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Abstract 

 Police investigators worldwide use lineups to test an eyewitness’s memory of a 

perpetrator. A typical lineup consists of one suspect (who is innocent or guilty) plus five or more 

fillers who resemble the suspect and who all known to be innocent. Although eyewitness 

identification decisions were once biased by police pressure and poorly constructed lineups, 

decades of social-science research led to the development of reformed lineup procedures that 

provide a more objective test memory. Under these improved testing conditions, cognitive 

models of memory can be used to better understand and ideally enhance eyewitness 

identification performance. In this regard, one question that has bedeviled the field for decades is 

how similar the lineup fillers should be to the suspect to optimize performance. Here, we model 

the effects of manipulating filler similarity to better understand why such manipulations have the 

intriguing effects they do. Our findings suggest that witnesses rely on a decision variable 

consisting of the degree to which the memory signal for a particular face in the lineup stands out 

relative to the crowd of memory signals generated by the set of faces in the lineup. The use of 

that decision variable helps to explain why discriminability is maximized by choosing fillers that 

match the suspect on basic facial features typically described by the eyewitness (e.g., age, race, 

gender, etc.) but who otherwise are maximally dissimilar to the suspect. 

Keywords: Eyewitness Identification, Filler Similarity, Feature Matching; Signal Detection 

Theory 
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Modeling Face Similarity in Police Lineups 

Eyewitness identification (ID) tests are frequently used by police to identify the 

perpetrator of a crime. In years gone by, the outcomes of such tests were often inappropriately 

influenced by the officer administering the identification procedure. For example, the lineup 

administrator might lead the witness to believe that the suspect they are being asked to identify is 

already known to be guilty, thereby biasing the witness to make an ID even in the absence of a 

strong memory-match signal. Over the years, research designed to eliminate such interpersonal 

biases has led to science-based recommendations that, when followed, result in a lineup 

procedure that provides an objective test of the eyewitness’s memory (National Research 

Council, 2014; Wells et al., 2020).  

Perhaps because the social psychology of eyewitness identification is now well 

developed, cognitive theories have been increasingly used to conceptualize and measure lineup 

performance (Bull-Kovera & Evelo, 2021). This includes the formal cognitive modeling of 

eyewitness identification, which was pioneered some time ago by Clark (2003, 2008) and is now 

commonplace (e.g., Cohen et al., 2020; Colloff et al., 2021; Dunn et al., 2022; Kellen & 

McAdoo, in press; Lee & Penrod, 2019; Rotello & Chen, 2016; Starns et al., 2021; Wixted et al., 

2018). Most of the recent modeling work in this domain is grounded in signal detection theory, 

and our focus here is on the three leading signal detection models of eyewitness identification. 

Because our focus is on theory, our analysis presupposes the proper testing conditions that have 

been worked out by social psychologists over the years. How often the police arrange such 

conditions in the real world is a separate issue that we do not address here.  
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The composition of police lineups 

Live lineups were once the norm, but they have been largely replaced by photo lineups in 

many countries (e.g., the US, Germany, Australia; Fitzgerald et al., 2018). A proper photo lineup 

consists of one suspect and five or more physically similar fillers (Wells et al., 2020). The guilt 

or innocence of the suspect is unknown in actual police photo lineups (indeed, the lineup is being 

administered to help determine if the suspect is innocent or guilty), but the fillers are known to 

be innocent. Unlike the real-life scenario, researchers who investigate lineups in mock-crime 

studies control whether the suspect in a lineup is innocent or guilty. In a typical mock crime 

study, participants first watch a video of a perpetrator committing a simulated crime and are then 

presented with a photo lineup. A “target-present” (TP) lineup contains a photo of the guilty 

suspect surrounded by fillers, whereas a “target-absent” (TA) lineup contains a photo of an 

innocent suspect surrounded by fillers. The witness can either identify someone from the lineup 

(the suspect or a filler) or reject the lineup. Typically, that decision ends the experiment for a 

given participant, unlike a typical cognitive psychology experiment in which a participant’s 

memory is tested multiple times. In studies of eyewitness identification, participants are typically 

tested only once because, in the real world, witnesses are typically tested only once. 

The suspect is the only person of interest in a lineup, but the importance of the fillers 

should not be overlooked. Without the fillers, the eyewitness identification procedure reduces to 

a “showup” in which the singular suspect (innocent or guilty) is presented to the witness for a 

yes/no recognition decision. Studies have consistently found that lineups enhance 

discriminability compared to showups (e.g., Akan et al., 2020; Neuschatz et al., 2016; Wetmore 

et al., 2015; Wooten et al., 2020). Empirically, enhanced discriminability means that witnesses 

are better able to correctly sort suspects into the appropriate category (innocent or guilty). 
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Theoretically, enhanced discriminability means that the memory signals generated by innocent 

and guilty suspects overlap to a lesser degree (Wixted & Mickes, 2018). Empirical and 

theoretical discriminability usually go hand in hand (i.e., enhancing one usually enhances the 

other as well), and that has been found to be true of showups vs. lineups (e.g., Akan et al., 2020; 

Colloff & Wixted, 2020).  

Although adding fillers to a showup, thereby creating a lineup, enhances discriminability, 

it is important to appreciate that not just any fillers would have that effect. Instead, the fillers 

need to be selected in such a way that the suspect does not gratuitously stand out. In other words, 

the lineup must be fair (e.g., Colloff et al., 2016; Lindsay & Wells, 1980). Two different 

approaches have been used to create fair lineups.  

The first approach, which is the one most often used by the police (Police Executive 

Research Forum, 2013) and is sometimes used by researchers, is to select fillers whose faces 

appear to be similar to the suspect’s face. But how similar should they be? Quite a few police 

departments choose fillers who are as similar to the suspect as possible to ensure a fair procedure 

(Police Executive Research Forum, 2013). However, as has long been appreciated, choosing 

fillers who are too similar would create an impossibly difficult lineup test (Wells, Rydell, & 

Seelau, 1993). Yet going in the other direction and making them too dissimilar (e.g., a heavily 

tattooed male suspect surrounded by non-tattooed female fillers) would result in an unfair lineup. 

Is there an optimal level of filler similarity? It is hard to answer that question without first 

considering the second approach to creating a fair lineup. 

The second approach is to select fillers based on the description of the perpetrator 

provided by the eyewitness (Luus & Wells, 1991). This is the approach that is most often used 

by researchers and is sometimes used by the police (Police Executive Research Forum, 2013). As 
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an example, if the witness described the perpetrator as a clean-shaven white male in his 20s or 

30s, and if the police locate a suspect who also fits that description, then fillers would be selected 

only if they, too, fit that description. The use of a description-matched approach avoids both the 

high and low extremes of filler similarity and results in levels of similarity characterized by 

“propitious heterogeneity” (Wells et al., 1993).  

In addition to having propitious heterogeneity, is the average degree of filler similarity 

achieved using this description-matched approach also the optimal level of similarity? The 

answer to that question has remained a mystery for decades (e.g., Wells et al., 2020), and it 

might remain that way absent a formal cognitive model of filler similarity. Here, we describe and 

test competing signal detection models implemented in a feature-matching framework to (a) 

conceptualize the optimal level of filler similarity and (b) identify the underlying decision 

variable that witnesses use to decide whether or not to identify someone from the lineup. As 

described next, the optimal level of filler similarity is achieved by combining the two approaches 

described above, but with a twist.  

Prior research on filler similarity 

To protect the innocent, intuition suggests that fillers should be similar to the suspect. 

However, as noted above, Wells et al. (1993) cautioned against the use fillers that were too 

similar to the suspect because, in the extreme, it would make the task too difficult. They 

counterintuitively suggested that choosing dissimilar fillers would not be problematic so long as 

they were matched to the description of the perpetrator. To investigate the effect of manipulating 

filler similarity, they compared lineups comprised of description-matched fillers that were 

chosen from a large pool to be either maximally similar or maximally dissimilar to the suspect. 

The hit rate (proportion of guilty suspects identified from TP lineups) was lower when similar 
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fillers were used, but the false alarm rate (proportion of innocent suspects identified from TA 

lineups) did not differ significantly between the two conditions. This study did not include a pure 

description-matched condition, with fillers chosen from the pool without regard for similarity 

(i.e., an intermediate-similarity condition), but it seems reasonable to suppose that an 

intermediate hit rate would have been observed had such a condition been included. If so, it 

would mean that the best approach to choosing fillers would be to maximize dissimilarity 

between the description-matched fillers and the suspect. However, no theoretical mechanism was 

proposed to support that possibility, which may explain why the results of this seminal study 

have been almost universally understood to support the use of description-matched fillers only, 

not to support taking the additional step of maximizing dissimilarity to the suspect.  

More recent studies have further documented the detrimental effect of choosing similar 

fillers relative to a condition involving an intermediate level of similarity. Fitzgerald et al. (2015) 

manipulated filler similarity to the suspect (ranging from medium to high) by morphing the 

suspect’s photo in TA and TP lineups with the fillers. They found a significant decrease in the hit 

rate and a slight but non-significant decrease in the false alarm rate as filler similarity increased, 

supporting the idea that increasing filler similarity is potentially problematic. Oriet and 

Fitzgerald (2018) manipulated filler similarity to the suspect (again, medium to high) based on 

independent ratings of how similar the fillers were to the innocent or guilty suspect and reported 

comparable results. Carlson et al. (2019) compared lineups with description-matched fillers vs. 

lineups with fillers chosen because of their similarity to the suspect’s face. Receiver operating 

characteristic (ROC) analysis showed that discriminability was higher when the fillers were 

intermediate in similarity (i.e., when they were simply matched to the description of the 

perpetrator without otherwise considering their similarity to the suspect).  
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Taken together, these studies indicate that, as Wells et al. (1993) argued long ago, one 

can go too far in selecting fillers who are similar to the suspect in an effort to create fair lineups. 

Doing so makes it harder for eyewitnesses to identify the guilty suspect while offering little or no 

protection to innocent suspects (beyond that already provided using description-matched fillers). 

In addition, the approach taken by Carlson et al. (2019) highlights an important consideration 

that has not often been addressed in prior inquiries into the optimal level of filler similarity: what 

measure of lineup performance, exactly, would be maximized if the optimal level of filler 

similarity were achieved? According to one reasonable definition, the optimal level of filler 

similarity is the one that maximizes the ability of eyewitnesses to discriminate innocent from 

guilty suspects, as measured by the area under the ROC.  

In a recent study of filler similarity that we consider in detail here, ~10,000 once-tested 

participants watched a mock-crime video and were then presented with either a TA or TP lineup 

involving description-matched fillers who had low, medium, or high similarity to the suspect in 

the lineup. Prior to running the experiment, a large pool of fillers who matched the basic 

description of the perpetrator in the video was created. Using a separate group of participants, 

each filler was independently rated for similarity to the perpetrator using a 1-to-7 scale, and the 

median-similarity filler was designated to serve as the innocent suspect. The remaining fillers 

were then rated for similarity to that innocent suspect, again using a 1-to-7 scale. The similarity 

ratings to the guilty suspect and, separately, to the innocent suspect were used to manipulate 

filler similarity to the suspect over three levels (low, medium, or high) in the TP and TA lineups, 

respectively. Note that the low-similarity condition involved maximizing the dissimilarity of 

description-matched fillers to the suspect, as Wells et al. (1993) did. 
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For a given TP or TA lineup, the participant could identify someone from the lineup (the 

suspect or a filler) or reject the lineup. If someone was identified, a confidence rating was 

collected using a 100-point scale. In actual police lineups, filler IDs are inconsequential for the 

identified individual because fillers are known to be innocent. By contrast, suspect IDs are 

consequential for the identified individual because an identified suspect (innocent or guilty) may 

be tried, convicted, and sentenced to prison. To specify the optimal level of filler similarity, we 

therefore focus on the empirical effect of manipulating filler similarity on the consequential 

suspect ID hit and false alarm rates. However, because a model of eyewitness identification 

performance should be able to account for the full range of outcomes, the models we consider 

later are fit to suspect IDs, filler IDs, and lineup rejections from both TA and TP lineups.  

Colloff et al. (2021) found that the use of low-similarity description-matched fillers 

maximized the hit rate to guilty suspects without measurably affecting the false alarm rate to 

innocent suspects (Figure 1), consistent with Wells et al. (1993). Moreover, ROC analysis 

indicated that empirical discriminability (the ability to sort innocent and guilty suspects into their 

correct categories) increased as filler similarity decreased (Figure 2).  



Running head: FILLER SIMILARITY        10 

Figure 1. Hit and false alarm rates (i.e., correct and false suspect ID rates from TP and TA lineups, 
respectively) across three filler-similarity conditions in Experiment 1 of Colloff et al. (2021). All of the fillers 
matched the basic description of the perpetrator, but they varied in how similar they were to the (innocent or 
guilty) suspect in the lineup. The hit rate in the low-similarity condition was significantly higher than the hit 
rate in both the medium-similarity condition (p = 0.043) and high-similarity condition (p < 0.001). The hit rate 
in the medium-similarity condition was also higher than that of the high-similarity condition (p < 0.001). The 
corresponding comparisons for the false-alarm rates did not approach significance (p = 0.726, 0.874, and 
0.610, respectively). 

For those familiar with ROC analysis, eyewitness identification ROCs seem unusual at 

first glance. For a simple yes/no recognition task, generating ROC data would yield a familiar 

curve, with hit and false alarm rates both ranging from 0 to 1. However, for a lineup, the hit rate 

generally ranges from 0 to a maximum of less than 1.0. The reason is that even when the most 

liberal decision criterion is used, in which case a TP lineup would never be rejected, the guilty 

suspect will not always yield the strongest signal, in which case a filler will be identified. The 

same is true for the innocent suspect. In a fair lineup in which the innocent suspect does not 

stand out, the maximum false alarm rate is 1 / k, where k is lineup size. As an example, the 

maximum false alarm rate for a typical 6-person photo lineup is 1 / 6 = .167, and a typical overall 

false alarm rate is ~.05. Despite its somewhat unfamiliar appearance, the partial ROC (pAUC) 
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provides a measure of discriminability at the level of observable data (Gronlund et al., 2014; 

Robin et al., 2011).  

 

 
 
Figure 2. Left panel: Receiver operating characteristic curves for the three filler-similarity conditions (High, 
Medium, or Low) of the Suspect Similarity experiment reported by Colloff et al. (2021). Discriminability is 
quantified by the partial area under the curve (pAUC) represented by the shaded regions, using a common 
false-alarm rate across the three conditions (.048). The pAUC values have been corrected to fall on a scale 
ranging from .50 (chance) to 1.0 (perfect discriminability). The low-similarity pAUC was significantly larger 
than the high-similarity pAUC (p = 0.029, one-tailed, per preregistration), but the medium-similarity pAUC 
did not differ significantly from either of the other two conditions. Right panel: the same pAUC data potted 
with bootstrapped 95% confidence intervals. Despite having only three points, the slope of a line fit to the 
pAUC values (i.e., the slope of the dashed line) was significantly greater than 0, t(1) = 19.82, p = .032 (two-
tailed). 

The ROC results reported by Colloff et al. (2021) provide an answer to a longstanding 

question: what is the optimal level of filler similarity in a police lineup? The optimal level of 

filler similarity is not achieved by matching fillers to the witness’s description of the perpetrator 

(the standard recommendation). Instead, it is achieved using a two-step process: step one is to 

create a pool of description-matched fillers (all of whom would be suitable for creating a fair 
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lineup), and step two is to maximize dissimilarity by choosing from that pool the fillers who are 

the least similar to the suspect in the lineup (Wells et al., 1993). 

What do these results tell us about how eyewitnesses make decisions from the memory 

signals generated by the faces in a lineup? Addressing that question is our main focus, and 

competing signal detection models provide different answers. For example, one possibility is that 

witnesses first locate the face in the lineup that generates the strongest memory-match signal (the 

MAX face) and then base their decision and their confidence on the magnitude of that memory 

signal alone (Clark et al., 2011; Sauer et al., 2008). In other words, the signal associated with the 

MAX face, considered in isolation, would be the decision variable. This signal detection model 

is known as the Independent Observations model. Another possibility is that witnesses instead 

compute the difference between the signal associated with the MAX face vs. the average 

memory-match signal associated with other faces in the lineup and then base their decision and 

confidence on the magnitude of that difference score. This signal detection model is known as 

the Ensemble model.1 Still a third possibility is that witnesses compute the sum of the memory 

signals associated with the faces in the lineup and then decide whether or not to choose the MAX 

face based on the magnitude of that summed score. This signal detection model is known as the 

Integration model. 

These are not the only possible signal detection models of eyewitness identifications from 

a lineup, but they are the leading contenders. Prior research weighs against the Integration model 

but does not conclusively favor either the Independent Observations model or the Ensemble 

model (Wixted et al., 2018). However, manipulating filler similarity turns out to provide a more 

decisive test of their predictions. As noted by Colloff et al. (2021), different degrees of filler 

 
1 The Ensemble model is linearly related to (and is therefore the mathematical equivalent of) a MAX minus rest 
decision rule (Clark, 2011, adapted from Sauer et al., 2008). 
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similarity can be conceptualized in terms of the number of facial features that match between the 

fillers and the suspect in a lineup. We pursue that idea here to (a) clarify what the competing 

signal detection models predict about the effect of manipulating filler similarity and (b) provide a 

concrete feature-based interpretation of their free parameters.  

To illustrate the basic idea, consider a task that is simpler than a 6-person lineup but is 

similar to it in that also involves making a recognition decision about more than one test 

stimulus: two-alternative forced-choice (2AFC). In 2AFC, a test trial involves the presentation of 

two test items, an old (target) item and a new (foil) item, and the participant’s task is to pick the 

target. In the equal-variance Gaussian signal detection framework, discriminability (𝑑𝑑′) for a 

2AFC task is equal to 𝑑𝑑′2𝐴𝐴𝐴𝐴𝐴𝐴 = √2�𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝜇𝜇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�

𝜎𝜎�(1−𝜌𝜌)
, where 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 represents the mean memory 

signal associated with previously presented old items, 𝜇𝜇𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 represents the mean memory signal 

associated with new items, 𝜎𝜎 represents the common standard deviation of the target and foil 

distributions, and 𝜌𝜌 represents the degree to which the target and foil memory signals are 

correlated, as they would be if they were similar to each other (Wixted, 2020). For example, after 

a participant has studied a list of common objects, if recognition test trial 1 consisted of a target 

violin paired with a foil violin, and recognition test trial 2 consisted of a target apple paired with 

a foil apple, and so on, the pair of memory signals on each trial would be correlated because the 

two test items would share many features.  

To say that the memory signals would be correlated means that if the memory signal for 

the target happened to be weak, then the memory signal for the corresponding foil would also be 

weak, but if the memory signal for the target happened to be strong, then the memory signal for 

the corresponding foil would also be strong. All else equal, correlated memory signals enhance 

discriminability on a 2AFC task relative to uncorrelated signals (e.g., Hintzman, 1988) in much 
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the same way that correlated dependent measures in a within-subject design enhance statistical 

power compared to the uncorrelated measures obtained using a between-subject design. 

The parameters of the 2AFC equation―like the parameters of the similar equations for 

the lineup models that we consider later―will change depending on the similarity between the 

foils and targets. For example, as the foils all become increasingly similar to their corresponding 

targets (i.e., as they share more and more features), 𝜇𝜇𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 will approach 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. Therefore, the 

numerator of the 𝑑𝑑′2𝐴𝐴𝐴𝐴𝐴𝐴 equation presented above, √2�𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹�, will decrease, exerting 

downward pressure on discriminability. At the same time, the correlation between targets and 

foils (𝜌𝜌) will increase, so the denominator, 𝜎𝜎�(1 − 𝜌𝜌), will also decrease, exerting upward 

pressure on discriminability. But how fast will the opposing forces in the numerator and 

denominator change with respect to each other as a function of filler similarity? By specifying 

each of these parameters in terms of the number of features that match between the 

simultaneously presented test items and also between those items and memory of the target, it 

becomes possible to precisely predict what the effect of manipulating similarity should be 

(separately for each model of eyewitness identification).  

A general feature-matching model of eyewitness identification 

 To be clear, our goal is not to propose a new simulation-based feature-matching model of 

eyewitness identification, such as the WITNESS model (Clark, 2003). Instead, our goal is to use 

feature-matching logic to derive the extant signal detection models of eyewitness identification 

(the Independent Observations model, the Ensemble model, and the Integration model) from the 

ground up. The models we later fit to the empirical filler-similarity data reported by Colloff et al. 

(2021) and to new filler-similarity data reported here will be the same models that have been 

previously fit to other data (Wixted et al., 2018). However, having a feature-matching version of 
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each model will allow us to formally specify their predictions about the effect of manipulating 

filler similarity while providing a feature-based interpretation of their key parameters. 

Overview and Context 

As noted earlier, a typical lineup recognition memory experiment in the field of 

eyewitness identification differs in several important ways from a typical old/new recognition 

memory test in the field of cognitive psychology. For example, an old/new recognition memory 

experiment in cognitive psychology typically involves a study list, followed by the presentation 

of test items, one at a time, each for an old/new “detection” decision. By contrast, in a lineup 

recognition memory experiment in the field of eyewitness identification, the “list” typically 

involves the single face of the perpetrator seen in a mock-crime video, with multiple test stimuli 

presented simultaneously in a lineup for a detection (“is the perpetrator’s face in the lineup?”) 

plus identification (“if so, which face is it?”) decision. 

Models of list memory in cognitive psychology often assume a global matching process 

according to which a given test stimulus is compared to the memory representation of each list 

item (Gillund & Shiffrin, 1984; Nosofsky, 1991; Osth & Dennis, 2015; Shiffrin & Steyvers, 

1999). For example, Nosofsky (1991) presented participants with a study list of 10 similar 

schematic faces. On a subsequent old/new recognition test, a given test face, 𝑖𝑖, was theoretically 

compared to each of the 𝑗𝑗 = 1 → 10 studied faces in memory in a 2-step process. First, the 

psychological distance between test face 𝑖𝑖 and memorized face 𝑗𝑗 (𝑑𝑑𝐹𝐹𝑖𝑖) was computed (e.g., the 

Euclidean distance between their multidimensional representations), and second, a corresponding 

similarity score (𝑠𝑠𝐹𝐹𝑖𝑖) was computed, where 𝑠𝑠𝐹𝐹𝑖𝑖 = 𝑒𝑒−𝑑𝑑𝐹𝐹𝑖𝑖 (Shepard, 1958, 1987). Theoretically, the 

degree to which test face 𝑖𝑖 activates the memory representation of face 𝑗𝑗 (𝑎𝑎𝐹𝐹𝑖𝑖) is given by 𝑎𝑎𝐹𝐹𝑖𝑖 =

𝑠𝑠𝐹𝐹𝑖𝑖 + 𝑒𝑒𝑖𝑖, where the 𝑒𝑒𝑖𝑖 values are independent and identically distributed normal random variables 
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with a mean 0 and variance of 1. Once these values are determined, the overall activation 

(𝐴𝐴𝐹𝐹)―that is, the familiarity of test face 𝑖𝑖―is determined by the sum of the similarity-based 

activations over the 10 faces in memory: 𝐴𝐴𝐹𝐹 = ∑ 𝑎𝑎𝐹𝐹𝑖𝑖10
𝑖𝑖=1 . This is a summed similarity model of 

recognition memory. 

Here, we take an analogous summed similarity approach to conceptualize eyewitness 

identification except that, in our approach, similarity is evaluated at the level of individual facial 

features (cf. Lacroix, et al., 2006). In essence, we conceptualize the discrete features of the 

singular perpetrator’s face in memory as if they were a list of items (e.g., blue eyes, thick 

eyebrows, square chin, etc.). On a subsequent face recognition test, the mean strength of the 

memory-match signal for a given feature of the test face is determined by its degree of similarity 

to the corresponding feature of the perpetrator’s face in memory. A similarity score is computed 

separately for each feature, and the scores are then summed to yield an overall similarity score 

for the test face. We assume that only corresponding features are relevant for computing feature-

level similarity scores because a global matching process in which each feature is compared to 

all of the facial features of the perpetrator’s face in memory would theoretically return a 

similarity score of ~0 for all of the non-corresponding features (because, for example, eye color 

and mouth shape are not at all similar). 

As an example, if 𝑑𝑑𝐹𝐹𝑖𝑖 is a hypothetical distance measure in psychological space between 

(a) feature 𝑖𝑖 of lineup face 𝑗𝑗 and (b) the corresponding feature of the perpetrator’s face in 

memory, then the feature-level similarity (𝑠𝑠𝐹𝐹𝑖𝑖) would be 𝑠𝑠𝐹𝐹𝑖𝑖 = 𝑒𝑒−𝛼𝛼𝑑𝑑𝐹𝐹𝑖𝑖, where 𝛼𝛼 is a scaling 

constant. If the two features being compared happen to match (in which case 𝑑𝑑𝐹𝐹𝑖𝑖 = 0), then 𝑠𝑠𝐹𝐹𝑖𝑖 =

1, but if they do not match, the similarity score would fall between 0 and 1, and its magnitude 

would depend on the psychological distance separating the two corresponding features (e.g., blue 
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eyes vs. green eyes). As the exponential scaling constant 𝛼𝛼 becomes large, the 𝑠𝑠𝐹𝐹𝑖𝑖 similarity 

scores approach a binary match-vs.-mismatch (1 vs. 0) distribution, and we adopt that 

simplifying assumption throughout (i.e., we assume large 𝛼𝛼). Lacroix, et al. (2006) used an 

analogous binary scheme in their feature-based summed similarity model. Relaxing this 

assumption by allowing for a more gradual exponential decay as a function of psychological 

distance would not change the essence of our theory in any significant way. 

The activation signal for a given feature (𝑎𝑎𝐹𝐹𝑖𝑖) is given by 𝑎𝑎𝐹𝐹𝑖𝑖 = 𝑠𝑠𝐹𝐹𝑖𝑖 + 𝑒𝑒𝐹𝐹, where, 𝑠𝑠𝐹𝐹𝑖𝑖 equals 

1 or 0 (old target vs. new foil) depending on whether or not it matches the corresponding feature 

in memory, and the 𝑒𝑒𝐹𝐹 scores for different features are independent identically distributed normal 

random variables with mean of 0 and variance of 1 (Figure 3A). Like Nosofsky (1991), we 

assume that there are many sources of noise, and we take the existence of feature-level Gaussian 

error for granted rather than explicitly modeling it.  

 

Figure 3. A. An equal-variance signal detection model of the similarity-based activations (𝒂𝒂𝒊𝒊𝒊𝒊) generated by 
the individual features (indexed by 𝒊𝒊) of face 𝒊𝒊, depending on whether they match memory of the perpetrator 
(old features) or not (new features). For convenience, we set 𝒖𝒖𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟎𝟎, 𝒖𝒖𝑶𝑶𝑶𝑶𝑶𝑶 = 𝟏𝟏, and 𝝈𝝈𝑵𝑵𝑵𝑵𝑵𝑵 = 𝝈𝝈𝑶𝑶𝑶𝑶𝑶𝑶 = 𝟏𝟏. B. An 
equal-variance signal detection model of the summed similarity-based activations (𝑨𝑨𝒊𝒊) for faces (indexed by 
𝒊𝒊), depending on whether the faces are innocent (mean and standard deviation = 𝝁𝝁𝑰𝑰 and 𝝈𝝈𝑰𝑰, respectively) or 
guilty (mean and standard deviation = 𝝁𝝁𝑮𝑮 and 𝝈𝝈𝑮𝑮, respectively). Innocent faces are composed of mostly new 
features, whereas guilty faces are composed of mostly (or only, in the simplest case) old features. 
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The overall activation (i.e., familiarity) signal for face 𝑗𝑗 in a lineup, 𝐴𝐴𝑖𝑖, is given by 𝐴𝐴𝑖𝑖 =

∑ 𝑎𝑎𝐹𝐹𝑖𝑖𝑛𝑛
𝐹𝐹=1 , where 𝑛𝑛 is the number of features that define a face (note that this sum is over features 

of the perpetrator’s face in memory, not over faces in the lineup). This summed similarity signal 

for the faces of guilty suspects across lineups is the “target” distribution at the level of faces, and 

the summed familiarity signal for the faces of innocent suspects (and innocent fillers) across 

lineups is the “foil” distribution at the level of faces (Figure 3B). 

Critically, in a lineup, some features will be shared by everyone because, as a condition 

for being included in a description-matched lineup, every face must match the physical 

description of the perpetrator provided by the eyewitness. If a described feature like blue eyes is 

shared by all the faces in the lineup, and if that feature happens to generate a relatively strong 

memory match signal for one face in the lineup, then it will do so for the other faces as well. The 

fact that feature-level memory signals are shared across the faces in a lineup is why lineup 

memory signals are theoretically correlated. 

In terms of this modeling framework, increasing filler similarity to the suspect (innocent 

or guilty) involves increasing the number of features that match across the faces in the lineup 

above the number of features that already match because the fillers were selected to fit the 

witness’s description of the perpetrator. Increasing the number of features that match will 

increase the degree to which the face memory signals are correlated, whether or not those extra 

matching features also match memory of the perpetrator. Similarly, decreasing filler similarity to 

the suspect involves decreasing the number of features that happen to match across faces in a 

lineup, thereby decreasing the correlation, without changing the features that match by design 

(i.e., because it is a description-matched lineup). 
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Formal specification  

We assume that an unfamiliar face is represented by n features (features f1→fn) and that 

each feature has 𝑣𝑣 possible settings. This is similar to how faces are represented in the 

WITNESS model (Clark, 2003). In the concrete example we use throughout, n = 20 and 𝑣𝑣 = 5. If 

feature 1 is race/ethnicity, for example, its 𝑣𝑣 = 5 possible settings might be (1) = Caucasian, (2) = 

African American, (3) = Hispanic, (4) = Asian, and (5) = Pacific Islander. If feature 2 is eye 

shape, its possible settings might be (1) = Round eyes, (2) = Narrow eyes, (3) = Slanted eyes, (4) 

= Upturned eyes, and (5) = Downturned eyes. Thus, a Caucasian with upturned eyes would have 

settings of f1 = 1 and f2 = 4 (and so on through f20).  

Because a face is more than simply the sum of its parts (where a “part” is a low-level 

physical feature like eye color), higher-level information, such as relational/configural 

information (e.g., distance between the eyes and mouth) and inferred personality traits (e.g., 

trustworthiness) are also conceptualized as features for modeling purposes (cf. Cox & Shiffrin, 

2017; Nelson & Shiffrin, 2013). The encoding of higher-level features would account for why a 

“composite face” consisting of the upper half of one previously seen face and the lower half of 

another previously seen face is less likely to be recognized as “old” than a fully intact previously 

seen face (e.g., Meltzer & Bartlett, 2019).  

After witnessing a crime, we assume that the witness has seen and successfully encoded 

all n features of the perpetrator’s face (whereas the WITNESS model allows for an error-prone 

encoding process), each with one of 𝑣𝑣 possible settings. We further assume that a certain number 

of those feature settings (𝑛𝑛𝐷𝐷) will be included in the description of the perpetrator provided by 

the eyewitness to the police. Although the number of features described surely varies from 

witness to witness, for simplicity, we fix 𝑛𝑛𝐷𝐷 at 5.  
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For notational purposes, we use capital letters to represent the features of (a) the 

perpetrator’s face in memory (P1→P20), (b) the guilty suspect’s face in a TP lineup (G1→G20), 

(c) the innocent suspect’s face in a TA lineup (I1→I20), and (d) a filler’s face in either type of 

lineup (F1→F20). Of the P1→P20 feature settings of the perpetrator’s face in memory, let settings 

P1→P5 correspond to the 𝑛𝑛𝐷𝐷 = 5 features described to the police. As noted earlier, using a 

description-matched approach, photos are selected for inclusion in a lineup (suspect and fillers 

alike) precisely because they match these 5 features in the witness’s description. Thus, the 

feature settings of everyone in a TA lineup or a TP lineup will not only match each other but will 

also match the settings in memory for P1→P5. That is, G1→G5 (if it is a TP lineup), I1→I5 (if it is 

a TA lineup), and F1→F5 (whether it is a TP or a TA lineup) will match the corresponding 

features settings of the perpetrator’s face in memory (P1→P5). For these 5 features of every face 

in a TA or TP lineup, the memory-match signals they generate are drawn from the old feature 

distribution in Figure 3A (with a mean and standard deviation of 1). 

Features f1→f5 are non-diagnostic of guilt because they are shared by everyone in a 

description-matched lineup (Wixted & Mickes, 2014). By contrast, features f6→f20 are 

potentially diagnostic of guilt because their settings for the guilty suspect’s face are more likely 

to match memory than the corresponding settings for non-guilty lineup members. The non-guilty 

lineup members consist of innocent suspects in TA lineups and fillers in either TA or TP lineups.  

Because we are modeling the ideal case of error-free encoding, we assume that the 

settings for the 15 potentially diagnostic features of the guilty suspect’s face (G6→G20) are the 

same as the settings for the corresponding features of the perpetrator’s face in memory 

(P6→P20). For example, if the eye color setting for the perpetrator is blue, the eye color setting 

for the guilty suspect is also blue. This means that not only G1→G5 (the description-matched 
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features) but also G6→G20 are the same as the settings for the corresponding features of the 

perpetrator’s face in memory (P1→P20). Thus, the number of features on the guilty suspect’s face 

that have the same feature setting as memory of the perpetrator (𝑛𝑛𝐺𝐺) is 𝑛𝑛𝐺𝐺 = 𝑛𝑛 = 20. Although 

all 20 feature settings between Pi and Gi match, the strength of the noisy memory-match signals 

they generate differs across features because they are independently drawn from the feature-level 

old distribution (Figure 3A).  

For non-guilty lineup members (innocent suspects, TA fillers, and TP fillers), the settings 

for I1 → I5 and F1 → F5 match the settings of P1→P5 by design, whereas the settings of the non-

description-matched features, I6 → I20 and F6 → F20, will match the settings of P6→P20 in 

memory due to chance alone. Because each feature has 𝑣𝑣 = 5 possible settings, the probability of 

a chance match (p) is p = 1/𝑣𝑣 = 1/5 = .2. Recall that the settings for I1 → I5 and F1 → F5 match 

the settings of P1→P5 in memory by design. Thus, on average, and assuming independence, the 

total number of features with settings that match the corresponding feature settings of the 

perpetrator’s face in memory for the innocent suspect (𝑛𝑛𝐼𝐼), a TA filler (𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇), and a TP filler 

(𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇) is given by 𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐷𝐷 + 𝑝𝑝(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 5 + .20(20 − 5) = 5 + 3 = 8. This 

means that, for a given face, 8 feature-level memory-match signals are independently drawn 

from the old feature distribution and 12 are independently drawn from the new feature 

distribution (Figure 3A). The values of 𝑛𝑛𝐼𝐼, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 , and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  are equal because they are all people 

who match the description of the perpetrator but who are not guilty (so they were not previously 

seen), but these values will not necessarily remain equivalent when filler similarity to the suspect 

is manipulated.  

If, on average, 8 features of a non-guilty face match the corresponding features of the 

perpetrator’s face in memory, then there would be variability in the number of features that that 
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match memory across different lineups. However, compared to the Gaussian variability that we 

assume, the additional variance contributed by this multinomial variability would be small. 

Moreover, including provisions for multinomial variability would add complexity without 

adding commensurate theoretical insight (so far as we can determine, at least), so we ignore it in 

our main analysis. In the appendix, we provide a simulation-based version of our account that 

allows for multinomial variability for every feature-based setting, and it yields conclusions that 

are consistent with the simpler (and mathematically tractable) version we pursue here.   

The overall memory-match signal for a given face in the lineup (i.e., its similarity to the 

perpetrator’s face in memory) is the sum of the n feature-level memory-match signals. Because 

we assume that 𝑛𝑛𝐺𝐺 = 𝑛𝑛 (i.e., the feature settings on the face of the guilty suspect match all n 

feature settings of the perpetrator in memory), then across many lineups, the mean of the 

summed memory signal for guilty suspects (𝜇𝜇𝐺𝐺) would simply be 𝜇𝜇𝐺𝐺 = 𝑛𝑛𝐺𝐺 = 𝑛𝑛 (because each 

matching feature contributes a signal strength of 1, on average). In addition, variances sum, and 

the variance of each feature-level memory-match signal is 1. Thus, 𝜎𝜎2 = 𝑛𝑛𝐺𝐺 = 𝑛𝑛 as well. In our 

running example, 𝑛𝑛 = 20, so the mean of the summed memory signal for the guilty suspect is 

𝜇𝜇𝐺𝐺 = 20, and the standard deviation of the summed memory signal is 𝜎𝜎 = √20.2  

As noted above, the average number of feature settings that match the settings of the 

perpetrator’s face in memory for innocent suspects (𝑛𝑛𝐼𝐼), TA fillers (𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇), and TP fillers (𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇) 

are all equal to 𝑛𝑛𝐷𝐷 + 𝑝𝑝(𝑛𝑛 − 𝑛𝑛𝐷𝐷). In our running example, this comes to 5 + .20(20 – 5) = 5 + 3 = 

8 (i.e., 5 features match by design and 3 of the 15 potentially diagnostic features match by 

chance). It follows that the means of the innocent suspect distribution (𝜇𝜇𝐼𝐼), target-absent filler 

 
2 In terms of expected value (𝐸𝐸), 𝜇𝜇𝐺𝐺 = 𝐸𝐸�∑ 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒𝐹𝐹

𝑛𝑛𝐺𝐺
1 � = ∑ 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐸𝐸[𝑒𝑒𝐹𝐹]

𝑛𝑛𝐺𝐺
1 , where 𝑒𝑒𝐹𝐹~𝑁𝑁(0,1). Because 

𝐸𝐸[𝑒𝑒𝐹𝐹] = 0 and 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1, 𝜇𝜇𝐺𝐺 = ∑ 1 + 0 = 𝑛𝑛𝐺𝐺 = 𝑛𝑛𝑛𝑛𝐺𝐺
1 . In addition, 𝜎𝜎2 =  𝐸𝐸�∑ 𝑒𝑒𝐹𝐹2

𝑛𝑛𝐺𝐺
1 � = ∑ 𝐸𝐸[𝑒𝑒𝐹𝐹2]𝑛𝑛𝐺𝐺

1 . Because 
𝐸𝐸[𝑒𝑒𝐹𝐹2] = 1, 𝜎𝜎2 = ∑ 1𝑛𝑛𝐺𝐺

1 = 𝑛𝑛𝐺𝐺 = 𝑛𝑛. Thus, 𝜎𝜎 = √𝑛𝑛. 
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distribution (𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇), and target-present filler distribution (𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇) are all equal to 8. However, 

because variances sum, the standard deviation in each case would still be 𝜎𝜎 = √𝑛𝑛 = √20.3 

Consider the distribution of the overall (summed) memory signals for the faces of 

innocent and guilty suspects, as illustrated in Figure 4 (conceptually, this is the same model 

illustrated earlier using a more condensed format in Figure 3B). These face-level memory signals 

constitute the core signal detection model from which more specific models will be derived 

depending on what decision rule eyewitnesses are assumed to use. Figure 4 corresponds to the 

simplest face-memory test, which is a showup. In a showup, the witness is presented with a 

single face, either an innocent suspect or the guilty suspect (no fillers). In terms of underlying 

memory signals associated with innocent and guilty suspects, discriminability is represented by 

𝑑𝑑′𝐼𝐼𝐺𝐺, where 𝑑𝑑′𝐼𝐼𝐺𝐺 = 𝜇𝜇𝐺𝐺−𝜇𝜇𝐼𝐼
𝜎𝜎

. This discriminability measure will later play an important role in 

distinguishing between competing signal detection models of lineup performance because it is 

this measure that should be affected by manipulations of filler similarity in different ways 

(depending on which model is correct). Expressed in terms of the feature matching model, 

𝑑𝑑′𝐼𝐼𝐺𝐺 = 𝑛𝑛𝐺𝐺−𝑛𝑛𝐼𝐼
√𝑛𝑛

= 𝑛𝑛−𝑛𝑛𝐼𝐼
√𝑛𝑛

. In our running example, where 𝑛𝑛 = 20 and 𝑛𝑛𝐼𝐼 = 8, 𝑑𝑑′𝐼𝐼𝐺𝐺 = 20−8
√20

= 2.68.  

 
3 That is, with 𝐺𝐺� representing non-guilty lineup members, 𝜇𝜇𝐺𝐺� = 𝐸𝐸�∑ 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒𝐹𝐹

𝑛𝑛𝐺𝐺�
1 � +  𝐸𝐸�∑ 𝜇𝜇𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑒𝑒𝐹𝐹

𝑛𝑛−𝑛𝑛𝐺𝐺�
1 � =

𝐸𝐸�∑ 1𝑛𝑛𝐺𝐺�
1 � + 𝐸𝐸�∑ 0𝑛𝑛𝐺𝐺�

1 � +  𝐸𝐸�∑ 0𝑛𝑛−𝑛𝑛𝐺𝐺�
1 � +  𝐸𝐸�∑ 0𝑛𝑛−𝑛𝑛𝐺𝐺�

1 � = 𝐸𝐸�∑ 1𝑛𝑛𝐺𝐺�
1 � = 𝑛𝑛𝐺𝐺� . Similarly, 𝜎𝜎2 =  𝐸𝐸�∑ 𝑒𝑒𝐹𝐹2

𝑛𝑛𝐺𝐺�
1 � +

 𝐸𝐸�∑ 𝑒𝑒𝐹𝐹2
𝑛𝑛−𝑛𝑛𝐺𝐺�
1 � = ∑ 𝐸𝐸[𝑒𝑒𝐹𝐹2] + ∑ 𝐸𝐸[𝑒𝑒𝐹𝐹2]𝑛𝑛−𝑛𝑛𝐺𝐺�

1
𝑛𝑛𝐺𝐺�
1 = ∑ 1𝑛𝑛𝐺𝐺�

1 + ∑ 1𝑛𝑛−𝑛𝑛𝐺𝐺�
1 = 𝑛𝑛𝐺𝐺� + (𝑛𝑛 − 𝑛𝑛𝐺𝐺�) = 𝑛𝑛, so 𝜎𝜎 = √𝑛𝑛. 
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Figure 4. Face-level memory-match signals in a showup resulting from summing feature-level memory-match 
signals. d′IG is the difference between the mean of the guilty suspect distribution (the face-level target 
distribution) and the mean of the innocent suspect distribution (the face-level foil distribution) in standard 
deviation units. That is, 𝑶𝑶′𝑰𝑰𝑮𝑮 = 𝝁𝝁𝑮𝑮−𝝁𝝁𝑰𝑰

𝝈𝝈
.  

 
A lineup is simply a showup with description-matched fillers added to the procedure. 

When fillers are added, 𝑑𝑑′𝐼𝐼𝐺𝐺 remains a key measure, but additional discriminability measures 

now come into play. Figure 5 illustrates the lineup scenario when description-matched fillers are 

added to a showup. Note that in a TA lineup, the innocent suspect is effectively just another filler 

(i.e., someone who matches the description but did not commit the crime). This means that from 

the perspective of the witness, there is no distinction between an innocent suspect vs. a filler. 

Thus, the memory-strength distributions for the innocent suspect and the TA fillers are one and 

the same (bottom panel of Figure 5). 
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Figure 5. Face-level memory-match signals in a lineup resulting from summing feature-level memory-match 
signals. d′TP is the difference between the mean of the TP filler distribution and the guilty suspect distribution 
in standard deviation units. That is, 𝑶𝑶′𝑻𝑻𝑻𝑻 =

𝝁𝝁𝑮𝑮−𝝁𝝁𝑭𝑭𝑻𝑻𝑻𝑻
𝝈𝝈

. Similarly, d′TA is the standardized difference between the 
TA filler distribution and the innocent suspect distribution. Because 𝝁𝝁𝑰𝑰 = 𝝁𝝁𝑭𝑭𝑻𝑻𝑨𝑨, 𝑶𝑶′𝑻𝑻𝑨𝑨 = 𝟎𝟎.  

As illustrated in the top panel of Figure 5, the separation between the underlying memory 

signals associated with guilty suspects and fillers within TP lineups is given by 𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺−𝜇𝜇𝐹𝐹𝑇𝑇𝑇𝑇

𝜎𝜎
. 

Similarly, as illustrated in the bottom panel of Figure 5, the separation between the underlying 

memory signals associated with innocent suspects and fillers within TA lineups is given by 

𝑑𝑑′𝑇𝑇𝐴𝐴 =
𝜇𝜇𝐼𝐼−𝜇𝜇𝐹𝐹𝑇𝑇𝑇𝑇

𝜎𝜎
 (Wixted et al. , 2018, 2021). In terms of the feature-matching model, 𝑑𝑑′𝑇𝑇𝑇𝑇 =

𝑛𝑛𝐺𝐺−𝑛𝑛𝐹𝐹𝑇𝑇𝑇𝑇
√𝑛𝑛

=
𝑛𝑛−𝑛𝑛𝐹𝐹𝑇𝑇𝑇𝑇

√𝑛𝑛
= 20−8

√20
= 2.68, and 𝑑𝑑′𝑇𝑇𝐴𝐴 =

𝑛𝑛𝐼𝐼−𝑛𝑛𝐹𝐹𝑇𝑇𝑇𝑇
√𝑛𝑛

= 8−8
√20

= 0. In a fair lineup, d′TA = 0 

because 𝑛𝑛𝐼𝐼 (number of innocent suspect features that match memory of the perpetrator) is equal 

to 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  (number of TA filler features that match memory of the perpetrator). So far, 𝑑𝑑′𝐼𝐼𝐺𝐺 = 𝑑𝑑′𝑇𝑇𝑇𝑇, 

but we will see that this is not always the case, so they must be considered separately. 
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Note that Figure 5 illustrates how memory signals are distributed in a lineup, but it is not 

yet a model of eyewitness identification performance because no decision criterion has been 

added. Moreover, a decision criterion cannot be added until the decision variable is specified, 

and specific signal detection models of lineup performance differ as to what they consider the 

decision variable to be. In addition, our analysis so far applies to uncorrelated memory signals, 

but as noted earlier, the memory signals generated by the faces in a lineup are correlated by 

design. They must be at least somewhat correlated because certain facial features of every lineup 

member are selected to match the witness’s description of the perpetrator. Therefore, the 

competing signal detection models we consider later must include provisions for correlated 

memory signals. This means that the equations for each lineup model must include 𝜌𝜌 as a 

parameter, just as the 2AFC equation presented earlier did. Before specifying the competing 

models in feature-matching terms, we first specify how the correlation parameter they have in 

common (i.e., 𝜌𝜌) can be conceptualized in feature-matching terms.  

Correlated memory signals 

As has long been known, positively correlated memory signals can enhance 

discriminability on a recognition memory test (e.g., Hall, 1979). As noted earlier, correlated 

memory signals can enhance discriminability for essentially the same reason that within-subject 

experimental designs can increase power compared to between-subject experimental designs. In 

a within-subject design, the dependent measures are usually correlated across conditions (e.g., if 

Subject 1 generates a relatively high score in Condition 1, that same subject is likely to generate 

a relatively high score in Condition 2). If the scores are in fact positively correlated, then 

computing a difference score for each subject would subtract out random error (e.g., effects on 
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the dependent measure arising from extraneous variables like age differences, gender 

differences, etc.). 

In memory research, the issue of correlated memory signals has most often been 

considered in a two-alternative forced-choice (2-AFC) recognition task using similar targets and 

foils (Hall, 1979; Hintzman, 1988, 2001; Tulving, 1981). For example, the targets presented on 

the study list might consist of visual objects like an abacus, scissors, a picnic basket, and so on, 

and the corresponding foils might consist of a different abacus, different scissors, a different 

picnic basket, and so on. In one condition (correlated), the targets would be paired with their 

corresponding foils. In another condition (uncorrelated), the same targets and foils on the 2-AFC 

task would not be paired. Because the targets and foils are identical in both conditions, the 

distribution of memory signals they generate would be the same in both conditions. What would 

differ is the correlation between them. In the correlated condition only, participants can take 

advantage of the fact that the target, whether its memory-match signal is weak or strong, will 

typically generate a slightly stronger memory-match signal than its similar foil (Figure 6).  

Figure 6. A (Correlated). Four 2-AFC test trials (top to bottom), with each target paired with its similar foil. 
The numbers to the left of each target and to the right of each foil represent the item’s hypothetical memory-
match signal. Note that each similar foil generates a memory-strength signal nearly as strong as its 
corresponding target because the two test items share many features. Although their strengths are similar, 
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the target in this idealized example can always be correctly chosen because it generates a slightly stronger 
memory signal than its similar foil. The target’s signal is slightly stronger because only it provides a perfect 
match to memory. B (Uncorrelated). Everything is the same except that the targets are not paired with their 
similar foils. Now, the dissimilar foils sometimes generate a stronger memory signal than the target, leading 
to errors that would not occur in the correlated condition.    

Although we have previously highlighted the importance of correlated memory signals 

for understanding lineup memory (Wixted et al., 2018, 2021), we have not modeled correlated 

signals in terms of feature matching. Yet a feature-matching mechanism is needed to understand 

why increasing filler similarity reduces empirical discriminability (illustrated earlier in Figure 2) 

even though it undoubtedly also increases the degree to which latent memory signals are 

correlated (which, as just noted, usually enhances discriminability). That seems paradoxical, but 

the paradox will be resolved once we specify the correlation in terms of the number of features 

that match across the faces in the lineup and then implement that result in signal detection 

models of eyewitness identification. 

Assuming independence, the number of features with shared settings between any two 

faces in a lineup, which we represent as 𝑚𝑚, is equal to the number of features that match by 

design, 𝑛𝑛𝐷𝐷 (i.e., the number of description-matched features), plus the number of remaining 

features, 𝑛𝑛 − 𝑛𝑛𝐷𝐷, that match by chance. Because there are 5 settings for each feature, a chance 

match occurs with probability 1 / 5 = .20. Thus, 𝑚𝑚 = 𝑛𝑛𝐷𝐷 + .20(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 5 + .20(20 − 5) =

8. This equation applies regardless of the status of the two faces in the lineup (e.g., the guilty 

suspect and a filler, or the innocent suspect and a filler, or any two fillers). The guilty suspect has 

no special status for this measure because whether or not shared facial features also match 

memory is an independent consideration. Because 𝑚𝑚 represents the number of features that 

match between any two faces in the lineup, its value applies equally to TA and TP lineups. 

As noted earlier, we assume that features with shared settings across faces (e.g., blue 

eyes) generate the same feature-level memory-match signal. If the setting for shared feature fi 
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happens to match memory of the perpetrator, then, for both faces, the feature-level memory-

match signal would be drawn from the old distribution in Figure 3A (which has mean and 

standard deviation of 1). As an example, for a description-matched feature shared by everyone in 

a particular lineup (e.g., for f1 = race/ethnicity, the setting for everyone might be Caucasian), the 

feature-level memory-match signal might be 1.46. In that case, the memory-match signal 

generated by this shared feature would be 1.46 for every face in the lineup.  

A similar story applies if the setting for shared feature fi happens not to match memory of 

the perpetrator. This could occur when the features of two faces in the lineup happen to match 

each other by chance but do not match the corresponding feature of the perpetrator’s face in 

memory. For example, if f9 = eye color, the setting for the perpetrator in memory might be P9 = 

blue eyes, whereas the settings for both the innocent suspect (I) and a filler (F) might be I9 = F9 = 

green eyes. Thus, although the setting for f9 is shared across faces, it does not match memory. 

The memory signal generated by this shared feature would be drawn from the new (foil) 

distribution in Figure 3A, which has a mean of 0 and a standard deviation of 1. For example, it 

might be -0.17, in which case the feature-level memory signal would be equal to -0.17 for each 

face in the lineup sharing that non-matching feature (i.e., green eyes).  

In contrast to shared feature settings (which may or may not match memory), unshared 

feature settings between two faces in a lineup generate two different, independent memory 

signals (i.e., with independent error). If the feature of one face does not match memory (e.g., I9 = 

green eyes), then its memory signal is drawn from the feature-level new distribution with a mean 

of 0 (Figure 3A). If the corresponding feature of the other face happens to match memory by 

chance (e.g., F9 = blue eyes), then its memory signal is independently drawn from the feature-

level target distribution with a mean of 1. The key point is that the two memory signals are 
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independent, regardless of which feature-level memory-strength distribution they are drawn from 

(new or old). 

Each of the 𝑛𝑛 =  20 features contributes variance of 𝜎𝜎𝑇𝑇2 = 1 to the summed memory 

signal of a given face such that ∑ 𝜎𝜎𝑇𝑇2 =𝑛𝑛
1 𝜎𝜎2 = 𝑛𝑛 and, therefore, 𝜎𝜎 = √𝑛𝑛 (as illustrated earlier in 

Figures 4 and 5). Critically, this is true whether or not the feature settings are shared with other 

faces in the lineup and whether or not they match memory. Regardless, the feature contributes 

𝜎𝜎𝑇𝑇2 = 1  (on average) to the variance of the overall summed memory signal for the face. 

Therefore, some of the variance in the overall memory signal for a face comes from features with 

shared settings across the faces in the lineup and some comes from features with unshared 

settings. This feature-matching scenario is illustrated in Figure 7. 

 
Figure 7. Each entry represents the mean of the distribution from which a feature-level memory-match signal 
is drawn (1 or 0, depending on whether the feature matches memory) for a two-person TP lineup and a two-
person TA lineup. Features f1 → f5 have settings that match each other by design because they were included 
in the witness’s description. Because these shared features also match memory of the perpetrator, their 

features filler guilty filler innocent
1
2
3
4
5
6
7
8
9 0 1 0 0
10 0 1 1 0
11 0 1 0 0
12 0 1 0 1
13 0 1 0 0
14 0 1 0 1
15 0 1 0 0
16 0 1 0 0
17 0 1 1 0
18 0 1 0 1
19 0 1 1 0
20 0 1 0 0

Σ 8.00 20.00 8.00 8.00

1 0

1 1
1 0
1 0

1 1
1 1
1 1

TP lineup TA lineup   

1 1
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shared memory signals are drawn from the feature-level target distribution with a mean of 1 (Figure 3A). Of 
the remaining features (f6 → f20), three feature settings (f6 → f8) match each other by chance. In a TP lineup, 
these coincidentally matching features also match memory (so their shared memory signals are drawn from a 
distribution with a mean of 1), whereas in a TA lineup, the three coincidentally matching features match 
memory by chance (with probability 𝟏𝟏/𝒗𝒗 = .2). In this example, f6 → f8 for the TA lineup happen to not match 
memory. Therefore, their shared memory signals are drawn from the feature-level foil distribution with a 
mean of 0 (Figure 3A). Of the remaining features (f9 → f20) in the TA lineup, three match memory of the 
perpetrator by chance. This is independently true of the filler and the innocent suspect. The average strength 
of the overall memory-match signal for a face in a lineup (shown at the bottom) is the sum of the 20 feature-
match signals. Because 20 feature-match signals are summed for every face, the standard deviation of the 
memory signal is always √𝟐𝟐𝟎𝟎.  

 

For features that are shared across faces in a lineup (f1 → f8 in Figure 7), all of the 

variance in the memory-match signals they generate occurs between lineups because these 

features have no within-lineup variance (i.e., within a lineup, the feature-level memory signal is 

the same). This means that part of the variance in the summed signal across the 20 features (i.e., 

part of 𝜎𝜎2) reflects between-lineup variance. We denote the between-lineup variance component 

of the summed memory signal 𝜎𝜎𝑏𝑏2. Memory signals generated by the remaining unshared features 

are independent, so the variance across those signals occurs within lineups. This means that the 

remaining part of 𝜎𝜎2 reflects within-lineup variance. We denote the within lineup variance 

component of the summed memory signal 𝜎𝜎𝑤𝑤2 . Thus, 𝜎𝜎2 =  𝜎𝜎𝑏𝑏2  +  𝜎𝜎𝑤𝑤2 . The relevance of this 

equation lies in the fact that the correlation between the overall (summed) memory signals 

generated by faces across lineups (ρ) is given by 𝜌𝜌 = 𝜎𝜎𝑏𝑏2  (𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2)⁄ .  

We went to the trouble of explaining all of this because it puts us in a position to quantify 

the correlation between face-level memory signals in terms of feature-matching. Because m 

features across two faces in a lineup share variance (whether or not they match memory), and 

because each of those features contributes 𝜎𝜎𝑇𝑇2 = 1, on average, the overall contribution of shared 

variance is 𝜎𝜎𝑏𝑏2 = 𝑚𝑚 = 8. The remaining 𝑛𝑛 –  𝑚𝑚 features do not have matching settings, so they 

contribute unshared variance such that 𝜎𝜎𝑤𝑤2 = 𝑛𝑛 −𝑚𝑚 = 12. Thus, 𝜎𝜎2  =  𝜎𝜎𝑏𝑏2  +  𝜎𝜎𝑤𝑤2  =  8 +
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 12 =  20. Because 𝜌𝜌 = 𝜎𝜎𝑏𝑏2  (𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2)⁄ , in terms of feature-matching, it follows that 𝜌𝜌 =

 𝑚𝑚 / (𝑚𝑚 +  𝑛𝑛 –  𝑚𝑚)  =  𝑚𝑚 / 𝑛𝑛. The intuitively appealing implication is that the correlation 

between the summed memory-match signals of the faces in a lineup is equal to the proportion of 

facial features with settings that match across the faces in a lineup. In our running example 

(where 𝑚𝑚 = 8 and 𝑛𝑛 = 20), the correlation between the summed memory signals generated by 

faces in a lineup would be 8 / (8 + 12) = 8 / 20 = .40. In the extreme high-similarity case where 

𝑚𝑚 = 𝑛𝑛 = 20, the faces would be identical, in which case the correlation would equal 1.  

Critically, experimentally manipulating filler similarity is conceptualized as manipulating 

m (for further illustration of these ideas, see Appendix: Correlated Memory Signals). Thus, 

writing the equations for competing signal detection models in terms of 𝑚𝑚 and 𝑛𝑛, as we do next, 

makes it easy to see what those models predict about the effect of manipulating filler similarity 

on the degree to which the underlying memory signals associated with innocent from guilty 

suspects overlap (i.e., 𝑑𝑑′𝐼𝐼𝐺𝐺). The equation we just worked out relating the correlation coefficient 

to the proportion of matching facial features (i.e., 𝜌𝜌 =  𝑚𝑚 / 𝑛𝑛) will constitute part of the model-

specific equations we consider next. 

Models of eyewitness decision-making 

Wixted et al. (2018) derived the equations for three competing signal detection models of 

lineup performance: the Independent Observations model, the Ensemble model, and the 

Integration model. In this section, we present those previously derived equations, all of which 

include 𝜌𝜌 as a parameter. We then translate the equations into feature-matching terms to specify 

what they predict about how manipulating filler similarity should affect 𝑑𝑑′𝐼𝐼𝐺𝐺. This is the key 

prediction because the models unequivocally disagree about what should happen. Once those 

predictions are specified, we then fit the models (in their original forms) to empirical data to test 
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how manipulating filler similarity affects the degree to which the memory signals associated 

with innocent and guilty suspects overlap (as quantified by 𝑑𝑑′𝐼𝐼𝐺𝐺). 

Independent Observations model 

The simplest decision variable is the raw memory-match signal generated by a face in the 

lineup (i.e., the face-level memory signal created by summing over feature-level memory-match 

signals) that we have been considering thus far. In a lineup, one of the faces will generate the 

strongest overall memory signal (the MAX face), and the Independent Observations model holds 

that if the memory signal of the MAX face in the lineup exceeds a decision criterion, that face 

will be identified, regardless of how strong the signals generated by the other faces happen to be 

(Macmillan & Creelman, 2005; Wixted et al., 2018). This decision variable was referred to as the 

Best-Above-Criterion Model by Clark et al. (2011). The stronger the memory signal generated 

by the MAX face is, the more confident the eyewitness will be when making an ID. In other 

words, according to this model, the raw memory-match signal is also the decision variable (just 

as is true of a showup). 

Earlier, in Figure 5, we noted that: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇

𝜎𝜎
                                                                     (1) 

However, this equation implicitly assumes uncorrelated memory signals, which must be true in a 

showup because at least two faces are needed in an identification procedure for memory signals 

to be correlated. However, it is unlikely to be true in a lineup. As noted by Wixted et al. (2018), 

within a lineup, the relevant standard deviation in the denominator is 𝜎𝜎𝑤𝑤. As written, Equation 1 

corresponds to the uncorrelated case because, in that case, 𝜎𝜎𝑤𝑤 = 𝜎𝜎. More specifically, recall that 

𝜎𝜎2 = 𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2  and that 𝜌𝜌 = 𝜎𝜎𝑏𝑏2  (𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2)⁄ . In the uncorrelated case, 𝜎𝜎𝑏𝑏2 = 0 such that 𝜎𝜎2 = 𝜎𝜎𝑤𝑤2  
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and 𝜎𝜎𝑤𝑤 =  𝜎𝜎. Thus, in the case of lineups, it would be better to write Equation 1 in its more 

general form: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇

𝜎𝜎𝑤𝑤
                                                                      (2) 

Lineups presumably involve correlated memory signals such that 𝜎𝜎𝑏𝑏2 > 0. We know that 𝜎𝜎2 =

𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2 , which means that 𝜎𝜎𝑏𝑏2 = 𝜎𝜎2 − 𝜎𝜎𝑤𝑤2 . We also know that 𝜌𝜌 = 𝜎𝜎𝑏𝑏2  (𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2)⁄ . Replacing 

𝜎𝜎𝑏𝑏2 in this equation with 𝜎𝜎2 − 𝜎𝜎𝑤𝑤2  yields 𝜌𝜌 = (𝜎𝜎2 − 𝜎𝜎𝑤𝑤2)  𝜎𝜎2⁄ . Solving this equation for 𝜎𝜎𝑤𝑤2  yields 

𝜎𝜎𝑤𝑤2 = 𝜎𝜎2 − 𝜌𝜌𝜎𝜎2 = 𝜎𝜎2(1 − 𝜌𝜌), or 𝜎𝜎𝑤𝑤 = 𝜎𝜎�1 − 𝜌𝜌. Finally, replacing 𝜎𝜎𝑤𝑤 in Equation 2 with 

𝜎𝜎�1 − 𝜌𝜌 yields 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇
𝜎𝜎�(1 − 𝜌𝜌)

                                                                       (3) 

Note that, as 𝜌𝜌 → 1,𝑑𝑑′𝑇𝑇𝑇𝑇 → ∞, which means that as the correlation increases, 𝑑𝑑′𝑇𝑇𝑇𝑇 increases (for 

reasons illustrated earlier in Figure 6). Equation 3 is based on the raw memory signals generated 

by the faces in the lineup (after taking into account the effect of the correlation) and therefore 

corresponds to the Independent Observations model. In terms of feature-matching, we noted 

earlier that 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 (the mean memory-match signals for guilty suspects and fillers in a TP 

lineup, respectively) are equal to 𝑛𝑛𝐺𝐺  and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  (the corresponding number of feature settings that 

match the settings of the perpetrator in memory). Thus, we can substitute 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 in 

Equation 3 with 𝑛𝑛𝐺𝐺  and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇, respectively. For the terms in the denominator, we also know that 

𝜎𝜎 = √𝑛𝑛, and as noted in the previous section, in a description-matched lineup, 𝜌𝜌 = 𝑚𝑚 / 𝑛𝑛. Thus, 

expressed in terms of feature-matching, Equation 3 can be written as: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝑛𝑛𝐺𝐺 − 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇

√𝑛𝑛�1 −𝑚𝑚/𝑛𝑛
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In a TP lineup, 𝑛𝑛𝐺𝐺  (number of guilty suspect feature settings that match memory) and 𝑛𝑛 (number 

of features that define a face) are assumed to be equal, so we can replace 𝑛𝑛𝐺𝐺  in this expression 

with 𝑛𝑛. In addition, because the guilty suspect is the perpetrator, the number of filler feature 

settings that match memory of the perpetrator (𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇) is equal to the number of filler features that 

match the guilty suspect (i.e., the perpetrator) in the lineup (𝑚𝑚). That is, for a TP lineup, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 =

𝑚𝑚. After making those substitutions in the numerator, we can write this equation as: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝑛𝑛 −𝑚𝑚

√𝑛𝑛�1 −𝑚𝑚/𝑛𝑛
 

which reduces to the following simple equation: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝑛𝑛 −𝑚𝑚
√𝑛𝑛 −𝑚𝑚

                                                                         (4) 

Equation 4 can be used to predict what should happen as filler similarity to the guilty 

suspect in a TP lineup is manipulated. From a pool of description-matched fillers, taking the 

additional step of selecting fillers who are also similar to the guilty suspect in a TP lineup (and, 

equivalently, to the perpetrator) is conceptualized as ensuring that more of the features f6→f20 

have matching feature settings between the filler and the guilty suspect. Increasing filler 

similarity increases 𝑚𝑚 (the number of filler features that match the guilty suspect), which 

simultaneously and equivalently increases 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  (the number of filler features that match memory 

of the perpetrator). This happens because increasing the number of features that match between a 

filler’s face and the guilty suspect’s face automatically increases the number of features that 

match between a filler’s face and the face of the perpetrator in memory. Thus, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑚𝑚.  

Increasing 𝑚𝑚 decreases the numerator of Equation 4, reflecting increasing similarity 

between a filler and the memory of the perpetrator, but is also decreases the denominator, 

reflecting the increased correlation between the memory signals generated by the faces in the 
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lineup. These two forces exert opposite effects on the degree to which memory signals associated 

with the guilty suspect and the fillers in a TP lineup overlap (i.e., 𝑑𝑑′𝑇𝑇𝑇𝑇). However, the numerator 

decreases more rapidly than the denominator increases, which provides a theoretical explanation 

of why increasing filler similarity reduces discriminability within a TP lineup despite the 

increased correlation. By contrast, in Figure 6, which illustrated why correlated memory signals 

can enhance discriminability, only the correlation changed across conditions.  

Critically, from a pool of description-matched fillers, taking the additional step of 

selecting fillers who are dissimilar to the guilty suspect in a TP lineup is conceptualized as 

reducing 𝑚𝑚 (and, equivalently, reducing 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 and, therefore, 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇), thereby increasing 𝑑𝑑′𝑇𝑇𝑇𝑇. 

There would still be at least 𝑛𝑛𝐷𝐷 =  5 matching feature settings because they were included in the 

description (i.e., the lineup would still be fair), but now fewer features would match by chance. 

In the extreme, 𝑚𝑚 would be reduced from 8 to only 5 in our running example. According to 

Equation 4, this approach would maximize 𝑑𝑑′𝑇𝑇𝑇𝑇. In short, to optimize discriminability in a TP 

lineup, from a pool of description-matched fillers, one should choose fillers that maximize 

dissimilarity to the suspect. Although Equation 4 is conceptually informative, we note that it can 

be further reduced to its simplest form as follows: 

𝑑𝑑′𝑇𝑇𝑇𝑇 = √𝑛𝑛 −𝑚𝑚                                                                      (5) 

Equation 5 unambiguously predicts that in a fair, description-matched TP lineup, the 

memory signals associated with the guilty suspect would be maximally separated from the 

memory signals associated with the fillers by minimizing 𝑚𝑚. In other words, maximizing 

dissimilarity would maximize the ability to discriminate the guilty suspect from the description-

matched fillers in a TP lineup.  



Running head: FILLER SIMILARITY        37 

In a TA lineup, the degree to which the memory signals associated with the innocent 

suspect and the fillers overlap is given by: 

𝑑𝑑′𝑇𝑇𝐴𝐴 =
𝜇𝜇𝐼𝐼 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇
𝜎𝜎�(1 − 𝜌𝜌)

                                                               (6) 

Equation 6 is exactly analogous to Equation 3 for 𝑑𝑑′𝑇𝑇𝑇𝑇. In a fair, description-matched TA lineup, 

before manipulating similarity, the innocent suspect is effectively just another filler. Thus, in 

terms of feature-matching, the mean memory-match signals of innocent suspects and fillers (𝜇𝜇𝐼𝐼 

and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇, respectively) are equal to the corresponding number of feature settings that match the 

settings of the perpetrator in memory (𝑛𝑛𝐼𝐼 and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇), where 𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐷𝐷 + 𝑝𝑝(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 8. 

Note that, in a TA lineup, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇(number of filler features that match memory) does not 

necessarily equal 𝑚𝑚 (number of filler features that match the other faces in the lineup), so we 

cannot use 𝑚𝑚 in place of 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇, as we did for 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  in TP lineups. The same is true for 𝑛𝑛𝐼𝐼. The 

reason is that even if all 20 features match between a filler and the innocent suspect (such that 

𝑚𝑚 = 20, in which case it would be a lineup of clones), it would not change the number of 

features that also match memory of the perpetrator. Thus, we can replace 𝜇𝜇𝐼𝐼 with 𝑛𝑛𝐼𝐼 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 

with 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 , but we cannot go further than that. Also, as before, in terms of feature matching, 𝜎𝜎 =

√𝑛𝑛 = √20, and 𝜌𝜌 = 𝑚𝑚/𝑛𝑛. Making these substitutions yields:  

𝑑𝑑′𝑇𝑇𝐴𝐴 =
𝑛𝑛𝐼𝐼 − 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇
√𝑛𝑛 −𝑚𝑚

 

Because 𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  in a fair lineup, this equation reduces to 𝑑𝑑′𝑇𝑇𝐴𝐴 = 0, and this is true regardless 

of filler similarity (i.e., regardless of 𝑚𝑚). In other words, 𝑑𝑑′𝑇𝑇𝐴𝐴 should remain equal to 0 (i.e., the 

innocent suspect should not stand out regardless of filler similarity) when similarity is 

manipulated with respect to the suspect in a TA lineup.  
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 Figure 8 illustrates the effect of manipulating filler similarity according to the 

Independent Observations model under the assumption that the memory signals are uncorrelated. 

Under those conditions, the use of low-similarity fillers should clearly enhance discriminability 

in TP lineups, but discriminability in TA lineups should remain unchanged (in accordance with 

the data shown earlier in Figures 1 and 2). In practice, however, the magnitude of the predicted 

effect in TP lineups would be reduced by the fact that the beneficial effect of correlated memory 

signals is lowest in the low-similarity condition, so 𝑑𝑑′𝑇𝑇𝑇𝑇 would not increase as much as would 

otherwise be the case (see Equation 3). Ironically, as we shall see, this model that so naturally 

predicts the observed empirical pattern in the unrealistic uncorrelated case struggles somewhat to 

explain it in the more realistic correlated case. 

 
Figure 8. Distributions of memory signals in the low (L), medium (M), and high (H) filler-similarity 
conditions according to the Independent Observations model. These are the raw memory signals, before 
taking into account the effect of correlated signals. 
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We now turn to a key discriminability measure, which is the degree to which memory 

signals associated with innocent suspects in TA lineups overlap with memory signals associated 

with guilty suspects in TP lineups. Recall that this discriminability measure (illustrated earlier in 

Figures 4 and 5) is given by: 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐼𝐼

𝜎𝜎
 

This is the same equation that applies to a showup because, in the Independent Observations 

model, the memory signals generated by innocent and guilty suspects are independent of the 

presence or absence of fillers. The memory signals for innocent and guilty suspects are not 

correlated with each other because these faces appear in different lineups (i.e., there is no sense 

in which an innocent suspect’s face from one lineup is paired with a guilty suspect’s face from a 

different lineup for purposes of computing a correlation).  

Replacing each term with the corresponding term of feature-matching yields: 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
𝑛𝑛 − 𝑛𝑛𝐼𝐼
√𝑛𝑛

                                                                         (7) 

where 𝑛𝑛𝐼𝐼 is the number of the innocent suspect’s features that match memory. Note that 𝑚𝑚 (the 

number of features of the suspect’s face that match features of the fillers’ faces) does not even 

appear in this equation. Filler similarity simply does not matter for this measure because the 

memory signals generated by the innocent and guilty suspects are independent of the memory 

signals generated by the fillers in their respective lineups.4 Therefore, manipulating filler 

similarity (i.e., manipulating 𝑚𝑚) should not affect 𝑑𝑑′𝐼𝐼𝐺𝐺.  

 
4 Note that, in this context, “independent” does not mean “uncorrelated.” Instead, it means that the suspect memory 
signals in a TA or TP lineup are not affected by the memory signals generated by the fillers, whether the filler 
memory signals are correlated with the suspect memory signals or not.  
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Because 𝑑𝑑′𝐼𝐼𝐺𝐺 theoretically remains constant as a function of filler similarity according to 

the Independent Observations model, it might seem as though the model predicts no change in 

the ROC, which plots the hit rate (proportion of guilty suspect IDs from TP lineups) vs. the false 

alarm rate (proportion of innocent suspect IDs from TA lineups).  However, if memory signals 

were uncorrelated, then (as illustrated earlier in Figure 8) this model unambiguously―and 

correctly―predicts that the empirical ROC (i.e., empirical discriminability) should increase with 

decreasing filler similarity (Colloff et al., 2021). It makes that correct prediction because of the 

effect on 𝑑𝑑′𝑇𝑇𝑇𝑇, not 𝑑𝑑′𝐼𝐼𝐺𝐺. Yet, as illustrated later, when we consider the effect of correlated 

memory signals, the predictions of this model on the empirical ROC as filler similarity is 

manipulated become more ambiguous. 

Because the ROC data do not directly indicate the magnitude of 𝑑𝑑′𝐼𝐼𝐺𝐺, the only way to 

determine if this latent measure of discriminability remains constant across filler-similarity 

conditions as predicted by the Independent Observations model is to fit the model to the relevant 

empirical data, such as to the data reported by Colloff et al. (2021). We do so in a later section 

after characterizing two competing signal detection models in terms of feature matching.  

Ensemble model 

The Ensemble model holds that the decision variable does not consist of the raw, 

untransformed memory signals generated by the faces in the lineup. Instead, this model assumes 

that the decision variable consists of the difference between the memory signals generated by a 

face and the average of the signals generated by all the faces in a lineup. As an example, for the 

singular face in the lineup that is a candidate for being identified (i.e., the MAX face), the 

relevant decision variable is the MAX signal minus the mean signal. If the MAX-minus-mean 

decision variable exceeds a decision criterion, the face will be identified, and the greater that 
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difference score is, the higher the confidence will be that the identified individual is the 

perpetrator. 

This model sounds a bit more complicated than the Independent Observations model, but 

it also seems more plausible a priori. In the Ensemble model, a high-confidence ID will be made 

only if the memory signal of the MAX face stands out from the crowd of memory signals 

generated by the faces in the lineup. If every face in the lineup generates a strong memory signal, 

then the MAX face will not stand out, in which case an ID might not even be made (much less 

made with high confidence). In the Independent Observations model, by contrast, if the MAX 

face generates a strong memory signal, a high-confidence ID will be made even if the other faces 

also generate a strong memory signal. Intuitively, it seems unlikely that witnesses would rely on 

a decision variable that disregards the strength of the memory signals associated with the other 

faces in the lineup. Still, they might, and the Independent Observations model generally fits 

lineup data reasonably well (Wixted et al., 2018), which is why it remains a viable competitor.  

Figure 9 shows the distribution of the relevant memory signals according to the Ensemble 

model for the uncorrelated case. Here, the mean memory signal in a lineup has been subtracted 

away from every raw memory-match signal, yielding transformed distributions.  
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Figure 9. Operative memory signals when filler similarity is manipulated with respect to the suspect 
according to the Ensemble model in the low (L), medium (M), and high (H) filler-similarity conditions. This 
figure illustrates the distribution of transformed memory signals (each raw signal minus the mean signal for 
the lineup) without considering the effect of correlated memory signals. 

 

As described in Wixted et al. (2018, 2021), the Ensemble model’s equation for the ability 

to discriminate guilty suspect from fillers in a TP lineup is:  

𝑑𝑑′𝑇𝑇𝑇𝑇 =
(𝜇𝜇𝐺𝐺 − �̅�𝜇𝑇𝑇𝑇𝑇) − �𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 − �̅�𝜇𝑇𝑇𝑇𝑇�

𝜎𝜎�(1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ )
                                                (8) 

where �̅�𝜇𝑇𝑇𝑇𝑇 is the mean memory signal across all members of the TP lineup (guilty suspect and 

fillers) and 𝑘𝑘 is lineup size (i.e., 𝑘𝑘 = 6 in a 6-person photo lineup). Because �̅�𝜇𝑇𝑇𝑇𝑇 subtracts out of 

the numerator, Equation 8 reduces to: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇

𝜎𝜎�(1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ )
 

Replacing each term with its corresponding feature-matching term yields: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝑛𝑛𝐺𝐺 − 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇

√𝑛𝑛�(1 −𝑚𝑚/𝑛𝑛)(1− 1 𝑘𝑘⁄ )
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Again, because 𝑛𝑛𝐺𝐺 = 𝑛𝑛 and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = m in a TP lineup, we can make that substitution in the 

numerator. After doing so and multiplying √𝑛𝑛 through in the denominator, we have:  

𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝑛𝑛 −𝑚𝑚

�(𝑛𝑛 −𝑚𝑚)(1 − 1 𝑘𝑘⁄ )
 

Here again we see that reducing 𝑚𝑚 (i.e., reducing filler similarity) has opposing effects in the 

numerator and denominator, but the ability to discriminate the guilty suspect from the fillers in 

the lineup should increase because the effect on the numerator is stronger. Simplifying further 

yields the final expression for 𝑑𝑑′𝑇𝑇𝑇𝑇 according to the Ensemble model: 

𝑑𝑑′𝑇𝑇𝑇𝑇 =
√𝑛𝑛 −𝑚𝑚

�1 − 1 𝑘𝑘⁄
                                                                     (9) 

Equation 9 is similar to the corresponding equation for the Independent Observations model 

(Equation 5) except it is divided by �1 − 1 𝑘𝑘⁄ . Thus, in agreement with the intuitively sensible 

prediction made by the Independent Observations model, 𝑑𝑑′𝑇𝑇𝑇𝑇 should increase with decreasing 

filler similarity (i.e., with decreasing 𝑚𝑚).  

 For TA lineups, the equation for 𝑑𝑑′𝑇𝑇𝐴𝐴 according to the Ensemble model is directly 

analogous to the corresponding equation for 𝑑𝑑′𝑇𝑇𝑇𝑇 above: 

𝑑𝑑′𝑇𝑇𝐴𝐴 =
(𝜇𝜇𝐼𝐼 − �̅�𝜇𝑇𝑇𝐴𝐴) − �𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 − �̅�𝜇𝑇𝑇𝐴𝐴�

𝜎𝜎�(1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ )
 

where �̅�𝜇𝑇𝑇𝐴𝐴 is the mean memory signal across all members of the TA lineup (innocent suspect and 

fillers). This equation reduces to: 

𝑑𝑑′𝑇𝑇𝐴𝐴 =
𝜇𝜇𝐼𝐼 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇

𝜎𝜎�(1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ )
 

which, after replacing each term with its corresponding feature-matching term and simplifying, 

becomes: 
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𝑑𝑑′𝑇𝑇𝐴𝐴 =
𝑛𝑛𝐼𝐼 − 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇

�(𝑛𝑛 −𝑚𝑚)(1 − 1 𝑘𝑘⁄ )
                                                           (10) 

As before, 𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  (i.e., the numerator is equal to 0), so 𝑑𝑑′𝑇𝑇𝐴𝐴 = 0. Moreover, neither 𝑛𝑛𝐼𝐼 nor 

𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  is affected by manipulating filler similarity (i.e., by manipulating 𝑚𝑚). The reason is that in 

the ideal scenario we consider throughout, the innocent suspect is, in every important respect, 

just another filler. If 𝑛𝑛𝐼𝐼 = 8 (i.e., 8 features of the innocent suspect match memory) and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 =

8 (i.e., 8 features of the innocent filler match memory), then 8 features will match memory no 

matter how many features they share between them. Therefore, 𝑑𝑑′𝑇𝑇𝐴𝐴 should remain equal to 0 

regardless of 𝑚𝑚. This prediction from the Ensemble model matches the prediction made by the 

Independent Observations model.  

Although the two models make the same basic predictions about 𝑑𝑑′𝑇𝑇𝑇𝑇 and 𝑑𝑑′𝑇𝑇𝐴𝐴 as a 

function of filler similarity, they diverge in what they predict about 𝑑𝑑′𝐼𝐼𝐺𝐺. According to the 

Ensemble model (Wixted et al., 2018, 2021):  

𝑑𝑑′𝐼𝐼𝐺𝐺 =
(𝜇𝜇𝐺𝐺 − �̅�𝜇𝑇𝑇𝑇𝑇) − (𝜇𝜇𝐼𝐼 − �̅�𝜇𝑇𝑇𝐴𝐴)

𝜎𝜎�(1 − 𝜌𝜌)(1 − 1/𝑘𝑘)
 

where, again, �̅�𝜇𝑇𝑇𝑇𝑇 and �̅�𝜇𝑇𝑇𝐴𝐴 represent the average memory signals across all members of TA and 

TP lineups (respectively). This equation can be rearranged and simplified to: 

𝑑𝑑′𝐼𝐼𝐺𝐺 = (𝑑𝑑′𝑇𝑇𝑇𝑇 − 𝑑𝑑′𝑇𝑇𝐴𝐴)(1− 1/𝑘𝑘)                                                   (11) 

Thus, unlike the Independent Observations model, where the value of 𝑑𝑑′𝐼𝐼𝐺𝐺 is not directly tethered 

to 𝑑𝑑′𝑇𝑇𝑇𝑇 and 𝑑𝑑′𝑇𝑇𝐴𝐴, in the Ensemble model, an estimated value of 𝑑𝑑′𝐼𝐼𝐺𝐺 does not provide 

independent information beyond what is provided by 𝑑𝑑′𝑇𝑇𝑇𝑇 and 𝑑𝑑′𝑇𝑇𝐴𝐴. To express Equation 11 in 

terms of feature-matching, we can replace 𝑑𝑑′𝑇𝑇𝑇𝑇 with the right side of Equation 9 and replace 𝑑𝑑′𝑇𝑇𝐴𝐴 

with the right side of Equation 10 (which is equal to 0), yielding: 



Running head: FILLER SIMILARITY        45 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
√𝑛𝑛 −𝑚𝑚(1− 1 𝑘𝑘⁄ )

�1 − 1 𝑘𝑘⁄
 

which reduces to: 

𝑑𝑑′𝐼𝐼𝐺𝐺 = �(𝑛𝑛 −𝑚𝑚)(1 − 1 𝑘𝑘⁄ )                                                          (12) 

Thus, in contrast to the Independent Observations model, if the Ensemble model is correct, then 

𝑑𝑑′𝐼𝐼𝐺𝐺 (like 𝑑𝑑′𝑇𝑇𝑇𝑇) should increase with decreasing filler similarity (i.e., with decreasing m). In other 

words, according to this model, the degree to which the latent memory signals associated 

innocent and guilty suspects overall is minimized by maximizing filler dissimilarity.   

Integration model 

Like the Ensemble model, the Integration model holds that the decision variable does not 

consist of the raw, untransformed memory signals generated by the faces in the lineup. Instead, 

this model assumes that the decision variable consists of the sum of the memory signals 

generated by the faces in a lineup. If that summed decision variable exceeds a decision criterion, 

the MAX face will be identified, and the greater the magnitude of the summed decision variable, 

the higher the confidence will be that the identified individual is the perpetrator. A summed 

memory signal seems like an intuitively implausible decision variable (what sense does it make 

to confidently pick the MAX face because the faces all generate a strong memory signal?), but 

the Integration model has long been the only signal detection model that was used in the 

eyewitness identification literature (e.g., to compute 𝑑𝑑′ from lineup data). 

In contrast to the two models considered thus far, 𝑑𝑑′𝑇𝑇𝑇𝑇 and 𝑑𝑑′𝑇𝑇𝐴𝐴 are not expressible in 

terms of the Integration model. The reason is that the decision variable is equal to the sum of the 

memory signals over everyone in the lineup, so there is no within-lineup distinction between the 

memory signals for the suspect vs. the memory signals for the fillers. However, the summed 



Running head: FILLER SIMILARITY        46 

memory signals across everyone in the lineup still differ between TA and TP lineups, so 𝑑𝑑′𝐼𝐼𝐺𝐺 

remains a relevant measure. As noted by Wixted et al. (2018), according to this model: 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
�𝜇𝜇𝐺𝐺 + (𝑘𝑘 − 1)𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇� − �𝜇𝜇𝐼𝐼 + (𝑘𝑘 − 1)𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇�

𝜎𝜎�𝑘𝑘[1 + (𝑘𝑘 − 1)𝜌𝜌]
                                      (13) 

After replacing each term in Equation 13 with the corresponding feature-matching term and 

simplifying, when filler similarity is manipulated with respect to the suspect, the equation 

becomes 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
�𝑛𝑛𝐺𝐺 + (𝑘𝑘 − 1)𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇� − �𝑛𝑛𝐼𝐼 + (𝑘𝑘 − 1)𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇�

√𝑛𝑛�𝑘𝑘[1 + (𝑘𝑘 − 1)𝑚𝑚/𝑛𝑛]
 

Once again, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐼𝐼. After replacing 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇  with 𝑛𝑛𝐼𝐼 and rearranging, we have: 

𝑑𝑑′𝐼𝐼𝐺𝐺 =
(𝑛𝑛 − 𝑘𝑘𝑛𝑛𝐼𝐼) + (𝑘𝑘 − 1)𝑚𝑚

�𝑘𝑘𝑛𝑛 + 𝑘𝑘(𝑘𝑘 − 1)𝑚𝑚
                                                        (14) 

Wixted et al. (2018) found that this model fits the data poorly and can probably be rejected on 

those grounds alone. Here, we make the additional observation that, according to Equation 14, 

this model predicts the opposite of what the Ensemble model predicts about the effect of 

manipulating filler similarity on 𝑑𝑑′𝐼𝐼𝐺𝐺. The Ensemble model predicts that increasing filler 

similarity (increasing 𝑚𝑚) will decrease 𝑑𝑑′𝐼𝐼𝐺𝐺, whereas the Integration model predicts that it will 

increase 𝑑𝑑′𝐼𝐼𝐺𝐺 instead. To see why, note that the numerator of Equation 14 is of the form 𝛼𝛼 + 𝛽𝛽𝑚𝑚 

whereas the denominator is of the form √𝛿𝛿 + 𝜆𝜆𝑚𝑚, where the Greek letters are constants. 

According to Equation 14, 𝑑𝑑′𝐼𝐼𝐺𝐺 increases with increasing 𝑚𝑚 because although 𝑚𝑚 appears in both 

the numerator and the denominator (both of which increase with increasing 𝑚𝑚), the numerator 

increases faster than the denominator because the denominator is raised to a power of 0.5. 
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Model-based illustrations of manipulating filler similarity 

To illustrate empirical ROC data anticipated by the three competing models, we first 

generated raw memory signals using the generic feature-matching model outlined earlier and 

then computed the appropriate decision variable separately for each model. For the Independent 

Observations model, the decision variable consisted of the raw memory signal itself, whereas for 

the Ensemble and Integration models, the raw signal was transformed in the manner described 

above to create the decision variable. The settings used to generate the raw memory signals were 

the setting used in our running example: 𝑛𝑛𝐷𝐷 = 5, 𝑛𝑛𝐺𝐺 = 𝑛𝑛 = 20, 𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐷𝐷 +

.20(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 8, and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑚𝑚, where 𝑚𝑚 = 5, 8, or 11 for the low-, medium, and high-

similarity conditions, respectively. The degree to which the raw memory signals were correlated 

(𝑚𝑚 𝑛𝑛⁄ ) is equal to 5 20⁄ = .25 in the low-similarity condition, 8 20⁄ = .40 in the medium-

similarity condition, and 11 20⁄ = .55 in the high-similarity condition. The hypothetical ROC 

data generated by the three competing models are presented in Figure 10.  
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Figure 10. ROC data from the Independent Observations model (A), the Ensemble model (B), and the 
Integration model (C) based on raw memory signals generated by the feature-matching process, with 
parameters set to the values used in our running example. 
 

The Independent Observations model (panel A), which correctly predicts that empirical 

pAUC will increase with decreasing filler similarity when memory signals are uncorrelated, 

surprisingly predicts no effect of filler similarity in this specific scenario (where memory signals 

become more correlated with increasing filler similarity). This change reflects a subtle effect 

arising from predicting empirical ROC data rather than just decision-variable separation 
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(captured by 𝑑𝑑′𝑇𝑇𝐴𝐴 and 𝑑𝑑′𝑇𝑇𝑇𝑇). Specifically, the probability that the suspect generates the 

maximum signal in the lineup and the probability that the maximum signal exceeds the decision 

criterion (thereby yielding an empirical hit or false alarm) are not entirely independent. As a 

result, even if 𝑑𝑑′𝑇𝑇𝐴𝐴 remains equal to 0 across filler similarity manipulations and even if the 

decision criterion remains constant, the false alarm rate will nevertheless vary to some degree as 

a function of how correlated the memory signals are. This subtle factor has less influence on the 

predictions made by the Ensemble model and Integration model (for both models, their 

respective 𝑑𝑑′𝐼𝐼𝐺𝐺 equations effectively guide thinking about the predicted empirical ROC), but it 

does have a more pronounced effect on the predictions made by the Independent Observations 

model, which show up as a discrepancy in predictions with (Figure 10A) and without (Figure 8) 

correlated memory signals. 

Unlike the Independent Observations model, the Ensemble model (Figure 10B) predicts 

that discriminability will increase with decreasing similarity, in accordance with the predicted 

effect on 𝑑𝑑′𝐼𝐼𝐺𝐺 and in agreement with the empirical pattern depicted earlier in Figure 2. By 

contrast, the Integration model (Figure 10C) incorrectly predicts the opposite pattern (in 

accordance with its predicted effect on 𝑑𝑑′𝐼𝐼𝐺𝐺). Thus, it seems that witnesses do not rely on the 

integration decision variable. We therefore once again conclude that this model is not viable. 

Although the Independent Observations model also seems potentially challenged by the 

hypothetical results shown in Figure 10 (panel A), that pattern only demonstrates that the correct 

prediction it makes about manipulating filler similarity in the uncorrelated scenario would be 

eliminated if memory signals are differentially correlated in just the way envisioned by the 

specific parameters we used here (i.e., with 𝑛𝑛 = 20, 𝑛𝑛𝐷𝐷 = 5, and so on). The actual change in the 

correlation as a function of filler similarity is surely different in real lineups. Thus, to determine 
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which model is best able to account for empirical filler-similarity data, the models must be 

directly fit to such data.  

Fitting the models to empirical data 

We next fit the competing models to filler similarity data to test their predictions. As a 

reminder, these fits do not involve specific reference to the parameters of the feature-matching 

account (e.g., 𝑛𝑛, 𝑚𝑚, etc.), which were used to generate the predictions we test here and to provide 

a theoretical interpretation of each model’s free parameters. Instead, the fits involve estimating 

the parameters of the models in their original form (e.g., estimating 𝜇𝜇𝐺𝐺, 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇, and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇, etc.). 

These parameters, once estimated, can be used to compute 𝑑𝑑′𝑇𝑇𝑇𝑇, 𝑑𝑑′𝑇𝑇𝐴𝐴, and 𝑑𝑑′𝐼𝐼𝐺𝐺 based on the 

equations presented earlier. The key question is how manipulating filler-similarity (i.e., 

manipulating 𝑚𝑚 when conceptualized in terms of feature matching) affects the estimated value of 

𝑑𝑑′𝐼𝐼𝐺𝐺, with the relevant predictions specified by Equation 7 for the Independent Observations 

model and Equation 12 for the Ensemble model. According to those equations, the latent 

measure 𝑑𝑑′𝐼𝐼𝐺𝐺 should remain constant as a function of 𝑚𝑚 if the Independent Observations model 

is correct, but it should increase as 𝑚𝑚 decreases (high filler similarity to low filler similarity) if 

the Ensemble model is correct. 

Data from Colloff et al. (2021) 

To test the predictions worked out above, we first fit the Independent Observations model 

and the Ensemble model to the filler similarity data recently reported by Colloff et al. (2021), 

which were summarized earlier in Figures 1 and 2. We did not also fit the Integration model to 

those data because it predicts the opposite of the observed pattern, but we do provide a few tests 

of its predictions below (which are, characteristically, wildly off the mark). 
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Model parameters. For fits of both models, we defined 𝜇𝜇𝐼𝐼 to be 0 (𝜇𝜇𝐼𝐼 ≡ 0) and 𝜎𝜎𝐼𝐼 

(standard deviation of the innocent suspect distribution) to be 1 (𝜎𝜎𝐼𝐼 ≡ 1). We also set 𝜎𝜎𝐺𝐺  

(standard deviation of the guilty suspect distribution) to 1 because allowing it to deviate from 𝜎𝜎𝐼𝐼 

never significantly improved the fit. The Independent Observations model is characterized by 

seven additional parameters: 𝜇𝜇𝐺𝐺 (mean of the guilty suspect distribution), 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 (mean of the 

target-present filler distribution), 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 (mean of the target-absent filler distribution), 𝜎𝜎𝐴𝐴  (standard 

deviation of the filler distribution relative to the innocent and guilty distributions), and three 

confidence criteria, c1, c2, and c3 (the confidence ratings were collapsed across adjacent ratings to 

create three confidence bins). Note that we would expect to find that 𝜎𝜎𝐴𝐴 > 1 because although 

the same innocent suspect was used in every TA lineup and the same guilty suspect was used in 

every TP lineup, the fillers in every similarity condition were randomly drawn from a pool of 

109 faces. That random selection process would be expected to add random error to the filler 

distribution relative to the innocent and guilty suspect distributions (where 𝜎𝜎𝐺𝐺 = 𝜎𝜎𝐼𝐼 ≡ 1). 

Across the three filler-similarity conditions, some of the seven parameters for the 

Independent Observations model were constrained to be equal, whereas others were free to vary. 

In particular, 𝜇𝜇𝐺𝐺 was constrained to be equal across similarity conditions (1 free parameter) 

because the guilty suspect was the same in every TP lineup, and, according to the foundational 

assumption of this model, the memory signals generated by the guilty suspect should be 

independent of the memory signals generated by the fillers. By contrast, we would expect 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 

to vary systematically across the three conditions (Figure 5) because this is the parameter that 

was intentionally manipulated, so its estimated value was free to vary (3 parameters). We have 

no similar reason to expect 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 to vary across conditions or to deviate from 𝜇𝜇𝐼𝐼 ≡ 0. Still, filler 

similarity to the innocent suspect was experimentally manipulated in TA lineups, so 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇  might 
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(and, as it turns out, did) vary significantly as a result. We therefore did not constrain its value to 

be fixed across conditions (3 parameters). Similarly, 𝜎𝜎𝐴𝐴  was also initially free to vary across 

conditions (again because filler similarity was manipulated, perhaps affecting this parameter), 

but it never affected the fit significantly, so, while allowing its estimated value to deviate from 1, 

we constrained it to be equal across filler similarity conditions (1 free parameter). Finally, the 

three confidence criteria were allowed to vary across conditions (9 parameters). Thus, in all, 

there were 1 + 1 + 3 + 3 + 9 = 17 free parameters for this model. As described by Wixted et al. 

(2018), this model also has a correlation parameter, 𝜎𝜎𝑏𝑏, but its estimated value never differed 

from 0 (even though it theoretically should have), so it plays no role in the fits of this model.  

The parameters are similar for the Ensemble model but with a few key differences. The 

Ensemble model assumes that the operative psychological variable is a difference score, namely 

the difference between the face memory signal and the mean of the 𝑘𝑘 memory signals generated 

by the faces in the lineup. This subtraction process untethers the values in TP lineups from the 

corresponding values in TA lineups (i.e., they are no longer measured with respect to 𝜇𝜇𝐼𝐼 ≡ 0, as 

𝜇𝜇𝐺𝐺 is in the Independent Observations model). When this model is fit to the data, the means of 

the raw memory signals (such as 𝜇𝜇𝐺𝐺) are therefore not recoverable because the subtraction 

process has already theoretically taken place, before confidence ratings are provided.  

In a TP lineup, the mean of the difference-score distribution for guilty suspects is 𝜇𝜇𝐺𝐺 −

�̅�𝜇𝑇𝑇𝑇𝑇, where �̅�𝜇𝑇𝑇𝑇𝑇 is the mean memory signal across all 6 faces in the lineup. Similarly, the mean 

of the difference-score distribution for the fillers is 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 − �̅�𝜇𝑇𝑇𝑇𝑇. The numerator of 𝑑𝑑′𝑇𝑇𝑇𝑇 for the 

Ensemble model (Equation 8) is (𝜇𝜇𝐺𝐺 − �̅�𝜇𝑇𝑇𝑇𝑇) − �𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 − �̅�𝜇𝑇𝑇𝑇𝑇�, which reduces to 𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 . This 

difference score (𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇), which is directly related to 𝑑𝑑′𝑇𝑇𝑇𝑇 in Figure 9, is all that can be 

estimated. For example, imagine that 𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 = 1. This could mean that 𝜇𝜇𝐺𝐺 = 2 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 = 1 
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or that 𝜇𝜇𝐺𝐺 = 3 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 = 2, but the numerator of Equation 8 would be the same either way. 

Thus, in fitting the model, all that matters is 𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇. This difference score is one free 

parameter, which we denote 𝜇𝜇𝐺𝐺−𝐴𝐴𝑇𝑇𝑇𝑇. Because the means of 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 cannot be separately 

estimated, the Ensemble model has one fewer free parameter relative to the Independent 

Observations model. Similarly, for TA lineups, the only relevant memory-signal parameter for a 

given filler-similarity condition is 𝜇𝜇𝐼𝐼 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇, which we denote 𝜇𝜇𝐼𝐼−𝐴𝐴𝑇𝑇𝑇𝑇. However, a free 

parameter is not also lost here because 𝜇𝜇𝐼𝐼 is already fixed 0 by definition and is therefore not a 

free parameter. 

The parameter 𝜇𝜇𝐺𝐺−𝐴𝐴𝑇𝑇𝑇𝑇 was free to vary across filler-similarity conditions (3 free 

parameters) and so was the parameter 𝜇𝜇𝐼𝐼−𝐴𝐴𝑇𝑇𝑇𝑇  (3 free parameters), whereas 𝜎𝜎𝐴𝐴  was again 

constrained to be equal across the three conditions (1 free parameter). The remaining parameters 

are the three confidence criteria (c1, c2, and c3), and they were again free to vary across 

conditions (9 free parameters). Thus, the Ensemble model has 3 + 3 + 1 + 9 = 16 free parameters 

(one fewer than the basic Independent Observations model). This model does not have a 

correlation parameter because, theoretically, shared variance was subtracted away before the 

confidence rating was made. What remains is unshared variance, so the original correlated 

signals are theoretically unrecoverable.  

Maximum likelihood fits. Table 1 shows the results of the maximum-likelihood fits. In 

terms of goodness of fit (𝜒𝜒2, AIC, BIC), the two models were comparable. In addition, according 

to the Independent Observations model, the experimental manipulation of filler similarity in TP 

lineups was successful. That is, the estimated mean of the TP filler distribution (𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇) became 

increasingly negative (i.e., the mean shifted more to the left, away from the guilty suspect 
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distribution) as filler similarity decreased from high to low. Constraining its value to be equal 

across the three conditions significantly worsened the fit, 𝜒𝜒2(2) = 91.1, 𝑝𝑝 < .001.  

In TA lineups, the filler similarity manipulation also slightly affected 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 for reasons 

that are not clear. Constraining its value to be equal across the three conditions also significantly 

worsened the fit, 𝜒𝜒2(2) = 50.4,𝑝𝑝 < .001. As expected, the estimated value of 𝜎𝜎𝐴𝐴  was 

significantly greater than 1, 𝜒𝜒2(1) = 122.8,𝑝𝑝 < .001. The same trends were observed for the fit 

of the Ensemble model. That is, constraining 𝜇𝜇𝐺𝐺−𝐴𝐴𝑇𝑇𝑇𝑇 or 𝜇𝜇𝐼𝐼−𝐴𝐴𝑇𝑇𝑇𝑇 to be equal across conditions 

significantly worsened the fit, 𝜒𝜒2(2) = 86.6,𝑝𝑝 < .001 and 𝜒𝜒2(2) = 7.84,𝑝𝑝 = .025, 

respectively, as did constraining 𝜎𝜎𝐴𝐴  to equal 1, 𝜒𝜒2(1) = 96.8,𝑝𝑝 < .001. 

Table 1. Maximum likelihood parameter estimates and goodness-of-fit statistics for the Independent 
Observations model (A) and Ensemble model (B) fit to the filler-similarity data from the Suspect Similarity 
experiment reported by Colloff et al. (2021). 

 

We next computed the relevant discriminability measures from these parameter estimates 

(Table 2). These estimates are in line with predictions derived in the previous section in terms of 

feature matching. As a technical aside, for both models, some of these discriminability measures 

(namely, 𝑑𝑑𝑇𝑇𝑇𝑇 and 𝑑𝑑𝑇𝑇𝐴𝐴) are not true 𝑑𝑑′ scores because 𝜎𝜎 ≠ 𝜎𝜎𝐴𝐴  (for details, see Appendix: 

Computing Unequal-Variance Discriminability Measures). However, again for both models, 𝑑𝑑′𝐼𝐼𝐺𝐺 

is a true 𝑑𝑑′ score because only 𝜎𝜎 was involved in the calculation (where 𝜎𝜎 = 𝜎𝜎𝐺𝐺 = 𝜎𝜎𝐼𝐼 = 1). 

These technicalities aside, the discriminability measures for 𝑑𝑑𝑇𝑇𝑇𝑇 varied as a function of filler 

A Model Condition c 1 c 2 c 3 N npar χ2 AIC BIC

High -0.18 0.00 1.59 2.14 2.87

Med 1.86 -0.52 -0.30 1.22 1.50 2.00 2.72 10559 17 55.0 30414.3 30537.8

Low -0.73 -0.28 1.46 1.93 2.65

B Model Condition --- c 1 c 2 c 3 N npar χ2 AIC BIC

High 2.20 0.13 1.66 2.15 2.83
Med 2.57 0.36 1.37 1.83 2.28 2.97 10559 16 57.5 30415.1 30531.4

Low 2.67 0.31 1.84 2.27 2.96

Ind Obs

Ensemble
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similarity (i.e., as a function of 𝑚𝑚) in accordance with predictions, whereas the smaller and less 

systematic changes in 𝑑𝑑𝑇𝑇𝐴𝐴 were not anticipated. 

Table 2. Discriminability statistics for the Independent Observations model (A) and Ensemble model (B) 
computed from the parameter estimates in Table 2. 
 

An unexpected outcome from the perspective of the Independent Observations model in 

Table 1 is that the estimates of 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 were negative in all three conditions. One would instead 

expect the estimate in the medium-similarity condition to approximately equal 0 (i.e., equivalent 

to 𝜇𝜇𝐼𝐼) and to be positive in the high-similarity condition and negative in the low-similarity 

condition (Figure 8). Why would fillers who are high in similarity to the perpetrator generate a 

weaker memory-match signal, on average, than the innocent suspect (who, by design, has 

median similarity to the perpetrator)? Another unexpected outcome from the perspective of the 

Independent Observations model, noted earlier, is that the correlation parameter was always 

estimated to be 0 instead of increasing as a function of filler similarity. 

Which model best accounts for the data? To explore a possible source of the unexpected 

parameter estimates provided by the Independent Observations model, we generated simulated 

data from the Ensemble model using its best-fitting parameter estimates in Table 1 and then fit 

the Independent Observations model to those Ensemble-generated data. The results are shown in 

the top three lines of data in Table 3, which now also includes a column for 𝑑𝑑′𝐼𝐼𝐺𝐺 (the estimate of 

A Model Condition d TP d TA d' IG

High 1.83 0.00
Med 2.13 0.27 1.86
Low 2.33 0.25

B Model Condition d TP d TA d' IG

High 1.92 0.11 2.07
Med 2.24 0.32 2.21

Low 2.33 0.27 2.36

Ind Obs

Ensemble



Running head: FILLER SIMILARITY        56 

most interest). As above, 𝑑𝑑′𝐼𝐼𝐺𝐺 = 𝜇𝜇𝐺𝐺  because 𝑑𝑑′𝐼𝐼𝐺𝐺 = 𝜇𝜇𝐺𝐺−𝜇𝜇𝐼𝐼
𝜎𝜎

, and we have defined 𝜇𝜇𝐼𝐼 and 𝜎𝜎𝐼𝐼 to be 0 

and 1, respectively (and 𝜎𝜎 = 𝜎𝜎𝐺𝐺 = 𝜎𝜎𝐼𝐼). Interestingly, the estimates of 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 are now all negative, 

just as they are in the fit of the Independent Observations model to the real data.  

Table 3. Maximum likelihood parameter estimates and goodness-of-fit statistics for the Independent 
Observations model fit to simulated data generated by the Ensemble model using the best-fitting parameter 
estimates for the Ensemble model presented in Table 1. Note that because 𝝁𝝁𝑰𝑰 = 𝟎𝟎 and 𝝈𝝈𝑰𝑰 = 𝝈𝝈𝑮𝑮 = 𝟏𝟏, 𝑶𝑶′𝑰𝑰𝑮𝑮 = 𝝁𝝁𝑮𝑮 
 

 

The bottom three lines of Table 3 show the results of allowing 𝜇𝜇𝐺𝐺 to vary across 

conditions, which means that 𝑑𝑑′𝐼𝐼𝐺𝐺 will vary as well. Doing so significantly improved the fit of 

the Independent Observations model, and the estimates of 𝑑𝑑′𝐼𝐼𝐺𝐺 were ordered in the direction 

predicted by the Ensemble model. This is perhaps not surprising given that the simulated data 

were actually generated by the Ensemble model (for which 𝑑𝑑′𝐼𝐼𝐺𝐺 necessarily varies as a function 

of filler similarity), but it raises a question: Would the same result be observed if 𝜇𝜇𝐺𝐺 were 

allowed to vary across conditions when the Independent Observations is fit the empirical data 

rather than to simulated data generated by the Ensemble model? If so, it would mean that 𝑑𝑑′𝐼𝐼𝐺𝐺 

varies significantly across conditions even according to the Independent Observations model. 

Yet there is no reason why 𝑑𝑑′𝐼𝐼𝐺𝐺 should vary significantly or systematically if the Independent 

Observations model is correct. 

As shown in Table 4, when 𝜇𝜇𝐺𝐺 was allowed to vary across conditions, the fit of the 

Independent Observations model to the empirical data was significantly improved, and the 

Model Condition c 1 c 2 c 3 N npar χ2

High -0.20 0.03 1.48 1.99 2.67
Med 1.46 1.46 -0.47 -0.23 1.18 1.38 1.85 2.51 20000 17 122.9
Low -0.48 -0.26 1.35 1.80 2.46
High 1.41 1.41 -0.22 0.02 1.43 1.93 2.57
Med 1.49 1.49 -0.44 -0.21 1.16 1.38 1.84 2.50 20000 19 41.18

Low 1.64 1.64 -0.34 -0.12 1.47 1.92 2.58

Ind Obs

Ind Obs
+ 2
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estimates of 𝑑𝑑′𝐼𝐼𝐺𝐺 were ordered across conditions in the manner predicted by the Ensemble model 

(i.e., lowest in the high-similarity condition and highest in the low-similarity condition), 𝜒𝜒2(2) =

55.0 − 48.9 = 6.0,𝑝𝑝 = .047. Note that this 𝑝𝑝 value means that the 𝑑𝑑′𝐼𝐼𝐺𝐺 values differed 

significantly from each other without also taking into account that their values were ordered as 

predicted by the Ensemble model (an outcome that would occur by chance 1/6 of the time).  

Table 4. Maximum likelihood parameter estimates and goodness-of-fit statistics for the Independent 
Observations model fit to the data from the Suspect Similarity experiment reported by Colloff et al. (2021). 
This time, 𝝁𝝁𝑮𝑮 was not constrained to be equal across conditions, which added two additional free parameters. 

 

Because only the Ensemble model predicts that 𝑑𝑑′𝐼𝐼𝐺𝐺 will be ordered this way, and 

because even the Independent Observations model interprets the data in accordance with 

prediction, the results would seem to provide compelling support for the Ensemble model. Then 

again, why would the two models fit the data about equally well if the Independent Observations 

model is incorrect (Table 1)? The answer appears to be that the Independent Observations model 

is considerably more flexible than the Ensemble model. That is, the Independent Observations 

model is better able to fit data generated by the Ensemble model than the other way around (see 

Appendix: Model Flexibility). 

Detection ROCs. Another way to test the predictions of the competing models is to 

simply plot the “detection ROCs” from each filler-similarity condition. For this kind of ROC, a 

hit consists of any ID from a TP lineup (guilty suspect ID or filler ID) and a false alarm consists 

of any ID from a TA lineup (innocent suspect ID or filler ID). The three models make 

qualitatively different predictions about the order of the ROCs across the three filler-similarity 

conditions.  

Model Condition c 1 c 2 c 3 N npar χ2

High 1.79 1.79 -0.18 0.00 1.54 2.09 2.81
Med 1.89 1.89 -0.45 -0.24 1.20 1.52 2.02 2.73 10559 19 48.9
Low 1.95 1.95 -0.61 -0.17 1.53 1.99 2.71

Ind Obs
+ 2
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The Ensemble model predicts that the detection ROC curves will be ordered low-

similarity > medium-similarity > high-similarity, as they were for the detection-plus-

identification ROCs shown earlier in Figure 2. The prediction arises because in a TP lineup, 

fewer and fewer IDs should be made as the members of the lineup look more and more like the 

guilty suspect (because the difference-score decision variable becomes smaller, on average). The 

Independent Observations and Integration models both make the opposite prediction. That is, 

they both predict that the detection ROC curves will be ordered high-similarity > medium-

similarity > low-similarity. According to the Independent Observations model, in a TP lineup, 

making the fillers more similar to the suspect should increase the chances that someone exceeds 

the decision criterion (elevating the hit rate). According to the Integration model, in a TP lineup, 

making the fillers more similar to the suspect should increase the summed decision variable, 

thereby also increasing the chances that someone exceeds the decision criterion (elevating the hit 

rate). No such effects should be observed in TA lineups. 

Figure 11 shows the detection ROCs based on data reported by Colloff et al. (2021). 

Clearly, the high-similarity condition yields the lowest ROC, as uniquely predicted by the 

Ensemble model. The low-similarity condition very slightly exceeds the medium-similarity 

condition, but those two ROC curves basically fall atop one another. Although these results are 

not perfectly in accordance with predictions made by the Ensemble model, they are close. By 

contrast, the ROCs qualitatively differ from predictions made by the Independent Observations 

model and the Integration model.  
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Figure 11. Detection ROCs from Colloff et al. (2021). For these ROCs, any ID from a TP lineup (to the guilty 
suspect or to a filler) was counted as a hit, whereas any ID from a TA lineup (to the innocent suspect or to a 
filler) was counted as a false alarm. 
 

 Overall, the results support the Ensemble model over the Independent Observations 

model (and over the already non-competitive Integration model). In more general terms, the 

results support the idea that eyewitnesses do not base their identification decisions on the 

memory-match signal generated by the MAX face in the lineup independent of the memory 

signals generated by the other faces in the lineup. Instead, these findings support the idea that 

witnesses take into account the other faces in the lineup.  

 Although the fits of the Independent Observations and Ensemble models to the data from 

Colloff et al. (2021) would appear to offer strong support for the Ensemble model, the results are 

based on only one specific stimulus set created to investigate the effect of manipulating filler 

similarity. To find out if the results generalize, we used a completely different approach to 

manipulate filler similarity in a new multi-trial-per-participant experiment reported here.  

Data from a new filler-similarity experiment 

The new experiment differed significantly from Colloff et al. (2021) in that filler 

similarity was manipulated by morphing the face of the suspect in the lineup onto the faces of the 
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fillers, to different degrees across filler similarity conditions. In addition, instead of being tested 

only once, each participant was tested multiple times (more like a traditional cognitive 

psychology experiment). Because the fillers were morphed to the suspect separately in TA and 

TP lineups, this experiment is analogous to the Suspect Similarity experiment reported by 

Colloff et al. (2021; i.e., the results presented earlier in Figures 1 and 2). 

Participants. In total, 1,276 participants (Mage=34.12) were recruited through Amazon 

Mechanical Turk and included in the analysis for both successfully answering the attention check 

question and choosing “no” when asked “have you done this study before?”. The attention check 

question was “what were you asked to remember?” and the correct answer was “face”. The 

participants included 54.9% male (701), 44.3% female (565), 0.3% other (4) and 0.5% prefer not 

to state (6), with the ethnicity distribution being: 5% African-American (58), 14% Asian (184), 

2% Mexican-American (22), 1% Filipino (15), 11% Latino (140), 3% Native-American (38), 

56% Caucasian (709), 6% Other/Undeclared (78), and 3% Prefer not to state (32). The 

experiment was reviewed and approved by the University of California San Diego Social and 

Behavioral Sciences Institutional Review Board. 

Materials and Design. All faces were selected from Chicago Face Database (CFD; Ma, 

Correll, & Wittenbrink, 2015). We used faces that were matched on the general characteristics 

commonly included in a witness’s description of a perpetrator (namely, race, age, gender, facial 

hair). In that sense, all of the fillers were considered to be description matched. The faces were 

Caucasian, male, approximately 30 years of age, and had no facial hair. Each face was cropped 

into an oval shape to exclude features such as hair and face shape because, to our eyes, including 

them made the morphed faces look morphed. Taking this approach could reduce real-world 

generalizability, but the key point of our study is to test theory-based predictions. Varying 
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methodological details that theoretically should not matter is arguably a good way to test the 

robustness of a model (e.g., Baribault et al., 2018). 

The faces were randomly divided into six sets. Each set consisted of 15 faces, one of 

which was randomly picked and designated to serve as the suspect for that set (six suspects in 

all) and the other 14 of which served as potential fillers. We did not purposefully divide them 

based on similarity because they had to undergo the morphing process regardless. 

The 14 non-suspect faces in each set were altered using Fantamorph software to create 3 

pools of photos that varied in similarity to the suspect (low, medium, and high). These photos 

would serve as fillers in the lineups that contained the corresponding suspect. To create a pool of 

low-similarity fillers for a given set, the 14 non-suspect faces were morphed with the suspect to 

create new faces that were 20% suspect and 80% filler. To create a pool of medium-similarity 

fillers, the same 14 non-suspect photos were morphed with the suspect to create new faces that 

were 40% suspect and 60% filler. Finally, to create a pool of high-similarity fillers, the 14 non-

suspect photos were morphed with the suspect to create new faces that were 60% suspect and 

40% filler. In the end, we had six photo sets, with each set consisting of one suspect and 3 pools 

of low-, medium-, and high-similarity fillers (14 faces in each pool). Some examples are shown 

in Figure 12. Note that, in contrast to Colloff et al. (2021), these three conditions are actually 

best construed as three levels of high similarity because even in the “low”-similarity condition, 

the faces were morphed to be more similar to the suspect than they would be had the faces been 

unaltered. We refer to the three conditions of increasing filler similarity as 20% Suspect, 40% 

Suspect, and 60% Suspect. The model-based predictions about the effect of manipulating filler 

similarity remain unchanged. 
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Figure 12. Examples of lineups constructed with stimuli at three similarity levels (morphed with 20%, 40%, 
60% suspect), with the suspect being the middle face in the top row of each lineup. Note that, unlike Colloff et 
al. (2021), all three conditions involve a level of similarity above the medium level of similarity that would be 
obtained from choosing description-matched fillers.    

 

One suspect photo from each of the six sets was used as the basis for the six lineups 

created for each participant. For a given participant, three of the six suspects were randomly 

assigned to be innocent (three TA lineups), and the remaining three suspects were assigned to be 

guilty (three TP lineups). For the three TA lineups, the suspects were randomly assigned to the 

low-, medium-, or high-similarity conditions, and the same was true of the suspects in the three 

TP lineups. For each lineup, five fillers were randomly drawn from the appropriate pool of 14 

photos. As an example, if a suspect was assigned to the low-similarity TA condition, then five 

fillers were randomly drawn from the pool of low-similarity fillers that had been created for that 

suspect. Every participant received two lineups (one TP, one TA) for each of the three similarity 

levels in randomized orders. Both similarity and the presence of perpetrator were within-subject 

manipulations.  

As illustrated in Figure 13, in the study phase of a TA lineup, the participant saw a 

photograph of a person who was randomly selected and not included in the six lineup photos for 

that trial, while in the study phase of a TP lineup, the participant saw a photograph of the suspect 
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that would appear in the six lineup photos for that trial. The study photo was not the exact same 

photo of the suspect in the TP lineup but was instead a photo of the same person with a different 

expression. Note that the overall design we used is a variant of the “single lineup paradigm” 

described by Oriet and Fitzgerald (2018) because the same lineup could be a TA lineup for one 

participant and a TP lineup for another. In other words, every lineup technically used seven faces 

total: the designated suspect, the five fillers that were associated with the suspect, and the 

perpetrator for the TA condition (when the designated suspect was innocent). If it was a TP 

lineup, the designated suspect was shown during the study phase. In that case, the lineup 

consisted of the designated suspect and five fillers. If it was a TA lineup, the perpetrator for the 

TA condition was shown during the study phase. In that case, the lineup consisted of the 

designated suspect and five fillers (the same lineup that they would have gotten had it been TP). 

Across participants, each suspect appeared in all possible conditions and no face was shown 

more than once to the same subject, including the morphed fillers. 

Figure 13. The procedure used in the experiment that manipulated filler similarity by morphing the face of 
the suspect onto the fillers to varying degrees.   
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Procedure. The study was programmed using Qualtrics and distributed through Amazon 

Mechanical Turk. The participants were first informed about the experimental procedure and 

asked to indicate consent if they would like to proceed. Then they received a practice trial before 

the six experimental trials began. The practice trial consisted of African American male suspects. 

Since the actual experiment used Caucasian male faces, no stimulus was shown to the subject 

more than once. Each trial consisted of three parts: study phase, distractor task and test phase. In 

the study phase, a photograph was shown for three seconds before the page auto-advanced. A 

mini game, either Tetris or a sliding block puzzle game called “2048,” was then shown on the 

screen. The participant was instructed to score as high as possible. The game lasted for 60 

seconds after which the test phase was presented. In the test phase, lineup members were 

presented simultaneously in a 2 x 3 array. The spatial location of each photograph was 

randomized. The program then instructed participants to either pick out the photograph of the 

person they previously saw or choose “none of the above”. On the same screen, participants were 

asked to assess how confident they were about their identification decision using an 11-point 

scale, ranging from 0 (not certain at all) to 10 (absolutely certain). After all six trials concluded, 

participants were asked about their demographic information, what they were asked to study in 

the tasks (the attention check question), and whether they previously participated in this study.  

Results. Table 5 presents the proportions of response outcomes (suspect ID, filler ID, or 

No ID) for TP and TA lineups across the three levels of filler similarity. In TP lineups, the 

suspect ID rate decreased substantially as similarity increased, while the filler ID rate increased 

and the No ID rate stayed consistent.  
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Table 5. Proportion of Guilty suspect IDs, Filler IDs, and lineup rejections in the 60% Suspect, 40% Suspect, 
and 20% Suspect conditions for Target-Present and Target-Absent Lineups 

A chi-square test was performed on each of the lineup categories, with filler IDs and No 

IDs collapsed due to our primary interest in suspect IDs. For the target-present lineups, there was 

a significant relationship between filler similarity and the number of suspect IDs, χ2 (2, N = 

3828) = 53.46, p < .001.5 That is, the suspect ID rate increased as filler similarity decreased 

(from 60% to 20%), which is the same pattern recently reported by Colloff et al. (2021). For the 

target-absent lineups, there was no significant association between similarity and innocent 

suspect ID, χ2 (2, N = 3828) = 3.89, p = .14. Again, this is the same pattern reported by Colloff et 

al. (2021). The results are consistent with our prediction that the ability to discriminate innocent 

from guilty suspects would increase as filler similarity decreased, and that pattern is evident in 

the ROC data shown in Figure 14. 

Figure 14. ROC data from the 20%, 40%, and 60% Suspect conditions of the face morphing study. Again, all 
three conditions involve fillers who are more similar to the suspect than the medium level of similarity that 
would be achieved by simply using description-matched fillers. 

 
5 The chi-square analyses for this experiment assume independence, which is not strictly true because each 
participant contributed 6 observations instead of the more typical 1.  

Condition Guilty Filler Reject Guilty Filler Reject
60% 0.25 0.22 0.53 0.06 0.26 0.68
40% 0.34 0.14 0.53 0.06 0.30 0.64
20% 0.39 0.08 0.53 0.08 0.20 0.72

TP TA
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Maximum likelihood fits. Using maximum likelihood estimation, we again fit the 

Independent Observations and Ensemble models to the frequency-count data for suspect IDs, 

filler IDs, and lineup rejections from TA and TP lineups. Note that, in this experiment, the fit 

was not improved by allowing the standard deviation of fillers and suspects to differ (i.e., an 

equal-variance model applied across the board), so one fewer parameter was involved in these 

fits compared to the ones reported earlier. This makes sense because a much smaller pool of 

filler faces was used in this experiment. 

As shown in Table 6, the goodness-of-fit statistics were again comparable, and the 

parameter estimates showed the same basic patterns as before in Table 1. The parameter 

estimates for 𝑢𝑢𝐴𝐴𝑇𝑇𝑇𝑇  in panel A confirm the effectiveness of the experimental manipulation, but 

their values are again hard to fathom from the perspective of the Independent Observations 

model. All of the values would be expected to be positive, with estimate in the low-similarity 

condition to be closest to 0 (i.e., closest to 𝑢𝑢𝐼𝐼 = 0) because, in that condition, the fillers were 

only slightly morphed to the face of the guilty suspect. Nevertheless, the model appears to fit 

reasonably well.  

 
Table 6. Maximum likelihood parameter estimates and goodness-of-fit statistics for the Independent 
Observations model (A) and Ensemble model (A) fit to the filler-similarity data. 

 

A Model Condition µ G µ F_TP µ F_TA c 1 c 2 c 3 npar χ2 AIC BIC
60% 0.01 0.03 1.58 1.93 2.34
40% 1.07 -0.35 -0.05 1.42 1.71 2.06 16 51.5 19799.9 19911.0
20% -0.65 -0.37 1.32 1.56 1.82

B Model Condition -- µ G - µ F-TP µ I - µ F-TA c 1 c 2 c 3 npar χ2 AIC BIC
60% 1.01 0.06 1.40 1.70 2.04
40% 1.30 0.03 1.42 1.66 1.97 15 58.8 19805.4 19909.6
20% 1.61 0.30 1.56 1.76 1.99

Ind Obs

Ensemble
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The relevant discriminability measures computed from the parameter estimates in Table 6 

(𝑑𝑑𝑇𝑇𝐴𝐴, 𝑑𝑑𝑇𝑇𝑇𝑇, and 𝑑𝑑𝐼𝐼𝐺𝐺) are shown in Table 7, and they show basically the same patterns as before in 

Table 2. 

Table 7. Discriminability statistics for the Independent Observations and Ensemble models computed from 
the parameter estimates in Table 6. 

 

Which model was better supported by the data? Once again, as shown in Table 8, when 

we allowed 𝜇𝜇𝐺𝐺 for the Independent Observations model to vary across filler similarity 

conditions, the fit was significantly improved, 𝜒𝜒2(2) = 51.5 − 45.0 = 6.5,𝑝𝑝 =  .039. However, 

it is not just that 𝜇𝜇𝐺𝐺 differed significantly across the three filler-similarity conditions. Thus, 

because 𝜇𝜇𝐺𝐺 = 𝑑𝑑𝐼𝐼𝐺𝐺, the ability to discriminate innocent from guilty suspects varied systematically 

in the direction predicted by the Ensemble model. This once again means that even the fitted 

parameters of the Independent Observations model suggests that the Ensemble model is correct.  

Table 8. Maximum likelihood parameter estimates and goodness-of-fit statistics for the Independent 
Observations model fit to the data. This time, 𝝁𝝁𝑮𝑮 was not constrained to be equal across conditions, which 
added two additional free parameters. Note that 𝑶𝑶′𝑰𝑰𝑮𝑮 is the same as 𝝁𝝁𝑮𝑮 for this equal-variance scenario. 

 

 Detection ROCs. Finally, we also plotted the detection ROCs from this experiment 

(Figure 15). These ROCs plot the overall TP ID rate (guilty suspect and filler IDs combined) vs. 

Model Condition d' TP d' TA d' IG

60% 1.06 -0.03
Ind Obs 40% 1.42 0.05 1.07

20% 1.72 0.37
60% 1.21 0.07 0.95

Ensemble 40% 1.56 0.04 1.27
20% 1.93 0.36 1.31

Model Condition d' IG µ G µ F_TP µ F_TA c 1 c 2 c 3 npar χ2

60% 0.94 0.94 -0.07 -0.06 1.49 1.85 2.25
40% 1.08 1.08 -0.35 -0.06 1.42 1.71 2.06 18 45.0
20% 1.17 1.17 -0.59 -0.30 1.38 1.62 1.89

Ind Obs
+ 2
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the TA ID rate (innocent suspect and filler IDs combined). The low-similarity condition again 

yields the highest ROC, as uniquely predicted by the Ensemble model, though the other two 

filler-similarity conditions fall essentially atop one another: 

Figure 15. Detection ROCs from the face morphing study. Once again, for these ROCs, any ID from a TP 
lineup (to the guilty suspect or to a filler) was counted as a hit, whereas any ID from a TA lineup (to the 
innocent suspect or to a filler) was counted as a false alarm. 
 

Results like these are difficult to reconcile with the Independent Observations model or the 

Integration model, both of which unambiguously predict that the low-similarity condition should 

yield the lowest (not the highest) detection ROC.  

General Discussion 

 How do eyewitnesses deal with simultaneously generated memory signals to identify 

someone from the lineup or not? The answer to that question is related to another question that 

has bedeviled the field for decades: How similar should the fillers in a police lineup be to the 

suspect? Different signal detection models provide different answers to these questions. We 

tested competing models by expressing their predictions in terms of feature-matching and then 

fitting them to filler-similarity data. For the data sets considered here, the results suggest that the 
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decision variable is the degree to which the memory of one lineup member stands out from the 

memories of the other lineup members. The use of that decision variable predicts the non-

obvious filler-similarity results observed by Colloff et al. (2021) and observed again here in a 

new study: from a pool of description-matched fillers, selecting those who are otherwise 

maximally dissimilar to the suspect maximizes ability to discriminability innocent from guilty 

suspects. 

Optimizing filler similarity is a two-step process 

 Note that the first step of matching to the eyewitness’s description of the perpetrator 

(before selecting dissimilar fillers) is critical. This step ensures that all faces in the lineup have 

features known to have encoded in the witness’s brain. Skipping that step and maximizing 

dissimilarity per se would result in an unfair lineup. For example, if the perpetrator were 

described as a White male in his 30s, non-description-matched dissimilar fillers might consist of 

Hispanic men in their 20s, Black men in their 60s, and Asian men in their 40s. In that case, the 

suspect would differentially stand out in memory, whether innocent or guilty, harming the ability 

to discriminate innocent from guilty suspects (Colloff et al., 2016). Thus, an essential first step is 

to ensure that the pool of potential fillers matches the description of the perpetrator provided by 

the eyewitness, as has long been recommended (Wells et al., 1993, 2020). 

Competing models of eyewitness identification 

The simplest signal detection model of lineup memory is the Independent Observations 

model. Indeed, its simplicity is its most attractive feature. This model holds that witnesses base 

their decision (and their confidence) on the memory signal associated with the one face in the 

lineup that generates the strongest value (the MAX face). To date, the main rival to the 

Independent Observations model has been the Ensemble model, which holds that the decision 
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variable is instead the difference between the memory signal generated by the MAX face in the 

lineup and the mean memory signal generated by all the faces in the lineup. According to this 

model, the MAX face will be identified with high confidence not merely because it generates a 

strong memory signal but instead because it generates a differentially strong memory signal 

relative to the other faces in the lineup. 

Both models can predict the pattern of results reported by Colloff et al. (2021), which is 

the same pattern observed here in a new experiment: when description-matched fillers are used 

across lineups, the ability of witnesses to distinguish between innocent and guilty suspects (i.e., 

empirical discriminability, measured by pAUC) increases the less similar the fillers are to the 

suspect. However, the two models differ in what they predict about the effect the filler-similarity 

manipulation on the distribution of underlying memory signals associated with innocent and 

guilty suspects (i.e., theoretical discriminability, quantified by 𝑑𝑑′𝐼𝐼𝐺𝐺).  

According to the Independent Observations model, the memory signals generated by 

suspects (innocent or guilty) are independent of the memory signals generated by the fillers in 

the lineup. Thus, manipulating the memory signals generated by the fillers should not affect 𝑑𝑑′𝐼𝐼𝐺𝐺. 

Instead, the effect of filler similarity on empirical pAUC arises because reducing filler similarity 

increases 𝑑𝑑′𝑇𝑇𝑇𝑇 (the ability to discriminate the guilty suspect from the fillers in a TP lineup) while 

𝑑𝑑′𝑇𝑇𝐴𝐴 (the ability to discriminate the innocent suspect from the fillers in a TA lineup) remains 

equal to 0. This effect is most clearly predicted when memory signals are uncorrelated (as 

illustrated in Figure 8). When memory signals are correlated across the faces in a lineup, as they 

presumably are, this model does not necessarily predict an effect of manipulating filler similarity 

(illustrated in Figure 10A). 
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According to the Ensemble model, by contrast, the operative memory signal generated by 

the suspect is relative to the mean of the memory signals generated by everyone in the lineup, 

including the fillers. Thus, manipulating filler similarity should affect 𝑑𝑑′𝐼𝐼𝐺𝐺, which should be 

highest when low-similarity fillers are used and lowest when high-similarity fillers are used 

(Figures 9 and 10B). When the models were fit to the data, both agree that 𝑑𝑑′𝐼𝐼𝐺𝐺, varied as a 

function of filler similarity in the manner predicted by the Ensemble model.  

With regard to the Integration model, the results reported here would seem to effectively 

eliminate it from contention. This model was already challenged by its poor fit to data (Wixted et 

al., 2018), but it now suffers from the more fatal flaw of making directionally incorrect 

predictions about the effect of manipulating filler similarity with respect to the suspect. Yet most 

applications of signal detection theory to eyewitness identification over the years have relied on 

the Integration model (e.g., Duncan, 2006; Palmer & Brewer, 2012; Palmer, Brewer, Weber, & 

Sauer, 2020; Smith et al., 2018; Vitriol, Appleby, & Borgida, 2018). The model has generally 

been used to compute 𝑑𝑑′, and it may often provide reasonable estimates. However, given that its 

predictions deviate so glaringly from empirical data, it would be better to compute underlying 

(i.e., theoretical) discriminability using the Independent Observations model or the Ensemble 

model. 

Other findings bearing on the Ensemble model 

The Ensemble model not only predicted the filler similarity findings considered here but 

is also consistent with a number of previously reported findings as well. A version of this model 

was originally proposed in verbal form to account for why simultaneous lineups yield higher 

discriminability than sequential lineups (Wixted & Mickes, 2014). According to “diagnostic 

feature-detection theory,” witnesses presented with a simultaneous lineup immediately realize 
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that certain features (namely, those included in the witness’s description of the perpetrator and 

replicated across the lineup members) do not vary across the lineup members and are therefore 

non-diagnostic of guilt. Including those features in the decision variable would only add noise to 

the decision-making process without adding any signal, thereby decreasing the ability to 

discriminate innocent from guilty suspects. By instead discounting the common features 

(because they are of no help), error variance would be reduced, enhancing discriminability. In a 

sequential lineup, the faces are presented individually, so it is not as apparent to the eyewitness 

that non-diagnostic features were deliberately introduced when the photos were selected.  

The Ensemble model can also explain why lineups are superior to showups. Because 

memory signals are correlated in lineups (but not showups), a subtractive decision variable can 

reduce noise relative to a showup, enhancing discriminability. In other words, compared to 

showups, the operative memory signals generated by guilty suspects in lineups overlap to a 

lesser degree with the memory signals generated by fillers/innocent suspects, thereby increasing 

𝑑𝑑′𝑇𝑇𝑇𝑇 and 𝑑𝑑′𝐼𝐼𝐺𝐺.  

The Ensemble model also helps to explain why unfair lineups impair a witness’s ability 

to discriminate innocent from guilty suspects compared to fair lineups (Colloff et al., 2016). In 

an unfair lineup, the suspect (innocent or guilty) matches the remembered features of the 

perpetrator better than the fillers do. These remembered features do not help to discriminate 

innocent from guilty suspects, yet if only the suspect has those features, they will be given 

weight by the eyewitness. Doing so can only add noise, increasing the degree to which the 

memory signals generated by innocent and guilty suspects overlap, reducing discriminability in 

that sense. When the remembered features of the perpetrator are replicated across everyone in a 
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description-matched lineup, by contrast, they will be discounted (i.e., shared variance will be 

subtracted out in terms of the Ensemble model), thereby enhancing discriminability. 

Although these prior results are consistent with the Ensemble model, they do not rule out 

the use of the decision variable envisioned by the Independent Observations model. The reason 

is that those effects tend to also be predicted by the existence of correlated memory signals even 

if identification decisions are based on raw (i.e., untransformed) memory signals. For example, 

the fact that lineups reliably yield a higher area under the ROC (i.e., a higher pAUC) than 

showups does not contradict the Independent Observations model even though that model 

assumes that the memory signals generated by innocent and guilty suspects overlap to the same 

degree in lineups and showups. As noted earlier, correlated memory signals enhance 𝑑𝑑′𝑇𝑇𝑇𝑇, and 

that consideration (i.e., correlated memory signals) can explain what the Independent 

Observations model does not explain in terms of overlapping memory signals. The filler-

similarity findings reported here differ in that they directly contradict what the Independent 

Observations model predicts about 𝑑𝑑′𝐼𝐼𝐺𝐺. 

One previous finding that seems more consistent with the Independent Observations 

model than the Ensemble model involved manipulations of lineup size (k). The Ensemble model 

predicts that discriminability in TP lineups (𝑑𝑑′𝑇𝑇𝑇𝑇) will decrease with increasing lineup size, while 

the ability to discriminate innocent from guilty suspects (𝑑𝑑′𝐼𝐼𝐺𝐺) will increase with lineup size 

(Equation 12). Because both discriminability measures affect the empirical ROC, they might 

cancel, leaving the empirical ROC unaffected by lineup size. However, our simulations of the 

Ensemble model indicate that it usually predicts that the area under the empirical ROC should 

increase with lineup size, whereas the Independent Observations model makes no such 

prediction. Two recent studies found that although pAUC was greater for k = 2 (a 2-person 
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lineup) vs. k = 1 (a showup), pAUC did not significantly increase further for lineups of k = 3 up 

to k = 12 (Akan et al., 2020; Wooten et al., 2019). Both studies found a small trend in the 

direction predicted by the Ensemble model, but the results provide no compelling reason to reject 

the Independent Observations model. This result is not unlike findings from the ensemble coding 

literature where several studies found relatively constant sensitivity with increasing set size 

(Allik et al. 2013; Alvarez 2011; Ariely 2001; Chong & Treisman 2005).  

The existing lineup size data are consistent with the Independent Observations model, 

which seems odd given that other evidence―including the new evidence presented here―that 

seems to favor the Ensemble model (Wixted et al., 2018). Indeed, multiple lineup studies have 

found that confidence in an ID is affected by the quality of the fillers, which suggests (but does 

not prove) that the decision may not be solely based on the MAX signal considered in isolation, 

as the Independent observations model assumes (Charman et al., 2011; Horry & Brewer, 2016). 

But if the Ensemble model is correct, why does a witness’s ability to discriminate innocent from 

guilty suspects fail to increase beyond k = 2? As observed by Whitney and Leib (2018): “The 

benefit of averaging across larger sample sizes may be offset by factors such as increased 

correlated noise and positional uncertainty, potentially yielding a pattern of results that appears 

as if there is constant sensitivity across set sizes” (p. 115). And as noted by Mazyar, van den 

Berg, Seilheimer, and Ma (2013), Scottish philosopher Sir William Hamilton once observed that 

‘‘The greater the number of objects among which the attention of the mind is distributed, the 

feebler and less distinct will be its cognizance of each’’ (Hamilton, 1859). In other words, the 

more items in the search set (here, the lineup), the larger 𝜎𝜎 will be, a factor not included in the 

equations for the Ensemble model. As 𝜎𝜎 increases, discriminability decreases. Thus, while the 

Ensemble model predicts an increase in the ability to discriminate innocent from guilty suspects 
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with increasing set size (with diminishing returns), Hamilton’s law suggests that there may also 

be a countervailing force at play. Using a visual search task, Mazyar et al. (2013) found evidence 

suggesting that unless visual displays are largely predictable across trials (e.g., same distractors 

used over and over), the spreading of visual attention across items in the search set does indeed 

have detrimental effects on the quality of encoding of each stimulus. Perhaps something similar 

occurs as lineup size increases.  

Alternatively, perhaps participants use a subtractive decision rule, as assumed by the 

Ensemble model, but they tend to focus on only two faces in the lineup, the MAX face and some 

other face (cf. Clark, 2011). If so, it would yield the discriminability benefits of subtracting 

shared variance but without predicting an increase in discriminability with increasing lineup size 

beyond k = 2. If this is true, then it would suggest that a method for further improving 𝑑𝑑′𝐼𝐼𝐺𝐺 would 

be to induce eyewitnesses to consider the MAX face in relation to all the faces in the lineup, not 

just to one other face. 

Potential applied considerations 

 Finally, although our focus here is on theory, it is worth considering the potential applied 

implications of research on filler similarity.6 Choosing dissimilar fillers from a pool of 

description-matched fillers enhances the ability to discriminate innocent from guilty suspects but, 

intuitively, may come across as being risky because it sounds like it should make the innocent 

suspect stand out. In fact, is easy to imagine cases where that might happen. For example, 

suppose the witness’s description is: “clean-shaven White male in his early 30s with short brown 

hair.” Every filler in the pool of description-matched photos would correspond to that 

 
6 We emphasize that we make no recommendations about actual police practices. Here, we have tested theoretical 
predictions of competing models under highly simplified conditions. Further research would be needed to assess the 
effects of maximizing filler dissimilarity to the suspect under the more varied conditions of the real world.  
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description, but some might have distinctive features, such as a conspicuous facial tattoo. In a 

target-absent lineup, if the dissimilar fillers were chosen because they had such distinctive 

features, then the innocent suspect would best correspond to the memory of the perpetrator (who 

presumably had no such feature given that it was not included in the description). It therefore 

might seem like choosing dissimilar fillers is a bad idea. 

 In both the lab and the real world, description-matched fillers who have distinctive 

features that were not described by the witness are typically removed from the pool of potential 

fillers, thereby minimizing this potential problem. However, this consideration leads to an 

interesting clarification of how the pool of potential fillers should be created. For decades, the 

rule has been to select description-matched fillers (i.e., fillers who match the description 

provided by the eyewitness). It seems that a more accurate rule―the one that might actually be 

used in practice―is to select fillers who would have been described that way (Frank & 

Goodman, 2012). Someone with a prominent distinctive facial feature like a tattoo likely would 

not have been described as “clean-shaven White male in high early 30s with short brown hair” 

and should therefore be excluded from the pool of potential fillers. 

 Another reason why the use of dissimilar fillers may sound risky is that, by chance, the 

innocent suspect might resemble the perpetrator more than the average potential filler does. 

Indeed, cases like that have been known to happen from time to time. An innocent suspect who 

happens to look a lot like the perpetrator would better match memory of the perpetrator than the 

fillers even if they were randomly drawn from the pool of potential fillers. Selecting fillers who 

are dissimilar to that innocent suspect will make that suspect stand out in memory even more, 

further increasing the chances of a false identification. To address this concern, does it therefore 
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make sense to do what the police sometimes do, which is to choose description-matched fillers 

who are also similar to the suspect? 

 We do not think so. Colloff et al. (2021) used the median-similarity filler from the pool of 

potential fillers as the innocent suspect. Half the time, an innocent suspect would more closely 

resemble the perpetrator (for them, using dissimilar fillers increases the risk of a false ID). The 

other half the time, an innocent suspect would less closely resemble the perpetrator (for them, 

using dissimilar fillers decreases the risk of a false ID). In the aggregate, the risk of a false ID 

should remain constant, as it has in the studies conducted thus far.  

 On the other hand, an innocent suspect’s close resemblance to the perpetrator can arise 

for reasons other than random chance, such as when a suspect is selected based on a publicized 

photo or composite sketch. Taking this approach is a recipe for finding the perpetrator’s innocent 

doppelganger. In that case, the innocent suspect would resemble the witness’s memory of the 

perpetrator (more so than fillers selected based on the witness’s description of the perpetrator). 

The use of dissimilar description-matched fillers under conditions like these―where a suspect is 

included in a lineup solely due to his or likeness to a publicized photo (with no evidence 

suggesting that this individual may have committed the crime)―would serve only to endanger 

innocent suspects (see Wells et al., 2020).  

Then again, these considerations are not specific to maximizing filler dissimilarity. When 

the suspect was produced based on his or her resemblance to a publicized composite sketch or 

photo, eyewitness identification evidence will be biased against the suspect whether similar or 

dissimilar fillers are used. Thus, when someone becomes a suspect based on resemblance to a 

publicized image (with no independent evidence suggesting that the suspect may be the 
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perpetrator), it would make more sense to avoid using any kind of eyewitness identification 

procedure. 

Conclusion 

The research reported here is premised on the idea that cognitive models of lineup 

memory are essential to enhancing eyewitness accuracy now that decades of social psychology 

research has informed the field of what interpersonal factors can render police lineups ineffective 

and how to properly administer a lineup as a pure memory test devoid of social influence. Our 

research focuses on that particular scenario, regardless of how often this scenario applies in the 

real world, and even if it never applies in real world. When science-based recommendations are 

followed, a lineup becomes just another way of testing memory, like an old/new recognition test 

or a 2-alternative forced-choice test. The methodological details are slightly different, but the 

basic principles that have guided our theoretical understanding of those tasks apply nonetheless.  

 In our view, memory is memory, whether tested in the lab using a list of words or tested 

in the real world using a lineup. Treating a lineup as a test of memory, as we did here, resolved a 

question that has remained unanswered for decades: under ideal testing conditions, how similar 

should the fillers in a lineup be to the suspect and why? For good theoretical and empirical 

reasons, the two-step answer is as follows: (1) create a pool of fillers who would be reasonably 

described in the same way the witness described the perpetrator, and then (2) choose fillers from 

that pool who are maximally dissimilar to the suspect.      
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Appendix 

Correlated Memory Signals 

In terms of feature matching, the degree to which the overall memory signals generated 

by faces in a lineup are correlated depends on the number of features shared across the faces in a 

lineup (whether or not those features also match memory of the perpetrator).  Here, we further 

illustrate the basic idea in three figures (Figures A1, A2, and A3).  

Figure A1. Each entry represents the mean of the distribution from which a feature-level memory-match 
signal is drawn (1 or 0, depending on whether the feature matches memory) for a two-person TP lineup and a 
two-person TA lineup. Features f1 → f5 have settings that match each other by design because they were 
included in the witness’s description. Because these shared features also match memory of the perpetrator, 
their memory signals are drawn from a distribution with a mean of 1. Of the remaining features (f6 → f20), 
three features (f6 → f8) match each other by chance. In a TP lineup, these coincidentally matching features 
also match memory (so their memory signals are drawn from a distribution with a mean of 1), whereas in a 
TA lineup, the three coincidentally matching features match memory by chance (with probability 𝟏𝟏/𝒗𝒗 = .2). 
In this example, f6 → f8 for the TA lineup happen to not match memory. Therefore, their memory signals are 
drawn from a distribution with a mean of 0. Of the remaining features (f9 → f20) in the TA lineup, three 
match memory of the perpetrator by chance. This is independently true of the filler and the innocent suspect. 
The average strength of the overall memory-match signal for a face in a lineup (shown at the bottom) is the 
sum of the 20 feature-match signals.  
  

features filler guilty filler innocent
1
2
3
4
5
6
7
8
9 0 1 0 0
10 0 1 1 0
11 0 1 0 0
12 0 1 0 1
13 0 1 0 0
14 0 1 0 1
15 0 1 0 0
16 0 1 0 0
17 0 1 1 0
18 0 1 0 1
19 0 1 1 0
20 0 1 0 0

Σ 8.00 20.00 8.00 8.00

1 0

1 1
1 0
1 0

1 1
1 1
1 1

TP lineup TA lineup   

1 1
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Figure A2. Hypothetical feature-level memory signals (now with random error) for a two-person TP lineup 
and a two-person TA lineup. Critically, shared features are assumed to share the random-variable memory 
signal they generate, which is the source of correlated summed memory signals. Values in bold represent 
feature settings that match memory and so are drawn from a distribution with a mean of 1, whereas non-bold 
values do not match memory and are drawn from a distribution with a mean of 0. It is the two summed 
signals at the bottom for a given lineup (e.g., 7.30 and 19.64 for the TP lineups) that are correlated across 
multiple lineups of that type. Correlated memory signals themselves are not illustrated here because this 
figure illustrates one TP lineup and one TA lineup. The summed signals are correlated (i.e., both high or both 
low) across lineups. 
  

features filler guilty filler innocent
1
2
3
4
5
6
7
8
9 1.90 -0.02 0.29 -0.02
10 -0.66 0.46 1.84 -0.43
11 -0.13 2.91 -0.29 -0.51
12 0.13 1.83 0.01 2.16
13 0.55 1.00 1.11 1.03
14 -0.10 0.54 0.53 1.99
15 -1.20 1.01 -0.68 -1.13
16 -0.68 0.71 0.21 2.10
17 -1.02 -0.01 1.56 -0.54
18 -0.03 1.70 -0.54 1.32
19 0.88 0.49 0.82 -1.73
20 -0.67 0.70 -0.64 0.25

Σ 7.30 19.64 8.24 8.49

0.37 0.16

2.96 1.40
2.66 -0.47
0.64 0.01

1.44 0.37
0.56 1.32
-0.68 -0.01

  TP lineup TA lineup

0.37 1.23
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Figure A3. Each entry again represents the mean of the distribution from which a feature-level memory-
match signal is drawn (1 or 0, depending on whether the feature matches memory). These values are shown 
for three filler-similarity conditions (Low, Medium, and High). Manipulating filler similarity is 
conceptualized as manipulating the number of features not included in the witness’s description (i.e., f6→f20) 
that match between faces in the lineup. The correlation between the overall (summed) memory signal of faces 
across lineups is determined the number of feature settings that match between faces in a lineup. For both TP 
and TA lineups in this hypothetical example, the number of features that match between two faces in the 
lineup is 5 in a low-similarity lineup (𝒎𝒎 = 5), 8 in a medium-similarity lineup (𝒎𝒎 = 8), and 11 in a high-
similarity lineup (𝒎𝒎 = 11). The correlation (𝝆𝝆) shown at the bottom is equal to 𝒎𝒎/𝒏𝒏, where 𝒏𝒏 = 20.  
 

  

features filler guilty filler innocent filler guilty filler innocent filler guilty filler innocent
1
2
3
4
5
6 0 1 0 0
7 0 1 0 0
8 0 1 1 0
9 0 1 0 0 0 1 0 0
10 0 1 0 0 0 1 1 0
11 0 1 0 1 0 1 0 0
12 0 1 0 1 0 1 0 1 0 1 0 0
13 0 1 0 0 0 1 0 0 0 1 0 0
14 0 1 0 0 0 1 0 1 0 1 0 1
15 0 1 0 0 0 1 0 0 0 1 0 0
16 0 1 1 0 0 1 0 0 0 1 1 0
17 0 1 0 1 0 1 1 0 0 1 1 0
18 0 1 1 0 0 1 0 1 0 1 0 1
19 0 1 0 0 0 1 1 0 0 1 0 0
20 0 1 0 0 0 1 0 0 0 1 0 0

Σ 5.00 20.00 8.00 8.00 8.00 20.00 8.00 8.00 11.00 20.00 8.00 8.00
ρ 0.55

Low Medium High
TP lineup TA lineup TP lineup TA lineup TP lineup TA lineup

1 0
1 0
1 1
1 0
1 0
1 0

0.25 0.25 0.40 0.40 0.55

1 0
1 0

1 1 1 1 1 1
1 0

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
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Modeling Multinomial Variability 

 The analyses presented in the main text assumed fixed settings for the binomial variables. 

For example, in medium similarity lineups, we have assumed that 𝑛𝑛 = 20, 𝑛𝑛𝐷𝐷 = 5, m = 8, and that 

𝑛𝑛𝐺𝐺 = 20 and  𝑛𝑛𝐼𝐼 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 = 8 for every lineup. The variability across lineups (yielding 

correlated summed memory signals) was entirely attributable to Gaussian error variance 

associated with the feature-level memory-match signals. Taking that approach makes it easy to 

mathematically work out the connection between feature-matching logic and signal detection 

logic. However, allowing for binomial variability would make the model more realistic. 

 To investigate the effect of allowing binomial variability, we simulated memory signals 

resulting from a world in which (1) faces are represented by 40 features instead of 20 and (2) the 

probability that a facial feature would be encoded is .50 (such that 𝑛𝑛� = 20). In this simulated 

world, if a facial feature of the perpetrator happened to be encoded, the probability that it would 

be included in the eyewitness’s description was .25 (such that 𝑛𝑛�𝐷𝐷 = 5), thereby appearing on 

every lineup member and also matching memory of the perpetrator. Additional facial features not 

included in the eyewitness’s description were assumed to match memory of the perpetrator (and, 

independently, to match other faces in the lineup) with probability 1/5 = .2. Thus, the number of 

such features varied across lineups such that 𝑛𝑛𝐺𝐺 , 𝑛𝑛𝐼𝐼, 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 , and 𝑛𝑛𝐴𝐴𝑇𝑇𝑇𝑇 (number of features that 

match memory) were all random variables, and so was 𝑚𝑚 (the number of features that match 

across faces in the lineup).  

 Earlier, we noted in the absence of binomial variability, and before manipulating filler 

similarity, 𝜇𝜇𝐺𝐺 = 𝑛𝑛 = 20, 𝜇𝜇𝐺𝐺� = 𝑛𝑛𝐷𝐷 + .20(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 8, and 𝜎𝜎 = √20 = 4.47 (Figures 4 and 5). 

In that case, 𝑚𝑚 = 8 and 𝜌𝜌 = 𝑚𝑚 𝑛𝑛⁄ = .40. When we allow for binomial variability, 𝜇𝜇𝐺𝐺 = 𝑛𝑛� = 20, 

which is the same before, but the standard deviation of the distributions increases to 𝜎𝜎𝐺𝐺 = 5.46, 
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𝜎𝜎𝐺𝐺� = 4.90 (i.e., an unequal-variance model applies), and 𝜌𝜌 = .45. Thus, the values change only 

slightly.  

 The same is true after manipulating filler similarity. To simulate high-similarity fillers, 

we could change the probability of a random match from .20 to .40 (more non-described features 

now match by design). When we do, 𝜇𝜇𝐺𝐺 = 𝑛𝑛� = 20, as before, and the standard deviation of the 

distributions remain 𝜎𝜎𝐺𝐺 = 5.46, 𝜎𝜎𝐺𝐺� = 4.90, However, now, 𝑚𝑚 = 𝑛𝑛𝐷𝐷 + .40(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 11 (as in 

Figure 4 for the high-similarity condition), and 𝜌𝜌 = .61 (i.e., the correlation increases relative to 

the medium-similarity condition). To simulate low-similarity fillers, we could change the 

probability of a random match from .20 to 0 (fewer non-described features match than would 

match by chance). When we do, 𝜇𝜇𝐺𝐺 = 𝑛𝑛� = 20, as before, and the standard deviation of the 

distributions remain 𝜎𝜎𝐺𝐺 = 5.46, 𝜎𝜎𝐺𝐺� = 4.90, However, now, 𝑚𝑚 = 𝑛𝑛𝐷𝐷 + 0(𝑛𝑛 − 𝑛𝑛𝐷𝐷) = 5, and 𝜌𝜌 =

.27 (i.e., the correlation decreases relative to the medium-similarity condition). Thus, the specific 

values change somewhat when considerable binomial variability is introduced (e.g., the standard 

deviations and the correlations are all somewhat higher), but the basic patterns remain the same. 

Therefore, for the signal detection models we consider, we do not model the added complexity of 

allowing for binomial variability on the assumption that doing so would shed little additional 

light.  

Model Flexibility 

To investigate this issue, we generated simulated data from both models using the best-

fitting parameter estimates shown in Table 1 and then fit both models to both sets of simulated 

data. We did this five times, with 3400 observations (i.e., simulated lineups) in each simulation, 

and the results are shown in Table A1. The data in the two left columns show fits of the two 
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models to data generated by the Ensemble model, and the data in the two right columns show fits 

of the two models to data generated by the Independent Observations model. 

 

 
Table A1. 𝝌𝝌𝟐𝟐 goodness-of-fit statistics based on maximum likelihood fits of the Ensemble model and 
Independent Observations model to five runs of simulated data generated by the Ensemble model (left to 
columns of data) and to simulated data generated by the Independent Observations model (right to columns 
of data).  

 

Not surprisingly, the Ensemble model fits its own data well (𝜒𝜒2 = 20.4), but the 

Independent Observations model also does a reasonably good job of fitting the Ensemble model 

data (𝜒𝜒2 = 48.5). However, the reverse is not true. The Independent Observations model fits its 

own data well (𝜒𝜒2 = 16.2), but the Ensemble model does an abysmal job of fitting the 

Independent Observations model data (𝜒𝜒2 = 164.9). Thus, the fact that the two models fit the 

empirical data about equally well actually provides some support for the Ensemble model as 

well. 

Computing Unequal-Variance Discriminability Measures  

If 𝜎𝜎 were equal for filler and suspect distributions alike, then, for the Independent 

Observations model, the parameter estimates for 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇 can be used to calculate 𝑑𝑑′𝑇𝑇𝑇𝑇, 

where 𝑑𝑑′𝑇𝑇𝑇𝑇 =
𝜇𝜇𝐺𝐺−𝜇𝜇𝐹𝐹𝑇𝑇𝑇𝑇
𝜎𝜎�(1−𝜌𝜌)

, as shown earlier in Equation 3. Setting 𝜎𝜎 to 1 and 𝜌𝜌 to 0 (because that 

was its estimated value), the equation would reduce to 𝑑𝑑′𝑇𝑇𝑇𝑇 = �𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇� 𝜎𝜎⁄ . Similarly, in that 

Run # Ens Ind Obs Ens Ind Obs
1 9.4 52.1 180.8 20.0
2 32.1 47.9 153.5 11.4

3 20.0 30.1 115.3 24.1
4 18.8 68.6 165.2 11.1
5 21.9 43.8 209.4 14.7

mean χ2 20.4 48.5 164.9 16.2
df 20 19 20 19

Ind ObsEnsemble
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simplified scenario, 𝑑𝑑′𝑇𝑇𝐴𝐴 = �𝜇𝜇𝐼𝐼 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇� 𝜎𝜎⁄ . However, given the specific design of the study (i.e., 

fixed suspects but variable fillers), 𝜎𝜎𝐴𝐴  turned out to be greater than 1. Thus, an unequal-variance 

discriminability measure would apply (often denoted 𝑑𝑑𝑇𝑇 to distinguish it from 𝑑𝑑′) in which the 

denominator would be the root mean square of 𝜎𝜎 and 𝜎𝜎𝐴𝐴 , or �. 5(𝜎𝜎2 + 𝜎𝜎𝐴𝐴2), where 𝜎𝜎 is the 

standard deviation for innocent and guilty suspect distributions (𝜎𝜎 = 1). We denote the relevant 

discriminability measures 𝑑𝑑𝑇𝑇𝑇𝑇 and 𝑑𝑑𝑇𝑇𝐴𝐴. Thus, for the Independent Observations model, the 

expressions for 𝑑𝑑𝑇𝑇𝑇𝑇 and 𝑑𝑑𝑇𝑇𝐴𝐴 would be 𝑑𝑑𝑇𝑇𝑇𝑇 = �𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇�/�. 5(𝜎𝜎2 + 𝜎𝜎𝐴𝐴2) and 𝑑𝑑𝑇𝑇𝐴𝐴 =

�𝜇𝜇𝐼𝐼 − 𝜇𝜇𝐴𝐴𝑇𝑇𝑇𝑇�/�. 5(𝜎𝜎2 + 𝜎𝜎𝐴𝐴2). The discriminability measure for innocent vs. guilty suspect (𝑑𝑑′𝐼𝐼𝐺𝐺) 

is a true 𝑑𝑑′ score because the innocent and guilty suspect distributions have equal variance: 

𝑑𝑑′𝐼𝐼𝐺𝐺 = (𝜇𝜇𝐺𝐺 − 𝜇𝜇𝐼𝐼)/𝜎𝜎, where 𝜎𝜎 = 1.  

For the Ensemble model, the expressions for 𝑑𝑑𝑇𝑇𝑇𝑇 and 𝑑𝑑𝑇𝑇𝐴𝐴 would be 𝑑𝑑𝑇𝑇𝑇𝑇 =

𝜇𝜇𝐺𝐺−𝐴𝐴𝑇𝑇𝑇𝑇/�. 5(𝛼𝛼𝜎𝜎2 + 𝛼𝛼𝜎𝜎𝐴𝐴2) and 𝑑𝑑𝑇𝑇𝐴𝐴 = 𝜇𝜇𝐼𝐼−𝐴𝐴𝑇𝑇𝑇𝑇/�. 5(𝛼𝛼𝜎𝜎2 + 𝛼𝛼𝜎𝜎𝐴𝐴2), respectively, where 𝛼𝛼 = 1 −

1/𝑘𝑘, and k = 6. For this model, 𝑑𝑑′𝐼𝐼𝐺𝐺 is also a true 𝑑𝑑′ score because the innocent and guilty 

suspect distributions have equal variance: 𝑑𝑑′𝐼𝐼𝐺𝐺 = �𝜇𝜇𝐺𝐺−𝐴𝐴𝑇𝑇𝑇𝑇 − 𝜇𝜇𝐼𝐼−𝐴𝐴𝑇𝑇𝑇𝑇�/𝜎𝜎, where 𝜎𝜎 = 1. 


