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Abstract
Humphreys’ conjecture on blocks parametrises the blocks of a reduced enveloping algebra
of the Lie algebras of a reductive algebraic group over an algebraically closed field of posi-
tive characteristic. It is well-known to hold under Jantzen’s standard assumptions. We note
here that it holds under slightly weaker assumptions, by utilising the full generality of cer-
tain results in the literature. We also provide a new approach to prove the result in type G2

in characteristic 3, a case in which the previously mentioned weaker assumptions do not
hold. This approach requires some dimensional calculations for certain centralisers, which
we conduct in the Appendix for all the exceptional Lie algebras in bad characteristic.

Keywords Reduced enveloping algebra · Block decomposition · Lie algebra ·
Humphreys’ conjecture

Mathematics Subject Classification (2010) Primary: 17B35 · 17B50 · Secondary: 16D70 ·
17B15

1 Introduction

One of the most powerful tools in representation theory is the notion of the block decom-
position. Given a finite-dimensional K-algebra A, the block decomposition of A gives a
partition of the set of irreducible A-modules. We may then study the representation theory
of A block-by-block. In particular, if we well-understand one block (say, a block contain-
ing a trivial module) then we can often use translation functors to gain insight into the
structure of other blocks.

If G is an algebraic group over an algebraically closed field K of characteristic p > 0 and
g is its Lie algebra, then we may form, for each χ ∈ g∗, the reduced enveloping algebra
Uχ(g). This is a finite-dimensional K-algebra which is important to the representation the-
ory of g, and so we would like to understand its blocks. The leading result in this direction
is Humphreys’ conjecture on blocks.
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Conjecture (Humphreys’ conjecture on blocks) Suppose G is reductive and let χ ∈ g∗
be nilpotent. Then there exists a natural bijection between the blocks of Uχ(g) and the set
�χ/W•. In particular,

∣
∣{Blocks of Uχ(g)}∣∣ = ∣

∣�χ/W•
∣
∣ .

Here, �χ is a certain finite subset of h∗, where h is the Lie algebra of a maximal torus
T of G, and W is the Weyl group of (G, T ), which acts on h∗ via the dot-action and thus
induces an equivalence relation on �χ . The requirement that χ is nilpotent means that χ

vanishes on the Lie algebra b of a Borel subgroup B of G (which we may assume contains
T ).

This conjecture was proved by Humphreys [8] in 1971 for χ = 0, subject to the require-
ments that G be semisimple and that p > h, where h is the Coxeter number of (G, T ).
Humphreys then extended the result further to χ in so-called standard Levi form in 1998
in [9] (the paper [9] doesn’t explicitly state what assumptions are being made, but the
argument holds for any connected reductive algebraic group whose derived group is simply-
connected). Under three assumptions (which we will call Jantzen’s standard assumptions
[12, 13] and denote (A), (B) and (C)), the conjecture was then proved by Brown and Gor-
don in [2] for all χ ∈ g∗ when p > 2, and then improved by Gordon in [7] to include the
p = 2 case (so long as (A), (B) and (C) still hold). In fact, under assumptions (A), (B) and
(C), Humphreys’ conjecture on blocks allows us to count the number of blocks of Uχ(g)

for all χ ∈ g∗, as these assumptions are sufficient to reduce the computation to the case
of nilpotent χ (see [5], also Remark 3, infra). Furthermore, Braun [1] recently proved the
conjecture for g = sln with p|n, where assumptions (A) and (B) hold but (C) doesn’t. In
this case, however, the restriction to nilpotent χ is necessary, as the analogous result for
semisimple χ was shown in [1] to fail when p = n = 3.

Let us now explain Jantzen’s standard assumptions. These are: (A) that the derived group
of G is simply-connected; (B) that the prime p is good for G; and (C) that there exists a non-
degenerate G-invariant bilinear form on g. The primes that are not good for a given G can
be listed explicitly (and are all less that or equal to 5), and the existence of a non-degenerate
G-invariant bilinear form on g holds whenever g is simple.

The question motivating this (partially-expository) note is: what happens to Humphreys’
conjecture on blocks for nilpotent p-characters if we remove assumptions (B) and/or (C)?
We see in Section 3 that there is a natural surjection f : {Blocks of Uχ(g)} → �χ/W•
under only assumption (A). It turns out that this can be deduced from the literature [13, 15].
Furthermore, we observe in Theorem 4.1 that the known proof of the injectivity of f from
[7] (see also [13, C.5]) works without assumption (B). This therefore confirms Humphreys’
conjecture for the almost-simple groups over algebraically closed fields of the following
bad characteristics:

Corollary 1.1 Let G be an almost-simple group over an algebraically closed fieldK of bad
characteristic p > 0. Then Humphreys’ conjecture holds for G when p = 2 and G is of
type E6, E8 or G2, when p = 3 and G is of type E7, E8 or F4, and when p = 5 and G is
of type E8.

We also provide a different approach to the proof of the injectivity in Proposition 4.2,
which demonstrates that injectivity in fact holds whenever there exists a collection of irre-
ducible modules of a certain nice form (namely, which are so-called baby Vermamodules).
Premet’s theorem [18] shows the existence of such irreducible modules under assumptions
(A), (B) and (C), and we observe in Corollary 4.3 that the existence also holds for the
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almost-simple algebraic group of type G2 in characteristic 3 (where assumption (C) fails).
This thus proves Humphreys’ conjecture on blocks for G2 in characteristic 3, which could
not be deduced using the previous approach.

In the Appendix, we conduct some calculations with a view to finding other examples
where these irreducible modules exist. Unfortunately, the calculations do not lead to further
examples, but we hope the calculations are interesting in their own right, as they demonstrate
divisibility bounds for irreducible modules for certain nice χ and small primes.

2 Preliminaries on Lie Algebras

Throughout this note we work with a connected algebraic group G over an algebraically
closed field K of characteristic p > 0. More precise assumptions on G are given section-by-
section, but it is always at least a reductive algebraic group with simply-connected derived
subgroup. Inside G, we fix a maximal torus T and a Borel subgroup B of G containing
T . Write X(T ) for the character group of T , Y (T ) for the cocharacter group of T , and
〈·, ·〉 : X(T ) × Y (T ) → Z for the natural pairing. We write g for the Lie algebra of G, b
for the Lie algebra of B and h for the Lie algebra of T . As Lie algebras of algebraic groups
these are all restricted, so come equipped with p-th power maps g → g (resp. b → b,
h → h) written x �→ x[p] .

Set � to be the root system of G with respect to T , �+ to be the positive roots cor-
responding to B and � to be the simple roots. For α ∈ � we set α∨ ∈ Y (T ) to be
the corresponding coroot, and we write gα for the root space of α in g. We then define
n+ = ⊕

α∈�+ gα and n− = ⊕

α∈�+ g−α , so g = n− ⊕ h ⊕ n+. For α ∈ � we define
hα := dα∨(1) ∈ h, and we choose eα ∈ gα and e−α ∈ g−α so that [eα, e−α] = hα (see, for
example, [14] for more details on this procedure). We also choose a basis h1, . . . , hd of h
with the property that h

[p]
i = hi for all 1 ≤ i ≤ d .

Set W to be the Weyl group of �, which acts naturally on X(T ) and h∗. We fix ρ ∈
X(T ) ⊗Z Q to be the half-sum of positive roots in �. This then allows us to define the dot-
action of W on X(T ) as w · λ = w(λ + ρ) − ρ (noting that this action makes sense even if
ρ /∈ X(T )). When ρ ∈ X(T ), dρ(hα) = 1 for all α ∈ �. If ρ /∈ X(T ), we may still define
dρ ∈ h∗ such that dρ(hα) = 1 for all α ∈ �, since the derived subgroup being simply-
connected implies that these hα are linearly independent in h. We may therefore define the
dot action on h∗ similarly to how it was defined on X(T ). When we wish to specify that W

is acting through the dot-action, we may write W• instead of W .
We write U(g) for the universal enveloping algebra of g. We write Zp for the central

subalgebra of U(g) generated by all xp − x[p] with x ∈ g, which we call the p-centre
of U(g). Given χ ∈ g∗, we write Uχ(g) for the reduced enveloping algebra Uχ(g) :=
U(g)/〈xp − x[p] − χ(x)p | x ∈ g〉. Each irreducible g-module is finite-dimensional [12,
Theorem A.4] and so, by Schur’s lemma, each irreducible g-module is a Uχ(g)-module for
some χ ∈ g∗. For χ ∈ g∗, we recall that the centraliser of χ in g is defined as cg(χ) :=
{x ∈ g | χ([x, g]) = 0}.

The adjoint action of G on g induces the coadjoint action of G on g∗, and if χ,μ ∈ g∗ lie
in the same coadjoint G-orbit then Uχ(g) ∼= Uμ(g). The derived group of G being simply-
connected implies (see [13, 15]) that any μ ∈ g∗ lies in the same G-orbit as some χ ∈ g∗
with χ(n+) = 0. Putting these two observations together, we always assume χ(n+) = 0
throughout this paper.
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We can define, for each λ ∈ h∗, a one-dimensional b-module Kλ on which n+ acts as
zero and h acts via λ. The assumption that χ(n+) = 0 means that Kλ is a Uχ(b)-module if
and only if λ ∈ �χ , where

�χ := {λ ∈ h∗ | λ(h)p − λ(h[p]) = χ(h)p for all h ∈ h}
= {λ ∈ h∗ | λ(hi)

p − λ(hi) = χ(hi)
p for all 1 ≤ i ≤ d}

and that all irreducible Uχ(b)-modules are of this form. We therefore may define the baby
Verma module Zχ(λ) = Uχ(g) ⊗Uχ (b) Kλ, a Uχ(g)-module of dimension pN , where
N = ∣

∣�+∣
∣. Every irreducible Uχ(g)-module is the quotient of some baby Verma module

(see [12, Lem. B.4]).
Since W• acts on h∗, we may define an equivalence relation on �χ by setting λ ∼ μ if

and only if there exists w ∈ W with w · λ = μ. We write �χ/W• for the set of equivalence
classes of �χ under this relation.

If χ(b) = 0 then �χ = �0 = {dλ ∈ h∗ | λ ∈ X(T )} = X(T )/pX(T ). In this case,
W• in fact acts on �χ , so �χ/W• is the set of W•-orbits for this action. The condition that
χ(b) = 0 is sufficiently important in this paper that we make the definition

b⊥ := {χ ∈ g∗ |χ(b) = 0}.
We say that χ ∈ b⊥ is in standard Levi form if there exists a subset I ⊆ � of simple roots
such that

χ(e−α) =
{

1 if α ∈ I,

0 if α ∈ �+\I .

If I = � we say that χ is regular nilpotent in standard Levi form. In general, we say
χ ∈ g∗ is regular nilpotent if it is in the same G-orbit as the μ ∈ g∗ which is regular
nilpotent in standard Levi form.

3 Preliminaries on Blocks

Let us briefly recall the definition of the blocks of a finite-dimensional K-algebra A (one
can find more details in [3, I.16, III.9], for example). We say that one irreducible A-module
M is linked to another irreducible A-module N if Ext1(M,N) �= 0. This is not an equiv-
alence relation, but we may refine it to one. The equivalence classes under the resulting
equivalence relation are then called the blocks of A.

In this note, we are concerned with the case of A = Uχ(g) with χ ∈ b⊥. Under assump-
tions (A), (B) and (C) the results in this section are well-known – for example, they are
contained within the proof of Proposition C.5 in [12]. Nonetheless, we recall them for the
benefit of the reader, and to highlight when assumptions (A), (B) and (C) are or are not
necessary. Remember from Section 2 that each irreducible Uχ(g)-module is a quotient of a
baby Verma module Zχ(λ), and thus all irreducible Uχ(g)-modules appear as composition
factors of baby Verma modules. Recall also that the Grothendieck group G (Uχ(g)) of the
category of finite-dimensional Uχ(g)-modules is the abelian group generated by symbols
[M], for M running over the collection of all finite-dimensional Uχ(g)-modules, subject to
the relation that [P ] + [N ] = [M] if

0 → P → M → N → 0
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is a short exact sequence of Uχ(g)-modules. It is clear that in G (Uχ(g)) we have, for λ ∈
�0,

[Zχ(λ)] =
∑

L∈Irr(Uχ (g))

[Zχ(λ) : L][L],

where Irr(Uχ(g)) is the set of isomorphism classes of irreducible Uχ(g)-modules and
[Zχ(λ) : L] indicates the composition multiplicity of L in Zχ(λ).

We wish to define the map

f : {Blocks of Uχ(g)} → {[Zχ(λ)] | λ ∈ �0} ⊆ G (Uχ(g)),

as follows. Let B be a block of Uχ(g), and let E be an irreducible module in this block.
There must exist λ ∈ �0 such that E is a quotient of Zχ(λ). We then define f (B) =
[Zχ(λ)].

For this to be well-defined, it is necessary to see that it does not depend on our choice of
E ∈ B or on our choice of Zχ(λ) � E. For this, we note that U(g)G ⊆ Z(U(g)) acts on
the baby Verma module Zχ(λ) via scalar multiplication as follows. Under the assumption
that the derived group of G is simply-connected (assumption (A)), the argument of Kac
and Weisfeiler in [15, Th. 1] (c.f. [13, Th. 9.3]) shows that there exists an isomorphism
π : U(g)G → S(h)W• , where the dot-action on S(h) is obtained by identifying S(h) with
the algebra P(h∗) of polynomial functions on h∗ and then defining (w ·F)(λ) = F(w−1 ·λ)

for w ∈ W , F ∈ P(h∗) and λ ∈ h∗. This isomorphism allows us, as in [13], to define a
homomorphism cenλ : U(g)G → K which sends u ∈ U(g)G to π(u)(λ), viewing π(u) as
an element of P(h∗). Then U(g)G acts on Zχ(λ) via the character cenλ, for λ ∈ �0.

If E and E′ lie in the same block then it is easy to see that U(g)G must act the same on
both modules, and if Zχ(λE) � E and Zχ(λE′) � E′ then U(g)G acts on E via cenλE

and
on E′ by cenλE′ . Thus, cenλE

= cenλE′ and so, as in [13, Cor. 9.4] (see also [15, Th. 2]),
we have λE ∈ W•λE′ . One may then observe, using [12, C.2], that [Zχ(λE)] = [Zχ(λE′)].
This shows that f is well-defined. Furthermore, f is clearly surjective (just take the block
containing an irreducible quotient of the desired Zχ(λ)).

The above discussion also shows that [Zχ(λ)] ∼= [Zχ(μ)] if and only if λ ∈ W•μ. Thus,
there is a bijection

{[Zχ(λ)] | λ ∈ �0} ↔ �0/W•.
In particular, we get the following proposition (which also may more-or-less be found in
[12, C.5]), observing that at no point thus far have we required assumptions (B) or (C).

Proposition 3.1 Let G be a connected reductive algebraic group over an algebraically
closed field K of characteristic p > 0, with simply-connected derived subgroup, and let
χ ∈ b⊥. Then there exists a natural surjection between the set of blocks of Uχ(g) and the
set �χ/W• = �0/W•. In particular,

∣
∣{Blocks of Uχ(g)}∣∣ ≥ |�0/W•| .

Remark 1 We have used in the above argument the fact that, when assumption (A) holds,
there exists an isomorphism U(g)G

∼−→ S(h)W• . This result dates back to Kac and Weisfeiler
[15], who proved it for connected almost-simple algebraic groups under the assumption that
G �= SO2n+1(K) when p = 2.1 According to Janzten [13, Rem. 9.3], the argument of Kac

1In [15, Th. 1] it is required that either p �= 2 or ρ ∈ X(T ), where ρ is the half sum of positive roots. This is
then generalised to the given assumptions in [15, Th. 1 BIS]. The W -action used in the latter theorem can be
easily seen to be the same as the dot-action we are using.
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and Weisfeiler holds for reductive g whenever assumption (A) holds. Jantzen further gives
an argument [13, 9.6] using reduction mod p techniques which holds under his standard
assumptions. In fact, slightly weaker assumptions are sufficient: assumption (B) is only
needed to ensure p is not a so-called torsion prime of �∨ (in the sense of [4, Prop. 8]),
which is also satisfied for the bad prime 3 in case G2, while assumption (C) is only needed
to ensure that the (derivatives of the) simple roots are linearly independent in h∗, which is
also satisfied for p = 2 in type F4 and p = 3 in type G2. In particular, the argument of Kac-
Weisfeiler is unnecessary for our later result (Corollary 4.3) that Humphreys’ conjecture on
blocks holds for the almost-simple algebraic group of type G2 in characteristic 3.

4 Upper Bound

Humphreys’ conjecture on blocks claims that the map f defined in the previous section is,
in fact, a bijection. What remains, therefore, is to show that

∣
∣{Blocks of Uχ(g)}∣∣ ≤ |�0/W•| .

Gordon [7] has shown that this inequality holds under assumptions (A), (B) and (C), and
a similar argument is reproduced in [12, C.5]. We give a version of their argument here in
order to observe that it does not require assumption (B), and to highlight where assumption
(C) is necessary:

The discussion in Section 3 shows that Uχ(g) has |�0/W•| blocks if, for each λ ∈ �0, all
composition factors of the baby Verma module Zχ(λ) lie in the same block. This property
holds for the μ ∈ g∗ which is regular nilpotent in standard Levi form, since the correspond-
ing baby Verma module has a unique maximal submodule and so is indecomposable, and
it is well-known that all composition factors of an indecomposable module lie in the same
block. Therefore Uχ(g) has |�0/W•| blocks for all χ in the G-orbit of μ.

Suppose now that the intersection of b⊥ with the G-orbit of μ is dense in b⊥. By [6, Prop.
2.7],

D|�0/W•| := {χ ∈ b⊥ |Uχ(g) has at most |�0/W•| blocks}
is closed in b⊥. Since (G · μ) ∩ b⊥ ⊆ D|�0/W•|, Humphreys’ conjecture on blocks would
follow.

When can we say that (G · μ) ∩ b⊥ is dense in b⊥? Well, if there exists a G-equivariant
isomorphism 
 : g ∼−→ g∗, we can set y := 
−1(μ). Then [11, 6.3, 6.7] (which make no
assumptions on p) establish that the G-orbit of y is dense in the nilpotent cone N of g, and
so the G-orbit of μ is dense in 
(N ). Thus, (G · μ) ∩ b⊥ is dense in b⊥, and so (cf. [7, Th.
3.6]) under assumptions (A) and (C) we get Humphreys’ conjecture on blocks:

Theorem 4.1 Let G be a connected reductive algebraic group over an algebraically closed
fieldK of characteristic p > 0, with simply-connected derived subgroup. Suppose that there
exists a G-module isomorphism 
 : g ∼−→ g∗. Let χ ∈ b⊥. Then

∣
∣{Blocks of Uχ(g)}∣∣ = ∣

∣�χ/W•
∣
∣ .

Remark 2 It is straightforward to see that this theorem implies Corollary 1.1 from the
Introduction.

Remark 3 Suppose χ ∈ g∗ with χ(n+) = 0. Under assumption (C), there exists a G-module
isomorphism 
 : g → g∗, so we may fix x ∈ g such that 
(x) = χ . In g it is well-known
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that x has a (unique) Jordan decomposition x = xs + xn, where xs is semisimple, xn is
nilpotent, and [xs, xn] = 0, and thus we may define the Jordan decomposition χ = χs + χn

where χs = 
(xs) and χn = 
(xn). In fact, Kac and Weisfeiler [15, Th. 4] show that a
Jordan decomposition of χ may be defined even when assumption (C) does not hold, so
long as assumption (A) does instead: we say that χ = χs + χn is a Jordan decomposition if
there exists g ∈ G such that g · χs(n

+ ⊕ n−) = 0, g · χn(h ⊕ n+) = 0, and, for α ∈ �+,
g · χ(hα) �= 0 only if g · χ(e±α) = 0. Under assumptions (A) and (B), Friedlander and
Parshall [5] show that there is an equivalence of categories between {Uχ(g) − modules}
and {Uχ(cg(χs)) − modules} (the categories of finite-dimensional modules). It can then
further be shown under those assumptions (see, for example, [12, B.9]) that there is an
equivalence of categories between {Uχ(cg(χs)) − modules} and {Uχn(cg(χs)) − modules}.
Under assumptions (A) and (B), this then often allows us to reduce representation-theoretic
questions to the case of nilpotent χ .

When assumption (C) holds, we may do this for Humphreys’ conjecture on blocks (we
assume here that χ is chosen so that g may be taken as 1 in the definition of the Jordan
decomposition, recalling that reduced enveloping algebras are unchanged by the coad-
joint G-action on their corresponding p-character). The equivalence of categories between
{Uχ(g)−modules} and {Uχn(l)−modules} (where l := cg(χs)) clearly preserves the number
of blocks of the respective algebras. Thus, Humphreys’ conjecture on blocks for (l, χn) will
imply it for (g, χ) if and only if

∣
∣�χ/W•

∣
∣ = ∣

∣�χn/W ′•
∣
∣, where W ′ is the Weyl group corre-

sponding to l. What is W ′? Well, the root system for l is {α ∈ � | χs(hα) = 0} so it is easy
to see that W ′ lies inside W(�χ), the set of w ∈ W which fix �χ setwise (it is straightfor-
ward to see under our assumptions that it doesn’t matter in defining this subgroup whether
we consider the usual action or the dot-action of W , since ρ ∈ �0). When assumption (C)
holds, W(�χ) is parabolic (see [17, Lem. 7], [10, Prop. 1.15]), and so one can easily check
that W ′ = W(�χ) in this case (see [2, Rem. 3.12(3)]). This then obviously implies that
∣
∣�χ/W•

∣
∣ = ∣

∣�χ/W ′•
∣
∣, and so what remains is to show that

∣
∣�χ/W ′•

∣
∣ = ∣

∣�χn/W ′•
∣
∣. One

can check that there exists λ ∈ �χ such that w(λ) = λ for all w ∈ W ′ = W(�χ). Then the

map �χ = λ + �0 → �0 = �χn , λ + τ �→ τ , induces a bijection �χ/W ′•
∼−→ �χn/W ′• as

required.
Braun [1, Th. 6.23, Ex. 6.25] has shown that when assumption (C) fails to hold, it can be

the case that Humphreys’ conjecture on blocks holds for nilpotent χ but fails for general χ .
Specifically, set g = sl3, p = 3, and choose χ ∈ sl∗3 such that χ(e11−e22) = χ(e22−e33) �=
0 (using eij for the usual basis elements of gl3). Recalling that the Weyl group for sl3 is the
symmetric group S3, one can check that W(�χ) = {Id, (1, 2, 3), (1, 3, 2)} and so is not a
parabolic subgroup of W . Thus, W ′ �= W(�χ) and so there can be linkages under W which
do not exist under W ′. In particular, choosing suitable χ , one can use this to show that
∣
∣�χ/W•

∣
∣ <

∣
∣�χn/W ′•

∣
∣. Braun’s argument then shows that the latter value is the number

of blocks of Uχn(l) and so the number of blocks of Uχ(g). We note that this argument
highlights that [17, Lem. 7] requires the assumption that p be very good for the root system.

The argument above highlights one approach to proving Humphreys’ conjecture on
blocks; namely, to obtain the desired result it suffices to find a dense subset of b⊥ lying
inside D|�χ/W•|. Note that b⊥ = K

N , where N = ∣
∣�+∣

∣, and recall that any non-empty

open subset is dense in K
N when it is equipped with the Zariski topology. For each λ ∈ �0,

define

Cλ := {χ ∈ b⊥ | All composition factors of Zχ(λ) are in the same block of Uχ(g) },
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and define
C :=

⋂

λ∈�0

Cλ.

It is straightforward from the arguments in Section 3 to see that C ⊆ D|�χ/W•|. Further-

more, if for each λ ∈ �0 we can find a dense open subset Ĉλ of b⊥ with Ĉλ ⊆ Cλ,
then

Ĉ :=
⋂

λ∈�0

Ĉλ

would be a dense open subset of b⊥ contained in C ⊆ D|�χ/W•|. Finding the desired Ĉλ

therefore provides an approach to proving Humphreys’ conjecture on blocks, and in the rest
of this section we explore one particular way of obtaining such Ĉλ.

For each λ ∈ �0, consider the set

Sλ := {χ ∈ b⊥ | Zχ(λ) is an irreducible Uχ(g)-module}.
It is remarked in [12, C.6] that Sλ is open in b⊥. Specifically, if we define, for s =
1, . . . , pN − 1, the set

Nλ,s = {χ ∈ b⊥ | Zχ(λ) has a Uχ(g)-submodule of dimension s},
then clearly Sλ = ⋂pN−1

s=1 Nc
λ,s (where, for X ⊆ b⊥, Xc denotes b⊥ \ X). The openness of

Sλ then follows from the closure of each Nλ,s in b⊥ (which is proved in [12, C.6], and one
can check that the proof doesn’t use assumptions (B) or (C)).

Proposition 4.2 Let G be a connected reductive algebraic group over an algebraically
closed field K of characteristic p > 0, with simply-connected derived subgroup. Let
χ ∈ b⊥, and suppose that for each λ ∈ �0 there exists μλ ∈ b⊥ such that Zμλ(λ) is an
irreducible Uμλ(g)-module. Then

∣
∣{Blocks of Uχ(g)}∣∣ = ∣

∣�χ/W•
∣
∣.

Proof Our assumption guarantees that each Sλ, for λ ∈ �0, is non-empty. Each Sλ is thus a
dense open subset of b⊥ and it is clear that Sλ ⊆ Cλ for each λ ∈ �0. We therefore have that
⋂

λ∈�0
Sλ is a dense open subset of b⊥. Since

⋂

λ∈�0
Sλ ⊆ C ⊆ D|�χ/W•| and D|�χ/W•| is

closed in b⊥, we conclude b⊥ = D|�χ/W•|. Hence,
∣
∣{Blocks of Uχ(g)}∣∣ ≤ ∣

∣�χ/W•
∣
∣ and,

together with Proposition 3.1, this gives the desired result.

Corollary 4.3 Suppose G is the almost-simple simply-connected algebraic group of type
G2 over an algebraically closed field K of characteristic 3. If χ ∈ g∗ satisfies χ(b) = 0,
then Uχ(g) has exactly

∣
∣�χ/W•

∣
∣ = 3 blocks.

Proof The calculations in Section A.2, infra, show that, for each λ ∈ �0, the regular nilpo-
tent χ in standard Levi form gives an irreducible baby Verma module. The result then
follows from Proposition 4.2 (and one can check directly that

∣
∣�χ/W•

∣
∣ = 3).

Remark 4 From the discussion in Section 3, it is sufficient to check the condition of
Proposition 4.2 for representatives λ ∈ �0/W•.

Remark 5 By Premet’s theorem [18, 20], Proposition 4.2 gives a proof of Humphreys’ con-
jecture on blocks when Jantzen’s standard assumptions hold. This is similar to the proof of
Proposition 4.1, supra.
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Proposition 4.2 shows that Humphreys’ conjecture on blocks holds when irreducible
baby Verma modules exist. The next proposition shows what happens when they don’t.

Proposition 4.4 Let λ ∈ �0. If there does not existμλ ∈ b⊥ such thatZμλ(λ) is irreducible,
then there exists 1 ≤ s ≤ pN − 1 such that, for all χ ∈ b⊥, Zχ(λ) has an s-dimensional
submodule.

Proof If there does not exist μλ ∈ b⊥ such that Zμλ(λ) is irreducible then, using the above
notation,

pN−1
⋂

s=1

Nc
λ,s = ∅.

Since each Nc
λ,s is open in b⊥, and each non-empty open set in b⊥ is dense, this implies

that there exists 1 ≤ s ≤ pN − 1 such that Nc
λ,s = ∅. This implies that Nλ,s = b⊥, as

required.

We end by observing an obvious generalisation of the statement that, for λ ∈ �0, Sλ is
open dense in b⊥ whenever there exists χ ∈ b⊥ with Zχ(λ) irreducible.

Proposition 4.5 Let λ ∈ �0. Suppose that there exists χλ ∈ b⊥ and 0 ≤ k ≤ N such that
every submodule of Zχλ(λ) has dimension divisible by pk . Then the subset

Vλ := {μ ∈ b⊥ |Each Uμ(g)-submodule of Zμ(λ) has dimension divisible by pk}
is a dense open subset of b⊥.

Proof The result follows easily once we note that

Vλ =
⋂

1≤s≤pN

pk
�s

Nc
λ,s .

Remark 6 This proposition therefore allows us to use the results of Appendix A to find
dense open subsets Vλ of b⊥. These subsets are thus candidates for the sets Ĉλ discussed
earlier; all that remains to show is that Vλ ⊆ Cλ for all λ ∈ �0. If this were to hold, then
the previous discussion would give a proof of Humphreys’ conjecture on blocks for such g.

Appendix A: Divisibility bounds

By Proposition 4.2, Humphreys’ conjecture on blocks holds whenever, for each λ ∈ �0,
there exists μλ ∈ b⊥ such that Zμλ(λ) is an irreducible Uμλ(g)-module. The natural choice
for such μλ is the χ ∈ g∗ which is regular nilpotent in standard Levi form. For such χ , one
way to try to show that each Zχ(λ) is irreducible is to show that each dim(Zχ(λ)) is divisible
by pN , where N = ∣

∣�+∣
∣. This appendix contains some computations to determine some

k ≤ N such that all Uχ(g)-modules have dimension divisible by pk . Unfortunately, except
for the case of G2 in characteristic 3, we do not find k to be equal to N when assumptions
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(B) or (C) fail. In a few cases, we are even able to show that pN does not divide dim(Zχ(λ))

for some λ ∈ �0.
In this appendix, we assume G is an almost-simple simply-connected algebraic group

over an algebraically closed field K of positive characteristic p > 0, and we write � for its
(indecomposable) root system. Specifically, let GZ be a split reductive group scheme over
Z with root data (X(T ),�, α �→ α∨), let TZ be a split maximal torus of GZ, and let gZ be
the Lie ring of GZ. Throughout this appendix, we think of G as being obtained from GZ

through base change, so G = (GZ)K, T = (TZ)K and g = gZ ⊗Z K. In particular, the
elements eβ (β ∈ �) and hα (α ∈ �) form a Chevalley basis of g.

Under these assumptions, g is a simple Lie algebra unless � is of type An with p dividing
n + 1; of type Bn, Cn, Dn, F4 or E7 with p = 2; or of type E6 or G2 with p = 3 (see, for
example, [13, 6.4(b)]). If g is simple then there exists a G-equivariant isomorphism g

∼−→ g∗
coming from the Killing form, so assumption (C) holds. We also note that assumption (A)
holds for all such G, since G equals its derived subgroup.

We consider here both those G which satisfy assumption (C) and those which don’t (i.e.
we also consider those G with g non-simple). We focus our attention on the exceptional
types E6, E7, E8, F4 and G2. We generally assume throughout this appendix that χ is in
standard Levi form with I = �, although we don’t make that assumption in this preliminary
discussion.

When G satisfies assumptions (A), (B) and (C), Premet’s theorem [18, 20] (proving the
second Kac-Weisfeiler conjecture [16]) shows that the dimension of each Uχ(g)-module is
divisible by pdim(G·χ)/2. We note also that when (A) and (B) hold but (C) does not - i.e.
when � = An and p divides n + 1 - Premet’s theorem shows the same result for faithful
irreducible Uχ(g)-modules. When χ is regular nilpotent and assumption (C) holds, we know
that dim(G ·χ)/2 = N . Hence, in this situation we have that all irreducible Uχ(g)-modules
have dimension divisible by pN . This means that all baby Verma modules are irreducible,
and so all irreducible Uχ(g)-modules are baby Verma modules.

Outside of the setting of Premet’s theorem, there are other ways to determine powers of
p which divide the dimensions of all Uχ(g)-modules. Two particular results are relevant
here. Both utilize the centraliser in g of χ ∈ g∗, which the reader will recall is defined as
cg(χ) := {x ∈ g | χ([x, g]) = 0}.

The first result comes from Premet and Skryabin [21], and applies when the prime p is
non-special for the root system �. This means that p �= 2 when � is Bn, Cn or F4, and
p �= 3 when � = G2 (i.e. p does not divide any non-zero off-diagonal entry of the Cartan
matrix).
Proposition A.1 Let χ ∈ b⊥, and let d(χ) := 1

2codimg(cg(χ)). If p is non-special for �,
then every Uχ(g)-module has dimension divisible by pd(χ).

The second proposition we use is also due to Premet [13, 18, 19]. To apply it, recall that
a restricted Lie algebra is called unipotent if for all x ∈ g there exists r > 0 such that
x[pr ] = 0, where x[pr ] denotes the image of x under r applications of [p]. In particular, this
applies to n− and any restricted subalgebras of it.

Proposition A.2 Let χ ∈ g∗. If m is a unipotent restricted subalgebra of g with
χ([m,m]) = 0, χ(m[p]) = 0 and m ∩ cg(χ) = 0, then every finite-dimensional
Uχ(g)-module is free over Uχ(m).
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In applying the second proposition when χ ∈ b⊥, the reader should note the following.
Suppose m, a K-subspace of g, has a basis consisting of elements e−α for α ∈ 
, where 


is some subset of �+. The condition χ([m,m]) = 0 is clearly satisfied if χ(e−α−β) = 0
for all α, β ∈ 
. Furthermore, we have in U(g) that

(
∑

α∈


cαe−α

)p

−
(

∑

α∈


cαe−α

)[p]
=

∑

α∈


cp
α (e

p
−α − e

[p]
−α) =

∑

α∈


cp
αe

p
−α

by the semilinearity of the map x �→ xp − x[p], and we have
(

∑

α∈


cαe−α

)p

∈
∑

α∈


cp
αe

p
−α +

∑

γ1,...,γp∈


Ke−γ1−γ2−···−γp

where we interpret e−γ1−γ2−···−γp = 0 if −γ1 − γ2 −· · ·− γp /∈ �. We hence conclude that
(

∑

α∈


cαe−α

)[p]
∈

∑

γ1,...,γp∈


Ke−γ1−γ2−···−γp .

In particular, if χ(e−γ1−γ2−···−γp ) = 0 for all γ1, . . . , γp ∈ 
, we find that χ(m[p]) = 0.
Furthermore, if 
 satisfies the condition that α, β ∈ 
, α + β ∈ � implies α + β ∈ 
 (we
call this the condition of 
 being closed), then it is enough to check that χ(e−α−β) = 0
for all α, β ∈ 
. Finally, we observe that 
 being closed is enough to show that m is a
subalgebra. So we may obtain a corollary to Proposition A.2:

Corollary A.3 Let χ ∈ b⊥ and let
 be a closed subset of�+. Suppose that χ(e−α−β) = 0
for all α, β ∈ 
. Furthermore, let m be the subspace of g with basis consisting of the e−α

with α ∈ 
, and suppose that m∩ cg(χ) = 0. Then every finite-dimensional Uχ(g)-module
has dimension divisible by p|
|.

The above discussion actually shows that this corollary can be improved a bit. Given two
roots α, β ∈ �, write Cα,β := q + 1 where q ∈ N is maximal for the condition that β − qα

lies in � (so, in particular, [eα, eβ ] = ±Cα,βeα+β if α + β ∈ �). Let us say that 
 is p-
closed if, for all α, β ∈ 
 with α + β ∈ �, either α + β ∈ 
 or p divides Cγ,δ for all
γ, δ ∈ 
 with γ + δ = α + β. Then we easily obtain the following.

Corollary A.4 Let χ ∈ b⊥, and let 
 be a p-closed subset of �+. Suppose that
χ(e−α−β) = 0 for all α, β ∈ 
 with α + β ∈ 
. Furthermore, let m be the subspace of g
with basis consisting of the e−α with α ∈ 
, and suppose that m ∩ cg(χ) = 0. Then every
finite-dimensional Uχ(g)-module has dimension divisible by p|
|.

Let us consider a bit further the condition that m ∩ cg(χ) = 0. Let x ∈ m ∩ cg(χ). We
can then write

x =
∑

α∈


cαe−α .

The fact that x ∈ cg(χ) means that χ([x, g]) = 0. This is equivalent to the requirement that
χ([x, eβ ]) = 0 for all β ∈ � and χ([x, h]) = 0 for all h ∈ h. Let � be the subset of �−
such that χ(eα) �= 0 for α ∈ �. We then have, for β ∈ �, that

0 = χ([x, eβ ]) =
∑

γ∈

β−γ∈�

cγ χ([e−γ , eβ ])



M. Westaway

and, for h ∈ h, that
0 = χ([x, h]) =

∑

γ∈�

cγ γ (h)χ(e−γ ).

Showing that m ∩ cg(χ) = 0 then involves showing that there is no non-zero solution to
these equations in cγ .

We now turn to the application of these propositions. In each case, we take χ to be
regular nilpotent in standard Levi form and we apply one of the propositions or its corollar-
ies to determine a divisibility bound for the dimensions of Uχ(g)-modules. We do this for
� of exceptional type. Principally, we compute the centraliser cg(χ) and use its descrip-
tion to determine the bound. For � = G2 we give the explicit computations, but for the
larger rank examples the results were obtained using Sage [22]. Because of this, when
there is a choice we take the structure coefficients to be as used in the Sage class LieAl-
gebraChevalleyBasis with category. However, we use the labelling of the simple roots as
given in [23].

Remark 7 Our computations of dim cg(χ) can be compared with the computations of
dim cg(e) for e = ∑

α∈� eα which can be deduced from [23, Cor. 2.5, Thm. 2.6]. The results
are listed in Table 1.

When g is simple, χ and e are identified through the G-equivariant isomorphism g
∼−→ g∗,

and thus cg(χ) = cg(e). In the subsections below, we nonetheless include calculations
of cg(χ) for the bad primes for which g is simple, since we give explicit bases for the
centralisers in these case and in some instances we use such bases to show the reducibility
of the corresponding baby Verma modules.

In the other cases (which we label with an asterisk (*) in Table 1), however, we find
that the dimensions of cg(e) and cg(χ) differ from each other. Note also that we give in
Table 1 the dimension of cg(χ) for G2 in characteristic 3, even though we do not give it in
Section A.2 below, because it is easy to compute.

Remark 8 In our discussion of g so far, the Lie algebra g of G has been obtained as g =
gZ⊗ZK, where gZ is a Z-form of the complex simple Lie algebra gC. In particular, gZ is the
Z-form coming from the chosen Chevalley basis of gC, which is what gives our Chevalley
basis of g. We may then also define gFp

= gZ ⊗Z Fp , so that g = gFp
⊗Fp

K. Therefore,
if χFp

: gFp
→ Fp is a linear form, we may define χ : g → K by linear extension. It

Table 1 Dimensions of
centralisers of regular nilpotent
elements and p-characters

G p dim cg(e) dim cg(χ)

E6 2 8 8

E6 3* 9 10

E7 2* 14 15

E7 3 9 9

E8 2 16 16

E8 3 12 12

E8 5 10 10

F4 2* 8 6

F4 3 6 6

G2 2 4 4

G2 3* 3 2
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is clear that any χ in standard Levi form may be obtained in this way. Our calculations in
Sage are calculations with gFp

and χFp
rather than g. However, when χ is obtained through

scalar extension from an Fp-linear form, the above discussion shows that determining the
elements of g which lie in cg(χ) comes down to finding solutions to certain linear equations
with coefficients in Fp . This in particular shows that cgFp

(χFp
) ⊗Fp

K = cg(χ), so our
calculations over Fp also lead to the results over K.

A.1 G2 in characteristic 2

Suppose � = G2 and p = 2. Since p is non-special in this case, we may apply Propo-
sition A.1. Let us therefore compute cg(χ). Set x ∈ g be written as x = ∑

γ∈� cγ eγ +
∑

γ∈� dγ hγ , with the cγ , dγ lying in K. Then the relations required for x ∈ cg(χ) are as
follows:

• 0 = χ([x, e3α+2β ]) = 0,
• 0 = χ([x, e3α+β ]) = c−3α−2βχ([e−3α−2β, e3α+β ]) = c−3α−2βχ(e−β) = c−3α−2β ,
• 0 = χ([x, e2α+β ]) = c−3α−βχ([e−3α−β, e2α+β ]) = c−3α−βχ(e−α) = c−3α−β,
• 0 = χ([x, eα+β ]) = c−2α−βχ([e−2α−β, eα+β ]) = c−2α−βχ(2e−α) = 0,
• 0 = χ([x, eβ ]) = c−α−βχ([e−α−β, eβ ]) = c−α−βχ(e−α) = c−α−β ,
• 0 = χ([x, eα]) = c−α−βχ([e−α−β, eα]) = c−α−βχ(−3e−α) = −3c−α−β = c−α−β ,
• 0 = χ([x, hα]) = c−αχ(α(hα)e−α) + c−βχ(β(hα)e−β) = 2c−α − 3c−β = c−β ,
• 0 = χ([x, hβ ]) = c−αχ(α(hβ)e−α) + c−βχ(β(hβ)e−β) = −c−α + 2c−β = c−α ,
• 0 = χ([x, e−α]) = dαχ([hα, e−α]) + dβχ([hβ, e−α]) = dαχ(−α(hα)e−α) +

dβχ(−α(hβ)e−α) = −2dα + dβ = dβ ,
• 0 = χ([x, e−β ]) = dαχ([hα, e−β ]) + dβχ([hβ, e−β ]) = dαχ(−β(hα)e−β) +

dβχ(−β(hβ)e−β) = 3dα − 2dβ = dα ,
• 0 = χ([x, e−α−β ]) = cαχ([eα, e−α−β ]) + cβχ([eβ, e−α−β ]) = 3cαχ(e−β) −

cβχ(e−α) = cα + cβ ,
• 0 = χ([x, e−2α−β ]) = cα+βχ([eα+β, e−2α−β ]) = −2cα+βχ(e−α) = 0,
• 0 = χ([x, e−3α−β ]) = c2α+βχ([e2α+β, e−3α−β ]) = −c2α+βχ(e−α) = c2α+β ,
• 0 = χ([x, e−3α−2β ]) = c3α+βχ([e3α+β, e−3α−2β ]) = −c3α+βχ(e−α) = c3α+β .

We therefore conclude that

cg(χ) = {ae−2α−β + b(eα + eβ) + ceα+β + de3α+2β | a, b, c, d ∈ K}
and so is 4-dimensional. Hence, d(χ) = 1

2 (14 − 4) = 5, and so by Proposition A.1 we
conclude that every finite-dimensional Uχ(g)-module has dimension divisible by 25.

We furthermore note that a Uχ(g)-module of dimension 25 does indeed exist in this case.
Let λ ∈ �0 be such that λ(hβ) = 0, and let us write ω1 ∈ �0 for the map with ω1(hα) = 1
and ω1(hβ) = 0. We may then define a Uχ(g)-module homomorphism

Zχ(λ) → Zχ(λ − ω1), vλ �→ e−2α−βvλ−ω1 .

This has a kernel of dimension 25 and so both the kernel and image of this homomorphism
are Uχ(g)-modules of dimension 25.

A.2 G2 in characteristic 3

Suppose � = G2 and p = 3. Note that this Lie algebra is not simple, since it has an
ideal generated by the short roots. In this case p is not non-special for � so we cannot
apply Proposition A.1. Instead, we want to apply Proposition A.2, and so we need to find
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an appropriate m. Take m = n−. In this case, 
 = �+ is closed and χ(e−γ−δ) = 0 for all
γ, δ ∈ 
. In the notation of the previous discussion, we have � = {−α,−β}.

Let x = ∑

γ∈�+ cαe−α . Then the relations required for x ∈ cg(χ) are as follows:

• 0 = χ([x, e3α+2β ]) = 0,
• 0 = χ([x, e3α+β ]) = c3α+2βχ([e−3α−2β, e3α+β ]) = c3α+2βχ(e−β) = c3α+2β ,
• 0 = χ([x, e2α+β ]) = c3α+βχ([e−3α−β, e2α+β ]) = c3α+βχ(e−α) = c3α+β ,
• 0 = χ([x, eα+β ]) = c2α+βχ([e−2α−β, eα+β ]) = c2α+βχ(2e−α) = 2c2α+β ,
• 0 = χ([x, eβ ]) = cα+βχ([e−α−β, eβ ]) = cα+βχ(e−α) = cα+β ,
• 0 = χ([x, eα]) = cα+βχ([e−α−β, eα]) = cα+βχ(−3e−α) = 0,
• 0 = χ([x, hα]) = cαχ(α(hα)e−α) + cβχ(β(hα)e−β) = 2cα − 3cβ = 2cα ,
• 0 = χ([x, hβ ]) = cαχ(α(hβ)e−α) + cβχ(β(hβ)e−β) = −cα + 2cβ .

It is easy to see that these relations force x = 0, so m∩cg(χ) = 0. Hence, Proposition A.2
shows that every finite-dimensional Uχ(g)-module has dimension divisible by 36, which is
3dimn−

. So in this case each baby Verma module Zχ(λ) is irreducible.

A.3 F4 in characteristic 2

Set � = F4 and p = 2. Since p is not non-special in this case we need to use Proposi-
tion A.2; in fact, we use Corollary A.4. Set m to be the subspace of n− with basis given
by the elements e−α for α ∈ 
 := �+ \ {α2 + 2α3}. It is straightforward to see that 


is 2-closed. We want to see that m ∩ cg(χ) = 0. We do this by giving a basis of cg(χ) as
follows:

(1) e−α2−α3−α4 + e−α2−2α3 ;
(2) eα3 + eα4 ;
(3) eα3+α4 ;
(4) eα1+α2+2α3+α4 + eα2+2α3+2α4 ;
(5) eα1+2α2+3α3+α4 + eα1+2α2+2α3+2α4 ;
(6) e2α1+3α2+4α3+2α4 .

It is clear from this basis description that cg(χ) ∩ m = 0. Hence, Corollary A.4 applies
and we get that every finite-dimensional Uχ(g)-module has dimension divisible by 2|
| =
2|�+|−1 = 223.

Now, set r to be the K-subspace of g generated by eβ for all β ∈ �+ \ {α3, α4}, by
h1, h2 +h3, h3 +h4, by eα3 +eα4 , and by e−α2−α3−α4 +e−α2−2α3 , e−α3−α4 and e−α3 +e−α4 .
This has dimension 29. One may check that it is in fact a subalgebra of g (using that the
characteristic of K is 2). One may also check that χ([r, r]) = 0, and that χ(r[p]) = 0 (since
the characteristic is 2, we have (x + y)[2] = [x, y] whenever x[2] = y[2] = 0).

Then Uχ(r) has dimension 229 and has a 1-dimensional trivial module Kχ . Therefore,
Uχ(g) ⊗Uχ (r) Kχ is a Uχ(g)-module of dimension 223, so the divisibility bound we found
is strict.

A.4 F4 in characteristic 3

Set � = F4 and p = 3. Since p is non-special in this case, we may apply Proposition A.1.
We must therefore give cg(χ), and Sage computations show that cg(χ) is the K-subspace
of g with the following basis:

(1) e−α2−2α3−α4 + 2e−α1−α2−α3−α4 + e−α1−α2−2α3 ;
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(2) 2eα1 + 2eα2 + eα3 + eα4 ;
(3) eα2+α3+α4 + 2eα2+2α3 + 2eα1+α2+α3 ,
(4) eα2+2α3+2α4 + eα1+2α2+2α3 + eα1+α2+2α3+α4 ;
(5) eα1+2α2+3α3+α4 + 2eα1+2α2+2α3+2α4 ;
(6) e2α1+3α2+4α3+2α4 .

Therefore, dim cg(χ) = 6, and so d(χ) = 23 = ∣
∣�+∣

∣ − 1. Hence, every finite-
dimensional Uχ(g)-module has dimension divisible by 323.

A.5 E6 in characteristic 2

Suppose � = E6 and p = 2. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α2−α3−α4 + e−α2−α3−α6 + e−α3−α4−α6 ;
(2) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 ;
(3) eα1+α2 + eα2+α3 + eα3+α4 + eα3+α6 + eα4+α5 ;
(4) eα1+α2+α3+α4 + eα2+α3+α4+α5 + eα1+α2+α3+α6 + eα3+α4+α5+α6 ;
(5) eα1+α2+α3+α4+α6 + eα2+2α3+α4+α6 + eα2+α3+α4+α5+α6 ;
(6) eα1+2α2+2α3+α4+α6 + eα1+α2+2α3+α4+α5+α6 + eα2+2α3+2α4+α5+α6 ;
(7) eα1+2α2+2α3+α4+α5+α6 + eα1+α2+2α3+2α4+α5+α6 ;
(8) eα1+2α2+3α3+2α4+α5+2α6 .

In particular we see that dim cg(χ) = 8, and so d(χ) = 35 = ∣
∣�+∣

∣ − 1. Hence, every
finite-dimensional Uχ(g)-module has dimension divisible by 235.

A.6 E6 in characteristic 3

Suppose � = E6 and p = 3. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α2−α3−α4−α5 + 2e−α3−α4−α5−α6 + e−α2−α3−α4−α6 + 2e−α1−α2−α3−α4 +
e−α1−α2−α3−α6 ;

(2) 2e−α1 + e−α2 + 2e−α4 + e−α5 ;
(3) h1 + 2h2 + h4 + 2h5;
(4) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 ;
(5) eα1+α2+α3 + eα2+α3+α4 + eα3+α4+α5 + eα2+α3+α6 + eα3+α4+α6 ;
(6) eα1+α2+α3+α4 + eα2+α3+α4+α5 + 2eα1+α2+α3+α6 + 2eα3+α4+α5+α6 ;
(7) 2eα1+α2+α3+α4+α6 + 2eα2+2α3+α4+α6 + eα2+α3+α4+α5+α6 + 2eα1+α2+α3+α4+α5 ;
(8) 2eα1+2α2+2α3+α4+α6 + eα1+α2+2α3+α4+α5+α6 + eα2+2α3+2α4+α5+α6 ;
(9) eα1+2α2+2α3+α4+α5+α6 + 2eα1+α2+2α3+2α4+α5+α6 ;

(10) eα1+2α2+3α3+2α4+α5+2α6 .

Hence, dim(cg(χ)) = 10 and so d(χ) = 34 = ∣
∣�+∣

∣ − 2. Proposition A.1 then says that
all Uχ(g)-modules have dimension divisible by 334.

Now, set r be the K-subspace of g generated by eβ for all β ∈ �+, by h1, h2, h4, h5 and
h6, and by 2e−α1 + e−α2 and 2e−α4 + e−α5 . This has dimension 43. One may check that
it is in fact a subalgebra of g (using that the characteristic is 3). One may also check that
χ([r, r]) = 0 and that χ(r[p]) = 0.
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Then Uχ(r) has dimension 343 and has a 1-dimensional module Kχ . Therefore
Uχ(g)⊗Uχ (r)Kχ is a Uχ(g)-module of dimension 335. In particular, this shows that it is not
true in this case that all baby Verma modules are irreducible Uχ(g)-modules. It obviously,
however, does not imply that our divisibility bound is strict.

A.7 E7 in characteristic 2

Suppose � = E7 and p = 2. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α1−2α2−2α3−2α4−α5−α7 + e−α2−2α3−2α4−2α5−α6−α7 + e−α1−α2−2α3−2α4−α5−α6−α7

+ e−α1−α2−α3−2α4−2α5−α6−α7 ;
(2) e−α1−α2−α3−α4−α5 + e−α3−2α4−α5−α7 + e−α1−α2−α3−α4−α7 + e−α2−α3−α4−α5−α7;
(3) e−α3−α4−α5 + e−α4−α5−α7 + e−α3−α4−α7 ;
(4) e−α1 + e−α3 + e−α7 ;
(5) h1 + h3 + h7;
(6) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 + eα7 ;
(7) eα1+α2 + eα2+α3 + eα3+α4 + eα4+α5 + eα4+α7 + eα5+α6 ;
(8) eα1+α2+α3+α4 + eα2+α3+α4+α5 + eα2+α3+α4+α7 + eα4+α5+α6+α7 + eα3+α4+α5+α6 ;
(9) eα1+α2+α3+α4+α7 + eα2+α3+α4+α5+α7 + eα3+α4+α5+α6+α7 + eα3+2α4+α5+α7 ;

(10) eα1+α2+α3+2α4+α5+α7 + eα2+2α3+2α4+α5+α7 + eα2+α3+2α4+α5+α6+α7 +
eα3+2α4+2α5+α6+α7 ;

(11) eα1+α2+α3+2α4+α5+α6+α7 + eα2+2α3+2α4+α5+α6+α7 + eα2+α3+2α4+2α5+α6+α7 ;
(12) eα1+2α2+2α3+2α4+α5+α7 + eα1+α2+2α3+2α4+α5+α6+α7 + eα1+α2+α3+2α4+2α5+α6+α7 ;
(13) eα1+2α2+2α3+2α4+2α5+α6+α7 +eα1+α2+2α3+3α4+2α5+α6+α7 +eα2+2α3+3α4+2α5+α6+2α7 ;
(14) eα1+2α2+3α3+3α3+2α5+α6+α7 + eα1+2α2+2α3+3α4+2α5+α6+2α7 ;
(15) eα1+2α2+3α3+4α4+3α5+2α6+2α7 .

We conclude that dim(cg(χ)) = 15 and so d(χ) = 59 = ∣
∣�+∣

∣ − 4. We then conclude
from Proposition A.1 that every finite-dimensional Uχ(g)-module has dimension divisible
by 259.

A.8 E7 in characteristic 3

Suppose � = E7 and p = 3. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α2−α3−α4−α5 + 2e−α2−α3−α4−α7 + 2e−α3−α4−α5−α6 + e−α3−α4−α5−α7 +
e−α4−α5−α6−α7 ;

(2) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 + eα7 ;
(3) eα1+α2+α3 + eα2+α3+α4 + eα3+α4+α5 + eα3+α4+α7 + eα4+α5+α6 + eα4+α5+α7 ;
(4) eα1+α2+α3+α4+α5 + eα2+α3+α4+α5+α6 + 2eα2+α3+α4+α5+α7 + eα3+2α4+α5+α7 +

eα3+α4+α5+α6+α7 ;
(5) 2eα1+α2+α3+2α4+α5+α7 + eα1+α2+α3+α4+α5+α6+α7 + eα2+2α3+2α4+α5+α7 +

eα2+α3+2α4+α5+α6+α7

+ 2eα3+2α4+2α5+α6+α7 ;
(6) eα1+2α2+2α3+2α4+α5+α7 + eα1+α2+2α3+2α4+α5+α6+α7 + 2eα1+α2+α3+2α4+2α5+α6+α7 ;
(7) eα1+2α2+2α3+2α4+2α5+α6+α7 +2eα1+α2+2α3+3α4+2α5+α6+α7 +eα2+2α3+3α4+2α5+α6+2α7 ;
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(8) eα1+2α2+3α3+3α4+2α5+α6+α7 + 2eα1+2α2+2α3+3α4+2α5+α6+2α7 ;
(9) eα1+2α2+3α3+4α4+3α5+2α6+2α7 .

In particular we see that dim cg(χ) = 9, and so d(χ) = 62 = ∣
∣�+∣

∣ − 1. Every finite-
dimensional Uχ(g)-module therefore has dimension divisible by 362.

A.9 E8 in characteristic 2

Suppose � = E8 and p = 2. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α2−2α3−3α4−4α5−2α6−α7−2α8+e−α1−α2−2α3−3α4−3α5−2α6−α7−2α8 +
e−α1−2α2−2α3−3α4−3α5−2α6−α7−α8

+ e−α1−2α2−2α3−2α4−3α5−2α6−α7−2α8 ;
(2) e−α2−2α3−2α4−2α5−α6−α8 +e−α2−α3−α4−2α5−2α6−α7−α8 +e−α2−α3−2α4−2α5−α6−α7−α8

+ e−α3−2α4−2α5−2α6−α7−α8 ;
(3) e−α2−α3−α4−α5−α6 + e−α2−α3−α4−α5−α8 + e−α4−2α5−α6−α8 + e−α3−α4−α5−α6−α8 ;
(4) e−α4−α5−α6 + e−α4−α5−α8 + e−α5−α6−α8 ;
(5) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 + eα7 + eα8 ;
(6) eα1+α2 + eα2+α3 + eα3+α4 + eα4+α5 + eα5+α6 + eα5+α8 + eα6+α7

(7) eα1+α2+α3+α4 + eα2+α3+α4+α5 + eα3+α4+α5+α6 + eα3+α4+α5+α8 + eα5+α6+α7+α8 +
eα4+α5+α6+α7 ;

(8) eα1+α2+α3+α4+α5+α6+α8+eα2+α3+α4+2α5+α6+α8+eα3+2α4+2α5+α6+α8+eα1+α2+α3+α4

+α5 + α6 + α7 + eα4+2α5+2α6+α7+α8 + eα3+α4+2α5+α6+α7+α8 ;
(9) eα1+α2+α3+α4+α5+α6+α7+α8 + eα2+α3+α4+2α5+α6+α7+α8 + eα3+2α4+2α5+α6+α7+α8

+ eα3+α4+2α5+2α6+α7+α8 ;
(10) eα3+2α4+3α5+2α6+α7+2α8 + eα2+2α3+2α4+2α5+2α6+α7+α8 + eα2+α3+2α4+3α5+2α6+α7+α8

+ eα1+α2+α3+2α4+2α5+2α6+α7+α8 ;
(11) eα2+2α3+3α4+3α5+2α6+α7+α8+eα2+2α3+2α4+3α5+2α6+α7+2α8+eα1+2α2+2α3+2α4+2α5+2α6 + α7 + α8 + eα1+α2+2α3+2α4+3α5+2α6+α7+α8 ;
(12) eα1+α2+2α3+3α4+3α5+2α6+α7+α8+eα1+α2+2α3+2α4+3α5+2α6+α7+2α8+eα1+2α2+2α3+2α4

+3α5 + 2α6 + α7 + α8;
(13) eα2+2α3+3α4+4α5+3α6+2α7+2α8+eα1+α2+2α3+3α4+4α5+3α6+α7+2α8+eα1+2α2+3α3+3α4

+3α5 + 2α6 + α7 + 2α8 + eα1+2α2+2α3+3α4+4α5+2α6+α7+2α8 ;
(14) eα1+2α2+3α3+4α4+4α5+2α6+α7+2α8+eα1+2α2+2α3+3α4+4α5+3α6+2α7+2α8+eα1+2α2+3α3

+3α4 + 4α5 + 3α6 + α7 + 2α8;
(15) eα1+2α2+3α3+4α4+5α5+4α6+2α7+2α8 + eα1+2α2+3α3+4α4+5α5+3α6+2α7+3α8 ;
(16) e2α1+3α2+4α3+5α4+6α5+4α6+2α7+3α8 .

In particular, dim(cg(χ)) = 16 and so d(χ) = 116 = ∣
∣�+∣

∣ − 4. Proposition A.1 then says
that all finite-dimensional Uχ(g)-modules have dimension divisible by 2116.

A.10 E8 in characteristic 3

Suppose � = E8 and p = 3. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:
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(1) e−α1−α2−2α3−2α4−2α5−α6−α8+e−α1−α2−α3−2α4−2α5−α6−α7−α8+e−α2−2α3−2α4−2α5−α6 − α7 − α8 + 2e−α1−α2−α3−α4−2α5−2α6−α7−α8 + 2e−α3−2α4−3α5−2α6−α7−α8 +
e−α2−α3−2α4−2α5−2α6−α7−α8 ;

(2) e−α3−α4−α5−α6 + 2e−α3−α4−α5−α8 + e−α4−α5−α6−α8 + e−α5−α6−α7−α8 +
2e−α4−α5−α6−α7 ;

(3) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 + eα7 + eα8 ;
(4) eα1+α2+α3 +eα2+α3+α4 +eα3+α4+α5 +eα4+α5+α6 +eα4+α5+α8 +eα5+α6+α8 +eα5+α6+α7 ;
(5) eα1+α2+α3+α4+α5+α6+α8 + 2eα2+α3+α4+2α5+α6+α8 + eα3+2α4+2α5+α6+α8

+ 2eα4+2α5+2α6+α7+α8 + eα2+α3+α4+α5+α6+α7+α8 + eα3+α4+2α5+α6+α7+α8 ;
(6) eα1+α2+α3+α4+2α5+α6+α7+α8+2eα1+α2+α3+2α4+2α5+α6+α8+2eα2+α3+α4+2α5+2α6+α7

+α8 + eα2+α3+2α4+2α5+α6+α7+α8 + eα2+2α3+2α4+2α5+α6+α8 ;
(7) eα1+2α2+2α3+2α4+2α5+α6+α8+eα1+α2+2α3+2α4+2α5+α6+α7+α8+eα3+2α4+3α5+2α6+α7

+2α8+eα2+2α3+2α4+2α5+2α6+α7+α8+2eα2+α3+2α4+3α5+2α6+α7+α8+eα1+α2+α3+2α4

+2α5 + 2α6 + α7 + α8;
(8) eα2+2α3+3α4+3α5+2α6+α7+α8+2eα2+2α3+2α4+3α5+2α6+α7+2α8+eα1+2α2+2α3+2α4+2α5+2α6 + α7 + α8+2eα1+α2+α3+2α4+3α5+2α6+α7+2α8+2eα1+α2+2α3+2α4+3α5+2α6+α7

+α8;
(9) eα2+2α3+3α4+4α5+3α6+2α7+2α8+2eα1+α2+2α3+3α4+4α5+3α6+α7+2α8+2eα1+2α2+3α3+3α4

+3α5 + 2α6 + α7 + 2α8+eα1+2α2+2α3+3α4+4α5+2α6+α7+2α8 ;
(10) eα1+2α2+3α3+4α4+4α5+2α6+α7+2α8 + eα1+2α2+2α3+3α4+4α5+3α6+2α7+2α8

+ 2eα1+2α2+3α3+3α4+4α5+3α6+α7+2α8

(11) eα1+2α2+3α3+4α4+5α5+4α6+2α7+2α8 + 2eα1+2α2+3α3+4α4+5α5+3α6+2α7+3α8 ;
(12) e2α1+3α2+4α3+5α4+6α5+4α6+2α7+3α8 .

Therefore dim(cg(χ)) = 12 and so d(χ) = 118 = ∣
∣�+∣

∣ − 2. Proposition A.1 then says
that each Uχ(g)-module has dimension divisible by 3118.

A.11 E8 in characteristic 5

Suppose � = E8 and p = 5. Since p is non-special in this case, we may apply Propo-
sition A.1. We must therefore give cg(χ), and Sage computations show that cg(χ) is the
K-subspace of g with the following basis:

(1) e−α1−α2−α3−α4−α5−α6+4e−α1−α2−α3−α4−α5−α8+e−α2−α3−α4−α5−α6−α8+2e−α3−α4

−2α5 − α6 − α8+2e−α2−α3−α4−α5−α6−α7+2e−α4−2α5−α6−α7−α8+3e−α3−α4−α5−α6−α7 − α8;
(2) eα1 + eα2 + eα3 + eα4 + eα5 + eα6 + eα7 + eα8 ;
(3) eα1+α2+α3+α4+α5 + eα2+α3+α4+α5+α6 + eα2+α3+α4+α5+α8+2eα4+2α5+α6+α8+3eα3+α4

+α5 + α6 + α8 + eα3+α4+α5+α6+α7 + 2eα4+α5+α6+α7+α8 ;
(4) eα1+α2+α3+α4+α5+α6+α8 + 4eα2+α3+α4+2α5+α6+α8 + eα3+2α4+2α5+α6+α8 +

3eα1+α2+α3+α4+α5+α6+α7

+ 4eα4+2α5+2α6+α7+α8 + 3eα2+α3+α4+α5+α6+α7+α8 + eα3+α4+2α5+α6+α7+α8 ;
(5) eα1+2α2+2α3+2α4+2α5+α6+α8+eα1+α2+2α3+2α4+2α5+α6+α7+α8+2eα3+2α4+3α5+2α6+α7

+2α8+2eα3+2α4+3α5+2α6+α7+2α8+3eα2+α3+2α4+3α5+2α6+α7+α8+2eα1+α2+α3+2α4

+2α5 + 2α6 + α7 + α8;
(6) eα2+2α3+3α4+3α5+2α6+α7+α8+4eα2+2α3+2α4+3α5+2α6+α7+2α8+eα1+2α2+2α3+2α4+2α5+2α6 + α7 + α8+2eα1+α2+α3+2α4+3α5+2α6+α7+2α8+4eα1+α2+2α3+2α4+3α5+2α6+α7

+α8;
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(7) eα2+2α3+3α4+4α5+3α6+2α7+2α8+4eα1+α2+2α3+3α4+4α5+3α6+α7+2α8+4eα1+2α2+3α3

+3α4 + 3α5 + 2α6 + α7 + 2α8+eα1+2α2+2α3+3α4+4α5+2α6+α7+2α8 ;
(8) eα1+2α2+3α3+4α4+4α5+2α6+α7+2α8 + eα1+2α2+2α3+3α4+4α5+3α6+2α7+2α8

+ 4eα1+2α2+3α3+3α4+4α5+3α6+α7+2α8 ;
(9) eα1+2α2+3α3+4α4+5α5+4α6+2α7+2α8 + 4eα1+2α2+3α3+4α4+5α5+3α6+2α7+3α8 ;

(10) e2α1+3α2+4α3+5α4+6α5+4α6+2α7+3α8 .

In particular we see that dim cg(χ) = 10, and so d(χ) = 119 = ∣
∣�+∣

∣ − 1. Hence, every
finite-dimensional Uχ(g)-module has dimension divisible by 5119.
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