
 
 

University of Birmingham

Molecular genetics of thrombotic myeloproliferative
neoplasms
Chia, Yuh Cai; Siti Asmaa, Mat Jusoh; Ramli, Marini; Woon, Peng Yeong; Johan, Muhammad
Farid; Hassan, Rosline; Islam, Md Asiful
DOI:
10.3390/diagnostics13010163

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Chia, YC, Siti Asmaa, MJ, Ramli, M, Woon, PY, Johan, MF, Hassan, R & Islam, MA 2023, 'Molecular genetics of
thrombotic myeloproliferative neoplasms: implications in precision oncology', Diagnostics, vol. 13, no. 1, 163.
https://doi.org/10.3390/diagnostics13010163

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. May. 2024

https://doi.org/10.3390/diagnostics13010163
https://doi.org/10.3390/diagnostics13010163
https://birmingham.elsevierpure.com/en/publications/16d369e9-f8a0-46be-9d29-d7514ef30f0a


Citation: Chia, Y.C.; Siti Asmaa,

M.J.; Ramli, M.; Woon, P.Y.; Johan,

M.F.; Hassan, R.; Islam, M.A.

Molecular Genetics of Thrombotic

Myeloproliferative Neoplasms:

Implications in Precision Oncology.

Diagnostics 2023, 13, 163. https://

doi.org/10.3390/diagnostics13010163

Academic Editor: Eric Deconinck

Received: 31 August 2022

Revised: 24 November 2022

Accepted: 28 November 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Molecular Genetics of Thrombotic Myeloproliferative
Neoplasms: Implications in Precision Oncology
Yuh Cai Chia 1,†, Mat Jusoh Siti Asmaa 2,†, Marini Ramli 1,* , Peng Yeong Woon 3, Muhammad Farid Johan 1 ,
Rosline Hassan 1 and Md Asiful Islam 1,4,*

1 Department Haematology, School of Medical Sciences, Universiti Sains Malaysia,
Kubang Kerian 16150, Kelantan, Malaysia

2 School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
3 Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
4 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
* Correspondence: marini@usm.my (M.R.); m.a.islam@bham.ac.uk or ayoncx70@yahoo.com (M.A.I.)
† The authors contributed equally to this work.

Abstract: Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include polycythaemia
vera, essential thrombocythaemia, and primary myelofibrosis. Unlike monogenic disorders, a more
complicated series of genetic mutations are believed to be responsible for MPN with various degrees
of thromboembolic and bleeding complications. Thrombosis is one of the early manifestations in
patients with MPN. To date, the driver genes responsible for MPN include JAK2, CALR, MPL, TET2,
ASXL1, and MTHFR. Affords have been done to elucidate these mutations and the incidence of
thromboembolic events. Several lines of evidence indicate that mutations in JAK2, MPL, TET2 and
ASXL1 gene and polymorphisms in several clotting factors (GPIa, GPIIa, and GPIIIa) are associated
with the occurrence and prevalence of thrombosis in MPN patients. Some polymorphisms within
XRCC1, FBG, F2, F5, F7, F12, MMP9, HPA5, MTHFR, SDF-1, FAS, FASL, TERT, ACE, and TLR4 genes
may also play a role in MPN manifestation. This review aims to provide an insightful overview on
the genetic perspective of thrombotic complications in patients with MPN.

Keywords: essential thrombocytosis; gene; mutation; myeloproliferative neoplasms; polycythaemia
vera; polymorphism; primary myelofibrosis; thrombosis

1. Introduction

The classical BCR-ABL-negative myeloproliferative neoplasms (MPN) of acquired
clonal hematopoietic stem cell disorders include polycythaemia vera (PV), essential throm-
bocythaemia (ET) and primary myelofibrosis (PMF). In general, the signal-transduction
pathways responsible for haematopoiesis are affected in these MPN [1,2]. PV is a condition
in which over-proliferation of erythroid progenitors cause elevated red blood cell (RBC)
mass and is usually accompanied by higher white blood cell (WBC) count, as well as an ex-
cessive number of platelets and bone marrow hypercellularity [3]. On the other hand, ET is
a clonal haematological disorder arising from the proliferation of megakaryocytic lineage at
an abnormal level resulting in increased platelet count [3,4]. Whereas PMF is characterized
by the excessive proliferation of granulocytes, erythrocytes, and megakaryocytes associated
with extensive bone marrow scarring and extramedullary haematopoiesis [5]. The 2016
WHO classification further classified PMF into pre-fibrotic (pre-PMF) and overt-fibrotic
(overt-PMF) stages, defined from a classical morphological examination; fibrosis grade 0–1
in pre-PMF and 2–3 in overt-PMF [6]. Pre-PMF has distinct clinical features (anaemia, pal-
pable splenomegaly, leukoerythroblastosis, leucocytosis, increased lactate dehydrogenase),
disease outcomes, leukemic transformation, and survival rate. The verdict by the experts
denoted pre-PMF as a unique combination of thrombo-hemorrhagic risk and a definite risk
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of disease evolution (to overt-PMF). Therefore, a correct differentiation of pre-PMF from
PV or ET are crucial for the management of MPN [7].

The morphologic features on bone marrow trephine from PV, ET, and PMF patients
are presented in Table 1. The most common causes of morbidity and mortality in patients
with MPN are thromboembolism and haemorrhage [8,9]. Different types of thrombosis
at different sites, including arterial and venous thrombosis, are observed in patients with
MPN [10]. Thrombotic events are unequally distributed among MPN subtypes, and are
notably more common in PV and ET patients but less frequent in PMF patients [11]. The
incidence of thrombotic complications is about 28.6% 30.0%–41.0% in PV, 20.7% 19.0%–32.0%
in ET, and 9.5% 7.2%–15.0% in PMF (Table 2) [12].

Table 1. Bone marrow trephine biopsy of classical BCR-ABL-negative MPN under 20× and 40×.
(A,B) Polycythaemia vera. (C,D) Essential thrombocythaemia. (E,F) Primary myelofibrosis.

Type of MPN Polycythaemia Vera (PV) Essential Thrombocythaemia (ET) Primary Myelofibrosis (PMF)

Bone marrow
trephine biopsy

under 20×
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The role of genetic predisposition and landscape in the development of MPN have 
been quite extensively elucidated [13]. The discovery of driver genes JAK2, CALR, and 
MPL is an important milestone in unrevealing the myths of MPN, hence the World 
Health Organization has included mutations in all three genes as the hallmark of MPN 
[1]. Mutations in other genes, such as TET2, ASXL1, DNMT3A, RUNX1, MIR662, EZH2, 
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Description

Hypercellularity, panmyelosis
with a notable predominance of
megakaryocytic and erythroid
lineages, and megakaryocytes

increase in size and with frequent
hyperlobated forms, minimal or

absence of reticulin fibrosis.

Normal or mildly hypercellularity,
a normal proliferation of erythroid
and granulocytic lineages, enlarged

megakaryocytes (mature with
hyperlobulated nuclei), delicate

reticulin fibres.

Hypercellularity with clustered and
dysplastic large size

megakaryocytes, presence of
hyperlobulated and hyperchromatic

megakaryocytes, often naked
megakaryocytes, increase reticulin
around clustered megakaryocytes.

The role of genetic predisposition and landscape in the development of MPN have
been quite extensively elucidated [13]. The discovery of driver genes JAK2, CALR, and MPL
is an important milestone in unrevealing the myths of MPN, hence the World Health Orga-
nization has included mutations in all three genes as the hallmark of MPN [1]. Mutations
in other genes, such as TET2, ASXL1, DNMT3A, RUNX1, MIR662, EZH2, MLH1, MLH3,
SF3B1, MSH6, MSH2, BARD1, KIT, and NRAS [14], SRSF2, IDH1 and IDH2 [15], TP53 [16],
F5 (G1691A) and F2 (T165M) [17], have also been reported. Aside from gene mutations,
emerging evidence suggested that a numbers of single nucleotide polymorphisms (SNPs)
are associated with the risk of thrombosis in MPN patients [18].

To the best of our knowledge, there is no overview on the genetic contributing factors
in thrombotic MPN; therefore, this review aims to provide an insightful overview on the
genetic and epigenetic perspective of thrombotic and bleeding complications in patients
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with MPN. Besides, the risk assessment of thrombosis based on the gene mutations, some
possible pathogenesis of thrombotic MPN and current available drugs and therapies for
thrombosis in MPN patients have been discussed in this review as well.

2. Gene Mutations in Thrombotic MPN

The electronic searches identified all mutated genes in thrombotic MPN. However,
only a few genes are subjected for further investigation; these are JAK2, CALR, MPL,
TET2, and ASXL1. Several genes are involved in initiating signalling pathways, which play
important roles in the pathogenesis of thrombosis in MPN (Figure 1A). In addition to the
contribution of gene mutations (Figure 2), some SNPs (Figure 3) are associated with the risk
of thrombotic manifestations in patients with MPN. The detail information for constructing
the tables is presented in Table S1. A summary of the related gene mutations and SNPs are
summarized in Table S2.
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Figure 1. (A) Pathogenesis of thrombosis in MPN patients. Mutated JAK2, CALR, and MPL activate
a JAK/STAT pathway, PI3K/Akt pathway, and MAPK/ERK pathway. Mutations in ASXL1 and TET2
cause epigenetic changes in DNA (ubiquitination, methylation and hydromethylation) and affect the
differentiation of hematopoietic cells. All these lead to proliferation of blood cells at an abnormal rate.
(B) The pathogenesis of thrombosis in MPN is complex and caused by multifactorial, other than the
abnormal signalling transduction, platelet activation, endothelial cell dysfunction, over-production of
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tissue factors, formation of platelet-neutrophil aggregates, and increased red blood cell mass may further
contribute to the genesis of thrombi. Most of the gene polymorphisms mentioned in this review take
parts in initiating those abnormalities. Abbreviations: α-KG, α-ketoglutarate; 2-HG, 2-hydroxyglutarate;
5hmC, 5-hydroxymethylcytosine; 5mC, 5-methylcytosine; ASXL1, Additional sex combs like 1; Akt,
Protein kinase B; CALR, Calrecticulin; EPOR, Erythropoietin receptor; ER, Endoplasmic reticulum;
ERK, Extracellular signal regulated kinase; EZH2, Enhancer of zeste homolog 2; G-CSFR, Granulocyte
colony stimulating factor receptor; HSC, Hematopoietic stem cell; IDH1, Isocitrate dehydrogenase 1;
IDH2, Isocitrate dehydrogenase 2; IKZF1, Ikaros family zinc finger protein 1; JAK2, Janus kinase 2;
MEK, Mitogen-activated protein kinase; MPL, Myeloproliferative leukaemia virus oncogene; mTOR,
Mammalian target of rapamycin; NADP+, Nicotinamide adenine dinucleotide phosphate; NADPH,
Nicotinamide adenine dinucleotide phosphate; PI3K, Phosphoinositide-3-kinase; PRC1, Polycomb
repressive complex 1; PRC2, Polycomb repressive complex 2; PR-DUB, Polycomb repressive deubiquiti-
nase; RUNX1, Runt-related transcription factor 1; STAT, Signal transducer and activator of transcription
protein; TET2, Ten-eleven translocation 2; TF, Tissue factor; TP53, Tumour Protein p53.
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2.1. JAK2 V617F

Janus kinase 2 (JAK2) located at chromosome 9p24.1 encodes a non-receptor tyrosine
kinase involved in cell growth, differentiation, development, or histone modification. JAK2
phosphorylates tyrosine within the cytoplasmic region of a cytokine receptor once ligands
bind to type I or II receptors that are associated with the JAK2 protein, thereby generating
several docking sites for recruitment and phosphorylation of STAT proteins. Phosphory-
lated STAT proteins dimerized in cytoplasm and transport into the nucleus for further gene
activations [19]. In 2005, the JAK2 V617F was identified as one of the molecular markers of
MPN [20,21]. The JAK2 V617F have been detected in 46.7 to 100% in patients with PV, from
31.3 to 72.1% in patients with ET, and from 25.0 to 85.7% in those with PMF (data from
2000–2018) [22]. The JAK2 gene mutations have been detected in approximately 95% of pa-
tients with PV, up to 70% of patients with ET, and 40–50% of patients with PMF [23,24]. One
of the most common types of mutation of JAK2 is the V617F, a somatic gain-of-function mu-
tation that changes the 1849th coding nucleotide from guanine (G) to thymine (T) resulting
in a replacement of amino acid from valine to phenylalanine (c.1849G > T, p. Val617Phe),
which is strongly associated with MPN. Accumulative evidences suggested that the V617F
mutation increased the risk of thrombosis [25–29] and could be considered as a predictive
biomarker of thrombotic events in MPN [30–32]. Thrombosis is significantly and frequently
found in patients with V617F mutation (30.2%) than without (9.2%, p = 0.04). Patients
with JAK2 V617F-positive MPN are older in age (p = 0.003) and displayed high levels of
haemoglobin (p < 0.01) and haematocrit (p < 0.01) and low levels of erythropoietin (p < 0.01).
In addition, the same group of patients exhibited a three-fold increase in leucocytosis and
a two-fold increase in thrombosis and splenomegaly and correlate well with high WBC
counts of >10,000/µL (p = 0.046). Therefore, the JAK2 V617F mutation should be deter-
mined in patients with MPN especially in those aged 60 years or older and with a history
of previous thrombosis and leucocytosis [33–35]. On the other hand, MPN-associated
thrombosis is very rare in children and adolescents. To date, thrombosis was observed
in three cases of young patients with MPN with a positive JAK2 driver mutation. Similar
observation was obtained from another study, where 17 out of 19 children with MPN have
thrombosis (89.5%) and the same driver mutation. It is therefore speculated that children
with MPN may have higher thrombotic risk when driver mutation is present [36]. In a
cohort study from Czech, the JAK2 mutation was detected in 145 patients with MPN, 40 of
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whom had thrombosis (27.6%), which was significantly higher than those without (8.0%,
p = 0.001). Among 78 patients with thrombosis, 20 (25.6%) had a positive thrombophilia
status (a pro-thrombotic state or hypercoagulability), and only 48 cases were identified
in patients without thrombosis (14.0%, p = 0.016). Hence, the JAK2 mutation and the
presence of additional thrombophilic markers, such as thrombophilia status, predispose
patients with MPN with thrombocythaemia to thrombosis [37]. In another cohort study
from Hungary [38], they reported that the V617F mutation statistically had no predictive
value for the development of thrombosis in patients with MPN.

In another cohort study from Taiwan, the V617F mutation was frequently detected in
patients with MPN (p = 0.007) with higher haemoglobin level (p = 0.03) and WBC count
(p = 0.002), splenomegaly (p = 0.01), and longer disease duration (p = 0.005), but with no
obvious difference on the overall thrombosis risk (p = 0.22). Amongst Mexican mestizos,
the cause of thrombosis may not necessarily be related to MPN. Therefore, testing for the
JAK2 V617F mutation was not mandatory in patients with unexplained thrombophilia in
the country except for those who had thrombosis in uncommon sites or having abnormal
cell counts suggestive of MPN [39]. Thus, screening for the JAK2 mutation in patients with
BCR-ABL-negative MPN could be significant in identifying patients with a high chance
of developing vascular complications [40]. In a study on patients with MPN (n = 391),
JAK2 V617F mutation-positive subjects were more susceptible to thrombotic events than
JAK2 V617F-negative subjects, which is statistically significant among ET (p < 0.01) and
PMF groups (p < 0.01) [41]. Although the mutation is related to the risk of thrombosis
in ET, it has no relationship with recurrent thrombosis in ET [42]. In other studies, on
patients with ET, patients with the JAK2 mutation exhibited significantly more frequent
thrombotic events (p = 0.004), higher haemoglobin levels (p = 0.0003), and leukocyte counts
(p < 0.0001) [35,43–45].

Patients with JAK2-positive ET consistently display JAK2 activation, which in turn
upregulates the expression of the heparanase enzyme via the erythropoietin receptor
activation [46]. The JAK2 V617F mutation as a thrombotic risk factor in ET may also have
a role in causing increased myeloid proliferation and activation of WBCs. According to
Patriarca et al. [47], the JAK2 V617F mutation was significantly related to thrombotic events
before (p < 0.0003) or during diagnosis (p < 0.03) and had no protective role in haemorrhagic
risk. The JAK2 V617F mutation was also related to the overexpression of polycythaemia
rubra vera 1 (p < 0.0001), higher haematocrit (p < 0.03), lower platelet count (p < 0.0006),
and higher WBC count (p < 0.0002) with >8.4 × 109/L, which was found to be significantly
related to increased thrombosis risk (p < 0.006). The number of megakaryocytes increased
significantly (p = 0.031), and hypercoagulable status was observed (p = 0.038) in patients
with JAK2 V617F-positive PV and ET. Many studies suggested that the JAK2 V617F mutation
may play a part in blood coagulation by modifying the number and functions of RBCs,
WBCs, and platelets in patients with MPN [48–51].

Patients with PV with the JAK2 V617F allele burden of >75% exhibited higher throm-
botic risk than those with <25% (p = 0.03) [52] and higher risk of venous thromboembolism
(VTE) when their JAK2 allele burden is >20%, but not for arterial thrombosis [53]. The risk
of VTE was increased by 7.4-fold when the JAK2 allele burden is >20% (p = 0.004), 8.8-fold
by 50% (p = 0.006) and there is a more significant risk with allele burden of >75% (p = 0.002),
with mostly cases with proximal deep vein thrombosis (DVT) (p = 0.041) for allele burden
of >50%. Therefore, the allele burden of JAK2 V617F is related to the risk of VTE [53].
Patients with PMF with JAK2 V617F allele burden of ≤34.8% were more susceptible to
thrombosis (p = 0.032) [54]. The prevalence of arterial thrombosis increased in patients with
JAK2-mutated ET, but no association was found between the allele burden and thrombosis
(p = 0.001) [55]. The allele burden of JAK2 V617F is related to the clinicohaematological
phenotypes of patients with ET, such as older age (p = 0.03), organomegaly (p = 0.003),
higher neutrophil count (p = 0.02), thrombotic events (p = 0.01), and myelofibrosis (p = 0.02)
in ET, but a larger scale of studies is needed for patients with PV and PMF [28,45]. Another
study reported that thrombotic events were frequent in Korean patients with the JAK2
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V617F mutation (p = 0.045), especially those with the homozygous JAK2 V617F compared
with heterozygotes and wild type (p = 0.03) [56]. Since the JAK2 V617F allele burden could
only predict the thrombosis sites and not thrombosis timing, screening for JAK2 V617F
would be of great help for MPN to identify any underlying vascular problems [57].

An underlying MPN may present in patients with splanchnic vein thrombosis (SVT)
with JAK2 V617F mutation. Most patients with SVT carried a JAK2 V617F mutation,
which was associated with higher leukocyte and platelet counts and higher mean values
for levels of lactate dehydrogenase (p = 0.08). There was no correlation between JAK2
V617F and pro-thrombotic risk factors and sites of thrombosis. The researchers suggested
that the testing of JAK2 V617F may help in the discovery of latent MPN in patients with
SVT [58–62], but not in VTE, due to its weak association with JAK2 mutation [63]. A
different outcome, as indicated in other studies [53,64], showed that patients with MPN
with JAK2 V617F, in fact, had a higher risk of VTE (p = 0.024), especially of DVT. Routine
tests for venous thrombosis were recommended in patients with MPN, especially when
the patients exhibited abdominal pain and increasing pruritus. This is because individuals
with thrombosis are usually accompanied by a higher prevalence of pruritus (p = 0.02) and
abdominal pain (p = 0.03). In contrast, patients with venous thrombosis, particularly of
the portal vein or unusual sites, should also be screened for MPN [65]. SVT comprises
portal vein thrombosis (PVT) and Budd-Chiari syndrome (BCS), which are the common
first presenting symptoms in latent MPN [66–68]. There was no significant difference
between BCS and PVT for the prevalence of the JAK2 V617F mutation (p = 0.989), except
that a significantly higher female predominance (p < 0.001), younger age of thrombosis
diagnosis (p = 0.007) [69], and higher platelet counts (p = 0.004) were observed in BCS
with JAK2 V617F. As for JAK2 V617F-positive PVT, the number of WBC (p = 0.003) and
platelet counts (p = 0.01) seemed to be higher [58]. Other than PVT, testing for JAK2 V617F
was also recommended for patients with idiopathic hepatic vein thrombosis [58] and with
extrahepatic PVT for the early identification of latent MPN [70,71]. In a China cohort
study [72], a lower frequency of JAK2 V617F mutation was found in Chinese patients with
BCS, suggesting that the major cause of BCS in this population might not be MPN, whereas
the JAK2 V617F mutation indicated a higher prevalence in non-cirrhotic and non-malignant
PVT patients (p < 0.001). Thus, routine screening was suggested for these two groups of
PVT patients. However, an India cohort study indicated that the JAK2 V617F mutation
was found at a very low frequency and displayed a weak association with thrombosis,
particularly for venous thrombosis present in sites other than the splanchnic region [73]. A
low incidence of the JAK2 V617F mutation was observed in Korean patients with SVT [74].
However, a screening test is not feasible due to the very low frequency of JAK2 V617F
mutation (rs77375493) in general population, the minor allele T frequency is about 0.016%
in East Asian according to 1000 Genome Database. In addition, Asian countries displayed
a greater genetic heterogeneity among Asian populations [75].

Of 22 patients, 9 (41.0%) with normal blood counts and major intra-abdominal vein
thrombosis exhibited the JAK2 V617F mutation, which is in line with the results of patients
with SVT, where 39% of the patients were found to have the same mutation [69]. Hence,
to detect any latent MPN, screening for the JAK2 V617F mutation was recommended
in patients with major idiopathic abdominal vein thrombosis who have normal blood
counts [76], but not in patients with arterial and venous thrombosis at usual sites [77]. A
study was also conducted in patients with arterial thrombosis for JAK2 V617F mutation
and no mutation was found in any of the patients. Therefore, it was concluded that testing
for the JAK2 V617F mutation in those patients is not compulsory, even in young patients
with relatively high peripheral blood counts [78]. As for other types of thrombosis, JAK2
V617F can present in patients with cerebral venous thrombosis irrespective of blood count
(p < 0.0001) and as one of the early symptoms of MPN [79]. Despite this, genetic testing
in unselected cerebrovascular cases was not recommended because the JAK2 mutation is
low [77], but genetic testing can be considered in patients with embolic strokes caused by
cerebral vein thrombosis, especially those with haemoglobin levels >16.5 g/dL or a platelet
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count >450,000/mm3 [80]. According to Linnemann et al. [81], the JAK2 V617F mutation or
the presence of MPN is not associated with inferior vena cava thrombosis (IVCT). The com-
mon risk factors for IVCT are previous surgery, hormonal therapy in women, hereditary
thrombophilia, and cancers other than MPN. High occurrence of the JAK2 V617F muta-
tion was present in patients with intra-abdominal venous thrombosis (IAVT). Therefore,
screening for JAK2 V617F mutation for latent MPN was suggested for IAVT patients [82].
Mesenteric vein thrombosis can occur in patients with normal peripheral blood counts and
may be one of the first presenting features of MPN. Approximately 33% of patients with
MVT were detected with the JAK2 V617F mutation and were confirmed to have MPN [83].
Screening for JAK2 V617F was also suggested in patients with idiopathic chronic portal,
splenic, and mesenteric venous thrombosis, owing to its high prevalence [84].

Taken together, we can conclude that JAK2 V617F mutation is strongly associated with
the occurrence of thrombosis in patients with MPN. Therefore, genetic testing of JAK2
V617F mutation among MPN patients could be beneficial in identifying any latent MPN in
patients with different types of thrombosis.

2.2. JAK2 Exon 12

PV patients frequently displayed JAK2 exon 12 mutations, with either a low prevalence
or none in ET or PMF [85–88]. Interestingly, its prevalence was detected to be high (up
to 40%) when investigated in JAK2 V617F-negative patients [89–93]. In some cases, JAK2
exon 12 mutation coexists with the JAK2 V617F mutation [94]. According to a study of
106 patients with JAK2 exon 12-mutated PV, the most common type of mutation N542-
E543del was detected in 30% of patients. Patients with the mutated JAK2 exon 12 were also
having significantly higher haemoglobin levels (p < 0.001) and lower platelet (p < 0.001)
and leukocyte counts (p < 0.001), but a similar thrombotic risk (p = 0.40) to those with JAK2
V617F-mutated PV [95]. Unlike the JAK2 V617F mutation, patients with SVT exhibited very
low association with the JAK2 exon 12 mutation; therefore, screening for the JAK2 exon 12
mutation in patients with SVT is not recommended [96]. To date, only one study reported
that patients with PV with mutated JAK2 exon 12 have the same risk of thrombosis as those
with the JAK2 V617F mutation. Since only limited data indicated the association between
JAK2 exon 12 mutation and MPN, more studies are needed to have a better understanding
of the JAK2 exon 12 mutation.

2.3. CALR

Calreticulin (CALR) located at chromosome 19p13.13 is a calcium-binding chaperone
that regulates calcium signalling, promotes protein folding and assembly of oligomers,
and participates in the quality control system in the endoplasmic reticulum through cal-
nexin/CALR cycles [97]. It also travelled to the nucleus, implying that it may play a crucial
role in the regulation of gene transcription [98].

CALR mutation was found to be more prevalent in patients with ET and PMF than
patients with PV [99,100]. Patients with positive CALR mutation significantly involved
a younger age population (ET, p = 0.025; PMF, p = 0.002) and their platelet counts were
higher than JAK2 mutation-positive subjects (ET, p < 0.001; PMF, p = 0.001). Interestingly, a
remarkably less frequent (p = 0.03) venous thrombosis was observed in patients with ET
with CALR mutation than those with JAK2 mutation [35]. Other coagulation complications,
such as arterial thrombosis (14% vs. 9%; p = 0.3) and haemorrhage (9% vs. 5%; p = 0.3), were
not significantly different in patients with ET with JAK2 mutations than those with CALR
mutations. In another cohort of Italian patients [101], the risk of developing thrombosis
was 2.5-fold higher in patients with ET (7.1% vs. 2.8%; p = 0.059), and 3.7-fold higher in
patients with PV (10.5% vs. 2.8%; p = 0.001) with JAK2 mutations compared with CALR
mutation. Similar results were observed by Rotunno et al. [102], who found that patients
with ET exhibiting CALR mutations had significantly (p = 0.01) lower risk of developing
thrombotic events (13.5%) than those with JAK2 (30.1%) and MPL mutations (40.0%).
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In a French cohort study [103], 81% of patients with SVT had the JAK2 V617F muta-
tion, whereas only 1.6% had CALR mutation, same with the study outcome in a Spanish
cohort [104], where only 1.9% of patients with SVT (n = 209) were found to have the CALR
mutation. The CALR mutation is found to activate the thrombopoietin (TPO) receptor,
MPL, and results in the expansion of the megakaryocytic lineage, which subsequently
increases the platelet counts and rate of splenic enlargement in MPN [105]. CALR mutation
is mutually exclusive to the JAK2 V617F in patients with SVT; therefore, it is suggested
that JAK2 V617F should be tested first in this group of patients. Once ruled out of the
JAK2 V617F mutation, CALR mutation should then be investigated. However, screening for
CALR mutations should be considered when patients presented a spleen height of >16 cm
and platelet count of >200 × 109/L [103]. It was also suggested to test for CALR gene
mutation in patients with MPN for prevention and treatment of SVT [106].

2.4. MPL

Myeloproliferative leukaemia virus proto-oncogene (MPL) is located at chromosome
1p34.2. The encoded protein acts as a TPO receptor that regulates megakaryopoiesis
through the JAK-STAT pathway and platelet production. MPL also plays a role in immune
response [107,108]. MPL mutations cause cytokine-independent growth and increased
sensitivity towards TPO leading to the constitutive activation of downstream signalling
pathways, namely JAK-STAT, PI3K-Akt and MAPK/ERK pathways [109,110].

A study reported that MPL mutations were only found in ET and patients with PMF,
but not in patients with PV, chronic myeloid leukaemia, myelodysplastic syndrome or acute
myeloid leukaemia [111,112]. In patients with ET, the burden of W515K allele was higher
than W515L allele, although the difference between these two mutations in the alteration
of signalling remains ambiguous. More than 50% allele burden in the peripheral blood
was not found in all patients with ET; however, it was observed in most of the patients
with PMF, indicating that patients with PMF may possibly be in an advanced stage of a
previously undiagnosed MPN [113]. An MPL mutation screening study on 1182 patients
with MPN [112] found that MPL mutations were present in 1% of patients with ET and in
5% of patients with PMF. Six patients were concurrently identified to have both JAK2 and
MPL mutations, suggesting a possibility of functional complementation in MPN diseases.
Rotunno et al. [102] observed that patients with MPL-positive mutations displayed a
significantly low level of haemoglobin (p < 0.001) and considerably higher platelet counts
(p = 0.006) and serum erythropoietin (p < 0.001) than those with JAK2-positive ET. There
were no obvious differences in the frequency of thrombosis, fibrotic transformation, major
haemorrhage, or mortality rate in patients with MPL mutations compared with JAK2-
positive, JAK2-negative and MPL-negative groups. However, in terms of the frequency
of venous thrombosis, MPL patients had a significantly higher rate than JAK2-negative
patients (p = 0.02) in addition to exhibiting microvascular symptoms in MPL patients
compared with other mutations (p < 0.01). According to the findings of a PT-1 study [114],
amongst 776 patients with ET, 4.1% of patients were found to have MPL mutations, where
1 patient had co-occurrence of JAK2 mutation. No correlation was established between MPL
mutations and thrombosis, major haemorrhage, and fibrotic transformation. According
to Akpına et al. [115], no MPL mutations were found in patients with ET. Of 77 patients,
18.2% of patients with PMF presented with MPL mutations but without any thrombotic or
haemorrhagic complications. Based on the existing evidence, MPL mutations seem to be
not related to the development of arterial thrombosis. However, these mutations may have
a relationship with venous thrombotic events in patients with MPN.

2.5. TET2

Ten-Eleven Translocation 2 (TET2) gene is located at chromosome 4q24, a region wherein
recurrent microdeletions, translocations, and uniparental disomy occurred frequently
in patients with myeloid malignancies [116,117]. Upon phosphorylation and activation
by cytokine-stimulated JAK2, TET2 speeds up the conversion of 5-methylcytosines to
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5-hydroxymethylcytosines, which is an essential step for the differentiation of hematopoi-
etic stem cells into erythroid cells [118,119]. According to several in vivo and in vitro
studies [117,120,121], mutated TET2 causes myeloid proliferation and development of
myeloid malignancies, which further suggests that TET2 may act as a tumour suppressor
in maintaining the homeostasis of hematopoietic cells [122].

TET2 mutations significantly clustered in older aged patients (p < 0.0001) [123]. The
mutation cluster mainly distributed on exons 3 to 11 with no typical hot spot mutation.
Small insertions, nonsense mutations and small deletions gave rise to the most common
loss-of-function mutations in TET2 [123,124]. According to Ha et al. [122], the mean
frequency of TET2 mutation was 12.1% and displayed no significantly difference among PV
(22.2%), ET (9.7%), PMF (18.2%), and unclassified MPN (0%) (p = 0.314). No relationship
was detected between TET2 mutations and thrombosis in PV (p = 0.446), ET (p = 0.325)
and PMF (p = 0.182) [122]. Recently, Segura-Díaz et al. [125] conducted an interesting
study on 68 patients with MPN (16 PV, 25 ET, 16 PMF and 11 secondary myelofibrosis),
wherein thrombotic events were observed in 32.4% of the patients. In this cohort, the most
frequently observed mutation was with the TET2 gene (32.6%), besides ASXL1 (14.0%)
and DNMT3A (14.0%) genes (DTA genes). Pathogenic DTA gene mutations (p = 0.02),
especially TET2 gene mutation (p = 0.03), were found to be significantly accompanied by
the development of thrombosis in the PV group. In a study conducted in Italy [124], novel
TET2 mutations were identified in 3 of 23 patients with SVT. They had no other inherited
or acquired thrombophilic risk factors. Of the three patients, one had overt MPN and two
were diagnosed with MPN years after their venous thrombosis. After studying both TET2
and JAK2 mutations, it was found that TET2 is usually related to acquisition at the early
event, whereas JAK2 is a subsequent acquisition in MPN [124]. On the contrary, another
study predicted that TET2 might preferably happen after JAK2; therefore, TET2 is more
likely to contribute to illness progression, such as thrombosis in patients rather than disease
development [122] and TET2 mutations can be screened to identify the patients to whom
more attention should be paid for any subsequent development of overt disease [124].

Taken together, TET2 mutation may increase the risk of thrombosis in patients with
PV. However, larger sample size studies, including a large TET2-mutated cohort, should be
conducted to obtain a comprehensive insight.

2.6. ASXL1

Additional sex combs-like 1 (ASXL1) gene is located at chromosome 20q11.21 and the
encoded chromatin protein functions in maintaining the stable activation and silencing of
mainly homeotic loci. In addition, this protein is also involved in genetic and epigenetic
regulations and transcription control of several genes [126–128]. Many different types of
mutations have been detected in exons 12 and 13 of the ASXL1 gene; amongst them, the most
common mutation is the c.1934dupG frameshift mutation, which is composed of 50% of all
ASXL1 mutations detected [129,130]. Amongst patients with MPN, ASXL1 mutations were
frequently found in patients with advanced age and in patients with PMF and post-PV/ET
MF patients than those with PV or ET [131–133]. The frequencies of ASXL1 mutations in
PV, ET, and PMF were 3.5%, 5.6%, and approximately 23%, respectively [129,130,134]. In
a Chinese cohort study [135], ASXL1 mutation was detected in 19.4% of patients with ET,
where missense mutation (c.G1954A) was the most common mutation type. The frameshift
mutation (c.1934dupG) was not detected in this cohort. Patients with ASXL1-mutated
ET exhibited to develop significantly higher thrombotic events (p = 0.021) than ASXL1
wild type. In patients with PMF, ASXL1 mutations were found to be significantly related
with leucocytosis (p < 0.001 in a European cohort and p = 0.007 in a Mayo clinic cohort) in
addition to being associated with significantly shorter overall survival (p < 0.0001) [136,137].

ET patients harbouring the ASXL1-mutation are prone to experience thrombotic events,
it can be postulated that ASXL1 mutations may partake in the occurrence of thrombohaem-
orrhagic events in ET. Although the relationship between ASXL1 mutations and the throm-
botic pathogenesis of ET remains unclear, one study suggested that one of the potential
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strategies to prevent thrombotic events in patients with ET is through blocking the ASXL1
mutations [135]. Therefore, future studies are required to assess and evaluate the genetic
contribution of ET in thrombosis.

Table 2. Molecular characteristics of PV, ET and PMF.

PV [138] ET [138] PMF [139]

Prevalence of MPN 49.2% 34.7% 14.4%

Driver mutations

JAK2 98% 52% 62%

CALR 0% 26% 22%

MPL 0% 4% 5%

Co-occurring mutations
‡ TET2 22% 16% 15%

‡ ASXL1 12% 11% 48%

* Prevalence of thrombotic at diagnosis 28.6% 20.7% 9.5%

* Prevalence of bleeding at diagnosis 6.9% 7.3% 8.9%
* The pooled prevalence of overall thrombotic and bleeding events at diagnosis of MPN from 29 cohort studies [12].
‡ The most frequent co-occurrence mutation in MPN [138,139].

3. Triple-Negative MPN

The principal driver mutations in MPN are constituted by JAK2, CALR, and MPL gene
mutations, however, there is a sub-group in which none of the driver mutations is observed,
the group is therefore called “triple-negative” MPN. Triple-negative MPN patients appear
to have a relatively poor prognosis [140], higher rate of leukaemic transformation [141], and
worse leukaemia-free survival [142]. The distribution of triple-negative cases in classical
BCR-ABL-negative MPN is <1% in PV [143], 14% to 32% in ET, and 10% to 35% in PMF [144].

Triple-negative ET patients are usually younger with a higher male predominance,
higher platelet count, and lower leukocyte counts and haemoglobin level [145]. The
same group of patients show similar low rates of thrombosis as CALR mutated ET pa-
tients [102,146], and confer a way lower thrombotic risk compared to JAK2 mutations.
In both univariate (p = 0.009) and multivariate analysis (p = 0.003), in which the age
(p = 0.01) and thrombosis history (p = 0.0006) are included, triple-negative ET patients
display better thrombosis-free survival rate [147]. However, it is important to note that it is
not necessarily the presence of triple-negative status that is related to lower thrombosis
risk, but the absence of JAK2 mutations [102].

So far, limited data is available for triple-negative PMF group compared to other PMF
groups, triple-negative PMF shows a higher incidence of acute leukaemic transformation
in triple-negative cases (p = 0.038) [35], and lower vascular risk [145].

4. Gene Polymorphisms in Thrombotic MPN

According to Afshar-Kharghan et al. [148] patients with PV exhibited a significantly
higher overall frequency of arterial and venous thrombotic events (26% vs. 58%; p < 0.05)
than patients with ET. Among patients with PV, a higher risk of arterial thrombosis (p < 0.05)
was observed when the patients carried the PIA2 allele (GPIIIa, p.P33L), this polymor-
phism alters the protein conformation and leads to thrombotic complications. However,
HPA-1a/1b GPIIIa variant failed to show any thrombosis correlation between PV and ET
patients [149]. Study on another GPIa/IIa c.807C > T polymorphism [150], MPN patients
with arterial thrombosis exhibited a higher frequency of TT genotype (26.5 vs. 11.5%,
p = 0.049; odds ratio 2.68). Genetic predisposition may be stacked up in patients with MPN
when SNPs affecting DNA repair and apoptosis are present. A polymorphism in the DNA
repair gene XRCC1 (Gln399Arg; rs25487) affects the base excision repair pathway, which
may eventually lead to thrombotic and bleeding complications seen in patients with MPN
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(p = 0.386) [151]. Another gene polymorphisms within the β-fibrinogen (FBG), the heterozy-
gous CT genotype of FBG c.-148C > T polymorphism is crucially higher (p = 0.02) in MPN
patients with thrombotic events (57.7%) than CC wild type (40.0%) or TT homozygous
(12.5%), but not for −455G/A FBG polymorphism [149]. Moreover, the presence of poly-
morphism in clotting factor II (F2) or G20210A mutation of prothrombin and clotting factor
V (F5) or Leiden mutation has no significant association with thrombosis in patients with
PV and ET [150,152]. A different outcome was obtained from another study [153], which
found no difference between F5 mutation and arterial thrombosis (p = 0.337), but a higher
rate of detection of venous thrombosis before and at time of diagnosis and recurrence of
venous thrombosis in patients with PV and ET (p = 0.03). It was also stated that F5 may
increase the risk of thrombosis in patients with MPN [73,154]. As for coagulation factor,
factor VII (F7), c.-323P10 variant was more frequently present in thrombotic patients with
MPN (p = 0.04). In addition, the possibility of developing arterial thrombosis increases
when both heterozygous FBG c.-148C > T and F7 c.-323P0/10 SNP coexisted at the same
time (p = 0.008). Hence, it was suggested that coexistence of different polymorphisms
may contribute to the pathophysiology of thrombosis in MPN [150]. Another clotting
factor, factor XII (F12), with −46C/T F12 polymorphism did not correlate with thrombotic
complication in patients with PV and ET [149]. In another study, decanucleotide insertion
polymorphism of the F7 gene significantly appeared as an independent risk factor in throm-
botic development of overall patients with MPN (p = 0.0007), including patients with ET
(p = 0.0002) [111].

Matrix metalloproteinases (MMP9) gene Gln279Arg A > G polymorphism was found
in PV, ET, and secondary polycythaemia. Compared with controls, the incidence of MMP9
polymorphism in patients with MPN was much higher (p < 0.05). A positive correlation
was found between thrombosis, JAK2 mutation (p = 0.006), and MMP9 polymorphism
(p = 0.002) in the ET group. Therefore, MMP9 gene polymorphisms might be a contribut-
ing factor for the occurrence of vascular events in patients with MPN; however, more
studies are warranted [155]. In the case of human platelet antigen (HPA5), a significant
difference was observed in the genotype frequency between patients with MPN with and
without vascular events (p = 0.03) with a protective role of HPA5 b allele for patients with
MPN [156]. In an interesting study, methylenetetrahydrofolate reductase (MTHFR) C677T
was statistically significant in thrombotic patients with MPN compared with the general
thrombosis population by both univariate (p = 0.001) and multiple regression analyses
(p = 0.01). This finding anticipated that MTHFR polymorphism could have a role as a
pro-thrombotic factor, causing thrombosis in patients with MPN [157]. Compared with
controls, stromal cell-derived factor-1 (SDF-1) polymorphisms distributed significantly
differently in patients with PV (p = 0.0003) and ET (p = 0.039). A more abundant amount of
homozygous AA genotype was noted in PV (16%) and ET (11%) than in the control group
(2%). Allele homozygous patients with PV (71%) and ET (67%) were significantly more
common to have thrombosis than heterozygous and wild type groups (p = 0.03). Thus, the
AA genotype can be considered as a predictor for thrombotic events in patients with PV
and ET [158].

The FAS/FASL pathway is critical for hematopoietic cell survival and apoptosis [159,160].
Elevated FAS-670AG + GG distribution was reported in patients with MPN (p = 0.003),
with A allele more common in both normal patients and patients with MPN and more
frequent AG genotype detected in patients with MPN. However, no significant association
was found between FAS 670A > G polymorphisms and venous thrombosis (p = 0.412) or
splenomegaly (p = 0.08). For FASL 843C > T polymorphism, no difference was observed in
either the genotype or allele frequency between patients with MPN and the control group
(p = 0.144). No statistically significant correlation was also detected in venous thrombosis
and splenomegaly. It was further suggested that FAS and FASL gene expression may have
a role in the pathogenesis of MPN, but not possibly with thrombosis, yet more studies are
needed to prove this finding [161].
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The frequency of telomerase reverse transcriptase rs2736100_C variant was much
higher in patients with MPN (p < 0.0001) regardless of the types of disease or molecular
background, although this TERT variant was not associated with thrombosis [162]. In
patients with JAK2 V617F-positive PV and ET, angiotensin-converting enzyme (ACE), II
genotype (p = 0.009), and I allele frequency (p = 0.004) were substantially higher than the
control group. Patients tend to present a lower risk for MPN with DD genotype (p = 0.02)
and D allele (p = 0.004). In conclusion, the presence of ACE polymorphism II genotype
and I allele may contribute to higher risk of PV and ET; on the other hand, DD genotype
and D allele may be associated with reduced likelihood of PV and ET. None of them was
significantly associated with thrombotic events [163].

Two Toll-like receptor 4 (TLR4) SNPs (TLR4-D299G and TLR4-T399I) were being in-
vestigated by Speletas et al. [164], who found no significant correlation between either
of the SNPs and thrombosis risk (p = 0.43 and p = 0.99, respectively). TLR4-D299G poly-
morphism seems to exhibit a protective role in the thrombotic effect, but more studies are
needed to confirm this finding. Taken together, in view of the association between gene
polymorphism and thrombotic complications in patients with MPN, GPIIIa, XRCC1, FBG,
F5, F7, MMP9, HPA5, MTHFR, and SDF-1 polymorphisms are related to vascular events,
but not for F2, FAS, FASL, TERT, ACE, and TLR4. Thus, it can be speculated that some of
the polymorphisms may play a role in the thrombotic risk in patients with MPN; however,
larger studies targeting these polymorphisms should be conducted for more clarity.

5. Epigenetic Changes in Thrombotic MPN

Other than the acquisition of genetic mutations that give rise to the initiation and
development of MPN, the occurrence of the disease may be a result of epigenetic mod-
ifications that alter the gene expression by remodelling chromatin. There are two main
mechanisms of chromatin remodelling, DNA methylation with the covalent transfer of
a methyl group to cytosine-phosphate guanine (CpG) site [165], and post-translational
modifications of histones by acetylation, ubiquitination, methylation, phosphorylation,
and ADP-ribosylation of glycosylation [166,167]. Another less well-known epigenetic
changes will be transcriptional or post-transcriptional regulation of gene expression by
non-coding RNAs (ncRNAs), examples for epigenetic related ncRNAs are microRNAs,
short interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and long non-coding
RNAs (lncRNAs) [168]. Non-coding RNAs can either play their roles through repressing
protein translation or causing mRNA degradation [169]. In MPN, there are two categories of
epigenetic dysregulations. The first is the presence of gene mutations in genes that encode
proteins which regulate the chromatin structure, such as ASXL1 [132], TET2 [123,170,171],
IDH1/2 [172–174], EZH2 [175], IKZF1 [176], JAK2 V617F [177,178], and PRMT5 [179]. The
second category involves the methylation status of promoter sites of genes that coordi-
nate cell growth, differentiation, and survival [180], such as CALCA [181], ABL1 [182],
SFRP2 [183], WIF-1 [184], SOCS1 [185,186], SOCS3 [187,188], PRV1 [189], CXCR4 [190], and
RARβ2 [186,191]. Despite the discovery of epigenetic alterations in MPN, up to now, only
the suppressor of cytokine signalling (SOCS) family was elucidated for their relationship
with thrombosis in MPN patients.

The methylation status of an important negative regulator family, namely SOCS family
including SOCS1, SOCS2, and SOCS3, was studied. Only SOCS1 and SOCS2 genes were
found to be hypermethylated in five MPN patients, and none of them exhibited thrombotic
event. Hence, the hypermethylation status of SOCS genes was considered not associated
with the incidence of vascular complications in MPN patients [192]. Further study of DNA
methylation pattern of epigenetic modifiers, mutations present in them, along with their
association with thrombotic events will be needed to comprehensive the effect of epigenetic
on the risk of thrombosis in MPN patients.
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6. Risk Assessment of Thrombosis in MPN According to Different Gene Mutations

Most of the thrombotic events occur around the time of MPN diagnosis which are
the first symptoms observed and is considered in the disease diagnosis process [54,193].
Any thrombotic events occurred within four years before the diagnosis of MPN, and
before the usage of anti-thrombotic and/or cytoreductive treatment are defined as prior
thrombosis (PrTh) [194]. PrTh is very likely to be influenced by pro-thrombotic factors that
may still present at MPN diagnosis stage. In order to find out the potential factors with
pro-thrombotic effects and identify their prognostic value for the development of vascular
problems in MPN, the biological and clinical characteristics at the time of MPN diagnosis are
investigated. The PrTh rate is significantly related to male (p < 0.009), older age (p < 0.001),
presence of cardiovascular risk factors (p < 0.001), high WBC count (>10 × 109/L), high
haematocrit level (>45%), low platelet count (≤700 × 109/L, p < 0.001) [195].

The most important risk factors described in MPN are advanced age (≥60 years),
and with a history of thrombosis, patients are stratified into low-risk and high-risk based
on these two factors [196]. Recently, JAK2 mutations and cardiovascular risk factors are
listed as the new risk factors for arterial thrombosis due to their prognostic value [197].
For the cardiovascular risk factors that are studied, diabetes increases the risk of arterial
thrombosis in PV, hypertension in ET, hyperlipidemia in both ET and PMF [54]. In addition,
a strong association was also found between increased thrombosis risk and WBC count
>8.4 × 109/L [47].

PrTh is more frequently observed in JAK2 V617F mutated patients compared to the
JAK2 wild type (p = 0.002), and CALR mutated patients [195]. Different JAK2 allele burdens
were suggested to predict thrombosis in MPN patients. For arterial thrombosis, the cut-off
values of allele burden value for PV, ET, and PMF are >25.7%, >25.0% [198], >34.8% [54],
respectively. As for venous thrombosis, the cut-off values for JAK2 allele burden are
>90.4% [198] and >56.7% for PV and PMF [54]. Another driver gene MPL mutation causes
continuous activation of MPL and is associated with platelet hyperactivity and increases
the risk for micro-vessel disturbances [141]. Aside from JAK2 and MPL, CALR is the other
gene with a high rate of mutation in MPN, especially in ET and PMF. With an adverse effect
from JAK2 and MPL, the presence of CALR mutations is usually accompanied by a lower
risk of thrombosis, the mutations present more frequently in younger patients and often
distributed in low- and intermediate-risk groups [141].

Aside from the JAK2, CALR and MPL genes that hold the prognostic significance in
MPN, other non-driver mutations, such as ASXL1, TET2, SRSF2, IDH2, SH2B3, SF3B1,
U2AF1, TP53, and EZH2, were found to not carry any prognostic significance [138]. In
routine clinical practice, JAK2, CALR, and MPL are the most common genes used for
thrombotic risk assessment [32,197]. We suggest that more studies can be done for the
genes that are found to be related to thrombosis in MPN from this review, and apply those
genes in the evaluation of MPN thrombotic risk to achieve a more comprehensive prognosis
for the occurrence of vascular events in PV, ET, and PMF patients.

7. Pathogenesis in Thrombotic MPN

The pathogenesis of thrombosis in MPN is complicated and caused by multiple
factors. Thrombosis may occur due to platelet activation, high production of tissue factor,
formation of platelet-neutrophil aggregates, increased RBC mass [199], imbalance in the
coagulation cascade and endothelial cell dysfunction [200]. The details for the pathogenesis
of thrombosis are illustrated in Figure 1B.

Hyperactive JAK2-dependent signalling promotes cell-intrinsic defects which promote
prothrombotic phenotype, and finally hemorrhage in MPN. Mechanism of thrombosis was
depicted from the elevated level of circulating platelets, neutrophils, and erythrocytes due
to the disturbed pathway of hematopoietic stem cell function. Their cellular interactions
create a hyper-adhesive and prothrombotic milieu predisposing to venous, arterial, or
microvascular thrombosis in MPN. The activated platelets can mediate extrinsic coagulation
pathway via endothelial P-selectin dependent mechanism, leading to enhance interaction
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with leukocytes (predominant in neutrophils). Platelet binds to leukocytes through the
activated endothelial cell via platelet surface receptors, GPIbα and PSGL-1, and mediate
the formation of platelet-leukocyte aggregates. Increased expression of P-selectin, CD40
ligand, and tissue factor (TF) signal a hyperactivated state of platelets [201]. Activated
neutrophils ejects their cellular components to form neutrophil extracellular traps (NETs)
to induce a hypercoagulable state [9]. Phosphorylation of erythroid Lutheran glycoprotein,
Lu, resulted in increased RBC binding to the endothelium. All of these faulty prothrombotic
environments enhanced tissue factor, such as activated factor VII (FVIIa) activity, which
eventually activate aberrant coagulation cascade. The disrupted endothelial cells due to
mutation leading to an increased in marrow and splenic microvessel density and neo-
angiogenesis, stimulating production of procoagulant and anti-fibrinolytic proteins, such
as Willebrand factor (VWF) deficiency, and plasminogen activator inhibitor 1 (PAI-1) [202].
Activated blood cells and endothelial cells stimulate production of inflammatory cytokines;
reactive oxygen species (ROS), hypoxia-inducible factors (HIFα), and tumour necrosis
factor α (TNF-α) give rise to chronic proinflammatory state of MPN [203].

8. Currently Available Drugs and Therapies for Thrombotic MPN
8.1. Hydroxyurea

Hydroxyurea (HU) or hydroxycarbamide acts as the first line cytoreductive therapy in
high-risk PV and ET patients [105,204,205]. This drug contains myelosuppressive activity,
anti-thrombotic effect [204], anti-metabolite effect [206], and did not enhance the risk of
leukaemia transformation in patients [207]. Moreover, this cytoreduction therapy helps
to prevent clot formation in high-risk PV [208,209], particularly in case of the thrombosis
occurs outside of the splanchnic venous system [210]. Similar effect was found in high-
risk ET patients, where the risk for them to develop additional thrombotic episodes was
reduced [211]. Besides, a lower dose of HU substantially reduces white cell counts, platelet
counts, and haemoglobin concentration in JAK2 V617F positive patients [212]. However, a
significant number of discontinuations of cytoreduction therapies were observed because
of the presence of cytopenias or development of intolerance in patients [210]. Alternative
therapies and non-leukemogenic drugs such as anagrelide or interferon-alpha (IFN-α)
should be considered for patients who develop severe HU-related toxicities [213]. The
current baseline level of extreme thrombocytosis in CALR-mutated ET (>60 years old) as
suggested by European LeukemiaNet (ELN) was >1500 × 109 platelets/L to proceed with
HU, whereas for adolescences (<60 years old), pegylated- IFN-α was preferred [214]. This
study showed that HU therapy caused a significant decrease in JAK2 V617F allele load
after 36 months in PV and ET patients [215]. However, PV and ET patients who presented
an additional non-driver mutation, such as TP53, ASXL1, RUNX1, SRSF2 and IDH2/2,
have persistent increase in JAK2 V617F allele burden while receiving HU treatment. This
genomic instability likely contributed to myelofibrotic transformation and acute myeloid
leukemia [216].

8.2. Interferon-Alpha

Same as HU, IFN-α is commonly used for cytoreduction as well [205]. IFN-α contains
an anti-proliferative effect which helps to induce cytogenetic remission and reduce JAK2
V617F allele burden [217]. IFN-α also inhibits bone marrow fibroblast progenitor cells
and confronts the activity of transforming growth factor, platelet-derived growth factor
and other cytokines [218]. Despite that, therapy discontinuation is noted in IFN-α treated
patients, since it shows a certain degree of association with side effects [217]. Most patients
experience fever and flu-like symptoms after taking the drug and require paracetamol
to relieve the symptoms. The long-term usage of IFN-α is limited in which interferon
toxicity also causes weakness, weight and hair loss, myalgia, and severe depression. The
problem can be solved by using pegylated forms of IFN-α [218]. In PV patients who
proved to be intolerant to IFN-α, HU can be substituted for the drugs or vice versa [219].
Recombinant IFN-α and ruxolitinib are suggested in cases with HU intolerance as second-
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line therapies for PV patients [220]. In younger PV patients (<60 years old) with no history
of thrombotic events, at least one of these criteria must be fulfilled before proceeding
with the cytoreductive treatment, including unresponsive to phlebotomy, persistent and
progressive leukocytosis (>15 × 109 WBC/L), symptomatic progressive splenomegaly, poor
haematocrit control, and patient with high cardiovascular risk and disease burden [221].

8.3. Anagrelide

Anagrelide contains anti-platelet activity without the leukemogenic effect. [211]. Ana-
grelide has been approved by the Food and Drug Administration (FDA) and acts as a
first-line agent to control the thrombocytosis in MPN [213]. For JAK2 V617F negative ET
patients, anagrelide provides a potent protection from thrombosis and is suitable to replace
HU as a second-line therapy if the patients cannot tolerate HU [211,222]. On the contrary,
therapy with anagrelide showed an increased incidence of arterial thrombosis, myelofi-
brotic transformation, major bleeding events and a decreased rate of venous thrombosis as
compared to HU. Treatment with anagrelide sometimes is accompanied by a progression
to anaemia and the occurrence of bone marrow fibrosis [212].

8.4. Ruxolitinib

Patients without the classical polycythaemia and thrombocythaemia symptoms, since
they start at a lower baseline compared to other MPN patients, tend to have lower blood
cell counts if treated with cytoreduction drugs like HU and IFN-α. In this patient group,
JAK inhibitor ruxolitinib (RUX) would be a better choice [223]. RUX is potential to reduce
thrombosis [224], increase cell apoptosis [225], and has been approved by the European
Medicines Agency and the FDA as a second-line therapy for PV patients who are intolerant
to HU and treatment for intermediate and high-risk PMF [226]. Still, its usage may be
limited since ruxolitinib is somehow associated with cytopenias. However, given the high
haemorrhage risk evident in MPN patients, especially those with abormal JAK/STAT
signalling due to gene mutations, it is important to study more different ways that can
direct inhibit JAK/STAT pathway with minimal adverse effect, then can subsequently
reduce thrombosis in patients [210]. The current recommendation of the RUX usage is in
patients with myelofibrosis-associated splenomegaly (intermediate-2 or high-risk disease)
or in case of intermediate-1 disease, as the first-line approach in highly symptomatic
splenomegaly [220]. The use of RUX is largely associated with reduced thrombotic risk in
PV and ET [227].

8.5. Momelotinib

From the perspective of symptoms resolution, momelotinib (MMB) is more inferior
when compared to RUX. MMB helps to decrease the need for a transfusion. Anaemia
and thrombocytopenia may arise when MMB is used for treatment; however, most of the
patients show improvement in their life quality [228].

8.6. Fedratinib

Similar to RUX and MMB, fedratinib (FED) is a JAK2 inhibitor kinase. FED improves
the spleen response in FED treated MPN patients [229] and the obvious result was seen
in PMF patients who are intolerant or resistant to RUX. However, the study with FED
was terminated when 7% of the patients died due to encephalopathy [230]. Recently, FDA
decided to lift the clinical hold since a few FED trials demonstrated that the prevalence of
encephalopathy is not more than 1% [231].

8.7. Pacritinib

PAC inhibits kinase proteins such as JAK2 and FLT3 and induces spleen reduction
with only a few haematologic toxicities [232]. PAC was suggested to be given to PMF
patients and pancytopenia, particularly thrombocytopenia [233].
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8.8. Busulfan

Busulfan is grouped as second-line cytoreductive therapy. Low dose busulfan can
control the haematologic parameters in PV and ET patients, and it is recommended to be
used in elderly patients [234]. However, this reagent is only reserved for specific situations,
it may induce a higher chance of leukaemic transformation and increase the chance of de-
veloping secondary malignancies [235,236]. Efficacy of busulfan was assessed in 36 patients
with advanced PV or ET refractory or intolerant to HU, which showed lower probability
of thrombosis, 11% and 83% achieved complete hematological response [237]. However,
busulfan give little disease-modifying activity because it is not targeting the mediator in the
JAK-STAT pathway. The symptom re-appeared when the therapy discontinued. Instead
of busulfan, RUX therapy has been given credit on reducing the incidence of thrombosis
compared to contemporary therapies like HU or busulfan [227].

8.9. Aspirin

Aspirin, as an antiplatelet agent, has been proved to ameliorate the risk of thrombosis
in PV and ET effectively. Low dose aspirin (100 mg daily) in low-risk PV shows a reduction
in VTE and major bleeding. In a higher-risk PV group, a combination of aspirin and
clopidogrel works better compared to aspirin alone. However, caution must be taken as
the combination treatment may increase severe bleeding in patients [205]. CALR mutated
ET patients tend to have a lower risk of thrombosis [141]. The use of antiplatelet agents in
ET with CALR mutations may cause undesirable effects and results in harm than bringing
benefit to the patients [238]. The current recommendations by European LeukemiaNet
(ELN) were the use of aspirin at low dose (75–100 mg/day) only in classical low-risk group
of CALR-mutated ET patients [214].

8.10. Anticoagulants

Anticoagulants display high efficacy in preventing venous VTE among the general
population [205]. Anticoagulants are sometimes used together with antiplatelet agents to
lower rates of thrombosis, but this combination therapy was observed to result in high
bleeding risk in a specific population. Thus, care must be taken for the usage of this
strategy [239]. Over the past few years, traditional anticoagulant vitamin K antagonist
was gradually replaced by direct oral anticoagulants (DOACs) in the management of
thrombotic complications due to their greater effectiveness in blood malignancy [240].
Experts suggested the use of DOACs, such as low-molecular-weight heparin or fonda-
parinux, as initial therapy prior to the use of conventional vitamin K antagonist to reduce
risk of VTE recurrent [241], and this is a valid therapeutic over warfarin for prolonged
thromboprophylaxis [242].

8.11. Phlebotomy

Over 20 years ago, the “Polycythaemia Vera Study Group” observed that PV patients
undergoing phlebotomy displays a lower incidence of acute leukaemia and other malig-
nancies, thus tend to have better overall median survival [243], however, an increased risk
of thrombosis was detected along with the therapy [244]. In clinical practice, an amount of
250–500 cm3 blood should be withdrawn daily or every other day until the haematocrit
level reaches between 40 and 45%. A smaller amount of 200–300 cm3 blood was suggested
to be withdrawn twice a week for the elderly or those with cardiovascular diseases [243,245].
The strong evidenced-based recommendations by the Italian Society of Hematology (SIE)
for phlebotomy in PV were; a hematocrit <45% or a lower target hematocrit (40–42%) in
patients with persistent hyper-viscosity. Platelet-lowering drugs or increased doses of the
drug should not be given to a patient with post-phlebotomy thrombocytosis due to poor
association with increased risk of vascular event, and to perform RBC apheresis instead of
phlebotomy in patient with a severe vascular complications [246].
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8.12. Radiophosphorus and Chlorambucil

Cytoreduction therapy with radiophosphorus or chlorambucil alleviates thrombotic
events in PV patients. Nevertheless, the drugs are accompanied by increase leukemogenic-
ity, which eventually leads to shorter survival [243].

8.13. Allogenic Stem-Cell Transplantation

This therapy is recommended for MF patients with high or intermediate-2 risk score
group. An exceptional cases of MF patients with intermediate-1 risk score was also rec-
ommended who reached strict criteria; refractory, transfusion-dependent anaemia, more
than 2% blasts in peripheral blood, has adverse cytogenetics abnormalities, or high-risk
mutations [220].

9. Conclusions

Although many gene mutations were detected in MPN, the causative roles of these
mutations in thrombosis are not completely understood. The investigation of these major
gene drivers such as JAK2, ASXL1, MPL, CALR, and TET2, and some SNPs are in progress.
In this review, we concluded that a strong correlation between JAK2 V617F and ASXL1
gene mutations and thrombotic events are consistent. MPL likely have no relationship to
thrombosis. As for JAK2 exon 12 polymorphisms, CALR and TET2 gene polymorphisms,
their association with the risk of thrombotic complications remained unclear. Gene poly-
morphisms in GPIIIa, XRCC1, FBG, F7, MMP9, MTHFR, and SDF-1 may also contribute
to thrombotic complications in patients with MPN, but not polymorphisms in HPA5, FAS,
FASL, TERT, ACE, and TLR4 genes that have little to no association with thrombotic events
in MPN. On the other hand, HPA5 and TLR4-D229G exhibit a possible protective role to
thrombosis in patients with MPN. In short, more studies are needed, and perhaps a large-
scale study with large sample sizes is necessary to delineate the effects of these mutations
on the pathogenesis of thrombosis in MPN and the gene-to-gene interactions that may
share the common diseases signalling pathways that lead to the development of thrombosis
in various sites seen in MPN patients.
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