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Abstract: Bridge bearings are one of the most important components in bridge systems. Typical
bearings are extensively used in small- to medium-span highway bridges since they are economical
and offer a good performance at service-level conditions. On the other hand, common bridge
bearings possess a low performance-to-weight ratio under combined compression and shear loading
conditions (low crashworthiness and specific energy absorption), due to their heavy weight, high
costs, and the non-recyclability of steel and elastomer materials. With the help of a relatively higher
ratio of a 3D-printed triply periodic minimal surface (TPMS) structure, this method can potentially
be used for bridge bearing applications. However, the cyclic responses of this TPMS structure used
in bearings have never been completely investigated. This study is the world’s first to investigate
the effects of normal pressure on the cyclic responses of novel 3D-printed TPMS bridge bearings. A
numerical TPMS unit cell model considering the effects of normal pressure on cyclic responses of
a novel TPMS bridge bearing is developed and validated with experimental data. The numerical
results reveal new insights related to the nonlinear effects of normal pressure on the cyclic behaviours
of 3D-printed TPMS bearings. Higher normal pressures result in a higher degree of nonlinearity in
the dynamic cyclic responses of the 3D-printed TPMS bearings.

Keywords: crashworthiness; specific energy absorption; triply periodic minimal surface (TPMS);
a novel 3D-printed TPMS bridge bearing

1. Introduction

Over 70 years, bearings have been widely used in bridge system as they are able
to transfer/accommodate the loads/displacements in vertical and horizontal directions
between the superstructure (girders) and the substructure (columns) [1,2]. In bridge bearing
applications, they can also experience rotational displacements [3,4]. It is important to
design these typical bridge bearings with sufficient vertical stiffness and lateral flexibility,
in order to support the weight of the superstructure of a bridge and facilitate horizon-
tal/rotational deformations induced in girders [1,5–7]. Thus, the base isolation of bearings
is an alternative method to reduce the seismic demand in bridge systems [8,9]. In a critical
review [10], bridge bearing failure can potentially lead to accelerated bridge deterioration
or result in bridge damage. As such, this damage is prevented in bridge bearings subjected
to any expected loading condition.

The practical use of a bearing type is based on several factors, including geometry,
deflection, predicted loading, maintenance, displacement and rotation demands, existing
clearance, strategies, designer preference, and availability, as well as cost [11]. Accordingly,
standard bridge bearings can be classified into two groups: either elastomeric bearings
or high-load multirotational (HLMR) bearings (spherical, pot, and disc) [12]. An elas-
tomeric bearing is a combination of elastomeric pads (rubber layers) without/with any
reinforcement (steel shims or fibre fabric), called plain and reinforced elastomeric bearings,
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respectively. The reinforcement has a high tensile capacity, in order to increase the vertical
stiffness of the bearing by limiting bulging of the rubber.

Nevertheless, common bridge bearings are still likely to have a bulging behaviour
under compression and to experience the stress concentrations at the edges of interactions
between reinforcement and rubber layers. In a case of a fully bonded bridge bearing,
if the cyclic demands of bearing exceed a certain capacity limit, the bearing failure will
be initiated, resulting in the internal rupture of the bearing, which begins to propagate
towards until the entire delamination [13]. These two phenomena might cause the bridge
to fail immediately if their design is insufficient under compression and cyclic condition.
Furthermore, the stress concentrations in the bridge bearings with steel reinforcement can
potentially lead to the failure of delamination at the interaction layers between steel shims
and rubber. In fact, the installation approaches of bridge bearings in bridge systems around
the world can be found as fully bonded, fully unbonded, and single-side bonded. In this
paper, only the cyclic response of a fully bonded bridge bearing is considered. According
to a review in [13], there are two major reasons to investigate the proposed model for a
fully bonded installation: One is because under extreme cyclic loading, the bearings with a
fully bonded installation, among others, are most useful to restrain the deformations of
the superstructure due to the fully high capacity of their shear stiffness. Another reason is
that these fully bonded connections of bridge bearings are very compatible with any steel
bridges, which are widely used due to highly economic costs, facilitating the mechanical
connections between the bearings and bridges.

Further drawbacks of using typical bridge bearings are that they are hard to be recycled
and have high labour costs, as well as heavy weight with steel and rubber materials. It is
clear that these bearings have a low performance-to-weight ratio when subjected to any
loading conditions. At this point, in terms of better designs for bridge bearing applications,
the development of 3D-printed TPMS bridge bearings under any static and dynamic
loading has been inspired by eliminating the aforementioned problems. Based on our
previous works [1,14–18], the use of 3D-printed TPMS structures, which have a relatively
higher performance-to-weight ratio, has been considered for bridge bearing applications,
resulting in improving their behaviours under any anticipated loading, compared to
traditional bearings.

Meanwhile, the help of additive manufacturing technology (3D printing) offers the
opportunity to realise TPMS structures with complex designs and features. These struc-
tures are minimal surfaces that are periodic in three-coordinate directions with zero mean
curvatures, free of self-intersections. Furthermore, 3D-printed TPMS structures have better
properties compared to common structures as continuous curves, resulting in previous
layers supporting the following layers without support during the additive manufacturing
process [19–21]. Unlike other lattice structures, they are required for their support or limited
by their angle [22].

Regarding the benefits of using 3D-printed TPMS structures for bridge bearing applica-
tions, Pasakorn and Sakdirat [15] have studied the determination of mechanical properties
and energy-absorption capability of a 3D-printed triply periodic minimal surface (TPMS)
sandwich lattice bridge bearing model subject to combined compression–shear loading. It
is found that the proposed model can better behave under the combined compression–shear
loading than a common bridge bearing model due to relatively higher shear capacity and
specific energy absorption. Additionally, its failure modes observed via the stress–strain
curve of this novel TPMS bridge bearing model are identified as the hysteretic failure
behaviour under the same loading condition.

According to bridge bearings’ operative performance in bridge systems, the increase
in normal pressure on the bearings under cyclic loading conditions is one of the main
factors affecting the response of the bridge. This circumstance causes a reduction in shear
modulus or shear stiffness when the normal pressure increases [23,24]. In addition to the
performance of bearings, the force–displacement hysteresis loops of bearings become wide,
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exhibiting stable and powerful energy dissipation capacity, when the bearings start to slide
on the concrete substructure with an initial friction coefficient of 0.25–0.5 [25].

As such, the compressive response of the TPMS bridge bearing is required to be
extensively investigated to observe the TPMS structure design to prevent its buckling or
yield failures in compression due to its porous geometry, but the cyclic response of the
bearings to the bridge also needs to be considered. This means that they can continue to
accommodate any horizontal displacements under cyclic loading or thermal movement
conditions, if the proposed bearing does not buckle in compression first. It is necessary to
deeply understand and predict the shear behaviour under cyclic loading of this novel bridge
bearing with the help of the TPMS structure possessing a relatively higher performance-to-
weight ratio, in order to improve its mechanical properties.

To the best of our knowledge, following a critical review of the literature available in
bridge bearing applications, no numerical models have been proposed to describe the cyclic
response of a novel 3D-printed TPMS bridge bearing, especially when the bearing is affected
by the increase in normal pressures. The shear response of a novel 3D-printed TPMS bridge
bearing is likely to be fairly sensitive to the variation in axial load. This variation in axial
load is mostly induced by the normal pressure excitation during cyclic loading.

This paper describes a series of simulations of a novel 3D-printed TPMS bridge bearing
used for any small- to medium-span highway bridges around the world. A proposed model
is designed and developed based on the experimental results [26] to correctly predict its
cyclic behaviour. The theory and numerical model design, including materials and methods,
will be detailed in the following section, followed by the comparative results and discussion
of the effects of normal pressures on the proposed model under cyclic loadings. These
insights will be useful for further developing TPMS bridge bearings under seismic loading.

2. Theoretical Background for the Cyclic Response of a Novel TPMS Bridge
Bearing (NTBB)
Fully Bonded Novel TPMS Bridge Bearing

Before investigating the effects of normal pressures on the cyclic responses of a novel
TPMS bridge bearing, it is necessary to identify all different force components acting on
the NTBB imposed to cyclic loading. Generally, the possible force components consist of
the compression and shear forces, pure bending moment, tensile force, and vertical force-
induced bending moment. As can be seen in Figure 1, during cyclic loading conditions,
the compression and shear force are observed to act on the NTBB, which also supports
the weight of a bridge superstructure at the same time. In most cases of the pure bending
moment, it occurs when the top surface of the superstructure rotates around the transverse
axis because of the considerable flexural deformation. In addition to this component, it is
unlikely to appear a pure moment phenomenon for such stiff structures as short piers and
abutments. However, they can face this phenomenon when their substructure foundations
fail. The tensile force of the NTBB will occur in a case of continuous superstructure
with nonuniform settlement between adjacent substructures. In terms of the vertical
force-induced bending moment, it typically increases from the P-Delta effect due to the
combination of a dead load and horizontal displacements.

Figure 1 demonstrates the force diagram for the novel bonded TPMS bridge bearing,
which is useful to comprehend its failure pattern. As seen from Figure 1, in any case of
a flexural deformation-dominated substructure, the fully bonded TPMS bridge bearing
subjected to combined compression–shear loading condition would be also imposed to the
pure bending moment that results from the rotation at the upper surface of the substructure.
Therefore, all these three load components would create bending moments around the
neutral axis on the bearing. The superimposition is used for the bending moments resulting
from various sources; the biggest moments would appear at the upper and lower sides
of the bearing, at which the connecting set bolts are located. Thus, they are prone to high
and complex local stresses which is the major cause of bolt fracture. Note that the bolt
fracture damages are not considered in this study. This is because the rupture of the TPMS
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structures used for bridge bearing applications is likely to be observed first before that of
bolts, due to their porosity. The design of a proposed 3D-printed TPMS bridge bearing
representing the novel TPMS bridge bearing will be described in the following section.
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Figure 1. Force diagram for a fully bonded novel TPMS bridge bearing with flexural deformation-
dominated bridge substructure.

3. A Proposed 3D-Printed TPMS Bridge Bearing (TPMSB)
3.1. Proposed TPMS Bridge Bearing Specimens

From our previous work [15], three schwarz primitive (SP) unit cell specimens
(50 mm × 50 mm × 50 mm) are fabricated using a stereolithography (SLA)-based 3D
printer, as shown in Figure 2, and then they are tested subjected to uniaxial compression.
Meanwhile, in this paper, the previously proposed model using an SP structure will be
further designed, validated, and investigated under cyclic loading with normal pressure
variations in the following sections.

Vibration 2023, 6, FOR PEER REVIEW  4 
 

 

 
Figure 1. Force diagram for a fully bonded novel TPMS bridge bearing with flexural deformation-
dominated bridge substructure. 

Figure 1 demonstrates the force diagram for the novel bonded TPMS bridge bearing, 
which is useful to comprehend its failure pattern. As seen from Figure 1, in any case of a 
flexural deformation-dominated substructure, the fully bonded TPMS bridge bearing sub-
jected to combined compression–shear loading condition would be also imposed to the 
pure bending moment that results from the rotation at the upper surface of the substruc-
ture. Therefore, all these three load components would create bending moments around 
the neutral axis on the bearing. The superimposition is used for the bending moments 
resulting from various sources; the biggest moments would appear at the upper and lower 
sides of the bearing, at which the connecting set bolts are located. Thus, they are prone to 
high and complex local stresses which is the major cause of bolt fracture. Note that the 
bolt fracture damages are not considered in this study. This is because the rupture of the 
TPMS structures used for bridge bearing applications is likely to be observed first before 
that of bolts, due to their porosity. The design of a proposed 3D-printed TPMS bridge 
bearing representing the novel TPMS bridge bearing will be described in the following 
section. 

3. A Proposed 3D-Printed TPMS Bridge Bearing (TPMSB) 
3.1. Proposed TPMS Bridge Bearing Specimens 

From our previous work [15], three schwarz primitive (SP) unit cell specimens (50 
mm × 50 mm × 50 mm) are fabricated using a stereolithography (SLA)-based 3D printer, 
as shown in Figure 2, and then they are tested subjected to uniaxial compression. Mean-
while, in this paper, the previously proposed model using an SP structure will be further 
designed, validated, and investigated under cyclic loading with normal pressure varia-
tions in the following sections. 

 
Figure 2. The SP unit cell bearing specimen manufactured by a 3D printer. 

3.2. A Proposed TPMS Bridge Bearing Model 
Figure 3 shows the proposed 3D TPMS bridge bearing lattice model using several 

schwarz primitive (SP) cellular structures without thickness. Basically, the proposed 
TPMS bridge bearing model can be represented as a combination of several SP unit cells, 
which can provide the same behaviours under any loading conditions without 

Figure 2. The SP unit cell bearing specimen manufactured by a 3D printer.

3.2. A Proposed TPMS Bridge Bearing Model

Figure 3 shows the proposed 3D TPMS bridge bearing lattice model using several
schwarz primitive (SP) cellular structures without thickness. Basically, the proposed TPMS
bridge bearing model can be represented as a combination of several SP unit cells, which
can provide the same behaviours under any loading conditions without considering the
geometry sizes. Schwarz surface is one of the most used triply periodic minimal surfaces
(TPMSs) for multiple applications, which provides a relatively high performance-to-weight
ratio when subjected to compression. Basically, these TPMS structures can be created with
any approaches. For example, in this paper, we use the first approach, which generates a
network struct throughout an SP structure for bridge bearing applications. Furthermore, it
is a well-known skeletal Schwarz primitive for the proposed bridge bearing model without
thickness, based on one of the subdomains divided by the surface as a solid. Another
approach is to generate a termed sheet-based or double Schwarz primitive for modelling
an SP bridge bearing with thickness, by plotting two minimal surfaces with two variant
level sets of the constant j together, resulting in an offset from a hypothetical surface at the
average of the two level-set surfaces. The second method to nearly create an SP structure
model is dependent on the following equation:
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where t defines the unit cell size of a lattice (Figure 3) and j refers to the volume fraction of
the areas that is divided by the surface [27]. The volume fraction of a lattice describes the
relative density of its elements. It can also be employed to modify the thickness of the model
and to compare models with the same volume. It is interesting to mention that in this paper,
we only utilise the first approach for creating a skeletal SP bridge bearing model. Figure 4
demonstrates a Schwarz primitive unit cell CAD model (a 50 mm × 50 mm × 50 mm vol-
ume) used for bridge bearing applications with a combination of the several ones in this
paper. The 3D-printed bearing unit model is designed, conforming to the bearing standard
used in Thailand [28].
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It is important to mention that the proposed SP bridge bearing model created is
considered using the first approach, because of a relatively higher bearing loading-to-
weight ratio under compression among the other TPMS unit cells, in order to make sure
this bearing model can support the weight of a bridge superstructure before experiencing
horizontal displacements under shear.

3.3. Material Model

According to our previous work [15], the proposed photosensitive resin (UV resin)
material possessing rubber-like properties is chosen to be manufactured for a SP unit cell
bridge bearing for compression testing, and the validation is also conducted for both static
compression and shear analysis only. To perform simulations of this proposed model
under cyclic loading with normal pressure variations, the model material is calibrated
again with help of experimental results [26]. The model validation will be presented in
the following section. Figure 5 shows the stress–strain curve of the proposed material
used in the simulations of the model SP unit cell bridge bearing under cyclic loading. It is
assumed that the material model has homogenous properties. It is to be noted that these
stress–strain relationships from the curve below are calibrated in Abaqus [29] as a bilinear
curve with an approximate yield point to obtain correct data when simulating due to its
elastic–plastic behaviour.
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3.4. Methods
3.4.1. Simulation Program

The whole simulation program is summarised in Table 1. The loading displacement
is represented by the equivalent shear strain (ESS), which is the value of the applied
displacement on the centre location of the proposed model’s upper surface. The loading
procedure in the simulations is monotonic or dynamic cyclic with the displacement in the
unit of ESS. The normal pressure on the proposed model varies during all the simulations
to examine sensitivity in the model responses to this parameter. The normal pressure on
the model ranges from 0 to 3.5 MPa, just within the design bridge bearing capacity. It is
important to note that the proposed model does not fail in buckling for the aforementioned
pressure range, hence Euler’s buckling effect can be negligible.

Table 1. Simulation programs.

Simulation Series Program Normal Pressure (MPa) ESS (%)

1-1 Monotonic 0.0 50
1-2 Monotonic 0.5 50
1-3 Monotonic 1.0 50
1-4 Monotonic 1.5 50
1-5 Monotonic 2.0 50
1-6 Monotonic 2.5 50
1-7 Monotonic 3.0 50
1-8 Monotonic 3.5 50
2-1 Cyclic 0.0 50
2-2 Cyclic 0.5 50
2-3 Cyclic 1.0 50
2-4 Cyclic 1.5 50
2-5 Cyclic 2.0 50
2-6 Cyclic 2.5 50
2-7 Cyclic 3.0 50
2-8 Cyclic 3.5 50

Several dynamic shear tests were conducted on common/reinforced bridge bear-
ings [30] using a horizontal displacement of increasing amplitude from 10 mm to 45 mm,
with a frequency of 0.87 Hz. Each amplitude level includes three fully reversed cycles.
However, to obtain the cyclic behaviour of the SP unit cell bridge bearing model in this
paper, the horizontal displacement is reduced to 30 mm due to its smaller geometry com-
pared to that of the bearing specimens. This is because the proposed SP unit cell bridge
bearing has a length of 50 mm and the target shear stain is designed for 50%. Furthermore,
the design vertical pressure of the model is 1 MPa.
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Figure 6 illustrates the applied displacement time history used for all the simulations
of the model SP unit cell bridge bearing. It is to be noted that in this paper, the shear
behaviour of the novel TPMS bridge bearing without the flexural deformation-dominated
bridge substructure is only investigated, and the P-∆ effect on its cyclic response is also
out of the scope. This means that the combined compression and shear forces are only
considered for the cyclic loading condition. It is also assumed that the moments induced
by the forces in this condition are also negligible due to the model being fixed in all three
rotational directions.
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Figure 6. (a) applied horizontal displacement against shear strain (b) applied horizontal displacement
against time history used for all the simulations of the model SP unit cell bridge bearing under both
monotonic and cyclic loading, respectively.

3.4.2. Model Validation

To evaluate the proposed numerical model of an SP unit cell bridge bearing consid-
ering the effects of normal pressures on its cyclic responses, a comparison is performed
between the numerical simulations and experimental results previously referred to. The
proposed model is investigated according to the cyclic loading procedure used during
testing of the recycled rubber fibre-reinforced bearings (RR-FRBs) with 3D dimensions of
70 mm × 70 mm × 63 mm. The equivalent horizontal stiffness, Keq, of both the model and
the RR-FRB at a 25 mm displacement is calculated using Equation (2). The model validation
is performed as presented in Figure 7. Generally, the results shown in Figure 7 indicate a
good agreement between the proposed model and experimental results, with less than 4%
and 8% for equivalent stiffness, Keq, and dissipated energy, Den, respectively, especially for
their equivalent horizontal stiffness at a 25% shear strain in Table 2.

Nevertheless, the proposed model is not able to completely model the hyperelastic
effect that appears in the dissipated energy during cyclic loading when the loading direction
changes. This is because the proposed model material is considered as an elastic–plastic
behaviour. It is obvious that the load–displacement curve of the proposed model is wider
than that of a common bridge bearing tested due to a relatively higher yield point.

In terms of dissipated energy, Table 2 also lists the comparison of dissipated energy
between the experimental and numerical results for cyclic loading. The dissipated energy
of a bearing is basically determined based on the area of the hysteresis loops obtained from
the experiments or numerical analyses. As seen in Table 2, the difference is small, just lower
than 8%. The proposed model can describe the energy-dissipative behaviour of a novel
3D-printed TPMS bridge bearing under cyclic loading with reasonable accuracy.

Additionally, several major responses of a novel TPMS bridge bearing can be captured
by the proposed model, such as dynamic shear behaviour under cyclic loading. Thus, the
cyclic response of the novel bridge bearing using a combination of SP unit cells can be
reasonably predicted by the proposed model in the numerical analysis.
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Keq =
F2 − F1

d2 − d1
(2)

where d1, d2 are applied horizontal displacements of the proposed model at point 1
and point 2, respectively (mm), and F1, F2 denote the corresponding shear force (N) at
d1 and d2, respectively.
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Figure 7. Comparison of shear behaviours of the two similar bridge bearings under cyclic loading at
a 25% shear strain between numerical and experimental data.

Table 2. Showing a comparison of the equivalent horizontal stiffness (Keq) and the dissipated energy
(Den) of the proposed model at a 25% shear stain between the experimental and numerical results.

Equivalent Stiffness, Keq
(N/mm)

Dissipated Energy, Den
(N·mm)

Experimental 123.08 61,175
Numerical 118.17 56,346

Difference ratio (%) 3.99 7.89

4. Results
4.1. Observed Performance

With the normal pressure on the SP unit cell bridge bearing model maintained on
a specified value, the gradually increasing horizontal displacement is imposed on the
proposed model. As seen in Figures 8 and 9, for the proposed model’s performance
subjected to designed pure compression (1 MPa) before shear resistance, the model does
not yield in compression and also continues to experience shear loading. However, it starts
to yield in compression when the normal pressure is higher than 1.5 MPa, as seen Figure 8.
In terms of monotonic shear loading condition, the proposed model exhibits smaller shear
deformation at small shear demand (etc. ESS = 25%), with some of the upper and lower
parts yield under combined compression–shear loading. When the ESS reaches 50% (target
shear), the proposed model becomes relatively wider as a block structure (crashworthiness
behaviour) compared to that at lower shear strain rate, in order to experience a higher
shear strain rate, as indicted in Figure 8, especially for the increasing normal pressure up to
3.5 MPa, seen in Figure 9.
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Considering the proposed model sliding, it is clear that the upper and lower surfaces
of the model are in full contact with rigid plates under any loading conditions, due to their
fully bonded condition (Figures 8 and 9). With the applied displacement increases, the
shear deformation appeared in the proposed model increases slightly. It is to be noted that
the frictional sliding response of the proposed model or buckling instability is not observed
in the model during the simulations; therefore, the proposed mode is proved to conduct
enough, despite being imposed to target-rate cyclic demands.

Furthermore, the stress distribution of the proposed model under monotonic loading
with normal pressure variations between 1 MPa and 3.5 MPa, seen in Figures 8 and 9, is
identical at the initial state (12.5% ESS). After this, the proposed model considerably resists
the relatively higher stresses induced in the whole part, resulting in the form of a structure
block for accommodating higher horizontal displacements. It is important to note that the
stress distribution of the proposed model subject to cyclic loading is the same pattern.

4.2. Force–Displacement Response

Force–displacement response curves for the proposed model subjected to monotonic
procedure with variations in normal pressures are plotted in Figure 10 to present their static
shear behaviour at low-to-target shear strains (50% ESS). Three ellipse markers are drawn
individually to show the states where the deformation and stress distribution are initiated in
elastic, plastic, and higher strain-hardening regions being wider in the horizontal direction,
respectively. These markers are employed to categorise the three phases of the proposed
model responses. According to Figure 10, the elastic behaviour of the proposed model is
relatively insensitive to normal pressure at Phase 1, where only shear deformation in the
top and bottom column parts occurs. With the increase in normal pressure, this leads to a
reduced secant horizontal stiffness at Phase 2, but an increased one at Phase 3 due to its
crashworthiness behaviour.
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The predicted force–displacement hysteresis curves of the proposed model are plotted
in Figure 11, in which Figure 11a,b,c,d,e,f,g and h are corresponding to 0, 0.5, 1, 1.5, 2,
2.5, 3, and 3.5 MPa, respectively. When the amplitudes of applied shear strains are small,
the proposed model deforms absolutely in shear and exhibits narrow hysteresis loops,



Vibration 2023, 6 75

accounting for the nonlinear effects in its proposed material and complex porous structure.
Nevertheless, the response of the proposed model at small shear strains is potentially
considered as linear elastic, which is satisfied for this simulation modelling. Since the shear
strains increase, the hysteresis loops become relatively wide and stable, showing decent
energy dissipation in the proposed model under cyclic loadings. The increase in normal
pressures causes development of a stiffening effect due to the change in applied loading
displacement. Moreover, this effect is obvious when compared to the hysteresis loop of the
proposed model under pure cyclic loading, as found in the Section 5. Despite the stiffening
effect, the unloading branches of the hysteresis loops are typically parallel to the initial
loading or reloading branches, demonstrating a decent match in shear stiffness.
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4.3. Bearing Shear Stiffness and Shear Deformation

Typical bridge bearings are characterised by facilitating girder movements from ther-
mal expansion without any observed distress, particularly for noncyclic conditions. These
bearings are expected to exhibit elastic behaviour during bridge operations, despite the
material nonlinearity in rubber. Another nonlinearity of TPMS structures for bridge bearing
applications in this paper that is considered is the complex porous geometry of the pro-
posed model. This is likely to affect its characteristics, resulting in a change in TPMS bearing
responses during bridge operations. Therefore, it is required to investigate the unexpected
responses of these TPMS bearings having nonlinear properties. The bearing stiffness is
one of the most important factors, which expresses the mechanical behaviour of a SP unit
cell bridge bearing model for bridge applications. Basically, the stiffness of the proposed
model is based on terms of shear modulus. The shear modulus can be calculated using the
following equation related to many different standards, where most of them specify the
approaches evaluating the shear modulus from the force–displacement curves (hysteresis
loops). The effective (equivalent) modulus of elasticity is defined to nearly represent the
whole shear modulus of the proposed model, shown in Figure 12. The effective shear
modulus, G (MPa), from zero shear strain to a point, which is the boundary between Phase
1 and Phase 3, is obtained based on the following equation [23].

G =
∆FH
∆dA

(3)

where ∆F and ∆d are the horizontal force and displacement from zero shear strain to a
point, respectively, and H defines the total thickness of the proposed model (mm); A is its
plan area (mm2).
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Table 3 summarises the effective shear moduli of the proposed model under monotonic
and cyclic loadings with normal pressure variations. These shear moduli are calculated
using the above-mentioned equation, in order to give context for investigating the perfor-
mance of the proposed model with regard to both the conditions. For monotonic analyses,
Figure 13 indicates that the effective shear moduli of the proposed model, Gem, are ob-
served to reduce with increasing shear strains at the initial response. The reduction in shear
modulus or shear stiffness at large strains is mostly dominated by two key factors: the
proposed material model and nonlinearity geometry. These shear moduli are found to be
more sensitive to the variation of normal pressure stress when the normal pressure reaches
2 MPa at high strains.

The calculated effective shear moduli of the proposed model for cyclic analyses at
different normal pressures are summarised in Table 3. According to Figure 13, the effective
shear modulus, Gec will normally increase with the increase in normal pressure for cyclic
analysis. Unlike the other one, the effective shear modulus, Gem will basically decrease with
the initial increase in normal pressure. When the normal pressure is higher than 1.5 MPa,
the effective shear modulus increases because of the change in structure shape like a typical
bearing’s block. It is important to note that the significant difference in the shear moduli of
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the proposed model between monotonic and cyclic conditions is fairly acceptable due to
the effect of static and dynamic loadings on the behaviours of the proposed model [31,32].
The dynamic shear force obtained from cyclic analysis at 50% ESS is 1.6 times higher
than the static shear force resulting from monotonic analysis at the same ESS, seen in
Figures 10 and 11. Another reason is that the proposed model subjected to cyclic loading
will continue to resist higher shear strains induced the next cycle after the previous cycle.

Table 3. Calculated shear moduli of the proposed model under monotonic and cyclic loading at the
target shear stain.

Normal Pressure Variation (MPa) Gem (MPa) Gec (MPa) ESS (%)

0.0 1.80 1.88 50
0.5 1.63 1.96 50
1.0 1.43 2.28 50
1.5 1.31 2.73 50
2.0 1.47 3.13 50
2.5 1.76 3.47 50
3.0 2.11 3.70 50
3.5 2.57 3.81 50
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5. Discussion

Figure 14 demonstrates comparative force–displacement hysteresis curves of the
proposed model used for bridge bearing applications under cyclic loading conditions with
normal pressure variations, at the target shear strain (50% ESS). The shear moduli are likely
to vary in each simulation, as they are observed and determined in each loading cycle. In
addition, only the upper bound value for the shear modulus is evaluated in Table 3 above.
The comparison of different shear behaviours in cyclic simulations is identical to those in
monotonic ones without unloading and reloading.

As seen in Figure 14, the effective shear moduli of the proposed model reduce with
the increasing number of cycles. The upper bounds of shear moduli with the variation of
normal pressure represent the values obtained from the last loading cycles. The reduction
in shear stiffness with the loading cycles is mostly due to the material model owning
an elastic–plastic-like material property. Unlike a rubber-like material, it possesses a
softening material property and can cause a nonlinear phenomenon during high loading
and unloading paths, called the Mullins effect. The shear strain values of the model are
also observed to increase with the increase in cycle numbers, because of strain hardening.
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Figure 14. Illustrating force–displacement hysteresis curves of the proposed model for cyclic analyses
without/with normal pressure variations.

Surprisingly, the initial shear modulus (secant one) of the first circle for each simulation
is found to significantly decrease with the increasing normal pressure, compared to that
under pure cyclic loading (without normal pressure), seen along the black line in Figure 14).
This might be due to the proposed model, which experiences its yield first under relatively
higher normal pressure compression before accommodating any horizontal displacements
for cyclic conditions. After the first circle, the secant shear moduli increase due to the
proposed model beginning to yield under compression and being wider in horizontal
direction. It is assumed that the buckling or P-Delta deflection has no effect on the proposed
model’s responses during cyclic analysis due to its fully bonded connections. In fact, the
proposed model is prevented from buckling failure due to its low slenderness ratio. The
new insight is essential to establish a comprehensive digital twin for bridge monitoring
and maintenance [33].

6. Conclusions

A series of simulations are conducted to investigate the cyclic response of a novel
3D-printed TPMS bridge bearing with the help of a combination of TPMS unit cells, which
can be considered as the proposed TPMS unit cell model, due to the novel bearing’s
structure owning a periodic cellular pattern. The 3D-printed bearing is designed and
fabricated conforming to the bearing standard used in Thailand. The simulations of the
proposed model include various combinations of normal pressure and shear loading
analyses (monotonic and fully reversed dynamic cyclic). Applied horizontal displacements
and vertical loads are used in all the simulations for both conditions at a target level.
A maximum target shear strain of 50% is reached for the monotonic and cyclic loading
conditions. Conclusions are listed from the present works as follows:

(1) The proposed model is prone to mimic the cyclic behaviour of a typical bridge bearing
for bridge bearing applications, as well as nearly offering an identical dissipated
energy for bridge bearing applications, as seen in Figure 7 and Table 2, respectively.
The model can act exactly as a cellular rubber block structure of a bridge bearing,
transferring/facilitating horizontal forces/displacements between the superstructure
and the substructure while supporting the weight of the superstructure.

(2) The difference in the von Mises stress distribution of the proposed model between 1
and 3.5 MPa is observed and found to have an increasing trend with the increase in
normal pressure (Figures 8 and 9). The distribution pattern is the same at the initial
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state (12.5% ESS), and higher stress distributions are found over the whole model
when the model’s applied horizontal displacement reaches the target shear strain
(50% ESS).

(3) In terms of the TPMS bearing’s characteristics, for dynamic cyclic analysis, the effective
shear moduli of the proposed model are observed to have an increasing trend with the
increase in normal pressures. Unlike monotonic analysis, its effective shear moduli are
found to decrease in the initial phase until the normal pressure is more than 1.5 MPa.
This is because the nonlinearity of the complex TPMS structure mainly changes the
structure shape to be wider horizontally (a column into a block) in order to resist
higher shear strains. The cause of the structure change into the rubber block-like
structure (the well-known crashworthiness behaviour) is that the model initially
experiences a higher yield stress while experiencing shear.

(4) The effective shear stiffness of the proposed model under the cyclic loading conditions
trends downward with the large number of cycles, as indicated in Figures 11 and 14.

(5) The better performance of the proposed model is also found to offer strain hardening
with the increasing number of cycles due to the material model being considered as
an elastic–plastic behaviour, which differs from the Mullins phenomenon that occurs
in common elastomeric bridge bearings. This leads to the increase in shear strength of
the proposed model after unloading or reloading during repetitive cycles.

(6) The effective dynamic shear moduli for cyclic loadings are 1.6 times higher than
those for monotonic loadings, because the proposed model behaves immediately
under dynamic cyclic loading conditions. For example, the dynamic shear force of
4 kN at a 3.5 MPa normal pressure is more than that of the static force of 2.5 kN
(Figures 10 and 14, respectively), resulting from the dynamic shear modulus, which
is higher than the static one for monotonic loading conditions. Furthermore, the load
patterns between both conditions make different initial responses with the increase in
normal pressure.
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