;). Suppose
that Hy, ..., H, are pairwise edge-disjoint. For each i € [¢], denote by P; a path decomposition of H;
induced by (L;, F;). Define the multiset Lby L := ;1 Ly Let F := U;g() Fi H 1= Uiy Mo and
P = Uiem P,. Then, forallv € V,

dy() =df+Iliel]lveV \ VLI

Moreover, if (L, F,), ... ,(Ly, F,) are U*-path consistent with respect to (D \ F,F), then P isa U*-
partial path decomposition of D such that |P| is equal to the number of non-trivial paths in L and
Ey(P)CFCF.

Proof. By Fact 9.1, each v € V satisfies

dy;) = Y dy )= Y (A ©) + lygyyuw) = dF@) + i €[] | v € V/ \ VLI,
i€el?] i€el?]

as desired. Moreover, Fact 9.1 implies that, for each v € V, the number of paths in P which
start/end at v is precisely the number of (non-trivial) paths in L which start/end at v. By def-
inition of path consistency, this implies that P satisfies (P1) and (P2). Moreover, the fact that
|U*| < éx(D) — ex(D) implies that (P3) holds. Thus, P is a partial path decomposition of D. []
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9.3 | Cleaning

As discussed in Section 8.2, the leftover from the approximate decomposition will be decomposed
using Corollary 8.8 and so it needs to have a specific structure: no non-absorbing edge incident
to the exceptional set W can be left over, while the non-exceptional vertices in V' must form a
digraph which is very close to being regular. One consequence of this is that the degree at W needs
to be covered at a much faster rate than the degree at V’. Unfortunately, this cannot be achieved
via the approximate decomposition. Indeed, Lemma 7.3(b) implies that each v € V' can only be
included as an isolated vertex or covered by a fixed edge in a small proportion of the layouts. Thus,
Proposition 9.4 implies that the # spanning configurations obtained with Lemma 7.3 will cover
about # inedges and # outedges at each vertex in V’. Therefore, to cover the degree at W at a
faster rate than the vertices in V/, we would need that each vertex in W belongs (on average) to
several paths of each spanning configuration. However, as discussed in Section 9.1, the exceptional
vertices will be included via fixed edges and so, in that case, the layouts would be large, while the
approximate decomposition only allows small layouts (see Lemma 7.3(a)).

Therefore, we will start with a cleaning procedure which significantly reduces the degree at W'.
To facilitate the construction of layouts, we also cover all the edges inside W in this step. Note that
this needs to be done efficiently so that, after the cleaning step, the non-exceptional vertices still
form an almost regular oriented graph of very large degree (otherwise, we would not be able to
apply Lemma 7.3 to obtain an approximate decomposition).

We now state our cleaning lemma. (The proof is deferred to Section 12.) Roughly speaking,
Lemma 9.5 says the following. Suppose that T & T, (exceptional tournaments have already
been decomposed in Section 5). Let W C V(T) consist of all the vertices of excess at least en and
denote V' := V(T)\ W. Let AT and A~ be small absorbing sets of (W, V’)-starting and (V', W)-
ending edges. Let U* C U(T) satisfy éx(T) — ex(T). Then, there exists a good (U*, W, A)-partial
path decomposition P such that the leftover D := T \ P satisfies the following properties. First,
the main objectives of the cleaning step are achieved.

- The degree of the exceptional vertices (that is, those in W) is significantly lower than the degree
of the vertices in V'’ (compare the bounds in Lemma 9.5(vii) and (ix)).
— All the edges inside the exceptional set are covered (see Lemma 9.5(iii)).

Moreover, these objectives are achieved very efficiently.

- D isstill almost complete (see Lemma 9.5(i) and (vii)-(ix)). Together with Lemma 4.4, this will
ensure that D[V'] is an almost regular robust outexpander, which is needed for the approximate
decomposition.

- éx(D)islarge compared to number of edges in D (see Lemma 9.5(ii) and (v) (by Lemma 9.5(vii)-
(ix), d is roughly the density of D)). If éx(D) was very small, then D would need to be
decomposed with few long paths which would be more difficult and might not even be possible
with our strategy.

- The number of distinct endpoints which can be used to decompose D is roughly the same as
for T (see Lemma 9.5(iv)). As discussed in Section 8, having a large pool of suitable endpoints
is very convenient and in fact necessary for the final step of the decomposition if AT U A~ = @
(recall that we aim to apply Corollary 8.8 after the approximate decomposition).

We now explain and motivate the conditions which are needed for the cleaning strategy to work
or to simplify the construction of layouts.
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- The number of exceptional vertices must be small (see Lemma 9.5(a)). Otherwise, there would
be too many edges to cover within the exceptional set and we would not be able to do it effi-
ciently. We are able to assume that |W| is small since otherwise ex(T) would be large and so
Theorem 1.2 would apply (recall that W consists of vertices of large excess).

- The absorbing edges are taken at vertices of as high excess as possible (see Lemma 9.5(b)). This
is convenient because it maximises the number of endpoints that are allowed to be used in P.
Indeed, recall that the effect of absorbing edges is to reserve some excess at the vertices of W for
the final step of the decomposition, so if the absorbing edges account for all the excess at a vertex
w € W, then w cannot be used as an endpoint in the (U*, W, A)-partial path decomposition 7.
Taking the absorbing edges at vertices of as high excess as possible ensures that this occurs for
as few vertices w € W as possible.

- We distinguish exceptional vertices of very high excess (W), exceptional vertices of significant
but not too high excess (W), and exceptional vertices which are incident to absorbing edges
(W 4) (see Lemma 9.5(a) and (b)). One issue that we have not discussed so far is that the excep-
tional set for the approximate decomposition and the exceptional set for the final step of the
decomposition will have to be different. Indeed, as discussed in Section 9.1, the exceptional
set for the approximate decomposition must contain all the vertices with excess at least en to
ensure that we apply Lemma 7.3 to an almost regular digraph. Thus, W = W, U W, will be the
exceptional set considered during the approximate decomposition. As discussed in Section 8.2,
the main role of the exceptional set in the final step of the decomposition is to incorporate the
absorbing edges. Thus, W, will have to be part of the exceptional set when we apply Corol-
lary 8.8. In addition, the vertices of very high excess will also have to be part of this exceptional
set because they have almost all of their edges in the same direction and so it would be impos-
sible for them to satisfy the degree conditions of the non-exceptional vertices in Corollary 8.8.
Thus, W, U W, will be the exceptional set used in the final step of the decomposition and
W, \ W 4 will be incorporated back into the non-exceptional set after the approximate decom-
position. (This explains the degree conditions in Lemma 9.5(viii).) This is necessary because it
may not be possible to decrease the degree at W, significantly during the cleaning step. Indeed,
since the excess of the vertices in W, is not too large, we may have éx(T) relatively small and
W, relatively large at the same time. In that case, significantly decreasing the degree at W, dur-
ing the cleaning step would amount to covering many edges with very few paths, which is not
possible.

- If AT U A~ is non-empty, then éx(T) must not be too small (see Lemma 9.5(b)). This will allow
us to significantly reduce the degree at W, during the cleaning step (which is, as discussed
above, necessary for applying Corollary 8.8).

In addition to our main objectives, we will also achieve the following property.

- If éx(D) is not too large, then we can achieve that all the vertices in W, have all their edges in
the same direction in D (see Lemma 9.5(vi)). This means that, in the decomposition of D, no
path will need to have a vertex of W, as an internal vertex. This will be very convenient because
if éx(D) is relatively small but a vertex w € W has large positive excess (say), then almost all of
the positive excess of D is concentrated at w and so almost all of the paths in the decomposition
of D have to start at w. Then, there would be very few paths were w could be incorporated as
an internal vertex and so it would be difficult to cover all the inedges at w.

Lemma 9.5 (Cleaning lemma). Let 0 < % <K e <KL LetT & Teyeep be atournament on avertex
set V of size n satisfying the following properties.
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(a) Let W, uW, UV’ be a partition of V such that, for each w, € W, | exp(w,)| > (1 — 20n)n;
for each w, € W, | exp(wy)| < (1 —20n)n; and, for each v’ € V', |ex; (V)| < en. Let W :=
W.. U W, and suppose |W| < en.

(b) Let A*, A~ C E(T) be absorbing sets of (W,V')-starting/(V',W)-ending edges for T of size at
most [nn)]. Denote A := At UA™. Let Wi =V(AH)NW and W, :=V(A)N W. Suppose
that the following hold.
- Leto € {+, =} If|W9| > 2, then ex}.(v) < [nn] foreachv € V.
- Leto € {+, -} If|W9| = 1, then ex7.(v) < ex7.(w) foreachv € V and w € W7,
- IfW, # @, then éx(T) > % + 109n.

(c) Let U* C U(T) satisfy |U*| = éx(T) — ex(T).

Then, there exist d € N and a good (U*, W, A)-partial path decomposition P of T such that the
following hold, where D :=T \ P.

() [51-10n<d < [5] —nn.
(ii) Eachv € U* \ (V*(P) U V~(P)) satisfies dg(v) =d () <ex(D) -1
(iii)) E(D[W]) = 4.
(iv) NE(T) — N*(D) < 89nn.
(v) &(D) > d + [nn].
(vi) Iféx(D) < 2d + [nn], then each w € W satisfies | exp(w)| = dp(w).
(vii) Foreachv € W, UW 4, 2d —34/nn < dp(v) < 2d — [nn].
(viii) Foreachv € W, 2d + 2[nn] — 4\/511 <dp(v) <£2d +2[nn] and dglin(v) > [nn].
(ix) Foreachv € V',2d + 2[nn] — 94/en < dp(v) < 2d + 2[nn].

9.4 | Constructing layouts

We now state the lemma which we will use to construct the layouts for the approximate decom-
position. (The proof is deferred to Section 13.) Roughly speaking, Lemma 9.6 says the following.
Let D be an oriented graph. Let W, U W, U V’ be a partition of V(D) and denote W := W, U W,,.
Here, W will be the exceptional set for the approximate decomposition (that is, the same W as in
the cleaning lemma), W; will be the exceptional set for the final step of the decomposition (that
is, W, U W, from the cleaning lemma), and W, will be the set of exceptional vertices which will
be incorporated back into the non-exceptional set after the approximate decomposition (that is,
W, \ W, from the cleaning lemma). Let U* C U%(D) satisfy |U*| = éx(D) — ex(D). Let A* and
A~ be absorbing sets of (W, V')-starting and (V’, W, )-ending edges. Suppose that D satisfies the
following properties.

— The vertices in V"’ all have small excess (see Lemma 9.6(h), this is inherited from Lemma 9.5(a)).
Recall that one of the roles of the layouts is to prescribe the endpoints of the paths we want
to construct in the approximate decomposition. Thus, the fact that the vertices in V'’ have
small excess means that each vertex in V’/ will be an endpoint in only few of the layouts.
This is necessary because Lemma 7.3 only allows each vertex to be covered by few layouts (see
Lemma 7.3(b)).

- The vertices in V’ all have roughly the same degree (see Lemma 9.6(h), this is inherited from
Lemma 9.5(ix)). Recall that the role of the isolated vertices in layouts is to specify which ver-
tices need to be avoided in each of the spanning configurations constructed in the approximate
decomposition. The fact that the vertices in V’ all have roughly the same degree means that they
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all need to be covered by roughly the same number of spanning configurations. Thus, each ver-
tex in vV’ will only have to be included as an isolated vertex in few of the layouts. This is necessary
because Lemma 7.3 only allows each vertex to be included in few layouts (see Lemma 7.3(b)).

— The degree at W is significantly smaller than the degree at V/ (compare Lemma 9.6(f) and (h),
this is inherited from Lemma 9.5(vii) and (ix)). This will enable us to incorporate all the non-
absorbing edges at W, into the layouts. (Thus, the vertices in W; will have no non-absorbing
edges left over after the approximate decomposition and so we will be able to use W; as the
exceptional set in Corollary 8.8.)

- The degree at W, is comparable or smaller than the degree at V' but every vertex in W,
has a significant number of edges of each direction (see Lemma 9.6(g), this is inherited from
Lemma 9.5(viii)). This means that the degree at W, is not too large compared to the number
of layouts that we will construct, and the in- and outdegree of each vertex in W, is larger than
the in- and outdegree required to satisfy the non-exceptional degree conditions in Corollary 8.8.
Thus, we will be able to incorporate almost all of the edges at W, into the layouts. (The edges
left over will be covered using Corollary 8.8.)

- €x(D)issignificantly larger than the average degree of D (see Lemma 9.6(b) and (e), this is inher-
ited from Lemma 9.5(ii) and (v)). Also, if €x(D) is not very large, then the vertices in W satisfy
some additional degree conditions (see Lemma 9.6(f), this is inherited from Lemma 9.5(vi) and
(viii)). Moreover, D[W] is empty (see Lemma 9.6(a), this is inherited from Lemma 9.5(iii)). As
discussed in Section 9.3, these conditions will facilitate the construction of the layouts.

If we assume the above conditions, then there exist layouts (L, F,), ..., (L;, F,) on V(D) which
satisfy the following properties, where L denotes the multiset L := Uie[f] L;.

- (Ly,Fy),...,(Ly, Fy) are W-exceptional. As discussed in Section 9.1, D may not be an almost
regular robust outexpander and so we will need to apply Lemma 7.3 with D[V’] playing the role
of D. The concept of W-exceptional layouts will enable us to incorporate the edges incident to
W into the approximate decomposition.

— Let F consist of all the non-absorbing edges of D which are incident to W (that is, F :=
Ey(D)\ (At UA7)) and denote D’ := D \ F. Then, (L, F,), ..., (L., F,) are U*-path consis-
tent with respect to (D', F). As discussed in Section 9.2, this will ensure that the spanning
configurations obtained in the approximate decomposition form a partial path decomposition
which does not have any endpoint in U°(D) \ U* (recall Proposition 9.4). Moreover, the def-
inition of path consistency implies that F,,...,F, CF C D \ (At U A7). This will ensure that
none of the absorbing edges will be covered during the approximate decomposition (recall from
Section 8.2 that these edges are reserved for the final step of the decomposition).

- The number of layouts is bounded away from the density of D (see Lemma 9.6(i)). This is needed
for applying Lemma 7.3.

- The number of (non-trivial) paths in L is precisely éx(D) — r, where r is the value from Corol-
lary 8.8 (see Lemma 9.6(ii), in the proof of Theorem 1.8 we will apply Corollary 8.8 with [nn]
playing the role of r). By Proposition 9.4, this means that the partial path decomposition
obtained in the approximate decomposition step will consist of €x(D) — r paths. The leftover
will then be decomposed into r paths with Corollary 8.8 and so, overall, we will obtain a path
decomposition of D of size €x(D), as desired.

- Each layout is small (see Lemma 9.6(vi)). This is needed for the approximate decomposition
(see Lemma 7.3(a)).

- Each vertex in V” is included in few of the layouts (see Lemma 9.6(vii)). This is needed for the
approximate decomposition (see Lemma 7.3(b)).
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- Each non-absorbing edge incident to W is incorporated as a fixed edge into precisely one of the
layouts (see Lemma 9.6(iii)). This implies that after the approximate decomposition, the only
remaining edges incident to W, will be the absorbing edges. This is precisely what we need for
applying Corollary 8.8 with W playing the role of the exceptional set.

- All but r inedges and r outedges at each vertex in W, are included as fixed edges in L (see
Lemma 9.6(iv)). This implies that, after the approximate decomposition, each vertex in W, will
have both its in- and outdegree equal r, that is, each vertex in W, will have excess 0 and total
degree 2r in the leftover. This means that we will be able to apply Corollary 8.8 with W, C X°.

- Let XTCcWUrMD)uU"HNV’' and X~ C (U (D)uU*)NV'. Then, Proposition 9.4 and
Lemma 9.6(v) imply that, for each v € V/, the number of L; which include v as an isolated
vertex and the outdegree of v in L together have precisely the value such that, after the approx-
imate decomposition, the outdegree at v willbe r if v ¢ X~ andr — 1 if v € X~. The analogous
statement holds for X*. Thus, the vertices in V'’ will satisfy the degree conditions of Corol-
lary 8.8 with Xt \ X—, X~ \ X*, and X* n X~ playing the roles of X*, X, and X*, and with
V' \(XTuXx)cXxO.

Lemma 9.6 (Layout construction). Let 0 < % <K ek n<klandd eN.LetD bean oriented graph
on a vertex set V of size n such that the following hold.

(a) Let W, UW, UV’ be a partition of V. Denote W := W, UW,. Suppose that |W| < en and
E(D[W)) = 0.

(b) Let U* C U%(D)\ W be such that |U*| = éx(D) — ex(D). Moreover, each v € U* satisfies
dj(v) = d(v) < &x(D) - 1.

(c) Let A* and A~ be absorbing sets of (W, V')-starting and (V', W, )-ending edges for D, respec-
tively, and denote A := At UA™. Suppose X* C (UE(D)u U*)\ W are such that |A*| +
|X*| = [nn]. Define ¢* : V — {0,1} by

d*(v) = {1 ifvex=,

0 otherwise.

(d) d=nn
(e) €x(D) > d + [nn].
() For all v € Wy, 10en < dp\4(v) < 2d — [nn]. Moreover, if €x(D) < 2d + [nn], then, for
each v € W1, one of the following holds.
- |exp(v)| = dp(v); or
- dB() > pn.and | exp ()] < [7n]; or
- dp"(v) =z nn and d,(v) = [nn].
(g) Forallv € Wy, d"(v) > [nn] and dp(v) < 2d + 2[nn].
(h) Forallv e V', 2d +2[nn] —en < dp(v) < 2d + 2[nn] and | exp (V)| < en.

Let F :=Ey(D)\ A and D' := D\ F. Then, there exist £ €N and W-exceptional layouts
(L1, Fy), ..., (Ly, F,) which are U*-path consistent with respect to (D', F) and satisfy the following,
where L is the multiset defined by L := ;) Li-

(i) d<Z<d+fen
(ii) L contains exactly €x(D) — [nn]| non-trivial paths.
(iii) Forallv € Wy, d(v) = d5(v) = dj;, , (V).
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(iv) Forallv € W,, df(v) = dz.(v) — [yn] = d;(v) - [1n].
(v) Forallv e V', dF(v) = dy(v) = [{i € [£] | v & VL} — [9n] + $7(v).

1
(vi) Foralli e [7], [V(L)|, |[E(L;)| < 3¢3n.
(vii) Foreachv € V', d; (v) < 8en and there exist at most3\/2n indicesi € [¢] such thatv € V(L;).

We now motivate the expression appearing in (v). Let v € V’. Recall from Proposition 9.4 that
d'{ W+fielf]|ve V(fl-)}| is precisely the outdegree of v in a set of spanning configurations of
shapes (L, F}), ..., (L,,L,). Moreover, as seen in the proof of Theorem 1.8 (see also the explanatory
paragraph before the statement of Lemma 9.6), [nn] — ¢~ (v) is precisely the leftover outdegree
of v that we aim for after the approximate decomposition step.

We now explain in more detail why Lemma 9.5(ii) is necessary. This is because a general ori-
ented graph D may not contain sufficiently many zero-excess vertices which satisfy the degree
condition of Lemma 9.6(b). For example, if D is regular, then éx(D) — ex(D) > 0 but every v €
V(D) satisfies d;(v) =d;(v) = A%(D) = éx(D). This example also illustrates why the degree con-
dition of Lemma 9.6(b) is necessary. Indeed, suppose for a contradiction that Lemma 9.6 also
holds if we omit the ‘moreover part’ of Lemma 9.6(b). Let T be a regular tournament on n ver-
tices. Let d := ”T_l — [nn]. Let V! :=V(T) and W, :=W, := At := A~ :=0. Let U* C V(T)
satisfy |[U*| = ”T_l and X*,X~ C U* satisfy | X*| = [yn] = |X~|. Then, one can easily verify that
Lemma 9.6(a)-(h) are all fully satisfied except for the ‘moreover part’ of Lemma 9.6(b) and so, by
assumption, there exist layouts as in Lemma 9.6. As discussed earlier, this implies that we can use
Lemma 7.3 to construct a partial path decomposition P of T of size |P| = éx(T) — [nn] such that
T \ P satisfies the degree conditions of Corollary 8.8 with r := [nn]. Thus, Corollary 8.8 implies
that there exists a path decomposition P’ of T \ P of size [nn]. But, this means that P U P’ is a
path decomposition of T of size €x(T'). This contradicts Theorem 5.1.

The next proposition states that, after the cleaning step, we will be able to find a set U™ of can-
didates for path endpoints which satisfies Lemma 9.6(b). Let T & 7¢y.,- By Proposition 8.1, there
exists U* C U°(T) satisfying |U*| = €x(T) — ex(T). Let P be the good partial path decomposition
obtained by applying Lemma 9.5. Denote D :=T \ P. We now aim to apply Lemma 9.6 to D and
so we need a new set U** C U°(D) which satisfies Lemma 9.6(b). (We cannot use the original U*
since some of the vertices in U* may have been used as endpoints in P and so may have non-
zero excess in D.) By Proposition 8.1, there exists U** C U°(T) satisfying |[U**| = éx(D) — ex(D).
However, there is no guarantee that the vertices in U** satisfy the desired degree conditions.
But by Lemma 9.5(ii), we know that all the vertices in U* which have not been used as end-
points in P have the correct degree conditions for Lemma 9.6(b). Thus, we would like to take
U™ cU*\ (V*(P)uV~—(P)) and so we would like U* \ (V*(P)uU V~—(P)) to contain at least
éx(D) — ex(D) vertices of U°(D). Proposition 9.7 states that this is the case.

Proposition 9.7. Let D be a digraph and W,V' C V(D) be disjoint. Suppose A*, A~ C E(D) are
absorbing sets of (W, V")-starting and (V', W)-ending edges for D. Denote A := AY U A™. Let U* C
U°(D) satisfy |U*| = €x(D) — ex(D). Suppose P is a good (U*, W, A)-partial path decomposition
of D. Let U** := U* \ (V*(P)UV~—(P)). Then, U** C U’(D \ P)and |[U**| = éx(D \ P) —ex(D \
P).

Recall that a (U*, W, A)-partial path decomposition of D was defined in Definition 8.10 and its
goodness before Fact 8.5.
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Proof of Proposition 9.7. Since the vertices in U™* have not been used as endpoints in P, they still
have excess 0in D \ P.

By definition of a (U*, W, A)-partial path decomposition, no path in 7 has an endpoint in
U°(D) \ U*. Therefore,

U'D)n(VH(P)uV—(P)) =U*\ U™ 9.1)
and so the fact that P is a good partial path decomposition implies that

&x(D \ P) = ex(D) — |P|

Proposition 8.3

= (&x(D) — ex(D)) + ex(D \ P) = [U(D) n (V¥ (P)u V*(P))

YU 4 ex(D\P) - U\ U] = ex(D\ P) + U™,

as desired. O

10 | DERIVING THEOREM 1.8

In this section, we assume that Lemmas 9.5 and 9.6 hold and derive Theorem 1.8. We will pro-
ceed as follows. In Step 1, we select absorbing edges (if they are required). In Step 2, we clean
up T by removing a small number of paths using Lemma 9.5. In Step 3, we first apply Lemma 9.6
to obtain approximate layouts and then apply Lemma 7.3 to obtain an approximate decompo-
sition of T based on these layouts. Finally, in Step 4, we apply Corollary 8.8 to decompose the
leftover.

Proof of Theorem 1.8. Assume without loss of generality that § < 1. Fix additional constants
such that0 < nio ey KKK P <L LetT & Texcep be a tournament on n > n, vertices
satisfying (a) or (b). By Theorem 1.2(b), we may assume that ex(T) < e2n®. Denote V := V(T).

Recall that N*(T) = |U*(T)| + éx(T) — ex(T). If both N*(T) > ayn, then redefine 7 := ocf.
Suppose not. If both N*(T) < a,n, then redefine ¢ := «,. Otherwise, there exists ¢ € {+, —} such
that N°(T) < aynand o € {+, -} \ {o}satisfies N°(T) > a,n and we redefine¢ := oy and 7 := oc%.
Thus, we have defined constants such that

0<l<<z<<n<<,8<1,
n

ex(T) < €2n?, and, for each ¢ € {+, -}, either N°(T) > \/ﬁn or N°(T) < en. Define additional
constants such that

1
0< —KekVKTKYK YK PLL
n

Step 1: Choosing absorbing edges. We start by partitioning V into V/ and W, and selecting a
(W,V")-absorbing set A. Letr := [nn].
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Claim 1. There exist a partition W UV’ of V and absorbing sets A™, A~ C E(T) of (W,V’)-
starting/(V’, W)-ending edges for T such that the following hold, where A := A* UA~, W7 :=
V(A) AW, and W, 1= V(A) N W.

i) wWnU%T)=4.
(i) |W| < 4en.
(iii) Foreachv € V/,|ex;(v)| < en.
(iv) Leto € {+,—}. If N*(T) > y/nn, then A® = @, otherwise |A°| =r.
(v) Leto € {+,—}. If [W]| > 2, then ex.(v) < r foreachv € V.
(vi) Leto € {+, -} If|[W{| =1, then ex}.(v) < ex}.(w) foreachv € Vandw € W¥,.
(vii) If W, # @, then éx(T) > g + 109n.

Proof of Claim. First, we choose suitable sets of endpoints for our absorbing edges. Let ¢ € {+, -}
and define W as follows. First, suppose that N°(T) > \/ﬁn. Since we will not need any absorbing
edges in that case, we let W = @. Observe that (v) and (vi) hold for <.

Now suppose N°(T) < \/ﬁn. By construction, we have N°(T) < en. We will need r absorbing
edges, so we need to choose a set W which concentrates a sufficiently large amount of excess
but also satisfies (v) and (vi). By Fact 4.22, ex(T) > éx(T) — N°(T) > g —en > r and so we can
let WZ C U°(T) be a smallest set such that ex;(Wz) > r. We further assume that, subject to
this, ex7.(W?) is maximum. Note that

W1 < |U°(T)| < N°(T) < en. (10.1)

We verify that (v)-(vii) are satisfied for o. If [W | > 2, then the minimality of |[W | implies that
each v € V satisfies ex7.(v) < r and so (v) holds. If |WZ| =1, then the maximality of ex;(WZ)
implies that each v €V and w € le satisfy 5(;(1)) < é?(%(w), so (vi) holds. By assumption,
N°(T) < en < Bn. Thus, (b) does not hold and so (a) implies that éx(T) > % +pBn > g + 107n,
as desired for (vii).

LetW, := W} UW;.DefineW :=W, U{v €V ||exr(v)| > entandV’ := V \ W.Note that
(iii) is satisfied. By construction, W* C U*(T) and so (i) holds. By (10.1) and since ex(T) < %n?,
we have

ex(T)

W< WEI+ Wl +1{veV||exp(v)] >en}| <2en+2- < 4en.
Thus, (ii) holds.

We are now ready to choose the absorbing edges. If N*(T) > \/ﬁn, thenlet A" := @J; otherwise,
let A* C E(T) be an absorbing set of r (W™, V')-starting edges for T (A™ exists since, by construc-
tion, ex;(W?) > r and d;(v) > g for each v € W7). Similarly, let A~ C E(T) be an absorbing set
of (V/, W, )-ending edges for T, of size 0 if N™(T) > \/ﬁn and r otherwise. Thus, (iv) holds. Let
A := A" U A™. By minimality of [W7 |, V(A*) n W = W7 This completes the proof. O

Let W, consist of all the vertices w,, € W for which | ex;(w,)| > (1 — 20m)n and let W, consist
of all the vertices w, € W for which | ex;(wg)| < (1 —209)n.

Step 2: Cleaning. By Claim 1, Lemma 9.5(a) and (b) are satisfied with 4¢ playing the role
of e. By Proposition 8.1, there exists U} C U%T) which satisfies |U}| = €x(T) — ex(T). Then,

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



44 | GIRAO ET AL.

Lemma 9.5(c) holds with U7 playing the role of U*. By (i),
WnU: =0. (10.2)

(This will be needed in Step 3.)
Apply Lemma 9.5 with U} and 4e playing the roles of U™ and ¢ to obtaind € Nand P; C T such
that the following are satisfied, where D, :=T \ P;.

(o) P, is a good (U, W, A)-partial path decomposition of T. In particular, P; is consistent
with At and A~ and so, by Fact 8.11, A* and A~ are absorbing sets of (W*,V’)-starting
and (V/, W, )-ending edges for D;.

B [51-1mn<d < [5] —nn.

(y) Eachv e Uy \ (VH(P,)) U V=(P,)) satisfies d;l(v) = dBl(v) < ex(D;) - 1.

(8) E(D,[W]) = 4.

(e) N*(T)— N*(D,) < 89nn.

() &(Dy) > d + [nn].

(n) Iféx(D;) < 2d + [nn], then each w € W, satisfies |eXD1(w)| = le(w).

(6) Foreachv € W, UW 4,2d —34/nn < dp (v) < 2d - 2[nn].

(1) Foreachv € W, 2d + 2[nn]| — 4\/7311 < dp,(v) <2d +2[nn] and dglli“(v) > [nn].
(x) Foreachv € V', 2d + 2[nn] — 18\/En < dp,(v) <2d +2[nn] and | exp, (V)| < en.

(The final part of (x) follows from the facts that P, is a partial path decomposition of T and
| ex(v)| < en for each v € V'. Indeed, if v € V' \ U%(T), then (P1) implies that P, contains at
most ex;S(v) paths which start at v and at most ex;.(v) paths which end at v. Thus, each v €
V'\ U(T) satisfies | exp, (v)| < | ex7(v)| < en. Moreover, (P2) implies that each v € V' n U(T)
is the starting point of at most one path in 7, and the ending point of at most one path in P;.
Thus, each v € V' N UY(T) satisfies | exp (v)| < 1< en.)

Step 3: Approximate decompeosition. We will approximately decompose D, as follows. First,
we will apply Lemma 9.6 to construct W-exceptional layouts on V. These layouts will then be
transformed into auxiliary layouts on V' \ W via Definition 9.2. We will then apply Lemma 7.3 to
these auxiliary layouts to approximately decompose D, [V'] into auxiliary spanning configurations
on V. Finally, we will use Proposition 9.3 to transform these auxiliary spanning configurations
into W-exceptional spanning configurations on V. By Proposition 9.4 and Lemma 9.6, these will
induce a good partial path decomposition of D; which covers almost all the edges of D; .

First, we ensure that all the prerequisites of Lemma 9.6 are satisfied. Let U := U} \ (V*(P;) U
V~(P,)) and observe that, by («) and Proposition 9.7,

|U3| = éx(D;) — ex(Dy). (10.3)
Claim 2. There exist X* C (U*(D,) U U;) \ W which satisfy |[X*| = r — [A*].
Proofof Claim. Let ¢ € {+, —}. First, suppose that N°(T) < en. Then, (iv) implies that |A°| = r and

sowe can let X° := J. We may therefore assume that N°(T) > en. By construction, N°(T) > \/ﬁn
and so

(e)
|U°(D) U U;| =N°(Dy) > \/on—89n > r+ |W]|,

as desired. O
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Define ¢* : V — {0,1} by

vy . )1 ifveX®,
P = {O otherwise.
Denote 7 := Ey(D;) \ Aand D] :=D; \ F.LetW; := W, UW and W, := W, \ W,,.

We now verify that Lemma 9.6(a)—(h) hold with Dy, U;» and 18\/5 playing the roles of D, U*,
and e. Lemma 9.6(a) follows from () and Lemma 9.5(a). Lemma 9.6(b) holds by (y), (10.2), and
(10.3). Lemma 9.6(c) holds by Claim 2 and (¢r). Lemma 9.6(d) follows from () and Lemma 9.6(e)
holds by (¢). Lemma 9.6(g) and (h) as well as the first part of Lemma 9.6(f) follow from (6)-(x).
Finally, we show that the ‘moreover part’ of Lemma 9.6(f) holds. Suppose €x(D;) < 2d + [nn]
and v € W. If v € W, then () implies that | exDl(v)l = le (v). We may therefore assume that
ve W, \W, CW,nW,. Then, (¢) implies that dmi“(v) > [nn]. Thus, it is enough to show that
| exp \A(v)l r or d4(v) = r. Suppose without loss of generality that v € Z, thatis, v € UT(T)
by Def1n1t1on 8.7 (similar arguments hold if v € W). If |WX| > 2, then,

Definition 8.7,(a)
lexp @l < lexp@)] <7

If W} = {v}, then (vi) implies that d4+(v) = r and Definition 8.7 implies that d,-(v) = 0, so
d,(v) = r. Therefore, Lemma 9.6(f) holds.

Apply Lemma 9.6 with Dy, U, and 18\/2 playing the roles of D, U*, and ¢ to obtain # € N and
W-exceptional layouts (Ly, Fy), ..., (Ly, F,) which are U -path consistent with respect to (D!, F)
and such that the following hold, where L is the multiset defined by L := (J;, L;-

(A) d<s<d+en.

(B) L contains exactly €éx(D;) — r non-trivial paths.
(C) Foreachv € Wy, d;(v) = 1_) \A(v)

(D) Foreachv € W,,d(v) = d+l(v) —r.

(E) Foreachv eV’,d} (v) =dF(v) + |{i el?] v VI +r—¢pT(v).

(F) Foreachi e [7], [V(L)I, |E(L ) < £7n

(G) Foreachv € V', d;(v) € £3 n and there exist at most sén indicesi € [¢] such thatv € V(L;).
We now transform (L;,F;),...,(L,,F,) into auxiliary layouts on V’. For each i € [£], let

(Ll.rW F. rW) be obtained from (L;, F -) using the procedure described in Definition 9.2. Let L'V

Ule[f] W and F1W Ulem W Then, Definition 9.2 implies that (LlrW, FlrW), s (LLLW
are layouts onV’ such that the following hold.

TW)

1
(F") Leti € [¢]. By (F), V(L") < V(L) <eTn <2 ¢7|V"| and, similarly, |E(LrW)| 2£7|V’|
1
e3in

(G') Letv € V. By (G), dw(v) < d.(v) €
indicesi € [#] such thatv € V(LirW).

1
< 2¢3|V’| and there exist at most Es n< 255 [V’

Thus, Lemma 7.3(a) and (b) are satisfied with |V’|, E%, and Llr W, ,L;W playing the roles of n, €,
and Ly, ..., L.

In order to approximately decompose D, [V'] using Lemma 7.3, we need to partition D,[V’]
into a dense almost regular digraph (which will play the role of D in Lemma 7.3) and a
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sparse almost regular robust expander (which will play the role of ' in Lemma 7.3). We
choose T randomly as follows. Let § := %. Note that, by (x), D;[V’] is (6, 10\/2)-almost reg-
ular. By Lemma 4.4 and (8), D;[V’] is a robust (v, 7)-outexpander. Apply Lemma 4.16 with
Dy[V'], V'], and 10\/2 playing the roles of D,n, and ¢ to obtain T C D;[V’] such that T is
a(y,10 \/E)-almost regular (10 \/E, |V’|~2)-robust (v, 7)-outexpander and D{’ :=D[V']\Tis(6 —
¥,104/€)-almost regular.

Observe that, by (A), 7 < (6 — g)IV’I. Apply Lemma 7.3 with D/, F!W |V/|, V|72, g, sz%, and
(L{W,Flrw), . (L;W,F{[W) playing the roles of D, F, n, p,,¢, and (L;, F;), ..., (L,, F,) to obtain
edge-disjoint leW, s HLLW c D/ uruF!" =D,[V'1uFW such that, for each i € [], Hl.rW is
a spanning configuration of shape (LirW,Fl.rW) and the following holds. Let H!W := Uierr HirW
and D, := D;[V']\ H!" . Then,

) D; is a robust (%, 7)-outexpander.

Next, we transform the auxiliary spanning configurations le W,...,HLEW into edge-disjoint
spanning configurations on V of shapes (L, F;), ..., (L, F,) as follows. For each i € [¢], let H;
be the digraph with V(#,) :=V and E(M;) = (E(H!") \ F/"") U F;. Denote H := {J,¢, H;. Let
i € [¢]. Then, Proposition 9.3 implies that H; C D,[V’] U F; and H; is a W-exceptional spanning
configuration of shape (L;, F;). Moreover, since F; C Ey,(D;) \ A, we have H; C D, \ A and so

EH)NA=0. (10.4)

Furthermore, by definition of U;‘-path consistency with respect to (D!, F), the sets Fy, ..., F, are
edge-disjoint. Thus, since le L H;W are edge-disjoint, H,, ..., H, are edge-disjoint.

Finally, we verify that H, ..., H, induce a good partial path decomposition of D;. For eachi €
[#], let P,; be a path decomposition of #; induced by (L;, F;). Let P, := {J;c(s| P, and D, :=
D, \ P,. We claim that the following holds.

Claim 3. P,isa (U, W, A)-partial path decomposition of D, of size €x(D;) —r.

Proof of Claim. By Proposition 9.4, (B), and since (L;, F;), ..., (L, F,) are U;‘ -path consistent with
respect to (D!, F), P, is a partial path decomposition of D; of size €x(D;) — r such that

U(D) n(VH(P) UV~ (Py)) C U;. (10.5)

Thus, it only remains to show that P, is consistent with A* and A~. By (10.4), E(P,)n A = .
Thus, it suffices to show that each v € W is the starting point of at most exg1 v) — d;;(v) paths in
P, and the ending point of at most exB1 (V) —d; (V).

Letve W.Ifv € W\ W, then Claim 1 implies that d,(v) = 0. Moreover, (10.2) implies that
W N U; = @. Thus, the fact that P, is a partial path decomposition satisfying (10.5) implies that
P, contains at most exgl(v) = exgl(v) — d} (v) paths which start at v and at most exBl(U) =
exB1 (v) — d;,(v) paths which end at v. We may therefore assume that v € WZ (similar argument
holdifv € W7). By Definition 8.7 and («), we have ex;1 (v) > 0and sov € U*(D,). Thus, the fact
that (L,,F;), ...,(L,, F,) are U;‘ -path consistent with respect to (D{, F) implies that the number of
pathsin P, whichend at vis 0 < exBl(v) —d; (v), as desired. In particular, v is an internal vertex
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of precisely d;z(v) paths in P,. Therefore, the number of paths in 7, which start at v is

Proposmon 9.4

dy, (v) —dj, (v) df(v)—d; < a pa® —dp 4 ©)

Deflnltlon 8.7

dj () - di(v) - dp (v) = exgl(v) —d}(v),
as desired. O

It remains to show that P, is good, that is, that éx(D,) = éx(D;) — |P,|. Recall that by («), P;
avoids all the edges in A. Thus, by Proposition 9.4 and (C)-(E), the following hold.

(II) Foreachv € Wy, Ngz(v) = N5 (v).
(IlI) Foreachv € V \ (W; UX"), d;fz(v) =r.
(IV) Foreachv € V \ (W; UX1), dBZ(v) =r.
(V) Foreachv € X%, dgz(v) =r—1.

Claim 4. éx(D,) =r.

Proof of Claim. First, we check that ex(D,) <r.Letv € V.

- Ifv € Xt UX~, then (V) implies that exgz(v) =0

- Ifv € X* \ X, then (IIT) and (V) imply that exgz(v) =1.

- Ifv € X~ \ X, then (IIT) and (V) imply that exgz(v) =

- IfveV\(XTuX- uW),then (IlT) and (IV) imply that exgz(v) =0

~ Suppose v € W; \ W. Recall from Step 1 that A* and A~ are absorbing sets of (W7}, V’)-
starting and (V/, WZ)-ending edges for T. Thus, d:;(v) = 0 and so (IT) implies that exgz(v) =
0.

- Suppose v e W, U WZ. Then, Definition 8.7 implies that v € UT(T) and so d,(v)=0
Therefore, (II) implies exgz(v) =d}(v).

Moreover, recall that WX C Wy and (Xt UX~)n W, = @ (see Claim 2). Thus,

(L1 _ Definition 8.7 _ Claim 2
ex(Dy) = Y exp M =IX*\X"[+ ) di = IX*\X|+]4*] < r,
vEV UEWX

as desired.

Thus, it is enough to show that A°(D,) = r. By Claim 2, |X~| < r and, by (ii), |[W;| < |W] < 4en.
Thus, V' \ (W, UX™) # @ and so (III) implies that A°(D,) > r. Let v € V. We verify that both
dli)z(v) < r. If v ¢ Wy, then (IID-(V) imply that both dgz(v) r. We may therefore assume that
v € Wy C W. By Definition 8.7 and (iv), d}j(v) = d4+(v) < |A*| <7 and, similarly, d;;(v) <
Therefore, A%(D,) < r and so we are done. D

Thus, Claims 3 and 4 imply that

(VI) P, isagood partial path decomposition of D, .
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Step 4: Completing the path decomposition. Finally, we will decompose D, using Corol-
lary 8.8. Recall that to apply Corollary 8.8, all the edges incident to the exceptional set must be
absorbing edges. By (II)-(V), all the absorbing edges are incident to W, and the vertices in W, are
still incident to some non-absorbing edges in D,. Thus, we will apply Corollary 8.8 with W, and
V' U W, playing the roles of W and V.

First, we check that all the prerequisites of Corollary 8.8 are satisfied. Note that D,[V’'] = Dé
(D; was defined just above (I) and D, was defined just above Claim 3). Thus, by Lemma 4.2(b),
(i), and (I), D, — W, is arobust (%, 27)-outexpander. By Fact 8.11, (), and Claim 3, At and A~ are
absorbing sets of (W, V')-starting and (V/, W, )-ending edges for D,. In particular, Definition 8.7
and the fact that W, C W, imply that A* and A~ are absorbing sets of (W, V' U W,)-starting
and (V' U W,, W,)-ending edges for D,.

Let Y* :=X*\XF, Y*:=X*NnX",and Y* :=V \ (Yt UY- UY*UW,). We aim to apply
Corollary 8.8 with Y*,Y~,Y*, and Y playing the roles of X*,X~,X*, and X°. First, observe
that (I1)-(V) imply that the excess and degree conditions of Corollary 8.8 hold with W,,Y*, Y™,
and Y* playing the roles of W,X*, X, and X*. Moreover, Claim 2 implies [Y* U Y*| + |A%| =r.
Finally, we claim that V(A*)n (V' UW,) C YT UY". By (iv), |A*| € {0,r}. If |[A*| =0, then
V(A¥)n (V' uW,) = @ and so we are done. If |A*| = r, then Claim 2 implies that X* = @ and
soV'UW, =YFUY? Thus, V(A*) n (V' UW,) C YT U YY, as desired.

Apply Corollary 8.8 with D,,n — |[W,[,V\W,W, Y, Y=, Y* Y?, g E, and 2t playing the
rolesof D,n, V!, W,X*,X~,X* X9, 8,v, and 7 to obtain a path decomposition P; of D, of size r.
Note that, by Claim 4, P, is a perfect path decomposition of D,. Recall that by («) and (VI), P,
and P, are good. Then, by Fact 8.5, P := P, U P, U P; is a perfect path decomposition of T. That
is, |P| = éx(T). This completes the proof. O

11 | AUXILIARY EXCESS FUNCTION

In this section, we introduce some concepts which will be convenient for constructing good
(U*, W, A)-partial path decompositions. (Recall these were defined in Definition 8.10.)

Recall that once we have chosen absorbing edges, we need to ensure that (i) these edges are
not used for other purposes and (ii) not too many paths have endpoints in W. Moreover, if
€x(T) > ex(T), then some vertices v will have to be used as starting/ending points of paths more
than ex“T—L(v) times. As discussed briefly in Section 8.2, we will choose in advance which vertices
will be used as these additional endpoints: we will initially select a set U* of éx(T) — ex(T) (dis-
tinct) vertices in U°(T) as additional endpoints of paths. We then treat each vertex in U* as if it
has positive and negative excess both equal to one. The following concept of an auxiliary excess
function (as defined in (11.1)) encapsulates all this - it also incorporates the constraints given by
(i) and (ii) above. It will enable us to easily keep track of how many paths remain to be chosen
and which vertices can be used as endpoints.

Let D be adigraph and W, V' C V(D) be disjoint. Suppose that A C E(D) isa (W, V')-absorbing
set for D. Let U* C U%(D) satisfy |U*| = éx(D) — ex(D). Note that, by Definition 8.7, (V(A) N
W)NU* = @. For each v € V(D), define

1 ifv e U*,
é?(;—S’U*’W’A(v) i=qexp(v) —di(v) ifvev)nw, (11.1)
ex;(v) otherwise.
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Then, define

(D) :=={ve V(D) | & (v) > 0}

U*WA

D,U*W,A

~* e =+ .
exD’U*’W,A(S) = eXD’U*’W’A(v) for each S C V(D);
vesS
X g a(D) = Z &5 e w AV
veV

Denote by AT and A~ the absorbing sets of (W, V')-starting and (V/, W)-ending edges contained
in A. Then,

&E*,W,A(D) =ex(D) + |U*| — |A*| = &x(D) — |A*|. (11.2)

Note that it is possible that éizr]* w a(D) # Xy, 4 (D). For simplicity, when A and W are clear
from the context, they will be omitted in the subscripts of the above notation.
Note that the analogue of Fact 4.21 holds for the auxiliary excess function.

Fact 11.1. Let D be a digraph and W,V' C V(D) be disjoint. Suppose that A C E(D) is a
w, V’)-absorbingsetforD LetU* C U%(D)satisfy |U*| = éx(D) — ex(D). Then, forany S C V(D),

Observe that the following holds by definition of the auxiliary excess function.

Fact11.2. LetD,W,V’, A, and U* satisfy the assumptions of Fact 11.1. A set P of edge-disjoint paths
of Disa(U*,W,A)- partialpath decomposition of D ifand only if P C D \ A and eachv € V(D) is
the starting point of at most €x w.(U) paths in P and the ending point of at most €xp, ;. y, 4(v)
pathsin P.

D,U*

Thus, this auxiliary excess function designates which vertices are still available to use as end-
points and, by (11.2), it indicates how many paths we are still allowed to choose. For these reasons,
fixing U* at the beginning will prove very useful in Section 12, even though it is not necessary and
may look cumbersome at first glance.

Let D,W,V’, A, and U* satisfy the assumptions of Fact 11.1. Suppose that P is a (U*, W, A)-
partial path decomposition of D. By Fact 11.2, each path in P corresponds to some auxiliary excess
and so, by removing P (and removing from U* the vertices which have already been used as
endpoints), we reduce the auxiliary positive/negative excess of each v € V(D) by the number of
paths in P which start/end at v (Proposition 11.3). This implies that the total auxiliary excess
of D is decreased by precisely |P| when we remove the paths in P (Corollary 11.4). The auxil-
iary excess function will thus be much more convenient to use than the modified excess function
introduced in Section 1 (compare the bounds in Proposition 8.4(a) and Corollary 11.4). Moreover,
this implies that good (U*, W, A)-partial path decompositions can be combined to form a larger
good (U*, W, A)-partial path decomposition (Corollary 11.5).
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Proposition 11.3. Let D,W,V', A, and U* satisfy the assumptions of Fact 11.1. Suppose that P
is a (U*, W, A)-partial path decomposition of D. Denote U** := U* \ (V*(P)uU V~(P)). For each
v e V(D),let n+(v) and n‘(v) denote the number of paths in P which start and end at v, respectively.
Then, eachv € V(D) satlsﬁes exD\p U**( v) = exB ge(0) = n%(v).

Proof. If v € V(D) \ U*, then exB\p(v) = ex},(v) — n;,(v) and so the proposition holds. We may

therefore assume thatv € U*. If v € U**, then n;—;(v) 0 and so eXD\P U**( v)=1= exl—) g(0) =
n;—;(v), as desired. We may therefore assume that v € U* \ U**. By Definition 8.7, v ¢ W. First,
suppose thatv € V+(P) N V~(P). Note that both n;—;(v) =1and exD\p(v) =0.Sincev & W, we
have exD\P UM(U) ex— (U) =0= exl—) y(0) = n%(v), as desired. By symmetry, we may there-
fore assume thatv € V+(P) \ V= (P). Note that n;(v) =1, n;(v) =0, and eXD\p(v) = —1. Recall
that v ¢ W. Thus, é?(B\P(v) = eXB\P(v) =0= é?(B,U*(v) —nf(v) and 6(1;\7)(”) = exB\P(v) =
1= e")'(B’U*(v) — n,(v). O

Corollary 11.4. Let D,W,V', A, and U* satisfy the assumptions of Fact 11.1. Suppose P is
a (U*, W, A)-partial path decomposition of D. Let U** := U* \ (V+(P) U V= (P)). Then, é)’(UM(D \
P) = &;.(D) — |P|.

Proof. For each v € V(D), let n;(v) and n,(v) denote the number of paths in 7 which start and
end at v, respectively. Then,

Proposmon 11.3
eX[_]** (D \ p) = Z eXD\p U** Z (eXD U*(U) n; (U)) = (D) - |p|
veV(D) vevV (D)

as desired. O

Corollary 11.5. Let k €N. Let D,W,V' A, and U* satisfy the assumptions of Fact 11.1.
DenoteD,, := Dand Uy := U*. Suppose that, foreachi € [k], P;isagood (U;_, W, A)-partial path
decomposition of D;_y, D; :=D;_; \ P, and U} := U |\ VrP)HUV=(P)). Let P := Uie[k] P..
Then, P is a good (U*, W, A)-partial path decomposition of D of size |P| = Zie[k] |P;].

Proof. By induction on k, it suffices to prove the case k = 2. By Fact 11.2, E(P) C D \ A. For each
v € V(D), denote by n;(v) and n;(v) the number of paths in P which start and end at v, and
define n%’l(v) and n;—;z(u) analogously. Then, each v € V(D) satisfies

Proposmon 11.3

n3 (V) = n3, (V) + ng; (V)

(85 (0) = 65 (O + (&5 . (0) = &5, (0)

< eX50 U*( V).
Thus, each v € V(D) is the starting point of at most eXD y+(v) paths in P and the ending point
of at most €x}, ;.(v) paths in P. Therefore, Fact 11.2 implies that P is a (U*, W, A)-partial path
decomposition of D. Denote by At the absorbing set of starting edges contained in A. Then,

(11.2) &t
Ux*

Corollary 11.4

&(D\P) E D\ P) +[a+] O M &t (D) - Pl + a4 "2 (D) - 7).

Therefore, P is good. [l
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Recall from (8.1) that N*(D) and N~ (D) denote the maximum number of distinct vertices of
D which may be used as starting and ending points in a partial path decomposition of D. The
next corollary states that N*(D) decreases appropriately when a good (U*, W, A)-partial path
decomposition is removed from D.

Corollary 11.6. Let D,W,V', A, and U* satisfy the assumptions of Fact 11.1. Suppose that P is a
good (U*, W, A) partial path decomposition. Let X* be the set of vertices v € U, (D) for which P
contains precisely exD y+(V) paths starting at v. Similarly, let X~ be the set of vertices v € ﬁ;*(D)
forwhich P contains preczsely €Xp (v) paths ending at v. Then, both N*(D) — N*(D \ P) < |X*|

Proof. By symmetry, it suffices to show that N*(D) — N*(D \ P) = |X*|. Denote D' :=D\ P
and U™ = U*\ (V¥*(P)UV~-(P)).LetY := U .(D)ufv e W | ex) (v) = d}(v) > 0}and Z :=
U**(D yufvew| exD,(v) d;;(v) > 0}. By assumption, |U*| = éx(D) — ex(D) and so

(1.1
Y| =" |[U*(D)| + |U*| = N*(D).

Since P is good, Proposition 9.7 implies that |U**| = éx(D’) — ex(D’) and so, by the same
arguments as above, |Z| = N*(D’). Thus, it suffices to show that

Y=XTUZ. (11.3)

By definition, X* C Y. Next, we show that Z C Y. By Proposition 11.3, é?;;,’UM(v) < éi(f)’u*(v)
for each v € V and so U;;,*(D’ ) C U, (D) CY. By definition of absorbing starting edges (Defi-
nition 8.7), each v € W satisfies ex})(v) > d}(v) and so (11.1) implies {v € W | exg,(v) =di(v)>
0} C Y. Therefore, Xt U Z C Y, as desired.

Finally, we prove that Y C Xt U Z. Letv € Y \ X*. It is enough to show that v € Z. Suppose
firstthatv € UJr .(D).By Fact11.2 and since v ¢ X, P contains fewer than €x exD y+(v) paths which
startatv. Then, Proposition 11.3 impliesv € U*,(v) C Z.We may therefore assume thatv € {v’ €
W |ex;(v) =di@) > 0} By definition of absorbing starting edges (Definition 8.7), ex} (v) > 0
and so (11 1) 1mp11es exD g0 =0= X, y+(V). Therefore, Fact 11.2 implies that no path in P
contains v as an endpomt and so ex ,(v) =exp(v) = dZ(v) > 0.Thus,v € ZandsoY C Xt U Z.
Consequently, (11.3) holds and we are done. O

12 | THE CLEANING STEP: PROOF OF LEMMA 9.5

We now prove Lemma 9.5 using Lemmas 12.1, 12.2, and 12.4 below. Recall from Section 9.3 that
the main goal of the cleaning step is to reduce the degree at the exceptional set W and cover all
the edges inside W. Moreover, recall that we denote by W, the set of exceptional vertices of very
large excess, by W, the set of exceptional vertices with not too large excess, and by W , the set of
exceptional vertices which are incident to some absorbing edges.

In Lemma 12.1, we cover all edges of T[W]. The remaining edges of T[W] which are incident
to W, will be covered in Lemma 12.2. Since the excess of T is proportional to |W |, the edges
of T[W] which are incident to W, can be covered one by one with short paths. However, vertices
in W, may have small excess and so T[W,,] needs to be covered more efficiently. The idea will be
to decompose T[W,] into matchings and then tie them into paths.
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In Lemma 12.2, we also decrease the degree of the vertices in W, U W, when W, # @. This is
achieved by covering edges at W, one by one with short paths until the desired degree is attained.
(The endpoints of these paths are chosen via Lemma 12.3.) Finally, we will use Lemma 12.4 to
decrease the degree at W, when W, = @. There, we will use long paths to decrease the degree at
all vertices in W, at the same time. This is necessary because the total excess may be relatively
small, so we do not have room to cover the degree at each vertex in W, one by one.

12.1 | Proofoverview

The proof structure of Lemmas 12.1, 12.2, and 12.4 is similar. In each of these lemma, we need
to construct a good partial path decomposition. We always proceed inductively to construct the
paths either one by one (Lemma 12.2) or two by two (Lemmas 12.1 and 12.4). All these paths are
constructed using Corollary 4.8: we use Corollary 4.8(a) when we need short paths (Lemmas 12.2
and 12.4) and we use Corollary 4.8(b) when we need long paths (Lemmas 12.1 and 12.4). In each
application of Corollary 4.8, we need to specify two main elements.

(i) We need choose which edges we want to cover and which vertices whose degree we want to
decrease. (Roughly speaking, these edges will play the roles of P,, ..., P;_; in Corollary 4.8.)
For example, in Lemma 12.1, the aim is to cover all the edges inside W, so for each path we
select which of these edges we want to cover.

(i) We need to choose ‘suitable’ endpoints for our paths. (Roughly speaking, these will play the
roles of P; and Py, in Corollary 4.8.) Choosing these endpoints will form the core of the proof
as these need to satisfy several requirements. Firstly, they need to be ‘compatible’ with the
edges we want to cover. For example, if we want to cover an edge uv, we cannot use v as a
starting point. Secondly, they need to have an ‘appropriate’ amount of excess to ensure that
the resulting set of paths will form a good partial path decomposition. The auxiliary excess
function defined in Section 11 (see (11.1)) will enable us to keep track of which vertices are
allowed to be used as endpoints in each stage.

12.2 | Covering the edges inside W,

The next lemma states that all the edges inside W, can be covered by a small good partial path
decomposition. The idea is to first decompose T[W,] into matchings using Vizing’s theorem.
Then, we incorporate each matching into a pair of (almost) spanning paths using Corollary 4.8(b).
We use very long paths so that the maximum semidegree of T is reduced sufficiently quickly to
obtain a good partial path decomposition. Moreover, we require two paths to cover each of the
matchings because, by definition of a partial path decomposition, we may only construct paths
whose starting and ending points belong to U*(T) U U* and U~(T) U U*, respectively. Indeed, if,
for example, M is a matching such that each of the vertices in U*(T) U U* is the ending point
of an edge in M, then we would not be able to construct a path which contains M and starts in
U*(T)u U*. Splitting each matching obtained from Vizing’s theorem in two ensures that there
are always suitable endpoints to cover each of the submatchings.

Lemma 12.1. Let0 < % <e<n <KL Let T & Toyeep be a tournament on a vertex set V of size n
satisfying the following properties.
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(a) Let W, UW, UV’ be a partition of V such that, for each w, € W, | exp(w,)| > (1 — 20n)n;
for each wy, € Wy, | exp(wy)| < (1 —20n)n; and, for each v’ € V', |ex; (V)| < en. Let W =
W..U W, and suppose |W| < en.

(b) Let A*, A~ C E(T) be absorbing sets of (W, V')-starting/(V', W)-ending edges for T of size at
most [nn]. Denote A := AT UA™.

(c) Let U* C U(T) satisfy |U*| = éx(T) — ex(T).

Then, there exists a good (U*, W, A)-partial path decomposition P of T such that the following hold,
whereD ;=T \ P.

i) |P| £ 2en.

(ii) E(D[W,]) = 0.
(iii) If|[UT(D)| = |U(D)| = 1, then e(U~ (D), U*(D)) = 0 or €x(D) — ex(D) > 2.
(iv) Eachv € U* \ (V*(P) U V~(P)) satisfies d;(v) =d () <&x(D) - 1.

Property (iv) will ensure that Lemma 9.5(ii) is satisfied at the end of the cleaning. One can
use (iii) to ensure that the leftover oriented graph D does not have all its positive and negative
excess concentrated on two vertices v and v, respectively, with an edge v~ v™* between them.
Otherwise, we would encounter a similar problem as with the tournaments in the class 7,
(recall Propositions 5.3 and 5.4).

Proof of Lemma 12.1. If W, = J, then we can set P := @ and, by Proposition 5.4 and Fact 4.22, we
are done. Thus, we may assume that W, # ). Fix additional constants such thate < v < 7 <« 7.
Let W= := W n U*(T) and, for each o € {,0}, denote W := W, nU*(T).

Fix a matching decomposition Mj, ..., M,,, of T[W,]. By Vizing’s theorem, we may assume that
m < |Wy| < en. Assume inductively that for some 0 < k < m, we have constructed edge-disjoint
paths Py, Py 5,Py5,..., Py, CT such that P :={P;; | i € [k],j € [2]} is a (U", W, A)-partial
path decomposition of T and the following hold.

(o) Foreachi € [k], E(P;; UP;,) NE(T[W]) = M,.
(B) Foreachi € [k]and j € [2],V\W, C V(Pi,j).
(y) Foreach o € {+,—},if W # @, then V°(P,) C W¢.

Denote D), := T \ P. Then, following holds.

Claim 1. We have €x(Dy,) = €x(T) — 2k > 2nn. In particular, P, is a good (U*, W, A)-partial path
decomposition of T.

Proof of Claim. First, note that éx(T) — 2k > 2nn holds by Fact 4.22 and since k < en. By
Proposition 8.4(a), it is enough to show that A°(D,.) < éx(T) — 2k.

If there exists o € {+,—} such that [W?| > 2, then ex(Dy) > 2(1 —20n)n — 2k > n and so
A(Dy) < ex(Dy) < €x(T) — 2k, as desired. We may therefore assume that both [W*| < 1. By (8)
and (y), P, consists of Hamilton paths. Since P, is a partial path decomposition, each v € U*(T)
satisfies

dgk(v) = d;(v) — 2k < ANT) — 2k < &x(T) — 2k
and

dp, () < d7 (V) — 2k —exf) " EY df ) - 2k < (1) - 2.
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Similarly, each v € U™(T) satisfies both dgk(v) < €x(T) — 2k. Hence, we may assume that

U°(T) # @ and so n is odd by definition of ex;(v) or Proposition 6.1. Let v € U’(T). By (B),
Fact 4.22, and (P2), v € V*(P) U VO(P) for all but at most one path P € P}, and so

Fact 4.22
nHL ok < AT — 2k < &(T) — 2k.

d% () < dE(v) — 2k — 1) =

Thus, A°(D,,) < éx(T) — 2k, as desired. O

Ifk = m,thenlet P := P,,. We verify that all the assertions of Lemma 12.1 hold. By construction
and Claim 1, P is a good (U*, W, A)-partial path decomposition of T. Moreover, by construction,
|P| =2m < 2en and D :=T \ P satisfies E(D[W,]) = @ by («). Thus, (i) and (ii) hold. For (iii),
suppose both [U*(D)| = 1, say U*(D) = {u,}, and assume that u_u, € E(D). We need to show
that €x(D) — ex(D) > 2. If there exists o € {+, —} such that u, ¢ W, then

— (L1) _ Fact420(d) . )
ex(D) — ex(D) = &(D) —exp(u,) > dp™(u,) > dp(u,) = |P|

(a),Fact 4.20(b) 20nn — 1
> — - 2en > 2.

We may therefore assume that both u, € W,. Then, by (y), all paths in P start in W} C U*(T)
andendin W_ C U~ (T). Thus, Proposition 8.3 implies thatex(D) = ex(T) — |P| and, since k < en
and each v € W satisfies | ex;(v)| = (1 — 20m)n, we have UT(D) = U*(T). Therefore, by Claim 1
and since T & Ty, Proposition 5.4 implies that €x(D) — ex(D) = €x(T) — ex(T) > 2 and so (iii)
holds. Finally, for (iv), suppose that v € U* \ (V*(P) U V~(P)). Then, note that v ¢ W, and, by
Proposition 6.1, n is odd. Thus,

®) n—1 Fact 4.22 Claim 1

dj) =dp) = d;(v) - |P| = -7l < &M-1-1P| = ex(D)-1

and so (iv) holds.

If k < m, then construct Py ; and Py , as follows. Denote My := {xx,...,x}x}. For
each ¢ € {+,—}, let X° :={x] |i € [/]}. Let U :=U"\ (V**(P)UV~(P,)). Note that U, ¢
U%(Dy,). Moreover, since |U*| = éx(T) — ex(T), Claim 1 and Proposition 9.7 imply that |U;:| =
ex(Dy) — ex(Dy).

We claim that there exist suitable endpoints vli and 1)2i for Py, ; and Py, ,. More precisely, we
want to find v, v}, v, v, € V such that the following hold.

(A) Foreachi € [2],v] # v and v € (75* (Dy.). Moreover, for each o € {+, -}, if v} = v3, then
k
ékz’k,UZ(vi) > 2.
(B) For each ¢ € {+,—},if W # @, then, for each i € [2], vl? eWwW;.
(C) There exists a partition My = My, UM, such that, for each i € [2] and x*x~ €

, F oLt + oy -
M4, We have xT # v and XX~ # vV .

Property (A) will ensure that P, is a (U*, W, A)-partial path decomposition of T and (B) will
ensure that (y) holds. Finally, (C) will ensure that all edges of M, can be covered by Py, U
Pi1,2- (We will cover My, ; with a (v, v)-path Py, ; and cover My, , with a (v}, v )-path

Pk+1,2-)
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To find v - € V satisfying (A)—(C), we will need the following claim.

1’ 2’ 1’

Claim 2. There exist v} — € V such that, for each ¢ € {+, -} and i, j € [2], the following

hold.

1’ 2’ 1’

(I) W # @, then v] =v5 € W7and e"frl‘;k y+(07) > 2; otherwise, v7, v5 € U<> (Dk)are distinct.
Tk

»Y10 Y2
- -+
(I) Both vy vy, v V] & My,y;.
() v # vy

Proof of Claim. If W} # @, then pick v € W} and let v] :=v] and note that, since k <
en, éigk U*(vf) ex+(v+) d 4+ (U]) = 2k > (1 -20n)n— [nn] —2en > 2, as desired. Assume
Tk

that W} = @J. We claim that |U},(D;)| > 2. Assume not. Then, since |[A*| < [pn], by Claim 1
k
and (11.2), é‘)’rz;*(Dk) =éx(D;) — |AT| 2 2nn— [nn] > 1 and so there exists v € V such that
- k
U;* (Dy) = {v}and e“irgk y+(V) > 2. Then, note that v ¢ U%Dy).Asv & W and k < en
k Tk

Fact 4.20(d) . . (a),Fact 4.20(b) 20;771 -1

éx(Dy) — exgk ) dg‘;n(v) > dy'"(v) — |P| > 5 —2en > 9n

and so, since v & U%(Dy,), we have

0= D U*(V \{v}) = (Dk) Dk’UZ(U)

1.1),a1.2) _ . .
> &(Dy) - 1A —ex (v)

> 9nn — [nn| > 7nn,

a contradiction. Thus, IUJr (Dy)| > 2 and so we can pick distinct v}, v] € UJr (Dk).
Then, proceed srmrlarly as above to pick v, v; € UU*(Dk) \ {v1 , vz+ }. Note that this is possible
k
since, for each i € [2], e“)’(l_)k U*(vl.+) < 1. Then, (I) and (III) are satisfied. By relabelling v} and v}
Tk

if necessary, we can ensure (II) holds. Indeed suppose that v} v + € My, (the case vy v + eEM;
is s1m11ar) It suffices to show that vy v}, vV} & My, ;. Note that s1nce V(M +1) € WO, we have
vy, vy € W, Thus, by (I), vy # v, and so, as M., is a matching v, v} & M, ;. Similarly, v} #
vy and so vV & M. Th1s completes the proof. O
Fix v v2 ,U], 0, €V satisfying properties (I)-(III) of Claim 2. We claim that (A)-(C) hold.
Indeed, (A) and (B) follow immediately from (I). Recall the notation M, ; = {xl x; | i € [£]}. For
(C), let Myyq5 i={x X7 € Myyy | v) =x; orv] =x orvfv] =xx7}and My, 1= My \
M1 ,- We claim that the partition My, = My, U M, witnesses that (C) holds. By defini-
tion, My, , ; clearly satisfies the desired properties, so it is enough to show that My, , € My, \
{x"xT € My | vy = x7 orvy =x' orvyuy = xx7} If vfv] = xx; for some i € [£], then,
by (1), (III), and the fact that V(Mk+1) C Wy, we have v}, v ¢ {x+ x;}. Moreover, if v = x; for
some i € [Z], then, by (I), v #Xx;, by (1), vy # v and SO v 5 #x;x7,and, by (H) vy ;é x
Similarly, ifv = xl+ for some i G [Z], then vy # xl v #Xx; and v v ;é x x; Therefore (C)
holds, as desired.
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We will now construct, for each i € [2], a (v;", v7)-path Py, ; covering My, ;. The idea is to
join together the edges in M, ; via V’. In order to satisfy (), we also incorporate the vertices
in W, \ V(M ;) in a similar fashion. This will be done using Corollary 4.8(b) as follows.

Denote

k' =24 My \{fe € My, | V() ={vforV7(e) = {o Bl + Wy \ VM, )l

(k" will play the role of k in Corollary 4.8(b)). Since M, , , ; is a matching on W, we have

(@)
k' <2+ |W,| < 2en. (12.1)

Now construct the k” paths for Corollary 4.8(b) as follows. If v & V(M 1), let Q; :=v];
otherwise, let Q; be the (unique) edge e € M, such that V*(e) = {vf}. Similarly, if v} &
V(Mj411), let Qp := v ; otherwise, let Qs be the (unique) edge e € M; . ; such that V= (e) =
{ur}. Let Q,, ..., Qp—1 be an enumeration of (Mj.y1; \ {Qq, Qr}) U (Wj \ V(Mj14,1)). Recall that
V(Mj411) € Wy. Thus, vV'n (Uie[k,] V(Q,)) C {vf, v] } and so, since k < en, Lemma 4.4 implies
that D, [V’ \ Uie[k,] V(Q;)] is a robust (v, 7)-outexpander. In order to apply Corollary 4.8, we first
need to check that the endpoints of the paths Q,, ..., Qs have sufficiently many neighbours.

Claim 3. Foralli € [k’ — 1], the ending point v of Q; satisfies |NI+)k\A(v) N\ Ujepen V@I >
2k’ and the starting point v’ of Q,, satisfies |N5k\A(v’) NV’ \ Ujerr] V@I 2 2k’

Proof of Claim. Leti € [k’ — 1]. By symmetry, it is enough to show that the ending point v of Q;
satisfies N := |N;;k\A(v) NV’ \ Ujere] V@I 2 2k’.

First, observe thatv € V' \ W .Indeed,v € {v;r }U V(M) UW,.Byconstruction, V(M ;) C
W,. Moreover,

(A) Proposition 11.3 _

+ 7+ + D + #* -
v, € UU;(Dk) C UU*(T) C U"(b)uU QV\W*.

Thus,v € V\ W_.
Since V(M.,;) € W, we have

(a)(

b)
N>df()—k—|Al - |W|- > df(v)—en—2[nn] —en -2

U v@p

Jelk']

>df(v)—3nn

and so (12.1) implies that it is enough to show that d’(v) > 4pn. If v € V' \ U™(T), then d7(v) >
"T_l and so we are done. Suppose v € U~ (T). Recall that we have shown that v ¢ W and so

Fact 4.20(b) dr(v) —2| exr(v)| (g) 2077721 —1 > dnn.

d ()

This completes the proof. O
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Thus, all the conditions of Corollary 4.8 are satisfied. Apply Corollary 4.8(b) with D; \ A,V '\
Uie[k,] V(Q)), K, % W\ {vf, v}, and Qy, ..., Qs playing the roles of D, V', k,8,S,and Py, ..., Py
to obtain a (v, vy )-path Py, covering the edges in M., and all vertices in V' U W,,. Con-
struct Py, , similarly, but deleting the edges in P, ; before applying Corollary 4.8(b) (this will
ensure that P, ; and Py, ; , are edge-disjoint). Thus, («)-(y) hold with k replaced by k + 1. This
completes the proof. O

12.3 | Covering the remaining edges inside W and decreasing the
degree at W,

Since the vertices in W, have almost all their edges in the same direction, it is not possible to cover
the remaining edges in W with a similar approach as in Lemma 12.1. (In order to incorporate an
edge uv into a longer path using Corollary 4.8, we need u to have many inneighbours and v to
have many outneighbours, but this may not be the case if u € W} or v € W .) However, since
the vertices in W, have very large excess, W, # @ implies that the excess of the tournament is very
large and so we have room to cover each remaining edge in W one by one. Moreover, one can also
decrease the degree at W, U W , with a similar approach. This is achieved in the next lemma.

Note that in Lemma 12.2(a), the definition of W, is adjusted so that the vertex partition W, U
W, UV’ can be chosen to be the same as in Lemma 12.1.

Lemma 12.2. Let 0 < % <« ¢ <« n <1 Let D be an oriented graph on a vertex set V of size n such
that (D) > (1 — €)n and the following properties are satisfied.

(a) Let W, UW, UV’ be a partition of V such that, for each w, € W, |exp(w,)| > (1 —21n)n;
for each wy € W, | exp(wy)| < (1 —20n)n; and, for each v' € V', |exp(V')| < en. Let W :=
W, UW, and suppose |W| < en and W, # @.

(b) Let A*, A~ C E(D) be absorbing sets of (W, V")-starting/(V', W)-ending edges for D of size at
most [nn]. Denote A := AT UA™. Let Wj =V(AH)NW and W, :=V(A)nW. Suppose
that the following hold.

- Leto € {+, =} If[W§| > 2, then ex} (v) < [nn] foreachv € V.
- Leto € {+, -} If|W9| = 1, then ex} (v) < ex},(w) + en foreachv € Vand w € W7,.

(c) Let U* C U(D) satisfy |U*| = éx(D) — ex(D).

(d) Suppose E(D[W,]) =@ and, if[lUT(D)| = |U(D)| = 1, thene(U~(D),U*(D)) = 0orex(D) —
ex(D) > 2.

Then, there exists a good (U*, W, A)-partial path decomposition P of D such that D' := D\ P
satisfies the following.

(i) E(D'[W])=9.
(i) N*(D) — N*(D') < 88nn.
(iii) Foreachv e W,UW,, (1 =3y/mn <dp(v) < (1 —4n)n.
(iv) Foreachv € Wy, dp,(v) > (1 — 34/n)n and di(v) > Snn.
(v) Foreachv e V', dp(v) > (1 — 3\/§)n.
Vi) IfIW}|,IW_| <1, then each v € W, satisfies | exp/(v)| = dp/ (V).
(vii) Eachv € U*\ (V*(P) UV~ (P)) satisfies d;,(v) =d;,(v) <&x(D) - 1L
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Property (vi) will enable us to satisfy Lemma 9.5(vi). As mentioned above, the strategy in the
proof of Lemma 12.2 is to cover the remaining edges of D[W ] one by one. To decrease the degree
at W, we further fix some additional edges that will be covered with short paths in the same way.
The degree at W, \ W, will be decreased by incorporating these vertices in some of these paths.

Similarly as in the proof of Lemma 12.1, given an edge that needs to be covered, we need to find
suitable endpoints, that is, endpoints of the correct excess and which are ‘compatible’ with the
edge e = uv that needs to be covered (the starting point cannot be v and the ending point cannot
be u). The next lemma enables us to find, given a set H of edges to be covered, pairs of suitable
endpoints to cover each of these edges with a path.

Lemma 12.3. Let 0 < % <K e<xn <1l Let D be an oriented graph on a vertex set V of size n
such that Lemma 12.2(a)—~(d) are satisfied. Let H C D satisfy A(H) < 11nn and k := |[E(H)| <
11nn|W,|. Let wf wy, .., w;w; be an enumeration of E(H). Then, there exist pairs of vertices
(vf, U); s (vlj, v, ) such that the following hold.

(i) Foreachv € V and ¢ € {+,—}, there exist at most min{z\/ﬁn, &B,U*(U)} indices i € [k] such
thatv = vl?.

(ii) Foralli € [k], ifw;—r € WZ, then v;—' = wl.i.

(iii) Foralli € [k], if there exists o € {+,—} such that w? € V', then (v;",v;") # (W, w,").

(iv) Foreachi € [k], {vf, w}n{v;, w } = 0. B

(v) Foreach ¢ € {+,—}, there exist at most 88nn vertices v € U?,, (D) such that there exist exactly
€x}, y+(v) indices i € [k] such that v = v.

(vi) Denote V* :={v €V |d};(v) > &(D) —229n}. Then, both V* C{w/,w ,v}\{v]} for
alli € [k].

Property (i) will ensure that a vertex is not used as an endpoint too many times. Since vertices
in W, have most of their edges in the same direction, (ii) will ensure that we will be able to tie up
edges to the designated endpoints of the path. Property (iii) will ensure that some of the paths will
have length more than one, which will enable us to cover a significant number of edges at W, \
W.. Property (iv) implies that the chosen endpoints are distinct, the chosen starting point for
the path is not the ending point of the edge we want to cover and, similarly, that the chosen
ending point is not the starting point of the edge we want to cover. Moreover, (v) will ensure
that Lemma 12.2(ii) is satisfied. Together with Proposition 8.6, property (vi) will ensure that the
partial path decomposition constructed with this set of endpoints will be good. Note that the main
difficulties in the proof of Lemma 12.3 arise from the cases where D is ‘close’ to being a tournament
from 7., (defined in Section 1).

First, we suppose that Lemma 12.3 holds and derive Lemma 12.2.

Proof of Lemma 12.2. Recall that, by assumption, W, # @. Fix additional constants such that ¢ <«
V<7 <. Let W*# := W nU*(D) and, for each ¢ € {*,0}, denote W* := W n U=(D).

We now define a subdigraph H C D, whose edges will be covered by P. If max{|W}|, |[W_|} >
2, then let H C D \ A be obtained from D[W] by adding, for each v € W, [4nn] edges of D \
A between v and V' (of either direction). Otherwise, let H C D \ A be obtained from D[W] by
adding, foreachv € W, max{dg(v), [4nn]}edges of D \ Abetween v and V' (of either direction)

such that d}} (v) = dg\ ROE d}(v). Note that each v € V' \ W, satisfies

(@)
dy(v) < |W| < en. (12.2)
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Moreover, each v € W satisfies

[4nn] < dy(v) < [W] + max { max dgi“(v), [4nn] } (12.3)
vew*
Fact 4.20(b) d —le
< |W| + max { max p(®) ~ | XD(U)', [4nn] }
vEW* 2
(@) 21
< en + = < 11nn. (12.4)
Observe that
(12.4)
[4gn] <k := [E(HD| < 1nn|W,|. (12.5)

Let wfwl_, . w;w; be an enumeration of E(H). Recall that W, # §J and, for each w € W*,
Ny (w) N V’| = [4nn]. Thus, we may assume without loss generality that, for each i € [[49n]],
ww; & E(D[W]). Apply Lemma 12.3 to obtain pairs of vertices (v}, v]), ..., (U]:_, v, ) such that
the following hold.

() Foreachv € V and o € {+, —}, there exist at most min{Z\/ﬁn, &B,U*(v)} indices i € [k] such
thatv = vl?.

(B) Foralli € [k], if w € W, then v = w".

() Foralli € [k], if there exists o € {+, —} such that w? € V', then (v;", v;") # (w;", w;").

(8) Foreachi € [k], {v", w}n{v ,w; } = 6.

(¢) Foreach o € {+, -}, there exist at most 88nn vertices v € U?,, (D) such that there exist exactly
&B,U*(U) indices i € [k] such that v? = v.

() Denote V* :={v eV |dj(v) > é(D)—22nn}. Then, both V* C {wf,w,vF}\ {vf} for
alli € [k].

By assumption on our ordering of E(H), (y) implies that the following holds.
(') Foralli € [[4nn]], (v, v;) # (W], wT).

We will now cover each edge wl.+wl.— with a short (vl.+, v, )-path inductively. In the first few
paths, we also cover the vertices in W, \ W, whose degree is too high. More precisely, we proceed
as follows. Suppose that for some 0 < # < k we have constructed edge-disjoint paths Py, ...,P, C
D\ A.Foreach0<i<Z,letD; :=D\ |J;c[; P; and S; be the set of vertices w € W, \ W, such
that le_(w) > (1 — 4n)n. (Note that S, corresponds to the set of verticesin W, \ W, whose degree
is currently too high.) Suppose furthermore that the following hold for each i € [7].

(D P;isa(v],v])-path.
(1) wlw; € E(Py).
(1) S,_, CV(P).
(IV) For each v € V', there exist at most /¢ indices j € [#] such that v € VO(Pj) \ {wj+, wj—} =
V(P;)\ {v;.r, wj+, wr, vj_}.
(V) Foreachv e V(P)nW,v € {vf,v7,wf,wtus;_;.
(VD) e(P) < 7v71(IS;; | + D).

First, suppose that # = k. Let P := (J;c[,| P; and D" := D,.

Claim1. P isagood (U*, W, A)-partial path decomposition of D. Moreover, (i)-(vii) are satisfied.
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Proof of Claim. By assumption, P C D \ A. Moreover, («) and (I) imply that each v € V is the
starting point of at most &g,u* (v) paths in P and the ending point of at most €x, ;,.(v) paths in
P. Thus, Fact 11.2 implies that P is a (U*, W, A)-partial path decomposition.

We now verify (ii). By (¢) and (I), there are at most 88nn vertices v € U (D) for which P
contains precisely &E,U*(U) paths starting at v and at most 88nn vertices v’ € U{]* (D) for which
P contains precisely €xp, ;. (V') paths ending at v’. Thus, (ii) follows from Corollary 11.6.

Next, we show that P is good. By (¢), (I), and (II), both V* C V*(P;) U VO(P;) for each i € [k].
If k < 22nn, then Proposition 8.6(b) implies that P is good. We may therefore assume that k >
22nn. Then, (12.5) implies that max{|W/|,|W_|} > 2 and so, by (a) and (1.1), we have ex(D) >
2(1 — 21n)n = n > A%(D). Therefore, €x(D) = ex(D) and so Proposition 8.4(b) implies that

(a),(11),(12.5)
ex(D)=ex(D)—P| >  max{|{W}],|W,[}(1-21nn—11nn|W,| > n > A°(D").
Thus, €x(D') = ex(D") = ex(D) — |P| = éx(D) — |P| and so P is good.

By (II), P covers all the edges of H. By construction, H contains all the edges of D which lie
inside W and so (i) holds. Moreover, if both [W¥| < 1, then by construction H contains all the
edges which end in W} as well as all the edges which start in W, so (vi) is satisfied.

We now verify (iii). Letv € W, U W 4. Ifv € W, then (12.3) implies that d;;(v) > [4nn]. Thus,
(IT) implies that the upper bound in (iii) holds if v € W,. If v € W 4, then (III) implies thatv ¢ S,
foreach # > 4nn. In particular, (12.5) implies thatv ¢ S; and so the upper bound in (iii) also holds.
Moreover, (I), (V), (12.2), and (12.4) imply that there are at most dy;(v) + 4nn < 15nn paths in P
which contain v as an internal vertex. By («) and (I), there are at most 2\/511 paths in P which
have v as an endpoint. Thus,

dpi(v) > dp(v) = 24/nn =300 > (1 — &)n — 24/nn — 30nn > (1 — 34/n)n,

and so the lower bound in (iii) holds. Therefore, (iii) is satisfied.
Next, we verify (iv). Let v € W,,. By the same arguments as for (iii), there are at most 2\/51’1
paths in 7 which contain v as an endpoint and at most

(12.2)
dg()+4ngn < (dn+en

paths which contain v as an internal vertex. Thus,

dp (V) 2 dp(V) = 2y/mn =2dn+en > (1 —en — 2\/n + 8+ 2e)n > (1 - 3y/n,

as desired. It remains to show that dg,i"(v) > 5nn. Suppose without loss of generality that d;j (v) >
d;(v), that is, that dgm(v) =dp(v). Then, v € U*(D)u U%D), so (P1) and (P2) imply that P
contains at most max{exg(v), 1} paths which start at v and at most one path which ends at v.
Therefore, d;,(v) > dB,(v) —1 and so it is enough to show that dB,(v) > 5nn. Since there is at
most one path in P which ends at v and at most (45 + €)n paths in P which contain v as an
internal vertex, we have

d,() >  dp)-1-@An+en>dy"(v) — (@n+20n

Fact 4.20(b) dp(v) — | exp (V)| @ @A—-en—>0-20nn
= — (4n+2e)n > —(4n+2
5 (4n + 2e)n > (4n + 2e)n

> Snn.

Thus, (iv) holds.
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For (v), let v € V'. By (a), | exp(v)| < en and so, as P is a partial path decomposition, v is an
endpoint of at most en paths in P. Moreover, (IV) implies that there are at most

Ven+dy) < (Ve +en

paths in P which contain v as an internal vertex. Thus,

dp(v) > dp(v) —en—2(Ve+n> (1 —)n— (Ve +39)n > (1 —3v/e)n

and so (v) holds.

Finally, we verify (vii). Let v € U* \ (V*(P)uV~(P)). By (c), v € U°(D) and so d;,(v) =
d];,(v) = w < "T_l Thus, it is enough to show that €x(D') > ”TH By assumption, there exists
w € W, and so

&x(D') > eX(D) |eXD,(w)| )é( |exD(w)|—2\/_n (1—2177)n 2\/_n> +1

Thus, (vii) holds. O

We may therefore assume that £ < k. Note that, by (IID), if [4nn] < i < ¢, then S; = . We con-
struct P, ; as follows. If (v/ pU) = (wf W, ) thenlet Py, 1= w/+1 ~.1- Note that, in
this case, by ("), S, = @. Thus, (I)-(VI) hold with £ + 1 playing the role of # and we are done. We

may therefore assume that (v} ). We construct P, using Corollary 4.8 as
} such that there exist [\/— en|

£+1° t’+1) 76 (wé’+1’ £+1
follows. Let X be the set of verticesv € V'’ \{vﬂl, Y f+1’ w,.
indices i € [#] such thatv € VO(P,) \ {w;", w; }. Note that, by (VI),

Wi 1Si] + 22 -1 ) .
X| < (ZlE[f] |S;1 ) < 8y~ ([4nn] - en + 22nn - €n) < £%n. (12.6)

[Ven) ) Ven

Recall that each v € V/ satisfies | ex,(v)| € en. Thus, by Lemma 4.4, (a), (I), and (IV), D[V \

X uivt s Wy +1, w, +1, v, +1}»)] is arobust (v, 7)-outexpander. The idea is to use Corollary 4.8(a) to

tie together the edge w} P f “ and the vertices in S, into a short (v} PR +1) path via the vertices
inV'\ X.
+
Let uy, ..., U, be an enumeration of S, \{v/H, fﬂ, w,. f’+1} If both vf+1 + wfﬂ, then

letm :=s+3,0Q; := v“l, Q, := and, for each i € [s], let Q;,, =y,

/+1 /+1’Qm = Uy

(m,Qq, ..., Q,, will play the roles ofic ,Py,..., P, in Corollary 4.8(a)). If U/+1 # wf+1 and v, =
w, ., thenletm :=s+2,Q, := f+1’_Qm : fﬂwf“, and, for each i € [s], let Q;,, :=_ul-.
Similarly, if verl werl andv, , #w, ,,thenletm :=5+2,Q, := L,,Hw“l, Qm =0,

and, for each i € [s], let Q;,; := u;. Note that, by (), this covers all possible cases. Moreover, (a)
implies that we always have

< ISyl +3< | W +3 < 2en. (12.7)

In order to apply Corollary 4.8, we first need to check that that endpoints of the paths Q, ..., Q,,
have sufficiently many neighbours. The proof is similar to that of Claim 3 in the proof of
Lemma 12.1.
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Claim 2. For each i€ [m—1], the ending point v of Q; satisfies |NEK\A(U)O(V’\
(Uje[m] V(Qj)UX))| >2m and the starting point v/ of Q;,, satisfies |NBK\A(U’)Q(V’\
(Ujemm V@) UX))| > 2m.

Proof of Claim. Leti € [m — 1]. By symmetry, it is enough to show that the ending point v of Q;
satisfies N := |N${\A(v) N\ (Ujem VQ) UX))| > 2m.
First, we show thatv € V' \ W . By construction, S, C W \ W,.. We may therefore assume that
v € {v],w} By (@), v € U'.(v) CV\U(D)CV\W,. We may therefore assume that v =
w; . Since i < m, we have w;” # v;” and so (8) impliesv € W_. Thus,v € V' \ W', as desired.
Next, observe that

N > df(v)—dj, @)= 1Al = W|-V'n ] V@)

Jj€lm]

— X

@,0),126) + 1 + +
> dj) — dpf(v) —2[pn] —en—2—¢e3n > dj(v) - dpf(v) —3nn

and so (12.7) implies that it is enough to show that d} (v) — d;f ) = 7777"

Suppose first that v € W \ U~(D). Then, note that dg(v) = d}*(v). By («), there are at most
2\/7311 indices j € [#] for which v € {vT, vj_}. Moreover, (IIT) implies that there are at most 4nn

indices j € [¢] for whichv € S j—1- Therefore,

™ dp(v)
df)—dy (v) > = = @y/n+dy(v) + 49n)
(12.4) — 7
> a Zz)n — (2y/nn+11nn + 4nn) > —Zn.

Next, suppose that v € W n U~ (D). Note that dz;(v) = dgi“(v). By (), there is no index j € [¢]
for which v = v;.r. Moreover, (IIT) implies that there are at most 4nn indices j € [#] for which
v € Sj_;. Recall from (I) that vy is the ending point of P; for each j € [#]. Moreover, we have
shown that v ¢ W and so we have v € W,,. Thus,

Fact 4.200b),(V) dp(v) — | exp(0)]
GO -df @) > P

— (dy(v) +4nn)

(a),(>12-2) (20n —e)n

nn
2 2

(en+4nn) >
We may therefore assume thatv € V'. Then, (a), («), and (I) imply that there are at most en indices

j € [¢] such that v is the starting point of P j- Moreover, (IV) implies that there are at most \/En
indices j € [¢] for which v is an internal vertex of P ;- Thus,

Fact 4.20(b) d — @ (1 - 7
g a3 DTNy A2 ey T

This completes the proof of Claim 2. O

Sopwhoswr Lok
+10 2041 a1 Vet
Apply Corollary 4.8(a) with D, \ A,V \ S}, m, %,X U(W\S)), and Qy, ...,Q,, playing the roles

Thus, all the conditions of Corollary 4.8 are satisfied. Let S, := S, U {v
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of D,V',k,6,S, and P, ..., P to obtain a (v}

.10 Vs, )-path Py, of length at most 20 Im+1<

2v71(IS,| +3) + 1 < 7v7(IS,| + 1) which covers w?, w7 and the vertices in S, and avoids the
vertices in X U (W \ S,).
One can easily verify that (I)-(VI) hold with # + 1 playing the role of 7. O

‘We now prove Lemma 12.3.

Proofof Lemma12.3. Let W* := W n U*(D) and, for each ¢ € {,0},denote W := W, n U*(D).
Observe that the following holds.

Claim 1. There are no distinct v, ,v_, v, € V such thatv, v_ € E(D) and both [75* (D) = {v4, vg}.

Proof of Claim. Suppose for a contradiction that v,,v_,v, € V are distinct and such that
v,U_ € E(D) and both ﬁﬁ*(D) = {v, Vy}. We now show that U*(D) = {v-}, which implies that
|U%(D)| =1, e(U~(D), U*(D)) # 0 and (D) — ex(D) = |U*| = |U/.(D)nU,.(D)| =1<2,a
contradiction to (d). By (a), ex(D) > (1 — 21n)n. Moreover, since v € U%.(D)\ UF.(D), we have
v+ € UX(D). Thus,

wn Fact 11.1
exﬁ(%) > exam(vi) = &

7(5* (D) - é‘)d(%,U* (UO)

(11.2) (b)
> (ex(D) - |A*]) =1 > (ex(D) — [nn]) — 1 > 2nn.
Thus, (b) implies that [W7| < 1.Ifboth Wy C {v_}, then (1.1) implies that both U*(D) = Uﬁ*(D) \
U* = {v-}and so we are done. We may therefore assume without loss of generality that there exists
v E WZ \ {v_}. We find a contradiction. By Definition 8.7, we have v & U* and so v & Uy:(D).
Thus, é‘)'(g,U* (v) = 0 and so (b) implies that

aL1)
ex;(vy) < exp(V) +en < AT +en < [pn] +en < 2nn,

a contradiction. This completes the proof of Claim 1. O

Let Wf ={veV| ex%(v) > (1 — 86m)n}. For technical reasons, we will ensure that, for any
i € [k] and ¢ € {+, -}, if wl? € W, then vl? = wlf’. Note that this will imply (ii), as W* C W*.
Without loss of generality, we may assume that E(H) is ordered so that, if |W:| = |W*‘| =1and
there exists i € [k] such that w;r € W; andw;” € Wj theni = 1.

Suppose that, for some 0 < # < k, we have already constructed pairs (vf, U1_)’ s (U;, v;) such
that the following hold. For each v € V, define &7 (v) := &IJ—;’U* (v) = {i € [#] | v = v}|. Denote
UX(D) :={v eV | & (v) > 0}.

(a) Foreachv €V, & (v) > 0.

(B) Foreachv € V and ¢ € {+, —}, there exist at most \/ﬁn indicesi € [#] such that vl =vF W

(y) Foralli € [/]and o € {+, -}, if w? € W?, then v} = w’.

(8) Foralli € [¢], if there exists ¢ € {+,—} such that w’ € V', then (v}, v;") # (W7, w]").

(¢) Foreachi e [7], {v/,w }n{v],w } =0

($) Foreach o € {+,-},if U7 (D) \ U(D) # @, then both [WE| < 4.

(n) Recall that V* = {v € V | djj(v) > €x(D) — 22nn}. Then, both V* C {w, w, v} \ {v} for
alli € [£].
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Assume ¢ = k. Since A(H) < 119n, (i) follows from («) and (3). Moreover, (ii)-(iv) and (vi) hold

by (y)-(¢) and (), respectively. It remains to verify (v). By definition, we need to show that both

UE.(D)\ UF| < 88nn. If max{|W}|,|W |} > 5, then (¢) implies that both |U%. (D) \ UF| = 0.If
both [W¥| < 4, then |[7[ij* D)\ ﬁ?(D)I < k < 11nyn|W,| < 88nn and so (v) holds.
Suppose # < k. First, observe that, by definition of €x f(v), the following hold.

& (D) := &5 (v) = &5.(D) - ¢
vevV

Y (D) - At - ¢ (12.8)
> ex(D) — |A*| - ¢ > max{|W]|,|W] [} - 21n)n — [pn] — 11nn|W,|
> max{|W]|,|W_[}(1 - 46n)n. (12.9)

Let X* be the set of vertices v € V' \ {w*
eachv € W;—“ C V \ U* satisfies

} such that &7 . (v) — &3 (v) = [1/yn]. Note that

7+1 D,U*

ﬁ) (11.1)
&EW) > &5 . (0) — i — () 3 exg(v) — |A*| — \/on — AGH)

a)
> (1-86nn — [yn] — \/yn —11nn
> 2. (12.10)

Claim 2. Tt is enough to find distinct v’ € V such that the following hold.

£+1° f+1

0 vz, € TZD)\ (K= U iw], ).
(Im) 1f wf+1 (S W+ then U;H = w;H
(IID) If max{|W}|,|W |} > 5, then both &7 (v7, ) > 2.
+
(v) 1t wf;l eU; (D), w, € U (D), then for each o € {+,—} such that werl € V’, we have
wy

V) vaeV*\{w 3 thenverl v.

£+1’ f+1

Proof of Claim. Suppose that v? re1Upy EVare distinct and satisfy (I)-(V). We show that (a)—()
hold with ¢ + 1 playing the role of 7.
First, (o) and (B) follow from (I), while (y) follows from (IT). Moreover, (¢) follows from (IIT),
while (¢) follows from (I) and the fact that v S FU
In order to verify (8), note that, if both w e W
playing the role of # and, if there exists ¢ € {+, —} such that w?®
(o). In the remaining cases, () holds by (IV).

In order to verify (1), first note that each v & {w?

E W then (6) holds vacuously with £ + 1

il & U;(D), then (6) follows from

S W, +1} satisfies (1) by (V). To check that the

vertices w— satlsfy (n), first note that, by Proposition 8.6(a.ii), if w L € V*, then ex+(w P +1) =2
and so (11.1) 1mp11es that éx (w . )< exL—) ge(w erl) = 0. Thus, (n) for the vertices w* P follows
from (I). O

The following observation will enable us to ensure that (I)-(V) are satisfied simultaneously.
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Claim 3. Letv* € V+.Then eAX:,—f(vi) 2 and, ifv* # wﬂl, then v?+1 := v* satisfies (the ‘+ part’
of) (D-(V). In particular, if w S W+ and v* # w/H, then v* = w;ﬂ

Proof of Claim. Let ¢ € {+,—} and suppose v € V°. By Proposition 8.6(a.i), €x(D) < (1 + 22n)n
and so |W$| < 1. In particular, [W¥| <1 and so, k < 22nn. Thus, both X* = @. By Proposi-
tion 8.6(a.ii), v € WZ.Thus, Wi = {v}and, by (12.10), éi(;(v) > 2. By Proposition 8.6(a.ii),eachu €
V' \ {v} satisfies v ¢ V° (otherwise ex},(u) > (1 — 86m)n and thus |I/7;j| > 1, a contradiction). []

To find v? when each v* € V' \ (V* U {w? }), we will use the following claim. For each S C
V, denote éi(:,f(S) =Y es & (V).

+1

Claim 4. The following hold.
(A) If max{lW:jl, [W_|}>5, then there exists ve ﬁ;f(D) \ (Xt u {w; LWy, D) satistying

o

€x, (v) >

(B) Suppose |W+| [W_| <4. Then, X* =¢ and U+(D)\{wf+1};éﬂ Moreover, if w, | €
U- ; (D) and w* sl € € V/, then éx ’ T\ {w 2 (and thus, in particular, U:;(D)\
(X+ U {w;+1’ w;+1}) # Q]).

Both statements also hold if + and — are swapped.

41’ f+1})

Proof of Claim. For (A), suppose that max{|W}|,|W_|} > 5. Assume for a contradiction that
each v € U+(D) \ xt U{w”l, ;H}) satisfies &;(v) = 1. Note that [\/ﬁnj Xt <2 <k<g
11nn|W, | and so |X*| < 234/nmax{|W}|, W] |}. Thus,

&Z(D) < IXTufw!, ,wr, Hn+|05D)] < 3y/nmax{|W|, W[} +2)n+n

+1’°

< max{|W}|,|W_[}23y/nn + 3n.

But, by (12.9), eAx;(D) > max{|W] |, |W_ [} —46n)n, so max{|W'|,|W_|} < —3 _ <4, acon-

1—24\/5
tradiction.
For (B), assume |W}|,|[W| < 4. Then, £ <k <1lyn|W,| <88ynandso X* =@. Ifw, €
Uf (D) C UU*(D) and werl € V’, then

(11.1)

&, (wy, ) < &) .(wy ) < 1 (12.11)
and
(1.1 + (@)
& (wfﬂ) < exD Ux(wb,ﬂ) < max{ex (wﬂl) 1} < en. (12.12)
Hence,
&V \Wwh w,) = &0 -& W) - & W,
(12.9),(12.11),(12.12)
> (Q1—-46n)n—1—c¢en > 2,
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asdesired. It only remains to show that U+ D)\ {w

~.,} # 0.By (12.9), &£ (D) > 0and so U (D) #

@. Suppose for a contradiction that U;(D) ={w f+1}' Note that
exD gy 1) > exf(w“l) = exf(D) (1—4677)n
0
Thus, wf+1 ¢ U(D) and so
1
exD(wa) > exD U (wﬂl) (1 —46n)n. (12.13)

Thus, w,

L€ W+ and, by (b), Wil <

ar. 1)
exj(v) <

1. Moreover,eachv € V' \ {w; +1} satisfies

X (V) + d, (0) < (&S (V) + ) + |AY

(@) 13)
< 0+88nn+ [nn] < exp(wy, ) —en.

Thus, by (b), we have W' C {wbjﬂ}. Therefore, d:; +(w};ﬂ) = |A*| and so the fact that w, &
U(D) implies that
S+ - @y e + +
exD’U*(le) = eXD(wKH)— dt L(wy, ) =exp(w,, ) — AT (12.14)
Then,
D <& 029 ot AT < 1215
&H(D) = &F(wy, ) <&h . (wr,) = ext(wr,,) - AT <n, (12.15)
and so
2.8 (2.15)
&) "2 &H D)+ 14T+ < exwr, )+ 7. (12.16)

Suppose first that w ¢V+ that is, d+(w f+1)<é3<(D)—2277n. By (12.9) and (12.15),
both [W¥| < 1. Thus, f 1177n|W | <22nn and SO
. _ _ 12.16)
d (wfﬂ) <éx(D)—22nn < é&x(D)—-¢ < exD( f+1)

a contradiction. Therefore, w,

Indeed, (1) implies that w “
l+, then w7

[£], if w, =W

L € V*. Observe that

fielllv #w, }=liel/]llw =w,, .} (12.17)
€ {w;",w;, v/} for each i € [#] and (y) implies that, for each i €

— ot - -+ ; P
=v;". Thus, w, € {w,v"} for each i € [#]. But (¢) implies that

vl.+ # w; for each i € [£]. Therefore, (12.17) holds and so

~+
€x.(D)

a21) _

< &, U*(wf+1) +dp(wy,, ).

;(D) +7 = ex;(wfﬂ) +7
&} pe(wy, ) - [i el vf =w, }I+7
&p Wy )+ HEE 2] w) = wy, 3 < & () + dpg(wy, )

(12.18)
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Therefore, we have

— (1.2) & (1218) _ o
A'D) < &(D) =" &.(D) + |AY| < (& . (wy, ) +dp(w,, )+ |A*]

(12.14)

=" exp(wy,y) +dp(wy,) = dp(wy,,) <AD),

a contradiction.
The same arguments hold with + and — swapped. This concludes the proof of Claim 4. O

We are now ready to choose distinct U;—'H € V such that (I)-(V) are satisfied. Without

loss of generality, suppose that |U\;(D) \ (X*Tu {w;+1})| |U D)\ X~ u {wf+1})|. We start by
picking v+ , a8 follows (where we assume in each case that the previous ones do not apply).

Case 1: w L€ WJr or V* \{wt’+1 0. If wf+1 IS Wf then let v;ﬂ = w:;H and if there
exists v € V+ \{w } then let v = v. (Note that v+ | is well defined by the ‘in particular’

part of Claim 3.) Then by (12.10) and Clalm 3, (the ‘+ part of) (1)-(V) hold for v MR

Case 2: max{|W]|,|W_|} > 5. Let u+ UJF(D)\(XJr U{w;H, ;H}) satisfy exf(vfﬂ) >2
(vt Vo exists by (A)). Then, (the ‘+ part’ of) (D)- (V) are clearly satisfied for v
Case 3: w, §EU (D) orw L EV. Letverl U+(D)\(X+U{w

Then, (the + part of) D-(V) are clearly satisfied for v* N

f+1}) (vf+1 exists by (B)).

1
Case4:w, € U (D) and w L EV'. Let Uf+1 U+(D) \ (Xtu {wﬂl, w, D (verl exists

by the * moreover part of (B)). Then (the ‘+ part’ of) (I)- (V) are clearly satisfied forv )
Note that, since v’ P satisfies (I), we have v} 41 Fw, 1+ Moreover, (I) and (11.1) imply

that éx f(v < 1. Therefore, by (12.10), v f W and, by Claim 3, vt = & V™~ (otherwise

£+1
&, (v f+1) > 2 a contradlctlon) Thus, if U (D) \ X~ ufw? MY f+1}) # @3, then, we can proceed
similarly as for v} s t0 obtain v, i vt P satisfying (I)~(V). More precisely, we proceed as

follows.

Case l: w, | € W‘ or V~ \{wﬁl} #0. If w, € W*_, then let v =W and if there
existsv € V'~ \{w; +1}, then let v, PR (Note that v, 1 18 well defined by the ‘in particular’
part of Claim 3.) Then, by (12 10) and Claim 3, (the ‘— part’ of) (D-(V) hold for v Moreover,

we have shown above that vf+1 & {wfﬂ} UV, thus U # verl and so we are done.

Case 2: max{|W/|,|W_|} > 5. Let v, € U;(D) \(X~u {wﬂl, wy,,}) satisfy €, (v, ) >2
(U;+1 exists by (the ‘— analogue’ of) (A)). Then, (the ‘— part’ of) (I)~(V) are clearly satisfied

for v, ,- Moreover, we have shown above that éi(;(v ) < 1, thus v i F vt o+l and so we are
done.
+
Case 3: wa ¢U; (D)orw i & %48 Letv, € U D)\ X~ U{wfﬂ, f+1})(vf+1 exists by

assumption). Then, (the — part’ of) (I)—~(V) are clearly satlsfred for v, and so we are done.

Case 4: wf+ U+(D) and w, | € V’. Recall that exf (U+ ) <1, so (the ‘- analogue’ of)
(B) implies that X~ = [25 and €x, (V \ {w > ot €, (V \ {wt,ﬂ, f+1}) €, (Uf+1) >

+1° f+1’ /+1})
2—1>0. We can thus let v} . € U D)\ (X~ u{w! }). Then, (the ‘— part’ of)

£+1 r+ Wi f+1
(D—(V) are clearly satisfied for v and so we are done.
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We may therefore assume that U D)\ X~ u{w?
X~ ufw' });éﬁandsoU (D)\(X u{w

S0V, D) = 0. But, by Claim 4, U-(D)\
7.9 =1{v}, } Thus, by assumption,
|TF D)\ X+ Ufw,, DI<IT;(D)\ (X~ u{w?, Dl = [{v}, } =1
Then, since v}/ ., satisfies (I), U+(D) \ X ufw, H={v ;H
Note that, verl € U;(D) n Uf (D) € U%(D) and so

7+1

}. We will find a contradiction.

(11 1)

x> ( Vo 1. (12.19)
Since v} /., satisfies (the ‘+ part’ of) (III), this implies that |[W|,|W_| < 4. By (B) (and its ‘-
+
analogue’), we have X* = (J and so {v } c U (D) C {vﬂl, fﬂ} Hence,
. (11.1)
oxp (W7, ) > &G (i, ) - 1> &G Wy, ) -1
(12.9),(12.19)
—eXL,(D)—ex/(UL/,+1 > Q—-46nn—1—-1= 1 —47n)n.

Together with (12.10) and (12.19), this implies that W+ ={w /+1} and so, by assumption on

our ordering of E(H) made after Claim 1, it follows that # = 0. Therefore, UU*(D) ;;*(D) =

¥
{w?, . vl } contradicting Claim 1. ]

12.4 | Decreasing the degree at W,

Note that, if W, = J, then the excess of our tournament may be relatively small and so we do not
have room to proceed similarly as in Lemma 12.2 to decrease the degree of the vertices in W 4. The
strategy is to find a partial path decomposition 7 such that each vertex in W 4 is covered by each
of the paths in P and such that each vertex in V" is covered by half of the paths in 7. In this way,
the degree at W , is decreased faster than the degree at V’. Decreasing the degree at V’ will ensure
that the leftover excess is not too small compared to degree of the leftover oriented graph (recall
Lemma 9.5(v)).

Lemma 12.4. Let 0 < % <K ek <1 Let D be an oriented graph on a vertex set V of size n
satisfying 8(D) > (1 — e)n, €&x(D) > E + 9nn, and the following properties.

(a) Let W UV’ be a partition of V such that, for each v € V, | exD(v)l en and, foreachv € W,
| exp(v)] < (1 — 20m)n. Suppose E(D[W]) = @ and |W| <

(b) Let A*, A~ C E(T) be absorbing sets of (W, V' )—starting/(V’ , W)-ending edges for D of size at
most [nn]. Let A := AT UA", qu—' =V(AH)NW, and W, :=V(A)NW. Assume A # 0,
thatis, W, # @.

(c) LetU* C UD) satisfy |U*| = éx(D) — ex(D).

Then, there exists a good (U*, W, A)-partial path decomposition P of D such that |P| = 8[nn] and
D' := D\ P satisfies the following.

(i) Foreachv € W, dp/(v) < dp(v) — 12[nn].
(i) Foreachv € V', dp(v) — 8[nn] < dp/(v) < dp(v) — 8[nn] + 1.
(iii) Eachv € U* \ (V*(P) U V~(P)) satisfies dg,(v) = d];,(v) <& -1
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Proof. Fix additional constants such that ¢ < v < 7 <« 7. Let k := 4[nn]. Assume inductively
that, for some 0 < # < k, we have constructed edge-disjoint paths P, ;, P 5, P, 1, ..., Py, C D such
that P, :={P;; | i € [£],j € [2]} is a (U", W, A)-partial path decomposition of D such that the
following hold, where D, := D \ P,.

() Foreachi e [/]andv e W,v € V(P; ) NV(P;,).

(B) Foreachi € [¢]and v € W, v is an endpoint of at most one of P; ; and P, ,.

(y) For each i € [/] and v € V', either v € V(P; ;) YAN V(P;,) or v is an endpoint of both P;;
and P; ,.

(6) For each v € V, there is at most one i € [#] such that v is an endpoint of exactly one of P; ;
and P; ,. Moreover, for each v € V’, if there exists i € [#] such that v is an endpoint of exactly
one of P; ; and P, ,, then exp, (v) = 0.

If ¢ =k, thenlet? := P and D' :=D\ P.

Claim 1. P is a good partial path decomposition of D, that is, éx(D") = éx(D) — 2k = éx(D) —
8[nn].

Note thatif # = k and Claim 1 holds, then we are done. Indeed, (o) and () imply thateach w €
W satisfies dp(w) > 3k = 12[nn], while (y) and (8) imply that each v € V” satisfies 8[nn] — 1 =
2k —1 < dp(v) < 2k = 8[nn]. Thus, (i) and (ii) hold. Finally, (iii) follows from Claim 1. Indeed,

for each v € U* \ (V*(P) UV~ (P)), we have d} (v) = d7,(0) < 5% < 2+ 9yn — 2k < &(D) —
2k = éx(D’), as desired.

Proof of Claim 1. By Proposition 8.4(a), it is enough to show that A°(D’) < €x(D) — |P|.
Letv € V. By (a), (¥), and since P is a partial path decomposition of D, the following hold.
- Ifv e UX(D)N W, thenv € VE(P)U VO(P) foreach P € P.
- Ifv € U%(D) n W, then for each o € {+, -}, v € V°(P) U VO(P) for all but at most one P € P.
- Ifv e UE(D)NV’, then v € VE(P) U VO(P) for at least k paths P € P.
- Ifv e UD) NV, then, foreach o € {+,-}, v € V°(P)U VO(P)foratleastk —1 = |P| —k —1
paths P € P.

Thus, since P is a partial path decomposition of D, we have

dglaX(v) —|P| ifew \ UO(D)’

d™X(p) < (12.20)
b {dglaX(u)— Pl +k+1 ifveV uUoD).

For each v € V' U U°(D), we have

Fact 4.20(c) dp(V) + |exp (V)| @ 5 —
4 () act420(¢) dp(v) 2| p()| 2 n 12+€n <§+9nn—4[}7n]—1<e§((D)—k—1
and so, by (12.20), A°(D’) < éx(D) — |P|. Thus, P is a good partial path decomposition of D, as

desired. [l

If£ <k,thenletD, :=D\ P,and U} :=U"\ (V*+(P,)UV~(P,)). We claim that there exist

suitable endpoints v}, vy, v;,v; € Vfor Py, and Py, 5.

Claim 2. There exist vf, vy, v; ,U; € V such that the following hold.
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(I) Foreachi e [2] v #v and v’ € UZ*,(D,). Moreover, for each ¢ € {+, -}, if vy = v3, then
4

&), Uz @p) >

(I1) For each v € W, there exists at most one pair (i, o) € [2] X {+, —} such that vy = .

(III) For each v € V', if there exists exactly one pair (i, ¢) € [2] X {+, —} such that v? = v, then
ex%f (v)=1.

Before proving Claim 2, let us first apply it to construct P, ; ; and P, ,. Let v U], 1)2 U, EV
be as in Claim 2. We constructa (v}, vy)-path P, ; anda (v],v;)-path P, , usmg Corollary 4.8
as follows. Observe that, by Lemma 4.4, D[V’ \ {v;L U7, v; ,U; }] is a robust (v, 7)-outexpander.
Moreover, each v € V satisfies

—8[nn]

. . Fact 4.20(b) d(v) — | ex~ (VL @ (20n — e)n
dgl;n(U)ngun(U)— |on| > D( ) 2| D( )l —2f > ( 772 )

(@
>nn =2 2(|W|+2)+2.

Let§ := % and S :={v],v;}\ (W U{v],v;}). Foreachi € [2],let V] := V' \ {v}",v; }and k; :=
|W U {v]",v;}|. Apply Corollary 4.8(a) with

D,\ A 144 k, vt WA {vf,v7} vy

1 1
playing the role of D 14 k Py {Pys s P} Py

to obtain a (v}, v )-path P, of length at most \/En which covers W and avoids {v},v;}\
(W u{vf,v}). Let D, := D, \ Py, and observe that, by Lemma 4.4, D[V \ (V(P; ;) U
{vz+ , U5 )] is still a robust (v, 7)-outexpander. Then, let S :=Vv(P, ) \(Wu {u;r , U5 }) and apply
Corollary 4.8(b) with

D,\ A 1244 k, N v
playing the role of D v’ k S P

SR

WA {v], 05} vy

{Py, ... Py} P,

-

to obtain a (v, v;)-path P, , satisfying V. \ V(P ,) = V(P,411) \ (W U {v], 05 }). Then, note
that, by (I), P, is a (U*, W, A)-partial path decomposition of D and, by (II) and (III), (8) and
(6) are satisfied with # + 1 playing the role of ¢, respectively. Finally, by construction of P, ;
and P, () and (y) are satisfied.

It remains to prove Claim 2.

Proof of Claim 2. Since P, is a (U*, W, A)-partial path decomposition of D, |A*| < [nn], and

k < 8[nn],
(Df) orollary 114 i (D) —2¢
(1.2) &(D) — |A*| - 2¢ (12.21)
zg—nw (12.22)

Thus, we can choose endpoints v, v], v, v; € V satisfying (I)-(III) as follows.
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= uz, v

1= u,, and

IflUZn V'| > 2, then pick distinct u,,u, € Uu;n V' and let vf = uy, vt

2
v, :=u. Then, (I)-(III) are satisfied, as desired.

We may therefore assume that |U* NV'| < 1. We first pick vt,vf € UJr (Df) \ (U* NnV') as

1Y%
D, U*(V’ \ U}) > 2, then pick v/ € U+*(Df) nV'\U;) such that exD U)(v+) is
maximum. If éx exD U*(v’“) >2, then let v] :=v otherw1se let v} € (U+*(Df) N’ \ Un\
{U+} If é)'(D U*(V’ \ U*) =1, then, note that by Fact 11.1 and (12.22), é)'(D U*(W) exU* (Dy) —
Xp,. U*(V’ \ U*)—e")'(D U*(U* nNVvH==2 —nn— 1—13>1. Thus, we can let v/ € UJr (Df)n
'\ U*) and v) € U+*(Df)n w. If éi(D U*(V’ \U;) =0, then it is enough to show that
|U+; (D) NW| >2(so that we can take dlstlnct vf,v) € l7+ (Df) N W, as desired for (I1)).
Note that, by Fact 11.1 and (12.22), e“)kgf o (W) > ex (Df) - €5<+ (V’ \U%) - e")k; U*(U*
A
v/ ) > ﬂ —nn —0—1 3> 2andso, in particular, U, (Df) NW #40. Assume foracontradlctlon that
0
D U>- D U*(W) 2’U¢U(Dt’)
(v). Thus, since |U}| = |U; NV’ <1, |AY] <

follows. If éx*

(Df) N W = {v} for some v € W. Note that smce &t L (v) =&t
' +
and SO, U; C V' and ex;(v) > exD/(v)

[nn], and 27 < 2k < 8[nn],

.
Df,Uf

Fact 4.20(d) 1221) _
dB(U) + exg(v) < €x(D) ( ) e (Df) +2¢ + |AY|

Fact11.1

~1J; U*(U)+ US| +27 + |[AT| < exfy(v) + 14+ 9[nn].

dp(v)—ext _
But, by (a) and Fact 4.20(b), dj;(v) = = © ;XD(U) > (20"2 9% 5 9[nn] + 1, a contradiction. Thus,

IUZ',; (D/)NW| > 2and we can let v, v} € 17;;; (D,) N W be distinct.

Now proceed analogously to pick v, v; € U{I* D)\ ((U; NnvVHu {v;r , v; }) (this is possible
4

since, for each i € [2], €x, ;- (vi+) < 1). One can easily verify that (I)—(III) are satisfied. O
e
This completes the proof. O
12.5 | Deriving Lemma 9.5

Proof of Lemma 9.5. Successively apply Lemmas 12.1, 12.2, and 12.4 as follows.

Step 1: Covering T[W,]. First, apply Lemma 12.1 to obtain a good (U*, W, A)-partial path
decomposition P; of T such that the following hold. Denote D; :=T \ P, and Uy :=U"\
VHPHUV=(P))).

(o) €x(Dy) = €x(T) — |P4].

B) 1P| < 2¢n.

() E(D1[Wo]) =0

(6) If|UT(Dy)| = |U(D;)| =1, then e(U~(D;),U*(D;)) = 0or éx(D;) — ex(D;) > 2
(¢) Eachv € Uy satisfies d;l(v) = dBl(v) < &(Dy) - 1.
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In particular, observe that, by Fact 4.22, Lemma 9.5(b), and (), the following hold.

) (D)) > % — 2en and, if W, # @, then €x(D,) > % + 9.

(n) Foreachv eV, le(v) > (1 - 5¢)n.

(6) Foreachv e W, | exDl(v)l > (1 -21n)n.

(1) Foreacho € {+,—},if [W§| > 2, then exgl(v) <nnforeachv € V and, if [W| = 1, then, for
eachv e Vandw € W, eX°D1(v) < ex°D1(w) + Sen.

Step 2: Covering the remaining edges of T[W] and decreasing the degree of the vertices
inW,uW,when W, # @ If W, =0, then let P, := J. Otherwise, note that by Proposition 9.7,
|UT| = €x(D;) — ex(D;) and let P, be the good (Uy, W, A)-partial path decomposition of D,
obtained by applying Lemma 12.2 with D;, U7, and 5¢ playing the roles of D, U*, and &. Denote
D, :=D; \ Pyand U; := U; \ (V*(P,) UV~ (P,)). Then, note that, if W, # 0, then the following
hold.

D é‘)d((Dz) = és((Dl) - |7)2|-

(D) ED,[W]) = 0.

(II) N*(D,) — N*(D,) < 88nn.

(IV) Foreachv e W, UW 4, (1 =34/mn < dp,(v) < (1 —4nn.

(V) Foreachv € Wy, dp, (v) > (1 - 3y/n)n and dg‘zin(v) > 5yn.

(VI) Foreachv e V', dp (v) > (1 - Sx/g)n.
(VID) If [W}|, W, | <1, then each v € W, satisfies |exD2(U)| = dDz(v).
(VIII) Each v € U; satisfies dgz(v) = dBZ(U) < &(D,) — 1.

Note that, by (IV), the following holds.

(IX) Eachv € W, satisfies | exp (V)| > | exp(v)] = 3/nn > (1 — 44/n)n.
Thus, (VII) implies the following.

X) Iféx(D,) < 2[%] — [nn], then |eXD2(v)| = dDz(v) foreachv e W,.

Step 3: Decreasing the degree of the verticesin W, when W, =@. If W, #Jor W, =,
then let P; := . Assume W, = @ and W, # §. Recall that, by construction, D, = D; and U; =
U;. In particular, (y), (¢), and () are satisfied and |U5| = €x(D,) — ex(D,). Let P5 be the good
(U, W, A)-partial path decomposition of D, obtained by applying Lemma 12.4 with D,, U7, and
5¢ playing the roles of D, U*, and €. Denote D; := D, \ P; and note that, if W, =@ and W, # §,
then the following hold.

(A) €x(D3) = €x(D,) — |P5].

(B) Eachv e U; \ (V*(P;) U V~(P5)) satisfies dgs(v) = st(U) < ex(D;y) — 1.
(©) |P5| = 8[nn].

(D) Foreachv e W, dD3(U) < dDz(v) —12[nn].

(E) Foreachv e V/, dp,(v) —8[nn] < dp,(v) < dp,(v) = 8[nn] + 1.

Step 4: Checking the assertions of Lemma 9.5. Let P := |J;c;)P;and D :=T \ P = D5.If
W,#@orW, =0, thenletd := min{[%] — [pn],éx(D) — [pn]}. f W, = @ and W, # @, then
letd := [%] — 5[nn]. In both cases, P is a good (U*, W, A)-partial path decomposition of T by
Corollary 11.5. Note that (ii) follows immediately from (), (VIII), and (B), while (iii) follows imme-
diately from (y) and (IT). If W, = @, then (vi) holds vacuously, otherwise (vi) follows from (X) and
the definition of d.
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We now verify (v). If W, # @ or W, = @, then (v) holds immediately by definition of d. Suppose
W, =@ and W, # @. Then, D, = D;, so (¢), (A), and (C) imply that éx(D) > g +9n — |Ps| >
[%] —4[nn] = d + [nn]. Therefore, (v) holds.

Next, we check (i). If both W, W 4 = @, then ({) implies that €x(D) > [5] —2en and so [5] —
[mn] —2en <d < [5] = [nn]. W, # @, then D = D, so (IX) implies that €x(D) > (1 — 4+/nn
and thus d = [g] —[pn]. fW,=@and W, # @, thend = [g] — 5[nn] and so (i) holds.

For (iv), note that by Corollary 11.6 and (8), N*(T) — N*(D,) < |P;| < 2en < nn. Thus, if W, #
@ or W, = @, then (iv) follows from (III). We may therefore assume that W, = @ and W, # @.
Then, D, = D, and so Corollary 11.6 and (C) imply that N*(D,) — N*(D) < |P;| < 8[nn] < 88nn.
Therefore, (iv) holds.

It remains to check (vii)-(ix). First, suppose that W, # fflor W, = §,andd = [g] — [nn].Then,
the upper bounds in (viii) and (ix) are clearly satisfied. The lower bound in (ix) follows from
() and (VI), while (vii) holds by (IV). By (a) and Fact 4.20(b), each v € W, satisfies drTni“(v) >
% > 9nn and so the lower bounds in (viii) follow from () and (V). Thus, (vii)-(ix) hold if
W,#@orW, =@ andd = []] - [nn].

Next, assume that W, # @ or W, = @, and d = éx(D) — [nn]. Then, 2d + 2[nn] = 2éx(D)
2A%D) > dp(v) for each v € V and so the upper bounds of (viii) and (ix) hold. Moreover, éx(D)
[%] and so, by (IX), W, = §J. By assumption, this implies that W, = @ and so (vii) holds vacuously.
Moreover, each v € V satisfies

>
<

. —-1- (a) —
Fact4=20(b) n | exr (V)] _sen S 20nn —1

. m .
dmin > qmin -5
D) = d(v) — Sen >

—5en 2 [nn] +1
and
) n
dp(v) 2 1—-5e)n = 2< [51 — [nn]) + 2[nn] — 6en = 2d + 2[nn] — 6en,
so the lower bounds in (viii) and (ix) hold. Therefore, (vii)-(ix) hold if W, # @# or W, = §, and
d = &(D) — [yn].

We may therefore assume that W, = @ and W, # (. Recall that, in this case, d = [g] — 5[nn]
and P, = . First, observe that each v € W satisfies

B)(C)
dp(v)2n—-1=2|P| > n-—17[nn]
and if v € W, then

. . Fact4.2000) n — 1 — | ex;(v)]
g > dpt @) 1Pl > |

P

@.B)(C) 20mn — 1
> nT —2en — 8[nn]

> [nn].
Thus, the lower bounds in (vii) and (viii) are satisfied. Moreover, each v € W satisfies

D)
dp(v) < dp, (V) —12[mn] <n—-1-12[nn] <2d —1-2[nn]

and so the upper bounds in (vii) and (viii) hold. Finally, note that each v € V" satisfies

()
dp(v) < dp,(v) —8[nn] +1<n—8[nn| <2d +2[nn|
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and

(E)
dp(®) > dp, ) = 811 > dy (V) — 2/, | - 8]

®
> n—1—4en—8[nn] = 2d — 5en + 2[nn],

so (ix) holds. Therefore, (vii)—(ix) hold if W, =@ and W, # §J. This completes the proof of
Lemma 9.5. O

13 | CONSTRUCTING LAYOUTS: PROOF OF LEMMA 9.6

We will prove Lemma 9.6 as follows. In Step 1, we choose a set E of auxiliary edges which
‘neutralise’ the excess of the vertices in D. In Step 2, we then subdivide these edges into paths
which form a layout (I, F). In Step 3, we subdivide the paths in L further to obtain layouts
(fl, F s eees (ff, F ) which cover the edges of D \ A at W in such a way that (iii) and (iv) are sat-
isfied. Finally, in Step 4, we adjust the degrees of the vertices in V' so that they satisfy (v). To
achieve this, we proceed as follows. For those vertices v € V' where the current layouts would
result in a degree which is too small after the approximate decomposition, we add v as an isolated
vertex to some of the layouts. For vertices v € V/ whose degree would be too large, we subdivide
two edges from a suitable layout and include v into both of the resulting paths. Recall that the
relevant definitions involving layouts were introduced in Sections 7, 9.1, and 9.2.

Proof of Lemma 9.6. Let W* := W nUZ%(D). Denote ¢ := ¢ + ¢~. Note that since A is a
(W, V')-absorbing set, Definition 8.7 implies that A does not contain any edge incident to W,
and so A is also a (W, V’)-absorbing set. Thus, for simplicity, we can let W (rather than W) play
the role of W in the auxiliary excess notation. For each v € V, define

&) 1= 65 ., (0) = (V) (13.1)

to be the excess at v that we want to cover with the layouts (that is, the number of paths which we
want to start/end at v). Let U* := {v € V | &*(v) > 0}. Note that (11.2) and (c) imply that

(D) 1= ) &F(v) = ) & (v) = &(D) — [nn].
veV veV

Iféx(D) —d < \/En, then let £ := éx(D); otherwise, let # := d. Note that, by (e), Z > d. Thus, (i)
holds, as desired. Observe that either

&[D)—¢ > +\en or &D)-£=0. (13.2)
We claim that each v € V' satisfies

d5(v) < &X(D) — &5 . (V). (133)

Indeed, if v € U*, then (11.1) implies that e"iili) y+(0) = 1and so (13.3) holds by (b). We may there-
fore assume that v ¢ U*. Suppose without loss of generality that d;(v) > dj(v). Then, (11.1)
implies that €}, ;. (v) = ex;(v) = 0 and so €X(D) — &, . (v) > A%(D) > djf (v). Finally, (11.1)

implies that éi;;,m (v) = ex;(v) and so €x(D) — &B,W(v) > df (v) — ex (v) = dj; (v), as desired.
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Note that throughout this proof, given a multiset L’ of paths, the corresponding edge set F’ in
the layout (L, F") we construct will always satisfy F/ = E(L') n F = E(L') n (Ey(D) \ A).

Step 1: Choosing suitable endpoints. Let s := €x(D) = €x(D) — [nn]. In this step, we will
select suitable endpoints for the s (non-trivial) paths in L. Each v € V' will be used precisely
éx* (v) times as a starting point and éx~ (v) times as an ending point. We now fix the endpoints
of each path by defining a multidigraph E on V such that each e € E corresponds to a path of
shape e. Hence, |E| = s. Note that éx*(v) # 0 # é&x (v) if and only if & (v) = 1 = & (v). We
now formalise this in the following paragraph.

For each o € {+, —}, let v‘f, BN OIS U° be such that, for each v € U?°, there exist exactly éx°(v)
indices i € [s] for which v = v?. Since s > d > 1 (by (d) and (e)) and each v € U+ n U~ satisfies
& (v) = & (v) = 1 (by (11.1)), we may assume without loss of generality that, for each i € [s],
v # v LetE = {v;rvj_ | j € [s]}. Note that,

|E| = (D) = (D) — [nn] (13.4)
and, foreachv € V,

dg(u) = &T(v). (13.5)
Let v € W. By Definition 8.7, we have d7(v) < ex;(v) and so exz—')\A(v) = exp,(v) — d5 (V).
Moreover, (b) implies that v ¢ U* and (c) implies that ¢(v) = 0. Therefore,

ext, (V) = exj (V) = d5 (V) (L éxt

A (13.5)
D\A b w.a®) = &*(v) = d;f(v)- (13.6)

Step 2: Constructing layouts. In Steps 2 and 3, we will transform E into a W-exceptional
layout €, ). Initially, we set (L,F) = (E, ) where each edge in E is considered as a path. To be a
W-exceptional layout, each path in L requires an edge entirely in ¥/ and F must contain Ey(L).
For this, we proceed roughly as follows.

Suppose that the path vtv~ does not lie entirely in V/, say vt € W and v~ € V’. We pick u €
Np\4(v*) and replace the path v*v~ with the subdivided path v*uv™ and add v*u into the set F
of fixed edges. (Note that uv™ lies entirely in V')

More precisely, recall that 7 = Ey,(D)\ A and D’ = D \ F. In this step, we will use E to
construct a layout (I, F) such that the following hold.

(@) (L,F)is a W-exceptional layout such that F C F and L contains no isolated vertex.

(8) L has shape E (and thus, by (13.5), (L, F) is U*-path consistent with respect to (D', F)).
(y) ForeachP € Land v € V(P)n V', v is an endpoint of P or has (in P) a neighbour in W.
(8) ForeachP €L, VO(P)C V.

(¢) Each P € I has at most 4 vertices and contains an edge which lies entirely in V.

Properties (y)-(¢) mean that the paths in L are only obtained by subdividing, with vertices of
V', the edges in E which are incident to W. Property (y) will ensure that no vertex of V/ belongs
to too many layouts (as desired for (vii)) and (¢) will ensure that the layouts are not too large (as
desired for (vi)). Property (§) means that we have not yet incorporated the exceptional vertices as
internal vertices. This will give us more flexibility in Step 3 when we cover the remaining edges
incident to W.

Initially, let L° := E and F° := . Let w;, ..., w; be an enumeration of W N V(L°). We will con-
sider each w; in turn and, at each stage i, subdivide all the edges incident to w;. Let i € [k]. By
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(13.6), eXp\ 4(w;) # 0 and so recall from (3.1) that Ngla(wi) denotes the outneighbourhood of w;
in D\ Aif exp\ 4(w;) > 0 and the inneigbourhood of w; in D \ A otherwise.
Assume inductively that for some 0 < m < k, we have constructed, for each i € [m], a multiset

of paths I and a set of edges F' such that the following are satisfied.

(I) Leti€ [m]. Let S, :={e € E(L'™") | w; € V(e)}. Then, I is the multiset of paths obtained
from L'~! by subdividing each edge e € S; with some vertex z, € Ng‘a(wi) N V', where the
vertices z, are distinct for different edges e € S;. (That is, L! is obtained by subdividing, with
a neighbour of w;, all the edges of L'~ which are incident to w;.)

(I) Foreachi € [m], F' = F'=! U Ey, (L).
Note that (I) and (13.5) imply that the following holds.
(III) Foralli € [m]andv e W, d%i(v) = dg(v) = &T(v).

Moreover, (I) and (II) imply that, for each i € [m], F! is a set of edges obtained from F'~! by adding
all the edges of the form w;z, or z,w; from (I). In particular, F' C E{wj| je[i]}(D) \ A C Fissatisfied.

If m =k, thenletL := L* and F := F¥. Observe that (a)—(¢) hold. Indeed, (I) implies that L is
obtained by subdividing L° = E, so (8) holds. By (I), all these subdivisions are done with vertices
of V. Thus, (y)-(¢) are satisfied. (For (¢), note that at each stage the paths all contain at most two
vertices of W, so each edge in L° = E is subdivided at most twice.) Moreover, this implies that T
is a set of non-trivial paths which all contain at least one edge whose endpoints are both in V’. By
(II), F consists of the edges of L which are incident to W. Altogether, this implies that (L, F) is a
W -exceptional layout. As mentioned above, (I) and (II) imply that F C F and so («) is satisfied,
as desired.

We may therefore assume that m < k. By assumption and (II), S,,,, :={e € E(@™) | W41 €
V(e)} # @and sow,,,, &€ U%(D). We may therefore assume without loss of generality that w,,,, €
W*. This implies that exp(w,,,1) = | €Xp(Wy,11)| = ex};(w,,4;) and dgin(wmﬂ) = d(Wp,11)- We
now subdivide all the edges in S, using Hall’s theorem as follows. Let Y := Ng\ 4(Wpq1) and
observe that, by (a), Y C V’. Construct an auxiliary bipartite graph G on vertex classes S,,,; and
Y by joininge € S,,,; andu € Y ifand only if u ¢ V(e). Note that

(IID) 6)

- 13.
|Sm+1| = eX+(wm+1) = exg\A(wm-}.]) S |N5\A(wm+1)| = |Y|

and

dp\a(Wpy 1) 0L

Y] = A wye) > ——

D\A 5¢en.

Since Y is a set (rather than a multiset), each e € S, satisfies d;(e) > |Y| — 1. Note that (I)
implies that if v € V’ is contained in a path P in L™, then v is an endpoint of P or has (in P) a
neighbour in W. Hence, each v € Y C V’ satisfies

(13.5),() o (13.1) e (a),(h)
dG(U) 2 |Sm+1| — X (U) - |W| 2 |Sm+1| - eXD,U*’W,A(U) - |W| 2 |Sm+1| — 2¢en.

Thus, applying Proposition 4.18 with S,,,,; and Y playing the roles of A and B gives a matching M
of G covering S, ;.

Let L"™*! be obtained from L™ by subdividing, for each vu € M (with v € X and u € Y),
the edge w,,,,v € E(L') into the path w,, ,uv. Note that this is a valid subdivision since (I)
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implies that the path P € L™ containing w,,, v satisfies V' nV(P) C {v}. Let F™* := F"y
Ewm+1(fm+1). Clearly, (I) and (II) are satisfied with m + 1 playing the role of m, as desired. This
completes Step 2.

Step 3: Covering additional edges incident to . Now that we have constructed suitable
paths, we need to partition them into # small layouts. Moreover, recall that we need these layouts
to cover all the non-absorbing edges incident to W, (see (iii)), as well as a prescribed number
of edges incident to W, (see (iv)). These are the goals of Step 3. First, we will ensure that (iii)
and (iv) are satisfied as follows. For each w € W in turn, we will subdivide some of the paths
constructed in Step 2 to incorporate w as an internal vertex. Since the layout needs to remain W-
exceptional, we will once again need to prescribe the new edges incident to W. More precisely,
suppose that we want to incorporate w € W as an internal vertex in a path P € L. First, we will
choose an unfixed edge uv € E(P) (which exists by (¢)) and edges u'w, wv’ € E(D) \ A which are
not already covered by L and such that u/,v’ ¢ V(P). Then, we will subdivide the edge uv in P
into the path uu’wv’v and consider the edges u'w and wv’ as fixed edges. We will repeat this
procedure until I covers the desired amount of edges incident to W (as prescribed by (iii) and
(iv)). Once this achieved, we will split (L, F) into # layouts.

More precisely, we construct (fl, ﬁl), s (/L}, F ») such that the following hold, where L is the
multiset defined by L := Uierr) L;and F := Uiere E,.

(o) (fl,ﬁ s s (ff,ﬁ ») are W-exceptional layouts such that F C F and L contains no isolated
vertex.

(8") Lis a subdivision of L (and thus, by (8), L has shape E and (L, F)), ..., (L, F,) are U*-path
consistent with respect to (D', F)).

(7)) Foreachv e V', d:(v) < |exp(v)| — ¢(v) + 2+ 2|W|.

(8') Foreachi € [7], [V(L)| < 5\/En and |[E(T))| < 4\/En. Moreover, each path P € L contains
an edge which lies entirely in V',

(¢') Either # = éx(D) — [nn] or there exist at least \/En indices i € [#] such that fi contains at
least 2 paths. Moreover, if £ = éx(D) — [nn], then for alli € [¢], |fl~| =1.

(¢") Foreachv € Wy, d%—“(v) = dE\A(U)-

(n") Foreachv € W,, d%—“(v) = d5(v) = [nn].

Properties (a’), (8"), (8"), (¢"), and (") mean that our main objectives for Step 3 are achieved:
(fl, ﬁl), s (ff, ﬁf) are U*-consistent W-exceptional layouts which are small and cover the
desired amount of edges incident to W (and so satisfy (iii), (iv), and (vi)). Moreover, (y") will
ensure that each vertex of V'’ is covered by only few of the layouts (as desired for (vii)). Finally,
(¢’) is a technical property which will enable us, in Step 4, to adjust the layouts in order for (v) to
be satisfied.

Let L0 :=T and F° := F. Let Wy, ..., W, be an enumeration of W. We will consider each w; in
turn and, at each stage i, subdivide the required the number of paths with w;. Let Q° be a set of
paths in L0 of size min{2#, |L°|}. We will restrict ourselves to only subdivide the paths in QO. This
will ensure that only few of the final paths are long, which will enable us to form small layouts.
Assume inductively that, for some 0 < m < k, we have constructed, for eachi € [m], two multisets
of paths L' and @', and a set of edges F' such that the following hold.

(I') Let i € [m]. Then, for each P € Q!, either P € Q"1 or there exist P’ € Q'"!, an edge e =
u,v, € E(P") \ F-' withu,,v, € V/,anddistinctu’, v, € V' \ V(P’)such that P is obtained
from P’ by subdividing the edge e = u,v, into the path u,uw;v/v,, where u/w;, w;v) €
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E(D)\ (AUF)and ful,vl}in {ué,, vé,} = whenever e, e’ € E(Q'™?) are distinct edges to be
subdivided in order to form Q'. Moreover, L = (Li=! \ Q") u Q. (That is, L’ is obtained
from Z'~! by incorporating w as an internal vertex in some of the paths in Qi~! C T.)

(1) Foreachi € [m], F' = Fi-1yu E{wi}(fi).

(W) Leti € [m].Ifw; € Wl,thenN%—”m(wi) = N;—'\A(wi) and, ifw; € W, thenN%-'m(wl-) C N5 (w;)
and d]%m(wi) = dli)(wi) — [nn].

Note that (¢) and (I") imply the following.
(IV') Foreachi € [m], each P € L contains an edge which lies entirely in V',

Also note that, by (I') and (I"), for each i € [m], E' is a set of edges (rather than a multiset) and
is obtained from F'~! by adding all the edges of the form u/w; and w;v), in (). In particular,

F'CcF =E,I)CEy(D)\A=F. (13.7)

First, suppose that m = k. Then, (II') implies that we have finished incorporating all the
desired edges incident to W. By (I') and (I'), (Lk, F¥) is obtained by subdividing some of the
paths in L and adding all the new edges incident to W to F¥. Thus, (L¥, F¥) is still a U*-path con-
sistent W-exceptional layout and there only remains to partition (L¥, F%) into # small layouts. We
will do so by splitting the paths in L as evenly as possible across the ¢ layouts and, subject to that,
also distribute the paths in Ok as evenly as possible. This will ensure that not all of the long paths
belong to the same layout (recall that we want our layouts to be small).

More precisely, we partition L* into fl, ,ff such that, for each i, j € [7],

L= 1Z;l1<1 and |L;nQ% <2 (13.8)

(this is possible since |QF| = min{2¢, |L°|} = min{2Z, |L¥|}). Note that (13.4), (B), and (I') imply
that

(134

%) = 1T = 1B ‘2 &) - [yn] (13.9)

and so, for each i € [¢],

P [&(D) - Wﬂ] (d)é(i) max{A’(D), ex(D)} — [nn] +1
4 nn
(h) M — W< 2y _
z max{n, n|W| +en|V'|} — [nn] 1 | |<€n max{n, 2en-} — [nn] +1
nn nn
< yen. (13.10)

For each i € [#], define ﬁi = E(ii) NF = E(fi) N F¥. Let T be the multiset defined by L :=
Ui Ii = ¥ and denote F := J;(,| F; = F* (as mentioned after (IV'), F' is subset of F rather
than a multiset).

Claim 1. Properties (a’)-(n") are satisfied.
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Proof of Claim. First, observe that ({’) and (n") follow immediately from (III"). For (¢’), suppose
¢ # &(D) — [nn]. By (13.9) and (13.2), || = &x(D) - [nn] > ¢ + \/en. Thus, (13.8) implies that
there exist at least \/_ en indices i € [#] such that |L | > 2. Thus, (¢) holds.

By ('), L is obtained by subdividing some of the paths in L and so (8’) holds. To check (a’),
we need to verify (L1)—(L3) as defined in Section 7. First, («) implies that fl, ,fk are multisets
of non-trivial paths on V and so they satisfy (L1). By () and (II'), F, ; consists, for each i € [k], of
all the edges in fi which are incident to W. Therefore, (fl,ﬁl), s (ff, ﬁf) satisfy (L2), and (IV')
implies that (L3) holds. Therefore, (L,,F,), ..., (L,,F,) are W-exceptional layouts. As observed
above, FcrFrandl only consists of non-trivial paths. Thus, (a’) holds.

Next, we verify (y'). Letv € V'. By (,8) and (8"), L is a subdivision of E and so (13 5) implies that
v is the starting point of ex+(v) paths in T and the ending point of &~ (v) paths in L. Suppose that
v € VO(P) for some P € L. Then, (y) and (I') imply that P contains an edge e € E(D) between v
and a vertex of W. By (), (il, ﬁl), s (Iff,ﬁf) are W-exceptional and so e € F. Moreover, since
F is a set rather than a multiset, we have e ¢ E(P’) for all P’ € L \ {P}. Therefore,

d;(v) < &*(v) + &~ (V) + 2|Np (V) N W]
< (&) e (V) = $F (V) + (€% 1. (V) — ¢~ (V) + 2| W]

(121) (exf () + 1) + (exp(v) +1) — p(v) + 2|W| < | exp (V)| — $(v) + 2 + 2|W|.

Thus, (') holds.

Finally, we verify (§’). The ‘moreover part’ holds by (I') and (¢). Moreover, (I') implies that
whenever we incorporate a vertex of W' as an internal vertex to a path in Q°, we add three vertices
to that path. Therefore, (¢) implies that each Q € OF satisfies |V(Q)| 4 + 3|W|. Thus, (a), (13.8),
and (13.10) imply that, for each i € [£], we have |V(L )| < 4|L | +6|W| < 4\/_n + 6en < S\/En
Similarly, each Q € QF satisfies |E(Q)| < 3 + 3|W| and so each i € [£] satisfies |E(L )| < 3|L | +
6]W| < 3v/en + 6en < 44/en. Thus, (8') holds. O

We may therefore assume that m < k. Suppose without loss of generality that w,, ., € W~.
Thus, w,,,; €EUTMD)VU'D) and so exp(Wpiq) = |eXp(Wpiq)l = ex;(wmﬂ) and
dM™(w,, 1) = diy(W,,4). Moreover, by Definition 8.7, dp\ jWpi1) = dpj(Wy,). Finally, by
assumptions (b) and (c), $*(w,,,,;) = 0and U* N W = @. Thus,

~ — Deflmtlon 8. 7
& (Wyp1) = ex]“;,U* (Wppp1) = X (Wppy1) — A5 (W) ]J;\A(wmﬂ). (13.11)

We will construct Q™+ as follows. First, we will pair each inneighbour ofw,,, . ; inD \ (AU Fmy
to an outneighbour of w,,,,; in D \ (A U F™). Let X denote the set of these pairs. We will use these
pairs to incorporate w,,,; as an internal vertex in some of the paths in Q™ as follows. Let Y be
the set of paths in Q™ which do not already contain w,, . Form an auxiliary bipartite graph by
joining each (u’,v’) € X and P € Y if and only if both v/, 0" & V(P) (if u’ € V(P) or v/ € V(P),
then we cannot use (u’,v’) to incorporate w,,,; as an internal vertex in P). Then, we will use
Hall’s theorem to find a large matching M in this auxiliary graph. For each (u/, v")P € M, we will
subdivide an unfixed edge uv € E(P) into the path uu'w,,,v'v.

By (13.5), (B), (8), and (I"), none of the paths in L™ have W,,,1 as internal vertex or ending point

- P N - +
and so we have dﬁm (w,,41) = 0. Fix a bijection o : ND\A(me) — ND\(AUﬁm)(me). Note that
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this is possible since

().(0)

d+ ( m+1) d+ (w m+1) = d+( Wyry1) di’(me)
(13 5) & (13 11)
+( m+1) D\A(wm+1)'

Thus,

+ (13.7)

D\(AUF’”)( m+1) D\A(wm+1) d (wm+1) - D\A(wm+1) D\A(wm+1)

= dB\A(wm+1)’

as desired.

Let X :={(u,oc(uw)) |[ueN D\ A(wm sk LetY C Q™ be obtained from Q™ by deleting all the
paths that contain w,,,,. Define an auxiliary bipartite graph G with vertex classes X and Y by
joining (u,v) € X and P € Y if and only if both u,v ¢ V(P).

Claim2. Ifw,,,; € Wy, then G contains a matching M covering X. Ifw,,,,; € W, then G contains
a matching M of size | X| — [nn].

Let M be as in Claim 2. We obtain 6’”“ from (5’” by subdividing, for each (u’,v")P € M,
an edge uv € P that lies entirely in V'’ (which exists by (IV')) into the path uu'w,,,;v"v. Let
Lm+l = (Im\ Qm)u Qm*! and Fmtl ;= Fmy E{wmﬂ}(f’””). One can easily verify that (I')-
(IT1") are satisfied with m + 1 playing the role of m. There only remains to show Claim 2. We
will need the following observation.

Claim 3. If X # @, then

X ifw ew,,
max{|X|,|Y|} > nn>10en and min{|X|,|Y|}> X1 o oml !
XI = [n] i Wy, € W,.

We first assume that Claim 3 holds and derive Claim 2.

Proof of Claim 2. Clearly, we may assume that X # §J. The goal is to use Proposition 4.18. We
start by checking that the degree of each vertex in G is large. First, observe that, by (a), we
have u,v € V’ for each (u,v) € X. By (I'), L' is obtained from I by repeated subdivisions and,
in each subdivision, we incorporate a vertex of W using only two new vertices of V’. Thus, each
P €Y satisfies

(e)(I") Claim 3 max{|X]|,|Y
do(®)> X1~ V) n v 5 Il @ 2w 2 X1 3o 5 px) - DXL

Let (u,v) € X. We count the number of paths in L™ which contain u. By (1), L™ is a subdivi-
sion of L and so (8) and (13.5) imply that u is an endpoint of precisely éx*(u) + & (u) paths
in L"™. Suppose that P € L™ contains u as an internal vertex. By (y) and (I'), P contains an
edge e between u and a vertex of W. By (a) and (I'), e € Fm c E(D) \ A. In particular, the fact
that F™ is a set (rather than a multiset) implies that e ¢ E@™ \ {P}). Thus, there are at most
INpy\ 4(m) N W| paths in L™ which contain u as an internal vertex. Similarly, there are at most
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& () + & (V) + IN D\ 4(L) N W|pathsin L™ which contain v (as an endpoint or internal vertex).
Thus,

do(@,0) > Y] = (&) +& W)+ INp\ @) N W)
~( & () + & (V) + N4 () N W)
> Y] = (& 1 () + 6K 1 () — $(10) — (6K, 1. (0) + 6K 1 (0) — $(V))
=2|W|

a.
37 1¥1 = Qexp@ +2 - 0) ~ (exp(®)] +2 - $(0) ~ 21|

(a),(h)
> |Y] - lexp@)] - |exp@)] —4—2IW| > [Y|-Sen

Claim 3 max X, Y
9y w1}

Thus, G satisfies the degree conditions of Proposition 4.18, applied with {X, Y} playing the roles
of {A, B} (with |A| < |B|). Therefore, G contains a matching M of size min{|X]|, |Y|}. By Claim 3,
we may assume that |[M| = |X|ifw,,,; € W, and [M| = |X| — [pn] f w,,,, € W,. O

Finally, it remains to prove Claim 3.

Proof of Claim 3. By (g), if w,,,; € W, then |X| = dB\A(me) = dglin(wm“) > [nn]. Thus, itis
enough to show that

(13.12)

Y| > max{|X|,nn} ifw,,, € W,
X1 —Tyn]  ifwyy, €W,

Note that, by () and (I'), w,,,; is not an internal vertex of any path in Q™. Moreover, (I') implies
that L' is a subdivision of L and so (B) and (13.5) imply

N R 13.11) A
Y12 1Q"| = & (Wpy1) =" 1Q"] = ex , Wiry1). (13.13)

If |Q™| > 2d and W41 € W, then
(EROR. . .
|Y| > |Q | - eXD\A(wm+l) > 2d - eXD\A(wm+1)

®
> dp\ a(Wypp1) + 71— exg\A(me) =2d}\ ,(Wpy1) + 0 > | X] + 70

Similarly, if |Q"| > 2d and w,,.,; € W,, then

(13.13)

A Wy, 1$V(A)
|Y| > |le _exg\A(wm+1) +=

1Q™] — ex}y(Wy11)
+ ® +
> 2d — ex},(Wpy41) 2 dp(Wppiq) — 2[nn] — exf(Wy11)

(g)
= 2d5(Wyyy) — 2[70] = |X| = [g1] + ds(Woe) — [71] > |X| = [gn].
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We may therefore assume that |Q™| < 2d. Since, by (i), d < ¢, we have [L™| = |L°| = |Q°| = |Q™|
and so

13.4) ~ d) A~ A~
&x(D) — [yn] "= 1B PEV i) = 19 < 2d. (13.14)
Thus,
313) .
|Y| > |Q | - eXD\A(wm+1)
(13.14) _
= éx(D) — [nn] — ex;\A(me) (13.15)

Wy £V (A”

> dEWps) = [71] = exEWiny1) = do(Wor) — [111] "1x1 = fym).

We may therefore assume that w, , € W; and |@’”| < 2d. We need to show that |Y]| >
max{|X|,nn}. Recall that dj(w,,;) = dB\A(me) = |X| > 0. Then, Fact 4.20(c) implies that

df(Wy,11) > X} (Wy,41). Thus, by (f) and (13.14), we have |X| > 7n and one of the following holds:
exg\A(me) < [yn] or df (Wyy1) = dy(Wpyy1) = [9n]. Thus, it suffices to show that |Y| > |X]|.
If exg\A(me) < [»n], then, by (13.15) and (e),

) dp\a(Wy,11) + [90]
Y| >d- ex;\A(me) > 2 m;

—+
- eXD\A(wm+1)

(0] = ex}y | (W)

2

Fact 4.20(b) __
= dD\A(wm+1) +

= | |9
as desired. If dz(wm +1) = [nn], then (13.15) implies that
Y] > dg(wm+l) = [nn] - eX;\A(wm+1) = dg\A(me) - eX;\A(wm+1) = dB\A(wm+l) = |X],

as desired. O

Step 4: Adjusting the degree of the vertices in V’. Recall that, in Step 3, we constructed ¢
W-exceptional layouts which are U*-path consistent and satisfy (¢’) and ("), and thus satisfy (iii)
and (iv). We will now adjust these layouts to ensure that (v) is satisfied.

Let vy, ..., U, be an enumeration of V' and, for each i € [k], define

n; = d%—(vi) +I{jelf]llv ¢ V@j)ﬂ + [pn] — ¢~ (v) — djj (V). (13.16)
Note that together with Claim 4 below, (v) holds if n; = 0 for all i € [k].
Claim 4. Foreachi € [k],

() = d=() +1{ € [¢] | v & VAH = n; + [yn] = $7 (V).

Proof of Claim. Let i € [k]. The equality for + holds immediately by definition of n;. One can
easily verify that, in order to show that the equality for — holds, it is enough to prove that

4 (0) — ¢ () — djv) = d=(v) = $*(v) = di(v). (1317)
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We now show that (13.17) is satisfied. First, note that, by (13.5) and ("), v; is the starting point of
precisely é&x* (v;) paths in L and the ending point of precisely €x" (v;) paths in L, so
d%(vi) = (di_(vi) — & () + & (V). (13.18)

Assume without loss of generality that dg(vi) > d;(v;). Suppose first that v; ¢ U*. Then,
&*(v;) = exﬁ(vi) — $=(v;). Moreover, ex},(v;) = 0 and so €x” (v;) = —¢~(v;). Thus, by (13.18),

dZ(v) = (d;(v) + ¢~ (V) + (exp(v) — ¢ (vy)
=d(v) + ¢ (v) + (dj(v) — dp (V) — 7 (v,
so (13.17) holds, as desired. Now suppose that v; € U*. Then, €x*(v;) = 1 — ¢*(v;) and di(v) =
d;(v;). Thus, by (13.18),
dI () = (d-(v) =1+ ¢~ () + (1 = ¢* (V) = d- (V) + 7 (V) — ¢7(v) + (d}y (V) — djy(Vy)),

so (13.17) holds, as desired. O

If n; > 0, then, in order to satisfy (v), it is enough to add v; as an isolated vertex to exactly n; of
the sets of paths fl, ,ff that do not contain v; (this will decrease |{j € [¢] | v; & 140 )} by n;
and so we will be done by Claim 4). If n; < 0, then it is enough to find —n; indices j € [¢] such
thatv; & V(L j) and |L jl > 2, and add v; as an internal vertex in exactly two paths in L i (this will
decrease |{j € [¢] | v; & V(fj)}l by —n; but increase both d%—’(vi) by —2n; and so we will be done
by Claim 4).

We now bound n; with the following claim.

Claim 5. For eachi € [k],

—2en < n; < 2\/271.

Proof of Claim. Leti € [k]. We have

2n, 2 dy(o) + 204 € 1211 vy & VE + 2n] — $(0) — dp(0).

Thus,
2n; > dp(v) +2(¢ — dp(v)) + 2[n] = ¢(v;) — dp(v;)
= 20 — d;(vy) + 2[nn] — ¢(v;) — dp(v;)

"
5 20 = (lexp(v)] — $(v) + 2+ 2IW]) + 2[pn] — $(v) — (2d +2[nn])

(a),(h),(i)
=2/ —-d)—|exp()| —2=2|W| > —4en.

Similarly,

2, & (lexp ()] = $(0) + 2+ 2AW]) + 27 + 2[n] - $(v) — (2d + 2[yn] — en)

(a),(h),(1)
<22 —d)+ |exp(U)| +2+2|W|+en < 4y/en,

which proves the claim. [
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Assume without loss of generality that (1;);c[x) is an increasing sequence and so, for any i, j €
[k], if n; < O but n; >0, then i < j. For each i € [#], let L? = fi. Assume inductively that, for
some 0 < m < k, we have constructed, for each i € [#] and j € [m], a multiset Ll? of paths and
isolated Vertices such that the following are satisfied, where L’ is the multiset defined by L/ :=
Uie[fJ L; for each j € [m].

(I") Foreach j € [m],ifn; < 0, then there exists N; C [#] such that [N;| = —n; and the follow-
inghold. Foreachi € N j'Vj & V(Ll.j _1) and there exist two paths P;, P, € Ll.j ~! such that Ll.j
is obtained from Lij - by subdividing, for each s € [2], an edge uw € E(P;) \ Ey, (P,) into
the path uv;w. For each i € [£]\ N, Ll.j = L{_l.

(II") Foreach j € [m],ifn; > 0, then thereexists N; C [#]such that [N;| = n; and the following
hold. Foreachi € Nj,v; & V(Lij Hand L{ is obtained from L{ - by adding v; asan isolated
vertex. For each i € [£] \Nj, Ll.j = L{_l.

(II") Foreachi € [/]and j € [m], |V(Ll.j) \ V(@) < ein.

By (I"”) and (IT""), each L/ is obtained from L/~ either by subdividing two edges with v ;in |n;l
layouts which did not already cover v;, or by adding v; as an isolated vertex in |n;| layouts which
did not already cover v;. Thus, the following holds.

(IV'") Foreachi € [£]and j € [m], |E(Ll.j)\E(fi)| < 2|V(L{) \ V(L)
(V") Foreach j € [m], Yicis) [VAID| = Tigpe) VD + X jreyj Il

First, assume that m = k. For eachi € [¢],letL; := le and F; := F,. Denote by L the multiset
L = Uie[f] Li and letF = Uie[f] Fi = 1/‘7\ Recall that D, =D \ T’

Claim 6. (L,,F,),...,(Ls,F,) are W-exceptional U*-path consistent layouts with respect to
(D', F). Moreover, (i)-(vii) hold.

Proof of Claim. By (I") and (1""), (L,, F,), ..., (L, F,) are obtained from (L,,F,),...,(L,,F,) by
adding isolated vertices and subdividing, with vertices of V’, edges whose endpoints are both in
V' In particular, (&) and (8’) imply that (L, F;), ..., (L., F ;) are still W-exceptional U*-path con-
sistent layouts with respect to (D, ). Moreover, the number of non-trivial paths in L is precisely
IL| = |E| and so (ii) follows from (13.4). Furthermore, each v € W satisfies both dr(v) = dllf(v)
and so (iii) and (iv) follow from (¢”) and (n’).

We have already shown before Step 1 that (i) holds. For each i € [#],

- ~ @) 1 1
VI = [VE) +IVAI\VE) < 5vVen+ein<3ein

and

~ ~ ., (@),av) ~
EL)l = |EC)I+IEC)\ET) < 4ven+2[v(L) \ V(@)

mr”) 1 1
< 4v/en+2e3n < 3e3n.

Thus, (vi) holds.
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We now verify (v). Recall that v, ..., v, is an enumeration of V’. Let i € [k]. First, suppose
that n; > 0. Then, (I”) and (II") imply that |{j € [¢] | v; € VL} = I{j € [£] | v; € VED} —n
and both df(v;) = d%“(vi). Thus, (v) follows from Claim 4. Next, suppose that n; < 0. Then,
(I") and (I1") imply that {j € [7] |v; g VI ={j €[] | v; & V(fj)} +n; and both d7(v)) =
d%—'(vi) — 2n;. Therefore, (v) follows from Claim 4.

Finally, we check (vii). Let i € [k]. If n; > 0, then

(IH) (HH)

o (a),(h)
dr(v;) d;(v) < |exp(V)| —p(L) +2+2|W| < 8en,

as desired. If n; < 0, then

I”)( ) (y"),Claim 5 (@),(h)
d;(v) dp(v) +2[nl < (lexp()| —¢pV) +2+2|W]|)+4en < 8en,

as desired. Moreover, (I”) and (II") imply that the number of indices j € [#] for which v; € V(L;)
is at most

Claim 5
di(v)+1nl < 8n+2y/en<3
Therefore, (vii) holds. O

We may therefore assume that m < k. By Claim 4, n; = d%(vi) +{jeld]lv ¢ V(fj)}l +

[pn] — ¢*(v;) — dg(vl-) and so we may suppose without loss of generality that v,,,; € U~ (D).
~ 1

Let X be the set of indices i € [#] such that [V(L™) \ V()| = |e3n]. (Thus, X is the set of indices

i € [#] for which cannot modify Lim anymore (otherwise (III"") would not be satisfied with m + 1

playing the role of m).) Let Z be the set of indices i € [#] such thatv,,,; € V(Lim). (Thus, Z is the
set of indices i € [m] where v, ; cannot be added (because it is already present).) Observe that

(I”) ar) " (a),(h)
121 < dim (V1) A Wps1) < 1€Xppy ) —$) +2+2IW] < 4en.  (1319)

If n,,,, <0, then proceed as follows. Let Y be the set of indices i € [£] \ (X U Z) such that
|L'" 2. (Thus, Y is precisely the set of indices i € [#] for which we could incorporate v,
as an internal vertices in two of the paths in L{".) We claim that |Y| > —n,,,,. By our choice of
ordering vy, ..., v, of V', we have n; < 0 for eachl € [m]. Thus,

) Sicin VAM\ V@) V) Zigim |1l claims :
x| i€[?] V") die m] < zin < 3¢3n. (13.20)

le*n] len] le3n]
If £ # éx(D) — [nn], then

(&) (13.19),(13.20) 2 Claim 5
Y] > \/En—|X|—|Z| > \/;:n—353n—4en Z Ny

and so we are done. It is therefore enough to show that # # €x(D) — [nn]. Suppose not. Then, by
&), |fl-| = 1foreachi € [¢]. Thus, d; (U41) is precisely the number of indices i € [#] for which

U,,41 is the starting point or an internal vertex of the unique path contained in fi. Similarly, (13.5)
and (B’) imply that there are precisely €x ™ (v,,,,;) indicesi € [¢#]for whichv,,,, is the ending point
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of the unique path contained in L;. Altogether this implies that dg W)+ Hi€?] V41 &
V(fi)}| =¢ — & (Uy,41)- Therefore,

T 0L 4 1) = (X" (Vyg1) + ¢~ Ws1)) — A V1)

B (13.3)
= eX(D) - eXD U* (vm+1) d+(vm+1)

a contradiction. Consequently, |Y| > —n,,,,, as desired.

Let N, € Y be such that [N, ;| = —n,,,, and, for each i € N, ,, fix two paths P; },P; , €
fl.m. Foreachi € N, and j € [2], letu; jw; ; € E(P; ;) \ Ey/(P; ;), which exists by (6") and (I").
For each i € [£]\ Ny,y, let L = Lim For each i € N,,,,, let L™*! be obtained from L™ by
subdividing, for each j € [2], the edge u; ;w; ; in P; ; into the path u; ;v,,,,w; ;. Then, (I")- (III” )
are satisfied with m + 1 playing the role of m

Ifn,, ., > 0, then proceed as follows. Let Y := [£] \ (X U Z). Note that

(I”) ar”) Z |V(Lm) \ V(L )I VH Z |n I Clalm 5 24/¢en 1
X| i€l (L) &ielm \/_ <3con (13.21)
[53 n| [53 n| [53 n|
and so
(d),30) (13.19),(13.21) 1 Claim 5
Y| > nn—|X|—|Z] > nn—3e6n—4en = N,

Let N,,,, C Y satisfy [N,,,,| = n,,,4;. Foreachi € [/]\ N,,;;, let Li’”+1 :=L" and, for each i €
N,,11,let L™*! be obtained from L™ by adding v,,,, as an isolated vertex. Clearly, (I )-(III") hold
with m + 1 playing the role of m, as desired. O

14 | CONCLUDING REMARKS
14.1 | Approximate Hamilton decompositions of robust outexpanders

In [19], Osthus and Staden showed that any regular robust outexpander of linear semidegree can
be approximately decomposed into Hamilton cycles. This was used as a tool in [12] to prove that
such graphs actually have a Hamilton decomposition.

Theorem 14.1 [19]. Let 0< L <t <a<1land 0< Lt <e <, n< 1 If D is an (a,¢)-almost
regular robust (v, 1)- outexpander on n vertices, then D contains at least (o« — n)n edge-disjoint
Hamilton cycles.

Lemma 7.3 can also be used to construct approximate Hamilton decompositions of (almost)
regular robust outexpanders. In fact, our tools also enable us to assign some specific edges
to each element of our approximate decomposition and so can be used to find approximate
decompositions with prescribed edges.

Theorem 14.2. Let0 < - < 7 < a <1land0 < * << e,V <Ll Let? < (a—n)n. Suppose D is
an (a, €)-almost regular (s n=2)-robust (v, 7)- outexpander on n vertices. Suppose that, for each i €
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[7], F; is a linear forest on V(D) satisfying e(F;) < en and such that, for each v € V(D), there exist
at most en indices i € [£] such that v € V(F;). Define a multiset F by F := Uie[ a1 Fi Then, there
exist edge-disjoint Hamilton cycles Cy, ...,C, € D U F such that, foreach i € [£], F; C C;.

Proof. By Lemma 4.3, we may assume without loss of generality that
0< l<<£<<V<<‘L'<<77 <a<l
n

Define an additional constant y such that 7 <y <. For each i € [7], let v;;,v;, € V(D) \
V(F;) be distinct and such that, for any v € V, there exists at most two (i, j) € [¢] X [2]
such that v = v, ;. For each i € [£], denote by P;;, ..., P; ;. the (non-trivial) components of F;
and, for j € [f;], denote by u; ; and w;; the starting and ending points of P, ;. For each i €
[£], let L; 1= {v; 101 Py 1w Ui 2P aW; Uy 3 - Wy f,V; 5, U 201} Denote L := [J;¢() L;- Note that
(Ly,Fy),...,(L,, F,) are layouts such that, for each i € [£], V(L;) C V, |[V(L;)| < 3enand |E(L;)| <
3en. Moreover, for each v € V(D), d;(v) < 3en and there exist at most 2en indices i € [£] such
thatv € V(L)).

By similar arguments as in Lemma 4.16, there exists a spanning subdigraph I' C D such
that T is a (y,¢)-almost regular (g, n=2)-robust (g,r)—outexpander and D' :=D\T is (a—
y,€)-almost regular.

Apply Lemma 7.3 with D/, a —, % sé, and g playing the roles of D, d,v,¢, and 7 to obtain
edge-disjoint C;,...,C, C D UF such that, for each i € [#], C; is a spanning configuration of
shape (L;, F;). Then, by construction, for each i € [£], C; is a Hamilton cycle of D U F such
that F; C E(C)). L]

Recall that, by Lemma 7.3(iii), the leftover from Theorem 14.2 is actually still a robust (%, 7)-
outexpander of linear minimum semidegree at least % Thus, if D U F is regular, we can actually
obtain a Hamilton decomposition of D U F so that for all i € [#], the edges of F; are contained
in C; (indeed, it suffices to apply to Theorem 4.9 to the leftover from Theorem 14.2).

Note that Theorem 14.2 requires D to be an (g, n~2)-robust outexpander. One can show that
this condition is in fact redundant and can be omitted. Indeed, Kiihn, Osthus, and Treglown [14]
showed that the ‘reduced digraph’ of a robust outexpander inherits the robust outexpansion prop-
erties of the host graph (see [14, Lemma 14]). Thus, using Lemma 4.11 and basic properties of
‘e-regular pairs’, one can easily show that the following lemma holds. We omit the details.

Lemma 14.3. Let 0 < % < e< vV <« a,v,7 < 1. Suppose D is a robust (v, 7)-outexpander on n
vertices satisfying 6°(D) > an. Then, D is an (¢, n=%)-robust (v, 4t)-outexpander.

Thus, Theorem 14.2 and Lemma 14.3 imply Theorem 14.1. As the proof of Theorem 14.2 only
relies on Lemma 7.3 (which in turn makes use of Corollary 4.8 as the main tool), this gives a
much shorter proof than the original one.

14.2 | Aremark about Conjecture 1.7

Conjecture 1.7 and Theorem 5.1 state that any (large) tournament T can be decomposed into at
most €X(T) + 1 paths. This cannot be generalised to digraphs or even oriented graphs. Indeed, it

85UB017 SUOWIWOD 8AReaID 8|qed!|dde sy Aq pausenob ae ssjpie YO ‘88N J0 SajnJ 1o} AriqiauljuQ A8|IAN UO (SUORIPUCD-pUE-SWLRYWOD" A8 1M ATe.q 1 pul|uo//Sdny) suonipuoD pue swis | 81 89S [£202/T0/2] uo Ariqiqauliuo A8|IM ‘591 Aq 08FZT Swd/ZTTT 0T/I0p/L0d A3 1M Are.q 1 pul JU0-00SyTewWpUO |//:5dny wio. ) papeoumod ‘0 ‘Xyr209rT



88 | GIRAO ET AL.

is easy to see that if D is a disconnected oriented graph then more than éx(D) + 1 paths may be
required to decompose D. In fact, Conjecture 1.7 and Theorem 5.1 cannot even be generalised to
strongly connected oriented graphs.

Proposition 14.4. For any € > 0 and n, € N, there exists a strongly connected oriented graph D
on n = n vertices such that pn(D) > €x(D) + %

Proof. Fix additional integers m and k satisfying 0 < % < % < ¢and m > ny. Let V...,V
be disjoint sets of 2m + 1 vertices each. For each i € [k], let T; be a regular tournament on V;
and x;y; € E(T;). Let D be obtained from |J;c(; T; by deleting, for each i € [k], the edge x;y;
and adding, for each i € [k], the edge x;y;,,, where y,,; := ;. Observe that D is a strongly
connected m-regular oriented graph on n := k(2m + 1) vertices. Therefore, éx(D) = A°(D) = m.
Moreover, note that, for each i € [k], pn(D[V;]) > é&x(D[V;]) = m.

Let P be a path decomposition of D of size pn(D). For each i € [k], let P; be the set of paths
P € P such that V(P) C V,. Then, by construction, |P7;| > pn(D[V;]) — 2 > m — 2. Thus, pn(D) =
|P| > k(m = 2) = &(D) + (k — )m — 2k > &(D) + =22, N
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