
 
 

University of Birmingham

Topology‐based fluorescence image analysis for
automated cell identification and segmentation
Panconi, Luca; Makarova, Maria; Lambert, Eleanor; May, Robin; Owen, Dylan

DOI:
10.1002/jbio.202200199

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Panconi, L, Makarova, M, Lambert, E, May, R & Owen, D 2022, 'Topology‐based fluorescence image analysis
for automated cell identification and segmentation', Journal of Biophotonics.
https://doi.org/10.1002/jbio.202200199

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1002/jbio.202200199
https://doi.org/10.1002/jbio.202200199
https://birmingham.elsevierpure.com/en/publications/cfdc2d8a-83d6-4d27-ac9f-b9d1d7b62afd


R E S E A R CH AR T I C L E

Topology-based fluorescence image analysis for automated
cell identification and segmentation

Luca Panconi1 | Maria Makarova2 | Eleanor R. Lambert1 | Robin C. May3 |

Dylan M. Owen1

1Institute of Immunology and
Immunotherapy, School of Mathematics
and Centre of Membrane Proteins and
Receptors, University of Birmingham,
Birmingham, UK
2Institute of Metabolism and Systems
Research, University of Birmingham,
Birmingham, UK
3School of Biosciences and Institute of
Microbiology and Infection, University of
Birmingham, Birmingham, UK

Correspondence
Luca Panconi, Institute of Immunology
and Immunotherapy, School of
Mathematics and Centre of Membrane
Proteins and Receptors, University of
Birmingham, Birmingham, UK.
Email: lxp609@student.bham.ac.uk

Funding information
Engineering and Physical Sciences
Research Council; University of
Birmingham

Abstract

Cell segmentation refers to the body of tech-

niques used to identify cells in images and

extract biologically relevant information

from them; however, manual segmentation

is laborious and subjective. We present

Topological Boundary Line Estimation

using Recurrence Of Neighbouring Emis-

sions (TOBLERONE), a topological image

analysis tool which identifies persistent

homological image features as opposed to

the geometric analysis commonly employed.

We demonstrate that topological data analysis can provide accurate segmentation

of arbitrarily-shaped cells, offering a means for automatic and objective data extrac-

tion. One cellular feature of particular interest in biology is the plasma membrane,

which has been shown to present varying degrees of lipid packing, or membrane

order, depending on the function and morphology of the cell type. With the use of

environmentally-sensitive dyes, images derived from confocal microscopy can be

used to quantify the degree of membrane order. We demonstrate that TOBLE-

RONE is capable of automating this task.

KEYWORD S

biology, confocal microscopy, data analysis, dyes, lipid, plasma membrane

1 | INTRODUCTION

Fluorescence microscopy is fundamental to modern cell biol-
ogy [1]. However, in order to extract biologically relevant
information from acquired images, researchers are required
to first identify the regions of the image corresponding to

individual cells or their enclosed organelles. The introduction
of cell segmentation techniques allows for automated parti-
tioning of images derived from fluorescence microscopy. In
general, these techniques can be classified into machine
learning-based methods and non-machine learning-based
methods. Both variants present a range of drawbacks.
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Non-machine learning methods typically require
images with individual components of the cell stained
specifically so that the algorithm can detect them [2].
They are usually dependent on cell geometry
(in particular, convexity), making them incapable of
identifying cells or organelles with particularly complex
structures [3]. Additionally, they often require additional
steps such as image reconstruction or seed-point extrac-
tion and typically have low generalisability for new appli-
cations [4, 5].

Machine learning-based methods employ a range of
data manipulation techniques which learn from training
data to make informed predictions on new images. In
image analysis, these techniques are typically limited to
supervised learning and therefore inherently require
training data, using large sets of existing images which
have already undergone cell segmentation [6]. Training
data must typically be derived manually, which is a time-
consuming process and creates subjectivity in the results.
At the extremity of supervised object classification is deep
learning. These methods carry several disadvantages in
that they require training data to return accurate results
and have a range of possible input parameters and set-
tings (eg, network architecture and training hyperpara-
meters) [1, 7, 8]. Even with the advantages they bring,
machine learning methods may also be limited to partic-
ular cell geometries [9].

In this work, we devise an image analysis algorithm
for efficient cell and organelle segmentation irrespective
of morphological and geometric distinctions. TOpological
Boundary Line Estimation using Recurrence Of Neigh-
bouring Emissions (TOBLERONE) enables identification
of intensity modes within images by means of the topo-
logical data analysis techniques known as persistent
homology and mode seeking. Topological image analysis
is itself a relatively young field, which has shown promise
in probing microbiology [10]. Similar algorithms have
used this form of analysis to segment nuclei in histologi-
cal slides of liver tissue [11]. Here, we have adapted this
concept to identify any biological structure in fluores-
cence images.

Persistent homology was initially developed to study
qualitative features of data sets [12], and then as a pre-
requisite for cluster analysis, with filtrations constructed
over a point cloud in which each localisation is assigned
a local density given by the number of neighbouring
points in a specified search radius [13]. In this instance,
filtrations are constructed over a field of pixels with the
“local density” derived exclusively from the fluorescence
intensity of the underlying image.

Here, we compare the sensitivity and specificity of
TOBLERONE to existing image segmentation methods
on simulated data under varying degrees of noise

and blur. Then, to demonstrate the method on experi-
mental, biological data we show that TOBLERONE can
segment pixels corresponding to the plasma membrane
of pan-membrane-stained cells. There is evidence that
plasma membranes can comprise an extensive range of
lipid packing states with varying levels of molecular order
[14, 15]. It has been shown that such lipid packing states
may be specifically regulated by cells during active cellu-
lar processes, suggesting that lipid-mediated membrane
organisation has functional consequences [16, 17]. Using
environmentally-sensitive membrane probes, we high-
light the efficacy of TOBLERONE in mapping heteroge-
neity of lipid packing across the plasma membrane of the
pathogenic yeast species, Cryptococcus gattii, and in
mammalian cells.

2 | MATERIALS AND METHODS

HEK293 cells were cultured in DMEM supplemented with
10% FCS at 37�C in a 5% CO2 incubator. Cells were split
and seeded into an 8-well coverslip bottomed Ibidi micro-
scope chamber 24 hours prior to imaging. They were then
stained with either di-4-ANEPPDHQ (5 μM) from an etha-
nol (5 mM) stock solution (to stain membranes) or 1�
Nucblue (to stain DNA) 30 minutes prior to imaging. C
gattii cells were cultured in yeast-peptone-dextrose (YPD)
broth at 25�C with rotation and stained with di-
4-ANEPPDHQ in the same way. Treatment with a hydro-
xyoleic acid (100 μM) and 7-ketocholesterol (20 μM) was
performed 3 hours before imaging and staining.

Live HEK293 and C gattii cells were imaged on a Zeiss
780 laser-scanning confocal microscope at 37�C. For di-
4-ANEPPDHQ, 488 nm excitation was used with fluores-
cence collected in two wavelength ranges: 500-580 nm and
620-750 nm. GP values from these two images were calcu-
lated as previously described [15]. For Nucblue, excitation
was at 405 nm with fluorescence collected in the range
420-500 nm. In both cases, 4� line averaging was used.

The TOBLERONE software package v1.0.0 was written
in the R programming language v4.2.0, and employed in
the integrated development environment RStudio, version
2022.07.1 + 554. The code incorporated the tiff library for
image manipulation and the built-in grid package for dis-
play. TOBLERONE is available for use under GNU General
Public License v3.0, see Appendix S1 for code. Otsu thresh-
olding and the Watershed algorithm were both undertaken
using built-in functions with the EBImage R package
v4.19.13 [18]. Otsu thresholding is inherently parameterless
so required no finetuning. Appropriate input parameters
were determined iteratively for the watershed algorithm.

Simulated 8-bit images were generated by manually
drawing arbitrary shapes in GIMP raster graphics editor.

2 PANCONI ET AL.
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Each image was 256 by 256 pixels in size, with each
pixel's brightness intensity defined between 0 and
1. Prominent objects were defined at the maximum inten-
sity of 1 over a background defined at 0 for images a-d
and at varying intensities between 0.2 and 1 over a gradi-
ent background between 0 and 0.2 for images e-f. Further
manipulation of each image was performed in RStudio.
Gaussian noise (with standard deviations σ1 = 0, 0.5, 1)
was applied manually in R and Gaussian blur (with stan-
dard deviations σ2 = 0, 5, 10) was applied using the blur
function of the EBImage R package [18]. All images were
subsequently normalised to return intensity values to the
range of 0-1.

3 | RESULTS

3.1 | Description of the algorithm

TOBLERONE is initialised with two inputs: the matrix
representation of a grayscale image, where each pixel
represents an intensity value between 0 and 1, and a
parameter known as the persistence threshold, which dic-
tates the permitted range of differences in intensity
between pixels corresponding to the same object. Given

that the image size and range of possible intensity values
is finite, it is possible to produce a sequence of binarized
images by thresholding over all possible intensities
(Figure 1A-D). In order to undertake topological data
analysis, each of these binary images must be ascribed an
algebraic construct known as a simplicial complex. This
is typically depicted in 2D space by a set of nodes
(0-cells), connected by edges (1-cells) and spaces between
three adjacent edges filled by a face (2-cells), giving the
complex the appearance of a triangulation. To achieve
this, TOBLERONE first maps each active pixel onto a
node (or vertex) and assigns two nodes to be connected
by an edge if they are immediately adjacent and are both
active in the binary image—this representation is often
referred to as the grid topology. The implementation of
the grid topology (as the primary representation of an
image) underpins the assumption that continuous objects
are defined by a set of pixels in which a path between
any two pixels can be achieved by a finite series of lateral
or diagonal movements across pixels within the set.

As we progress sequentially through the series of
binary images (Figure 1B-D), the number of nodes, edges
and faces within the graphical representation of the sim-
plicial complex increases. As such, we can assign each
cell complex an ordered numerical value corresponding

FIGURE 1 A, A schematic image with 25 pixels, represented by a matrix in which each entry contains a numeric value between 0 and 1

corresponding to intensity. B-D, Binary image at a threshold of t = 1.0, 0.5 and 0.0 respectively. E, The filtrations matrix constructed by

assigning each pixel a value corresponding to the order at which it was activated. Pixels which became active at the same threshold are

numbered arbitrarily. F-H, The corresponding network representation of the image at filtration values corresponding to the thresholds

above. Here, f denotes the maximum filtration value permitted. As the filtration value increases, two connected components form and then

merge into one object. I, The persistence diagram constructed from the topological decomposition of the image. This plots the birth

threshold, b, against the death threshold, d, for each object identified. The persistence of each object is represented by τ = b – d. Two

prominent points are found in region Y, given by τ≥ 0.5, which correspond to the two bright objects in the original image

PANCONI ET AL. 3
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to the stage of the binarization sequence at which it was
first activated (Figure 1E). Mathematically, this is known
as a filtration scheme, and each stage of the filtration
will correspond to a different simplicial complex
(Figure 1F-H) [19, 20]. While the definition of a topo-
logical feature typically incorporates holes in the complex,
we restrict our usage here to the first homology class,
which represents the number of distinct connected compo-
nents [21–23]. Since the activation of an edge is imposed
directly by the activation of the two nodes it is formed
between, it suffices to observe the activation of pixels
alone. Here, it is assumed that each identified connected
component corresponds to a distinct biological structure.

By considering the image as a discretised representa-
tion of a continuous intensity field, we can identify the
most prominent (ie, brightest) pixels as estimations of the
local maxima within that field. These maxima are known
as modes, and are typically among the first nodes to
appear within the filtration. As the filtration progresses,
more nodes will be activated within the vicinity of the
original mode and become connected. Since the mode is
inherently defined as a local maximum, each newly
added node will have a filtration value higher than that
of the original. This induces a discretised gradient vector
field upon the simplicial complex corresponding to the
differences in filtration values between neighbouring
nodes. To each mode, we can then assign a region corre-
sponding to the set of nodes which are connected to the
given mode [13]. Neighbouring regions are merged to
form a single connected component with the new mode
defined to be the younger of the two original modes, that
is, the pixel with the lowest filtration value. This process
is known as mode-seeking and it is the principle which
allows each connected component to be identified.

At the end of the filtration, only one mode will
remain. This corresponds to the pixel with highest inten-
sity value, and it will be connected to all pixels in the
image. This means that, throughout the process of gener-
ating the filtration, each mode is formed and then subse-
quently destroyed, save for the final mode which will not
be a good representation of the segmentation. As such,
each root has an associated birth scale, the threshold at
which the root and its corresponding connected compo-
nent is created, and death scale, the threshold at which
the region of interest intersects another and is absorbed.
The difference between the birth and death scale is
known as the persistence. This can be recorded for each
connected component identified and represented via a
persistence diagram (Figure 1i), which plots the birth
scale against the death scale for each region [24].
Each point on this diagram corresponds to a connected
component. We are particularly interested in those which
have high birth scales and low death scales, as these

correspond to regions of the space which form at high
thresholds and do not merge with the background until
particularly low thresholds are reached. By selecting an
appropriate persistence threshold, we can extract only
the most persistent connected components. In a biologi-
cal setting, this allows for identification and extraction of
structures visible within the image, and essentially seg-
ments each object. After each implementation, TOBLE-
RONE will return the number of connected components
found with the given persistence threshold.

An appropriate persistence threshold can be ascer-
tained iteratively by arbitrarily initialising at τ = 0.5 and
perturbing the threshold to match the expected number
of connected components (in this context, the expected
number of cells). Increasing the threshold will yield
greater merging and reduce the number of connected
components found, while decreasing the threshold will
promote more pronounced segmentation and increase
the number of connected components found. As a topo-
logical data analysis technique, TOBLERONE is stable
with respect to perturbations in persistence. As such,
small changes to the choice of the persistence threshold
will not impact the number of objects or their bound-
aries. Unless changing the persistence impacts the num-
ber of objects found, the change of parameter will have
little effect on the boundaries returned, so finetuning is
not required. In the context of cell segmentation across
multiple images, the recommended method for estimat-
ing an appropriate persistence is to take a representative
image, determine how many cells or clusters of cells are
present, and alter the input persistence as described
above until that number is returned. Provided all other
images were acquired under the same microscope condi-
tions, the same persistence threshold can be applied to all
images in the data set.

Once the segmentation has been finalised, the algo-
rithm will extract the exterior boundary of each object.
However, probing micro-heterogeneity in membrane
properties requires an additional understanding of the
orientation of the circuit of pixels corresponding to the
plasma membrane. As such, TOBLERONE employs a
variation of the Swinging Arm method which preserves
the ordering of each pixel comprising the boundary layer,
initialised at the top-left-most pixel and proceeding
counter-clockwise until returning to the origin [25]. This
boundary can then be deleted from the image and the
process can be repeated an arbitrary number of times,
allowing the choice of layer selection at varying depths
within the object. The choice of layer is based on user
preference, depending on the region of the cell or mem-
brane they wish to acquire. Indeed, provided the persis-
tence threshold has been selected appropriately, the
boundary of the objects found will correspond to the

4 PANCONI ET AL.
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boundaries of the cells. With this in mind, selecting pre-
cisely one iteration of the Swinging Arm method will pro-
vide the exact exterior boundary. However, users may
wish the increase the number of iterations in order to dis-
criminate between the inner and outer leaflets of the
membrane (say) or take a representative portion of the
cytoplasm. The algorithmic process culminates in the out-
put of a given cell segmentation and the oriented loops
corresponding to the boundaries of each found object.

3.2 | Demonstration with simulated data

Using a series of simulated images, with highly varied geom-
etries and topologies, we have found that TOBLERONE
can identify and segment binary images with high

sensitivity and specificity (Figure 2A-F). First, binary
objects were generated and Gaussian noise was simulated
over each pixel in each image with standard deviation
σ1 = 1. Then, Gaussian blur was applied with standard
deviation σ2 = 10. These parameters were chosen to
approximately recapitulate the image quality obtained
from conventional confocal microscopy. Each image was
segmented using TOBLERONE as well as two alternative
segmentation approaches, Otsu's method and the Water-
shed algorithm, to compare against the performance of
TOBLERONE [26, 27]. We then quantified each algo-
rithm's sensitivity (fraction of ground-truth foreground
pixels correctly labelled as active by the algorithm) and
specificity (fraction of ground-truth background pixels cor-
rectly labelled as inactive). To avoid skewing sensitivity
and specificity, we only considered pixels within an 11 by

FIGURE 2 A-F, A series of

toy images exhibiting a range of

geometries and topologies. Noise

and blur are simulated over each

image and then TOBLERONE,

Otsu thresholding and the

Watershed algorithm are

performed to recover the

original segmentation. Primary

segmentations were identified

using a persistence threshold of

0.5 for TOBLERONE and using

the recommended settings for

the Watershed algorithm

PANCONI ET AL. 5
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11 grid around each pixel comprising the object's bound-
ary (5 pixels in each direction). Additionally, we recorded
the number of connected components found by each algo-
rithm. Notably, only TOBLERONE consistently returned
the correct number of connected components.

Under these conditions, TOBLERONE achieved a sen-
sitivity of 0.8765 and a specificity of 0.8762 (averaged over
the six simulated image conditions)—this means that
almost all pixels belonging to an object were correctly
identified and most pixels belonging to the background
were correctly ignored, respectively. Both statistics sur-
passed their counterparts for Otsu thresholding (0.7686
and 0.8402 respectively) and TOBLERONE's specificity
was far greater than that of watershed algorithm (0.2533).

In this case, the sensitivity of the watershed algorithm
(0.9355) was greater only on account of oversaturation of
the segmentations. Summary data is given in entirety in
Table 1 and suggests that TOBLERONE is capable of accu-
rately and precisely segmenting objects, even under poor
image quality, and outperforms existing non-machine
learning-based segmentation methods.

To further probe the impact of noise and blur on
TOBLERONE's performance, we extracted one image
from the simulation data set and applied varying degrees
of noise and blur. Each image was segmented by the algo-
rithm and sensitivity and specificity were recalculated.
Results are given in Figure 3 and show that TOBLE-
RONE yields a small drop in both sensitivity and

TABLE 1 Sensitivity (Sens) and

specificity (Spec) of each algorithm on

each simulated image under noise and

blur, as seen in Figure 2

TOBLERONE Otsu thresholding Watershed

Image ID Sens Spec # Sens Spec # Sens Spec #

a 0.992 0.904 Y 0.995 0.900 Y 1.000 0.090 Y

b 0.983 0.848 Y 0.992 0.789 Y 1.000 0.085 N

c 0.896 0.911 Y 0.955 0.809 N 1.000 0.113 N

d 0.773 0.749 0.822 0.673 Y 0.953 0.312 Y

e 0.926 0.725 Y 0.482 0.949 N 0.972 0.394 N

f 0.685 0.894 Y 0.363 0.918 N 0.688 0.526 N

Note: If the correct number of connected components was found, the entry in the number column (#) was
marked with Y, otherwise it was marked with N.

FIGURE 3 A-I, A simulated image of two different objects with varying degrees of noise and blur applied. J-K, Heatmaps of the

sensitivity and specificity (as defined above) of TOBLERONE on each of the corresponding images A-I. While there is little variation

observed in either value, results suggest that noise has a greater negative impact on the algorithm's performance

6 PANCONI ET AL.
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specificity as either noise or blur are increased. Notably,
applying a simple denoising technique, such as blurring,
seems to improve both the sensitivity and specificity of
the algorithm.

3.3 | Demonstration with
experimental data

We then used TOBLERONE to assess two cell types:
the R265 strain of C gattii, which typically exhibits an
approximately spherical geometry, and human embry-
onic kidney (HEK) cells, which display a more com-
plex morphology incorporating finger-like protrusions.
HEK Cells were cultured in DMEM media and crypto-
coccal cells in YPD media in coverslip-bottomed
microscope dishes, stained with di-4-ANEPPDHQ
(membranes) or Nucblue (DNA) for 20 minutes at
37�C and imaged live via confocal microscopy. Seg-
mentation was undertaken using TOBLERONE, Otsu
thresholding and the Watershed algorithm, with
examples displayed in Figure 4. Of the three algo-
rithms considered, TOBLERONE is the only method to
successfully identify the highly non-convex morphol-
ogies of the HEK cells and shows the greatest discrimi-
nation against the background. Results suggest that
both HEK cells (Figure 4A-D) and their nuclei
(Figure 4E-H) can be identified using TOBLERONE.

C gattii is an infectious species of fungus which is
responsible for cryptococcal meningitis in humans.

TOBLERONE was used to identify the membranes of
these cells (Figure 5). The degree of membrane order,
represented by the Generalised Polarisation (GP) images
(Figure 5A-C), was calculated. The GP line profiles
(Figure 5G) were then extracted from the boundaries of
the masks (Figure 5D-F). The average GP was extracted
for control cells as well as those treated with
2-hydroxyoleic acid or 7-ketocholesterol, which are pre-
dicted to introduce a higher degree of membrane disorder
(Figure 5H). A statistically significant difference in the
mean GP value was identified at the significance level of
1%, suggesting that both 2OHOA and 7-ketocholesterol
reduce membrane order in C gattii.

4 | DISCUSSION

In this work, we introduce TOBLERONE, an image seg-
mentation algorithm specifically designed for identifying
cells and organelles in fluorescence microscopy images,
which operates without the drawbacks of conventional
geometric and machine learning-based image segmenta-
tion methods. We have explored the mathematical princi-
ples which underpin the functionality of TOBLERONE,
namely, in the use of topological data analysis for extract-
ing the homology classes of the image under different
thresholds. We then applied the algorithm to a range of
simulated images—achieving high sensitivity and speci-
ficity even under particularly poor image quality—and a
selection of differing cell and organelle geometries,

FIGURE 4 A, Image of a HEK293 cell stained with di-4-ANEPPDHQ. B-D, Masks of the HEK cell as identified by TOBLERONE, Otsu

thresholding and the Watershed algorithm, respectively. Protrusions and variations in membrane morphology are captured by TOBLERONE

despite the heterogeneous geometry. E, An image of several HEK cell nuclei stained with Nucblue. F-H, Masks of each nucleus as identified

by TOBLERONE, Otsu thresholding and the Watershed method, respectively

PANCONI ET AL. 7
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including variants of the R265 strain of C gattii, as well as
HEK cells and their nuclei. We showed that TOBLE-
RONE outperforms existing segmentation methods by
achieving higher sensitivity and specificity under varying
degrees of noise and blur. Additionally, we have
highlighted the qualitative benefits of TOBLERONE over
traditional geometric segmentation algorithms when
applied to real experimental data. This demonstrated the
applicability of TOBLERONE in practice by objectively
identifying structures, biological or otherwise, of arbitrary
shape. By exploiting topological properties of the bound-
aries of these structures, we were able to identify the
plasma membrane of C gattii and produce quantitative
analysis of membrane order.

In comparison to the existing methods for image seg-
mentation, TOBLERONE does present the following
drawbacks. It is currently limited to 2D images, and its
performance will be dependent on image quality [28].
Computationally, the primary segmentation's runtime is
on-par with existing machine learning methods, but pre-
processing and boundary identification often take longer
[6, 9]. While TOBLERONE can function with only a sin-
gle parameter, it is not always obvious how to appropri-
ately select its value—however, topological features in

images are typically robust to variations in intensity, so a
range of persistence thresholds will usually return a suit-
able segmentation [29–31]. As a topological image analy-
sis technique, TOBLERONE is invariant of cell and
organelle morphology [32, 33]. While this makes the
algorithm highly generalisable, it can present challenges
in dense cell lines, as the algorithm may merge cells in
close proximity, particularly when there is no visible gap
between them.

The advantages of TOBLERONE over the general
geometry-based approaches are as follows. TOBLERONE
presents the advantage that it can segment structures of
any size and shape, provided they are well-separated
from surrounding objects and the background. In micros-
copy, this alleviates the need for pre-existing knowledge
of the geometric properties of cells and, in the case of
machine learning, training data sets of any kind. Not
only does this counteract over-parameterisation, but it
reduces the impact of parameter estimation. Additionally,
since TOBLERONE is invariant of geometric cell proper-
ties, it is applicable even to images with a high degree of
between-cell variation. As such, topological image analy-
sis is best employed when the images contain structures
of varied or complex geometry—particularly those with

FIGURE 5 A-C, GP images of C gattii cells from the control group, those treated with 2OHOA and those treated with 7-ketocholesterol,

respectively. Cells were stained with di-4-ANEPPDHQ. Pseudocolour applied to reflect the difference in GP values across the membrane.

D-F, Masks of the same cells, as found by TOBLERONE, overlaid onto the grayscale images. Dead and incomplete cells lying on the

periphery have been manually excluded. G, The GP line profile extracted from the boundary of an arbitrary cell. H, Boxplot depicting the

average GP value across the membrane for cells treated with 2OHOA or 7-ketocholesterol

8 PANCONI ET AL.
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highly non-convex structures. Typically, it is more likely
that geometric techniques would outperform topological
methods in instances where cells form dense, connected
tissues.

Generally, TOBLERONE probes images containing
structures of any topology, including those which
appear to present gaps within the structures them-
selves. This principle allows for the identification of
both exterior boundaries, corresponding to the cell
membrane, and interior boundaries, which may corre-
spond to organelles, vesicles or other structures con-
tained within the cells. As TOBLERONE is a
topological methodology, it is able to distinguish
between the different boundary types automatically.
Overall, this tool presents a different approach to
image analysis compared to geometrical or machine-
learning based image segmentation with considerable
advantages for identifying cell boundaries.
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